
Quantum Algorithms and Lower Bounds for Linear
Regression with Norm Constraints
Yanlin Chen #

QuSoft and CWI, Amsterdam, The Netherlands

Ronald de Wolf #

QuSoft and CWI, Amsterdam, The Netherlands
University of Amsterdam, The Netherlands

Abstract
Lasso and Ridge are important minimization problems in machine learning and statistics. They are
versions of linear regression with squared loss where the vector θ ∈ Rd of coefficients is constrained
in either ℓ1-norm (for Lasso) or in ℓ2-norm (for Ridge). We study the complexity of quantum
algorithms for finding ε-minimizers for these minimization problems. We show that for Lasso we
can get a quadratic quantum speedup in terms of d by speeding up the cost-per-iteration of the
Frank-Wolfe algorithm, while for Ridge the best quantum algorithms are linear in d, as are the best
classical algorithms. As a byproduct of our quantum lower bound for Lasso, we also prove the first
classical lower bound for Lasso that is tight up to polylog-factors.

2012 ACM Subject Classification Mathematics of computing → Mathematical optimization; Theory
of computation → Quantum computation theory

Keywords and phrases Quantum algorithms, Regularized linear regression, Lasso, Ridge, Lower
bounds

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.38

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2110.13086

Funding Ronald de Wolf : Partially supported by the Dutch Research Council (NWO) through
Gravitation-grant Quantum Software Consortium, 024.003.037, and through QuantERA ERA-NET
Cofund project QuantAlgo 680-91-034.

Acknowledgements We thank Yi-Shan Wu and Christian Majenz for useful discussions, and Armando
Bellante for pointing us to [11].

1 Introduction

1.1 Linear regression with norm constraints
One of the simplest, most useful and best-studied problems in machine learning and statistics
is linear regression. We are given N data points {(xi, yi)}N−1

i=0 where x ∈ Rd and y ∈ R, and
want to fit a line through these points that has small error. In other words, we want to
find a vector θ ∈ Rd of coefficients such that the inner product ⟨θ, x⟩ =

∑d
j=1 θjxj is a good

predictor for the y-variable. There are different ways to quantify the error (“loss”) of such a
θ-vector, the most common being the squared error (⟨θ, x⟩ − y)2, averaged over the N data
points (or over an underlying distribution D that generated the data). If we let X be the
N ×d matrix whose N rows are the x-vectors of the data, then we want to find a θ ∈ Rd that
minimizes ∥Xθ − y∥2

2. This minimization problem has a well-known closed-form solution:
θ = (XT X)+XT y, where the superscript “+” indicates the Moore-Penrose pseudoinverse.

EA
T

C
S

© Yanlin Chen and Ronald de Wolf;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 38; pp. 38:1–38:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yanlin.chen@cwi.nl
mailto:rdewolf@cwi.nl
https://doi.org/10.4230/LIPIcs.ICALP.2023.38
https://arxiv.org/abs/2110.13086
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

In practice, unconstrained least-squares regression sometimes has problems with overfitting
and often yields solutions θ where all entries are non-zero, even when only a few of the d

coordinates in the x-vector really matter and one would really hope for a sparse vector θ [42,
see Chapters 2 and 13]. This may be improved by “regularizing” θ via additional constraints.
The most common constraints are to require that the ℓ1-norm or ℓ2-norm of θ is at most some
bound B.1 Linear regression with an ℓ1-constraint is called Lasso (due to Tibshirani [43]),
while with an ℓ2-constraint it is called Ridge (due to Hoerl and Kennard [29]).

Both Lasso and Ridge are widely used for robust regression and sparse estimation in ML
problems and elsewhere [44, 15]. Consequently, there has been great interest in finding the
fastest-possible algorithms for them. For reasons of efficiency, algorithms typically aim at
finding not the exactly optimal solution but an ε-minimizer, i.e., a vector θ whose loss is only
an additive ε worse than the minimal-achievable loss. The best known results on the time
complexity of classical algorithms for Lasso are an upper bound of Õ(d/ε2) [28] and a lower
bound of Ω(d/ε) [16] (which we actually improve to a tight lower bound in this paper, see
below); for Ridge the best bound is Θ̃(d/ε2) [28], which is tight up to logarithmic factors.2

1.2 Our results
We focus on the quantum complexity of Lasso and Ridge, investigating to what extent
quantum algorithms can solve these problems faster. Table 1 summarizes the results. The
upper bounds are on time complexity (total number of elementary operations and queries to
entries of the input vectors) while the lower bounds are on query complexity (which itself
lower bounds time complexity).

Table 1 Classical and quantum upper and lower bounds for Lasso and Ridge.

Upper bound Lower bound

Lasso Classical [28]: Õ(d/ε2) Classical [this work]: Ω̃(d/ε2)

Quantum [this work]: Õ(
√

d/ε2) Quantum [this work]: Ω(
√

d/ε1.5)

Ridge Classical [28]: Õ(d/ε2) Classical [28]: Ω(d/ε2)

Quantum [this work]: Ω(d/ε)

1.2.1 Lasso
We design a quantum algorithm that finds an ε-minimizer for Lasso in time Õ(

√
d/ε2). This

gives a quadratic quantum speedup over the best-possible classical algorithm in terms of d,
while the ε-dependence remains the same as in the best known classical algorithm.

1 For ease of presentation we will set B = 1. However, one can also set B differently or even do a binary
search over its values, finding a good θ for each of those values and selecting the best one at the end.
Instead of putting a hard upper bound B on the norm, one may also include it as a penalty term in
the objective function itself, by just minimizing the function ∥Xθ − y∥2

2 + λ ∥θ∥, where λ is a Lagrange
multiplier and the norm of θ could be ℓ1 or ℓ2 (and could also be squared). This amounts to basically
the same thing as our setup.

2 For such bounds involving additive error ε to be meaningful, one has to put certain normalization
assumptions on X and y, which are given in the body of the paper. The Õ and Θ̃-notation hides
polylogarithmic factors. It is known that N = O((log d)/ε2) data points suffice for finding an ε-minimizer,
which explains the absence of N as a separate variable in these bounds.

Y. Chen and R. de Wolf 38:3

Our quantum algorithm is based on the Frank-Wolfe algorithm, a well-known iterative
convex optimization method [22]. Frank-Wolfe, when applied to a Lasso instance, starts
at the all-zero vector θ and updates this in O(1/ε) iterations to find an ε-minimizer. Each
iteration looks at the gradient of the loss function at the current point θ and selects the
best among 2d directions for changing θ (each of the d coordinates can change positively or
negatively, whence 2d directions). The new θ will be a convex combination of the previous θ

and this optimal direction of change. Note that Frank-Wolfe automatically generates sparse
solutions: only one coordinate of θ can change from zero to nonzero in one iteration, so the
number of nonzero entries in the final θ is at most the number of iterations, which is O(1/ε).

Our quantum version of Frank-Wolfe does not reduce the number of iterations, which
remains O(1/ε), but it does reduce the cost per iteration. In each iteration it selects the best
among the 2d possible directions for changing θ by using a version of quantum minimum-
finding on top of a quantum approximation algorithm for entries of the gradient (which in
turn uses amplitude estimation). Both this minimum-finding and our approximation of entries
of the gradient will result in approximation errors throughout. Fortunately Frank-Wolfe is
a very robust method which still converges if we carefully ensure those quantum-induced
approximation errors are sufficiently small.

Our quantum algorithm assumes coherent quantum query access to the entries of the
data points (xi, yi), as well as a relatively small QRAM (quantum-readable classical-writable
classical memory). We use a variant of a QRAM data structure developed by Prakash and
Kerenidis [37, 33], to store the nonzero entries of our current solution θ in such a way that
we can (1) quickly generate θ as a quantum state, and (2) quickly incorporate the change
of θ incurred by a Frank-Wolfe iteration.3 Because our θ is O(1/ε)-sparse throughout the
algorithm, we only need Õ(1/ε) bits of QRAM.

We also prove a lower bound of Ω(
√

d/ε1.5) quantum queries for Lasso, showing that the
d-dependence of our quantum algorithm is essentially optimal, while our ε-dependence might
still be slightly improvable. Our lower bound strategy “hides” a subset of the columns of
the data matrix X by letting those columns have slightly more +1s than −1, and observes
that an approximate minimizer for Lasso allows us to recover this hidden set. We then use
the composition property of the adversary lower bound [12] together with a worst-case to
average-case reduction to obtain a quantum query lower bound for this hidden-set-finding
problem, and hence for Lasso.

Somewhat surprisingly, no tight classical lower bound was known for Lasso prior to this
work. To the best of our knowledge, the previous-best classical lower bound was Ω(d/ε), due
to Cesa-Bianchi, Shalev-Shwartz, and Shamir [16]. As a byproduct of our quantum lower
bound, we use the same set-hiding approach to prove for the first time the optimal (up to
logarithmic factors) lower bound of Ω̃(d/ε2) queries for classical algorithms for Lasso.

1.2.2 Ridge
What about Ridge? Because ℓ2 is a more natural norm for quantum states than ℓ1, one
might hope that Ridge is more amenable to quantum speedup than Lasso. Unfortunately
this turns out to be wrong: we prove a quantum lower bound of Ω(d/ε) queries for Ridge,
using a similar strategy as for Lasso. This shows that the classical linear dependence of the
runtime on d cannot be improved on a quantum computer. Whether the ε-dependence can
be improved remains an open question.

3 Each iteration will actually change all nonzero entries of θ because the new θ is a convex combination of
the old θ and a vector with one nonzero entry. Our data structure keeps track of a global scalar, which
saves us the cost of separately adjusting all nonzero entries of θ in the data structure in each iteration.

ICALP 2023

38:4 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

1.3 Related work
As already cited in Table 1, Hazan and Koren [28] obtained an optimal classical algorithm for
Ridge, and the best known classical algorithm for Lasso. Cesa-Bianchi, Shalev-Shwartz, and
Shamir [16] provided a non-optimal classical lower bound for Lasso, and their idea inspired us
to hide a subset among the column of the data matrix and to use a Lasso solver to find that
subset (our lower bound also benefited from the way composition of the adversary bound
was used in [8]).

Du, Hsieh, Liu, You, and Tao [20] also showed a quantum upper bound for Lasso based
on quantizing parts of Frank-Wolfe, though their running time Õ(N3/2

√
d) is substantially

worse than ours. The main goal of their paper was to establish differential privacy, not so
much to obtain the best-possible quantum speedup for Lasso. They also claim an Ω(

√
d)

lower bound for quantum algorithms for Lasso [20, Corollary 1], without explicit dependence
on ε, but we do not fully understand their proof, which goes via a claimed equivalence
with quantum SVMs. Bellante and Zanero [11] recently and independently used similar
techniques as we use here for our Lasso upper bound (KP-trees and amplitude estimation)
to give a polynomial quantum speedup for the classical matching-pursuit algorithm, which is
a heuristic algorithm for the NP-hard problem of linear regression with a sparsity constraint,
i.e., with an ℓ0-regularizer.

Another quantum approach for solving (unregularized) least-squares linear regression is
based on the linear-systems algorithm of Harrow, Hassidim, and Lloyd [27]. In this type of
approach, the quantum algorithm very efficiently generates a solution vector θ as a quantum
state 1

∥θ∥2

∑
i θi |i⟩ (which is incomparable to our goal of returning θ as a classical vector).

Chakraborty, Gilyén, and Jeffery [18] used the framework of block-encodings to achieve this.
Subsequently Gilyén, Lloyd, and Tang [25] obtained a “dequantized” classical algorithm for
(unregularized) least-squares linear regression assuming length square sampling access to the
input data, which again is incomparable to our setup. The quantum algorithm was very
recently improved with an ℓ2-regularizer by Chakraborty, Morolia, and Peduri [19], thought
still producing the final output as a quantum state rather than as a classical solution.

Norm-constrained linear regression is a special case of convex optimization. Quantum
algorithms for various convex optimization problems have received much attention recently.
For example, there has been a sequence of quantum algorithms for solving linear and
semidefinite programs starting with Brandão and Svore [14, 5, 13, 6, 3]. There have also
been some polynomial speedups for matrix scaling [7, 26] and for boosting in machine
learning [9, 30], as well as some general speedups for converting membership oracles for a
convex feasible set to separation oracles and optimization oracles [17, 4, 2]. On the other hand
Garg, Kothari, Netrapalli, and Sherif [24] showed that the number of iterations for first-order
algorithms for minimizing non-smooth convex functions cannot be significantly improved on
a quantum computer; recently they generalized this result to higher-order algorithms [23].
Finally, there has also been work on quantum speedups for non-convex problems, for instance
on escaping from saddle points [45].

2 Preliminaries

Throughout the paper, d will always be the dimension of the ambient space Rd, and log
without a base will be the binary logarithm. It will be convenient for us to index entries
of vectors starting from 0, so the entries xi of a d-dimensional vector x are indexed by
i ∈ {0, . . . , d − 1} = Zd. UN = U{0, . . . , N − 1} is the discrete uniform distribution over
integers 0, 1, 2, . . . , N − 1.

Y. Chen and R. de Wolf 38:5

2.1 Computational model and quantum algorithms

Our computational model is a classical computer (a classical random-access machine) that
can invoke a quantum computer as a subroutine. The input is stored in quantum-readable
read-only memory (a QROM), whose bits can be queried. The classical computer can also
write bits to a quantum-readable classical-writable classical memory (a QRAM). The classical
computer can send a description of a quantum circuit to the quantum computer; the quantum
computer runs the circuit (which may include queries to the input bits stored in QROM and
to the bits stored by the computer itself in the QRAM), measures the full final state in the
computational basis, and returns the measurement outcome to the classical computer. In
this model, an algorithm has time complexity T if it uses at most T elementary classical
operations and quantum gates, quantum queries to the input bits stored in QROM, and
quantum queries to the QRAM. The query complexity of an algorithm only measures the
number of queries to the input stored in QROM. We call a (quantum) algorithm bounded-error
if (for every possible input) it returns a correct output with probability at least 9/10.

We will represent real numbers in computer memory using a number of bits of precision
that is polylogarithmic in d, N , and 1/ε (i.e., Õ(1) bits). This ensures all numbers are
represented throughout our algorithms with negligible approximation error and we will ignore
those errors later on for ease of presentation.

The following is a modified version of quantum minimum-finding, which in its basic form
is due to Høyer and Dürr [21]. Our proof of the more general version below is given in our
full version on arXiv, and is based on a result from [5]. We also use some other Grover-based
quantum algorithms as subroutines, described in our full version.

▶ Theorem 1 (min-finding with an approximate unitary). Let δ1, δ2, ε ∈ (0, 1), v0, . . . , vd−1 ∈ R.
Suppose we have a unitary Ã that maps |j⟩ |0⟩ → |j⟩ |Λj⟩ such that for every j ∈ Zd, after
measuring the state |Λj⟩, with probability ≥ 1 − δ2 the first register λ of the measurement
outcome satisfies |λ − vj | ≤ ε. There exists a quantum algorithm that finds an index j

such that vj ≤ mink∈Zd
vk + 2ε with probability ≥ 1 − δ1 − 1000 log(1/δ1) ·

√
2dδ2, using

1000
√

d · log(1/δ1) applications of Ã and Ã†, and Õ(
√

d) elementary gates. In particular, if
δ2 ≤ δ2

1/(2000000d log(1/δ1)), that finds such a j with probability ≥ 1− 2δ1.

2.2 Expected and empirical loss

Let sample set S = {(xi, yi)}N−1
i=0 be a set of i.i.d. samples from Rd × R, drawn according to

an unknown distribution D. A hypothesis is a function h : Rd → R, and H denotes a set of
hypotheses. To measure the performance of the prediction, we use a convex loss function ℓ :
R2 → R. The expected loss of h with respect to D is denoted by LD(h) = E(x,y)∼D[ℓ(h(x), y)],
and the empirical loss of h with respect to S is denoted by LS(h) = 1

N

∑
i∈ZN

ℓ(h(xi), yi).

▶ Definition 2. Let ε > 0. An h ∈ H is an ε-minimizer over H w.r.t. D if

LD(h)− min
h′∈H

LD(h′) ≤ ε.

▶ Definition 3. Let ε > 0. An h ∈ H is an ε-minimizer over H w.r.t. sample set S if

LS(h)− min
h′∈H

LS(h′) ≤ ε.

ICALP 2023

38:6 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

2.3 Linear regression problems and their classical and quantum setup

In linear regression problems, the hypothesis class is the set of linear functions on Rd. The
goal is to find a vector θ for which the corresponding hypothesis ⟨θ, x⟩ provides a good
prediction of the target y. One of the most natural choices for regression problems is the
squared loss

ℓ(ŷ, y) = (ŷ − y)2.

We can instantiate the expected and empirical losses as a function of θ using squared loss:

LD(θ) = E(x,y)∼D[ℓ(⟨θ, x⟩, y)] = E(x,y)∼D[(⟨θ, x⟩ − y)2],

LS(θ) = 1
N

∑
i∈ZN

ℓ(⟨θ, x⟩, yi) = 1
N

∑
i∈ZN

(⟨θ, x⟩ − yi)2.

We also write the empirical loss as LS(θ) = 1
N ∥Xθ − y∥2

2, where matrix entry Xij is the jth
entry of the vector xi, and y is the N -dimensional vector with entries yi. As we will see
below, if the instances in the sample set are chosen i.i.d. according to D, and N is sufficiently
large, then LS(θ) and LD(θ) are typically close by the law of large numbers.

In the quantum case, we assume the sample set S is stored in a QROM, which we can access
by means of queries to the oracles OX : |i⟩ |j⟩ |0⟩ → |i⟩ |j⟩ |Xij⟩ and Oy : |i⟩ |0⟩ → |i⟩ |yi⟩.

2.3.1 Lasso

The least absolute shrinkage and selection operator, or Lasso, is a special case of linear
regression with a norm constraint on the vector θ: it restricts solutions to the unit ℓ1-ball,
which we denote by Bd

1 . For the purpose of normalization, we require that every sample
(x, y) satisfies ∥x∥∞ ≤ 1 and |y| ≤ 1.4 The goal is to find a θ ∈ Bd

1 that (approximately)
minimizes the expected loss. Since the expected loss is not directly accessible, we instead find
an approximate minimizer of the empirical loss. Mohri, Rostamizadeh, and Talwalkar [34]
showed that with high probability, an approximate minimizer for empirical loss is also a
good approximate minimizer for expected loss.

▶ Theorem 4 ([34], Theorem 11.16). Let D be an unknown distribution over [−1, 1]d× [−1, 1]
and S = {(xi, yi)}N−1

i=0 be a sample set containing N i.i.d. samples from D. Then, for each
δ > 0, with probability ≥ 1− δ over the choice of S, the following holds for all θ ∈ Bd

1 :

LD(θ)− LS(θ) ≤ 4
√

2 log(2d)
N

+ 4
√

log(1/δ)
2N

.

This theorem implies that if N = c log(d/δ)/ε2 for sufficiently large constant c, then
finding (with error probability ≤ δ) an ε-minimizer for the empirical loss LS , implies finding
(with error probability ≤ 2δ taken both over the randomness of the algorithm and the choice
of the sample S) a 2ε-minimizer for the expected loss LD.

4 Note that if θ ∈ Bd
1 and ∥x∥∞ ≤ 1, then |⟨θ, x⟩| ≤ 1 by Hölder’s inequality.

Y. Chen and R. de Wolf 38:7

2.3.2 Ridge
Another special case of linear regression with a norm constraint is Ridge, which restricts
solutions to the unit ℓ2-ball Bd

2 . For the purpose of normalization, we now require that every
sample (x, y) satisfies ∥x∥2 ≤ 1 and |y| ≤ 1. Similarly to the Lasso case, Mohri, Rostamizadeh,
and Talwalkar [34] showed that with high probability, an approximate minimizer for the
empirical loss is also a good approximate minimizer for the expected loss.

▶ Theorem 5 ([34], Theorem 11.11). Let D be an unknown distribution over Bd
2 × [−1, 1]

and S = {(xi, yi)}N−1
i=0 be a sample set containing N i.i.d. samples from D. Then, for each

δ > 0, with probability ≥ 1− δ over the choice of S, the following holds for all θ ∈ Bd
2 :

LD(θ)− LS(θ) ≤ 8
√

1
N

+ 4
√

log(1/δ)
2N

.

2.4 The KP-tree data structure and efficient state preparation
Kerenidis and Prakash [37, 33] gave a quantum-accessible classical data structure to store a
vector θ with support t (i.e., t nonzero entries) to enable efficient preparation of the state

|θ⟩ =
∑
j∈Zd

√
|θj |
∥θ∥1

|j⟩ |sign(θj)⟩ .

We modify their data structure such that for arbitrary a, b ∈ R and j ∈ Zd, we can efficiently
update a data structure for the vector θ to a data structure for the vector aθ + bej , without
having to individually update all nonzero entries of the vector. We only give the definition
here; for more details and analysis, see our full version on arXiv.

▶ Definition 6 (KP-tree). Let θ ∈ Rd have support t. Define a KP-tree KPθ of θ as:
KPθ is a rooted binary tree with depth ⌈log d⌉ and with O(t log d) vertices.
The root stores a scalar A ∈ R \ {0} and the support t of θ.
Each edge of the tree is labelled by a bit.
For each j ∈ supp(θ), there is one corresponding leaf storing θj

A . The number of leaves is t.
The bits on the edges of the path from the root to the leaf corresponding to the jth entry
of θ, form the binary description of j.
Each intermediate node stores the sum of its children’s absolute values.

For ℓ ∈ Z⌈log d⌉ and j ∈ Z2ℓ , we define KPθ(ℓ, j) as the value of the jth node in the ℓth

layer, i.e., the value stored in the node that we can reach by the path according to the binary
representation of j from the root. Also, we let KPθ(0, 0) be the sum of all absolute values
stored in the leaves. If there is no corresponding jth node in the ℓth layer (that is, we cannot
reach a node by the path according to the binary representation of j from the root), then
KPθ(ℓ, j) is defined as 0. Note that both the numbering of the layer and the numbering of
nodes start from 0. In the special case where θ is the all-0 vector, the corresponding tree will
just have a root node with t = 0.

3 Quantum Algorithm for Lasso

3.1 The classical Frank-Wolfe algorithm
Below is a description of the Frank-Wolfe algorithm with approximate linear solvers. For now
this is for an arbitrary convex objective function L and arbitrary compact convex domain X
of feasible solutions; for Lasso we will later instantiate these to the quadratic loss function and

ICALP 2023

38:8 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

ℓ1-ball, respectively. Frank-Wolfe finds an ε-approximate solution to a convex optimization
problem, using O(1/ε) iterations. It is a first-order method: each iteration assumes access
to the gradient of the objective function at the current point. The algorithm considers the
linearization of the objective function, and moves towards a minimizer of this linear function
without ever leaving the domain X (in contrast to for instance projected gradient descent).

Algorithm 1 The Frank-Wolfe algorithm with approximate linear subproblems.

input : number of iterations T > 0; convex differentiable function L; compact
convex domain X ;

Let CL be the curvature constant of L;
Let θ0 be an arbitrary point in X ;
for t← 0 to T do

τt = 2
t+2 ;

find s ∈ X such that ⟨s,∇L(θt)⟩ ≤ min
s′∈X
⟨s′,∇L(θt)⟩+ τtCL

4 ;

θt+1 = (1− τt)θt + τts;
end
output : θT ;

The convergence rate of the Frank-Wolfe algorithm is affected by the “non-linearity” of
the objective function L, as measured by the curvature constant CL:

▶ Definition 7. The curvature constant CL of a convex and differentiable function L : Rd → R
with respect to a convex domain X is defined as

CL ≡ sup
x,s∈X ,γ∈[0,1],
y=x+γ(s−x)

2
γ2 (L(y)− L(x)− ⟨∇L(x), (y − x)⟩).

Next we give an upper bound for the curvature constant of the empirical loss function for
Lasso.

▶ Theorem 8. Let S = {(xi, yi)}N−1
i=0 with all entries of xi and yi in [−1, 1]. Then the

curvature constant CLS
of LS w.r.t. Bd

1 is ≤ 8.

Proof. We know

LS(θ) = 1
N
∥Xθ − y∥2

2 = (Xθ − y)T (Xθ − y)
N

= θT XT Xθ − yT Xθ − θT XT y + yT y

N
,

which implies the Hessian of LS is ∇2LS(z) = 2XT X
N , independent of z. By replacing sup by

max because the domain is compact, we have

CLS
= max

x,s∈X ,γ∈[0,1],
y=x+γ(s−x)

2
γ2 (LS(y)− LS(x)− ⟨∇LS(x), (y − x)⟩)

= max
x,s∈X ,γ∈[0,1]

⟨(s− x),∇2LS · (s− x)⟩ = max
x,s∈X

2
N
∥X(s− x)∥2

2.

Each coefficient of X is at most 1 in absolute value, and s−x ∈ 2Bd
1 , hence each entry of the

vector X(s− x) has magnitude at most 2. Therefore max
x,y∈Bd

1

2
N ∥X(s− x)∥2

2 is at most 8. ◀

Y. Chen and R. de Wolf 38:9

The original Frank-Wolfe algorithm [22] assumed that the minimization to determine the
direction-of-change s was done exactly, without the additive error term τtCLS

/4 that we
wrote in Algorithm 1. However, the following theorem, due to Jaggi [31], shows that solving
approximate linear subproblems is sufficient for the Frank-Wolfe algorithm to converge at an
O(CLS

/T) rate, which means one can find an ε-approximate solution with T = O(CLS
/ε)

iterations.

▶ Theorem 9 ([31], Theorem 1). For each iteration t ≥ 1, the corresponding θt of Algorithm 1
satisfies

LS(θt)− min
θ′∈Bd

1

LS(θ′) ≤ 3CLS

t + 2 .

3.2 Approximating the quadratic loss function and entries of its gradient
In this subsection, we give a quantum algorithm to estimate the quadratic loss function LS(θ)
and entries of its gradient, given query access to entries of the vectors in S = {(xi, yi)}N−1

i=0
and given a KP-tree for θ ∈ Bd

1 . One can estimate these numbers with additive error β in
time roughly 1/β.

We start with estimating entries of the gradient of the loss function at a given θ:

▶ Theorem 10. Let θ ∈ Bd
1 , and β, δ > 0. Suppose we have a KP-tree KPθ of vector θ

and can make quantum queries to OKPθ
: |ℓ, k⟩ |0⟩ → |ℓ, k⟩ |KPθ(ℓ, k)⟩. One can implement

Ũ∇LS
: |j⟩ |0⟩ → |j⟩ |Λ⟩ such that for all j ∈ Zd, after measuring the state |Λ⟩, with probability

≥ 1− δ the first register λ of the outcome will satisfy |λ−∇jLS(θ)| ≤ β, by using Õ(log(1/δ)
β)

applications of OX , O†
X , Oy, O†

y, OKPθ
, O†

KPθ
, and elementary gates.

Next we show how to estimate the value of the loss function itself at a given θ:

▶ Theorem 11. Let θ ∈ Bd
1 , and β, δ > 0. Suppose we have a KP-tree KPθ of vector θ and

can make quantum queries to OKPθ
: |ℓ, k⟩ |0⟩ → |ℓ, k⟩ |KPθ(ℓ, k)⟩. Then we can implement

ŨLS
: |0⟩ → |Λ⟩ such that after measuring the state |Λ⟩, with probability ≥ 1 − δ the first

register λ of the outcome will satisfy |λ− LS(θ)| ≤ β, by using Õ(log(1/δ)
β) applications of

OX , O†
X , Oy, O†

y, OKPθ
, O†

KPθ
, and elementary gates.

If we have multiple vectors θ0, . . . , θm−1, then we can apply the previous theorem condi-
tioned on the index of the vector we care about:

▶ Corollary 12. Let θ0, θ1, . . . , θm−1 ∈ Bd
1 , and β, δ > 0. Suppose for all h ∈ Zm, we

have a KP-tree KPθh of vector θh and can make quantum queries to OKPθ
: |h, ℓ, k⟩ |0⟩ →

|h, ℓ, k⟩ |KPθh(ℓ, k)⟩. Then we can implement ŨLS
: |h⟩ |0⟩ → |h⟩ |Λ⟩ such that for all h ∈ Zm,

after measuring the state |Λ⟩, with probability ≥ 1 − δ the first register λ of the outcome
will satisfy |λ− LS(θh)| ≤ β, by using Õ(log(1/δ)

β) applications of OX , O†
X , Oy, O†

y, OKPθ
,

O†
KPθ

, and elementary gates.

3.3 Quantum algorithms for Lasso with respect to S

In this subsection, we will show how to find an approximate minimizer for Lasso with respect
to a given sample set S. The following algorithm simply applies the Frank-Wolfe algorithm
to find an ε-minimizer for Lasso with respect to the sample set S given C, a guess for the
curvature constant CLS

(which our algorithm does not know in advance). Note that to find
an s ∈ Bd

1 such that ⟨s,∇LS(θt)⟩ ≤ min
s′∈X
⟨s′,∇LS(θt)⟩ + τtCLS

/4, it suffices to only check

ICALP 2023

38:10 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

s ∈ {±e0, . . . ,±ed−1} because the domain is Bd
1 and ∇LS is a linear function in θ. Also, by

Theorem 8, the curvature constant CLS
of loss function LS is at most 8 because (xi, yi) is in

[−1, 1]d × [−1, 1] for all i ∈ ZN .

Algorithm 2 The algorithm for Lasso with a guess C for the value of the curvature
constant.

input : a positive value C; additive error ε;
Let θ0 be the d-dimensional all-zero vector;
Let T = 6 · ⌈C

ε ⌉;
for t← 0 to T do

τt = 2
t+2 ;

Let s ∈ {±e0, . . . ,±ed−1} be such that ⟨∇LS(θt), s⟩ ≤ min
j′∈Zd

−|∇j′LS(θt)|+ C
8t+16 ;

θt+1 = (1− τt)θt + τts;
end
output : θT ;

It is worth mentioning that Algorithm 2 also outputs an ε-minimizer if its input C equals
the curvature constant CLS

approximately instead of exactly. For example, suppose we
only know that the curvature constant CLS

is between C and 2C, where C is the input in
Algorithm 2. Then the output of Algorithm 2 is still an ε-minimizer. We can see this by
first observing that the error we are allowed to make for the linear subproblem in iteration t

is CLS

4t+8 ≥
C

8t+16 , and hence by Theorem 9, after T = 6 · ⌈C
ε ⌉ iterations, the output θT is a

3C
(T +2) = 3C

6·⌈C/ε⌉+2 -minimizer for LS . Because 3C
6·⌈C/ε⌉+2 ≤ ε, the output θT is therefore an

ε-minimizer.
In the Lasso case, we do not know how to find a positive number C such that CLS

∈ [C, 2C],
but we know CLS

≤ 8 by Theorem 8. Hence we can try different intervals of possible values
for CLS

: we apply Algorithm 2 with different input C = 8, 4, 2, 1, 1/2, . . . , 2−⌈log(1/ε)⌉, and
then we collect all outputs of Algorithm 2 with those different inputs, as candidates. After
that, we compute the objective values of all those candidates, and output the one with
minimum objective value. If CLS

∈ (ε, 8], then at least one of the values we tried for C will
be within a factor of 2 of the actual curvature constant CLS

. Hence one of our candidates is
an ε-minimizer.

However, we also need to deal with the case that CLS
≤ ε. In this case, we consider

the “one-step” version of the Frank-Wolfe algorithm, where the number of iterations is 1.
But now we do not estimate ⟨∇LS(θt), s⟩ anymore (i.e., we do not solve linear subproblems
anymore). We find that the only possible directions are the vertices of the ℓ1-ball, and θ0

is the all-zero vector, implying that θ1, the output of one-step Frank-Wolfe, must be in
I = {±e0/3, . . . ,±ed−1/3} by the update rule of Frank-Wolfe. Besides, CLS

≤ ε implies
that θ1 is a 3CLS

1+2 ≤ ε-minimizer for Lasso. Hence we simply output a v = arg min
v′∈I

LS(v′) if
CLS

≤ ε.
Combining the above arguments gives the following algorithm:

▶ Theorem 13. Let S = {(xi, yi)}N−1
i=0 be the given sample set stored in QROM. For each

ε ∈ (0, 0.5), there exists a bounded-error quantum algorithm that finds an ε-minimizer for
Lasso w.r.t. sample set S using Õ(

√
d

ε2) time and Õ(1
ε) QRAM and classical space.

Proof. We will implement Algorithm 3 in Õ(
√

d
ε2) time and Õ(1

ε) QRAM space. Below we
analyze its different components.

Y. Chen and R. de Wolf 38:11

Algorithm 3 The algorithm for Lasso.

input : ε;
Let v ∈ {±e0/3, . . . ,±ed−1/3} be such that LS(v)−minj∈Zd

LS(±ej/3) ≤ ε/10;
Let candidate set A = {v};
for C ← 8, 4, 2, 1, 1

2 , . . . , 2−⌈log(1/ε)⌉−1 do
RUN Algorithm 2 with inputs C and ε/10;
ADD the output of Algorithm 2 to A;

end
output : arg minw∈A LS(w);

3.3.1 Analysis of Algorithm 2
We first show that we can implement Algorithm 2 in Õ(

√
d

ε2) time. Because CLS
≤ 8

(Theorem 8), the number of iterations for Algorithm 2 with input C = CLS
is at most

6 · ⌈ 8
ε⌉. However, as we mentioned above, we don’t know how large CLS

is exactly, so
we try all possible inputs (of Algorithm 2) in Algorithm 3. Note that for every input
C ∈ {8, 4, 2, 1, 1

2 , . . . , 2−⌈log(1/ε)⌉−1} and for every number of iterations t ∈ {1, . . . , 6 · ⌈C
ε ⌉},

C
4t+8 is at least ε

10 , so it suffices to ensure that in each iteration in each of our runs of
Algorithm 2, the additive error for the approximate linear subproblem is ≤ ε

10 .
Suppose we have KPθt for each iteration t of Algorithm 2, and suppose we can make queries

to OKPθt , then by Theorem 10, one can implement Ũ∇LS
: |j⟩ |0⟩ → |j⟩ |Λ⟩ such that for all

j ∈ Zd, after measuring the state |Λ⟩, with probability ≥ 1− ε2

2d·1020·log6(1/ε) the first register
λ of the measurement outcome will satisfy |λ−∇jLS(θ)| ≤ ε

20 , by using Õ(log(d/ε)
ε) time and

queries to OKPθt , O†
KPθt

. Then by Theorem 1, with failure probability at most ε
10000 log(1/ε) ,

one can find s ∈ {±e0, . . . ,±ed−1} such that ⟨∇LS(θt), s⟩ ≤ min
j′∈Zd

−|∇j′LS(θt)|+ 2 · ε
20 , by

using Õ(
√

d · log(1/ε)) applications of Ũ∇LS
and Ũ†

∇LS
, and Õ(

√
d) elementary gates.

For each iteration t in Algorithm 2, we also maintain KPθt and hence we can make
quantum queries to OKPθt . The cost for constructing KPθ0 and the cost for updating KPθt

to KPθt+1 is Õ(1) for both time and space by (shown in our full version). Moreover, the
total number of iterations T is at most 6 · ⌈ 8

ε⌉ in Algorithm 2 because CLS
≤ 8, and hence

the space cost for maintaining KPθt and implementing OKPθt is Õ(1
ε) bits. Hence we can

implement Algorithm 2 with failure probability at most ⌈ 8
ε⌉ ·

6ε
10000 log(1/ε) using Õ(

√
d

ε2) time
and Õ(1

ε) bits of QRAM and classical space.

3.3.2 Analysis of Algorithm 3
Now we show how to implement Algorithm 3 with failure probability at most 1/10 using
Õ(

√
d

ε2) time. By Corollary 12, one can implement ŨLS
: |j⟩ |0⟩ → |j⟩ |Λ⟩ such that for

all j ∈ Zd, after measuring the state |Λ⟩, with failure probability at most 1
2d·1016 the first

register λ of the outcome will satisfy |λ − LS(ej/3)| ≤ ε/20 using Õ(1
ε) time. Then by

Theorem 1, with failure probability at most 0.0001 + 1000 · log(1000)
√

2d
2d·1016 ≤ 2

1000 we can
find v ∈ {±e0/3, . . . ,±ed−1/3} such that LS(v)−minj∈Zd

LS(±ej/3) ≤ 2 · ε/20 = ε/10 by
using Õ(

√
d) applications of ŨLS

and Ũ†
LS

and Õ(
√

d) elementary gates, hence Õ(
√

d
ε) time.

Because Algorithm 3 runs Algorithm 2 ⌈log(1/ε)⌉ times and each run fails with probability
at most ⌈ 8

ε⌉ ·
6ε

10000 log(1/ε) , the candidate set A, with failure probability ⌈ 8
ε⌉ ·

6ε
10000 log(1/ε) ·

⌈log(1/ε)⌉ + 2
1000 ≤

1
20 , contains an ε

10 -minimizer. To output arg minw∈A LS(w), we use

ICALP 2023

38:12 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

Theorem 11 to evaluate LS(w) for all w ∈ A with additive error ε
10 with failure probability

at most 1
40 log(1/ε) , and hence we find an ε/10-minimizer among A with probability at least

1−1/20−⌈log(1/ε)⌉ · 1
40 log(1/ε) ≥ 0.9. Because the candidate set A contains an ε

10 -minimizer
for Lasso, the ε

10 -minimizer among A is therefore an ε-minimizer for Lasso. The QRAM and
classical space cost for each run is at most Õ(1

ε) because the space cost for Algorithm 2 is
Õ(1

ε). Hence the total cost for implementing Algorithm 3 is Õ(
√

d
ε2) time and Õ(1

ε) bits of
QRAM and classical space. ◀

3.4 Quantum algorithms for Lasso with respect to D
In the previous subsection, we showed that we can find an ε-minimizer for Lasso with respect
to sample set S. Here we show how we can find an ε-minimizer for Lasso with respect to
distribution D. First sample a set S of N = Õ((log d)/ε2) i.i.d. samples from D, which is the
input that will be stored in QROM, and then find an ε/2-minimizer for Lasso with respect
to S by Theorem 13. By Theorem 4, with high probability, an ε/2-minimizer for Lasso with
respect to S will be an ε-minimizer for Lasso with respect to distribution D. Hence we obtain
the following corollary:

▶ Corollary 14. Let S = {(xi, yi)}N−1
i=0 be the given sample set, sampled i.i.d. from D. For

arbitrary ε > 0, if N = Õ(log d
ε2), then there exists a bounded-error quantum algorithm that

finds an ε-minimizer for Lasso w.r.t. distribution D using Õ(
√

d
ε2) queries to OX , Oy and

elementary gates, and using Õ(1
ε) space (QRAM and classical bits).

In our full version on arXiv we show that we can also avoid the usage of QRAM in the
above corollary with Õ(1/ε) extra overhead.

▶ Corollary 15. Let S = {(xi, yi)}N−1
i=0 be the given sample set, sampled i.i.d. from D. For

arbitrary ε > 0, if N = Õ(log d
ε2), then there exists a bounded-error quantum algorithm that

finds an ε-minimizer for Lasso w.r.t. D using Õ(
√

d
ε3) queries to OX , Oy and elementary

gates, and using Õ(1
ε) classical bits.

4 Quantum query lower bounds for Lasso

In this section we prove a quantum lower bound of Ω(
√

d/ε1.5) queries for Lasso. To show
such a lower bound, we define a certain set-finding problem, and show how it can be solved
by an algorithm for Lasso. After that, we show that the worst-case set-finding problem
can be seen as the composition of two problems, which have query complexities Ω(

√
d/ε)

and Ω(1/ε), respectively. Then the composition property of the quantum adversary bound
implies a Ω(

√
d/ε · 1/ε) = Ω(

√
d/ε1.5) query lower bound for Lasso.

4.1 Finding a hidden set W using a Lasso solver
Let p ∈ (0, 1/2), W ⊂ Zd, and W = Zd \W . Define the distribution Dp,W over (x, y) ∈
{−1, 1}d × {−1, 1} as follows. For each j′ ∈W , xj′ is generated according to Pr[xj′ = 1] =
Pr[xj′ = −1] = 1/2, and for each j ∈W , xj is generated according to Pr[xj = 1] = 1/2 + p.
And y is generated according to Pr[y = 1] = 1. The goal of the distributional set-finding
problem DSFDp,W

with respect to Dp,W is to output a set W̃ such that |W̃∆W | ≤ w/200,
given M samples from Dp,W . One can think of the M × d matrix of samples as “hiding” the
set W : the columns corresponding to j ∈W are likely to have more 1s than −1s, while the
columns corresponding to j ∈W have roughly as many 1s as −1s. A Lasso-solver can help us
to find the hidden set W approximately. Precisely, algorithms that find an ε/8000-minimizer
for Lasso with respect to Dp,W can also find a set W̃ ⊂ Zd such that |W∆W̃ | ≤ w/200.

Y. Chen and R. de Wolf 38:13

▶ Theorem 16. Let ε ∈ (2/d, 1/100), w be eitehr ⌊1/ε⌋ or ⌊1/ε⌋ − 1, p = 1/(2⌊1/ε⌋), and
W ⊂ Zd be a set of size w. Let θ be an ε/8000-minimizer for Lasso w.r.t. Dp,W . Then the
set W̃ that contains the indices of the entries of θ whose absolute value is ≥ ε/3 satisfies
|W∆W̃ | ≤ w/200.

4.2 Worst-case quantum query lower bound for the set-finding problem
Here we will define the worst-case set-finding problem and then provide a quantum query
lower bound for it. Before we step into the query lower bound for the worst-case set-finding
problem, we have to introduce the lower bounds for the following problems first.

consider the exact set-finding problem: given input x = x0 . . . xd−1 ∈ {0, 1}d with at most
w 1s, find the set W of all indices j with xj = 1 (equivalently, learn x). To see the query lower
bound for this problem, we consider the identity function where both domain and codomain
are Z = {z ∈ {0, 1}d : |z| = w}, and give a lower bound for computing this. If we can
compute the identity function, then we can simply check the output string x0, x1, . . . , xd−1
and collect all indices j with xj = 1.

▶ Theorem 17. Let w be an integer satisfying 0 < w ≤ d/2, W ⊂ Zd with size w, and
x ∈ {0, 1}d such that xj = 1 if j ∈W and xj′ = 0 if j′ ∈W . Suppose we have query access
to x. Then every quantum bounded-error algorithm to find W makes at least 1

8
√

dw queries.

Using the same method, we give a lower bound for the approximate set-finding problem
ASFd,w, which is to find a set W̃ ⊂ Zd such that |W∆W̃ | ≤ w/200. The intuition is that if
we could find such a W̃ then we can “correct” it to W itself using a small number of Grover
searches, so finding a good approximation W̃ is not much easier than finding W itself.

▶ Theorem 18. Let w be an integer satisfying 0 < w ≤ d/2, W ⊂ Zd with size w, and
x ∈ {0, 1}d such that xj = 1 if j ∈ W and xj′ = 0 if j′ ∈ W . Suppose we have query
access to x. Then every bounded-error quantum algorithm that outputs W̃ ⊂ Zd satisfying
|W∆W̃ | ≤ w/200 makes Ω(

√
dw) queries.

Next we consider the Hamming-weight distinguisher problem HDℓ,ℓ′ : given a z ∈ {0, 1}N

of Hamming weight ℓ or ℓ′, distinguish these two cases. The adversary bound gives the
following bound (a special case of Nayak and Wu [35] based on the polynomial method [10]).

▶ Theorem 19. Let N ∈ 2Z+, z ∈ {0, 1}N , and p ∈ (0, 0.5) be multiple of 1/N . Suppose
we have query access to z. Then every bounded-error quantum algorithm that computes
HD N

2 ,N(1
2 +p) makes Ω(1/p) queries.

The above theorem implies a lower bound of Ω(1/p) queries for HD N
2 ,N(1

2 +p). One can
also think of the input bits as ±1 and in this case, the goal is to distinguish whether the
entries add up to 0 or to 2pN . For convenience, we abuse the notation HD N

2 ,N(1
2 +p) also for

the problem with ±1 inputs. Now we are ready to prove a lower bound for the worst-case
set-finding problem WSFd,w,p,N : given a matrix X ∈ {−1, 1}N×d where each column-sum is
either 2pN or 0, the goal is to find a set W̃ ⊂ Zd such that |W̃∆W | ≤ w/200, where W is
the set of indices for those columns whose entries add up to 2pN and w = |W |. One can
see that this problem is actually a composition of the approximate set-finding problem and
the Hamming-weight distinguisher problem. Composing the relational problem ASFd,w with
d valid inputs of HD N

2 ,N(1
2 +p), exactly w of which evaluate to 1, we can see that the d-bit

string given by the values of HD N
2 ,N(1

2 +p) on these d inputs, is a valid input for ASFd,w. In
other words, the set of valid inputs for WSFd,w,p,N , or equivalently, the set of valid inputs
for the composed problem ASFd,w ◦ (HD N

2 ,N(1
2 +p))d is

ICALP 2023

38:14 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

{(x(1), . . . , x(d)) ∈ Pd : |HD N
2 ,N(1

2 +p)(x(1)) . . . HD N
2 ,N(1

2 +p)(x(d))| = w},

where P = {x ∈ {0, 1}N : |x| ∈ {N/2, N/2 + pN}}. The next theorem by Belovs and Lee
shows that the quantum query complexity of the composed problem ASFd,w ◦ (HD N

2 , N+2pN
2

)d

is at least the product of the complexities of the two composing problems:

▶ Theorem 20 ([12], Corollary 27). Let f ⊆ S × T , with S ⊆ {0, 1}d, be a relational problem
with bounded-error quantum query complexity L. Assume that f is efficiently verifiable,
that is given some t ∈ T and oracle access to x ∈ S, there exists a bounded-error quantum
algorithm that verifies whether (x, t) ∈ f using o(L) queries to x. Let D ⊆ {0, 1}N and
g : D → {0, 1} be a Boolean function whose bounded-error quantum query complexity is Q.
Then the bounded-error quantum query complexity of the relational problem f ◦ gd, restricted
to inputs x ∈ {0, 1}dN such that gd(x) ∈ S, is Ω(LQ).

Applying Theorem 20 with the lower bounds of Theorem 19 and Theorem 18, we obtain:

▶ Corollary 21. Let N ∈ 2Z+ and p ∈ (0, 0.5) be an integer multiple of 1/N . Given a matrix
X ∈ {−1, +1}N×d such that there exists a set W ⊆ Zd with size w and

For every j ∈W ,
∑

i∈ZN

Xij = 2pN .

For every j′ ∈W ,
∑

i∈ZN

Xij′ = 0.

Suppose we have query access to X. Then every bounded-error quantum algorithm that
computes W̃ such that |W∆W̃ | ≤ w/200, uses Ω(

√
dw/p) queries to OX .

4.3 Worst-case to average-case reduction for the set-finding problem
Our goal is to prove a lower bound for Lasso algorithms that have high success probability
w.r.t. the distribution Dp,W , yet the lower bound of the previous subsection is for worst-case
instances. In this subsection, we will connect these by providing a worst-case to average-case
reduction for the set-finding problem. After that, by simply combining with the query
lower bound for the worst-case set-finding problem and the reduction from the distributional
set-finding problem to Lasso, we obtain an Ω(

√
d/ε1.5) query lower bound for Lasso.

▶ Theorem 22. Let N ∈ 2Z+, p ∈ (0, 0.5) be an integer multiple of 1/N , w be a natural
number between 2 to d/2, and M be a natural number. Suppose X ∈ {−1, +1}N×d is a valid
input for WSFd,w,p,N , and let W ⊂ Zd be the set of the w indices of the columns of X whose
entries add up to 2pN . Let R ∈ ZM×d

N be a matrix whose entries are i.i.d. samples from UN ,
and define X ′ ∈ {−1, 1}M×d as X ′

ij = XRijj. Then the M vectors (X ′
i, 1), where X ′

i is the
ith row of X ′ and i ∈ ZM , are i.i.d. samples from Dp,W .

Proof. Every entry of R is a sample from UN , so XRijj is uniformly chosen from the entries
of the jth column of X. Moreover, because every valid input W for WSFd,w,p,N satisfies that
for every j ∈W , Pri∼UN

[Xij = 1] = 1/2 + p and for every j′ ∈W , Pri∼UN
[Xij′ = 1] = 1/2,

we know (X ′
i, 1) is distributed as Dp,W . ◀

The above theorem tells us that we can convert an instance of WSFd,w,p,N to an instance
of DSFDp,W

. Note that we can produce matrix R offline and therefore we can construct the
oracle OX′ : |i⟩ |j⟩ |0⟩ → |i⟩ |j⟩ |XRijj⟩ using 1 query to OX : |i⟩ |j⟩ |0⟩ → |i⟩ |j⟩ |Xij⟩ (and
some other elementary gates, which is irrelevant to the number of queries). Also observe
that if M = 1012 · ⌈log d⌉ · ⌊1/ε⌋2 = O((log d)/ε2) and hence S′ = {(X ′

i, 1)}M−1
i=0 is a sample

Y. Chen and R. de Wolf 38:15

set with M i.i.d. samples from Dp,W , then by Theorem 4, with probability ≥ 9/10, an
ε/16000-minimizer for Lasso with respect to S′ is also an ε/8000-minimizer for Lasso with
respect to distribution Dp,W . By Theorem 16, an ε/8000-minimizer for Lasso with respect to
distribution Dp,W can be used to output a set W̃ ⊂ Zd such that |W̃∆W | ≤ w/200, where
W is the set of indices for those columns of X whose entries add up to 2pN . Hence we have
a reduction from the worst-case set-finding problem to Lasso. By the reduction above and
by plugging w = ⌊1/ε⌋ and p = 1/(2⌊1/ε⌋) in Corollary 21 (and N an arbitrary natural
number such that pN ∈ N), we obtain a lower bound of Ω(

√
d/ε1.5) queries for WSFd,w,p,N ,

and hence the main result of this section: a lower bound of Ω(
√

d/ε1.5) for Lasso.

▶ Corollary 23. Let ε ∈ (2/d, 1/100), w = ⌊1/ε⌋, p = 1/(2⌊1/ε⌋), and W ⊂ Zd with size w.
Every bounded-error quantum algorithm that computes an ε-minimizer for Lasso w.r.t. Dp,W

uses Ω(
√

d/ε1.5) queries.

4.4 Classical lower bound for Lasso

In the full version of this paper on arXiv we show how this quantum lower bound approach
can be modified to prove, for the first time, a lower bound of Ω̃(d/ε2) on the classical query
complexity of Lasso. This lower bound is optimal up to logarithmic factors.

5 Quantum query lower bound for Ridge

Recall that Ridge’s setup assumes the vectors in the sample set are normalized in ℓ2 rather than
ℓ∞ as in Lasso. We modify the distribution to D′

p,W over (x, y) ∈ {−1/
√

d, 1/
√

d}d×{−1, 1}
as follows. Let p ∈ (0, 1/4), W ⊂ Zd, and W = Zd \W . For each j′ ∈ W , xj′ is generated
according to Pr[xj′ = −1/

√
d] = 1/2 + p; for each j ∈ W , xj is generated according to

Pr[xj = 1/
√

d] = 1/2 + p; y is generated according to Pr[y = 1] = 1. Now again we want to
solve a distributional set-finding problem with respect to D′

p,W , given M samples from D′
p,W .

Similar to the Lasso case, one can think of the M × d matrix of samples as “hiding” the
set W : the columns corresponding to j ∈W are likely to have more 1/

√
d’s than −1/

√
d’s,

while the columns corresponding to j ∈W are likely to have more −1/
√

d’s than 1/
√

d’s.
In this section let θ∗ =

∑
j∈Zd

ej√
d

(−1)[j∈W] and note that for every θ ∈ Rd,

LD′
p,W

(θ) =E(x,y)∼D′
p,W

[⟨θ, x⟩2]− 2E(x,y)∼D′
p,W

[⟨θ, x⟩] + 1

=(E(x,y)∼D′
p,W

[⟨θ, x⟩2]− E(x,y)∼D′
p,W

[⟨θ, x⟩]2)

+ E(x,y)∼D′
p,W

[⟨θ, x⟩]2 − 2E(x,y)∼D′
p,W

[⟨θ, x⟩] + 1

=∥θ∥2
2 · (1− 4p2)/d + (E(x,y)∼D′

p,W
[⟨θ, x⟩]− 1)2

=∥θ∥2
2 · (1− 4p2)/d + (2p⟨θ, θ∗⟩ − 1)2,

where the third equality holds because ⟨θ, x⟩ is a sum of independent random variables and
hence its variance is the sum of the variances of the terms θixi (which are θ2

i (1− 4p2)/d).
Next we show that θ∗ is the minimizer for Ridge with respect to D′

p,W .

▶ Theorem 24. Let w = ⌊d/2⌋ and W ⊂ Zd be a set of size w, and let ε ∈ (1000/d, 1/10000)
and p = 1/⌊1/ε⌋. Then θ∗ =

∑
j∈Zd

ej√
d
(−1)[j∈W] is the minimizer for Ridge w.r.t. D′

p,W .

ICALP 2023

38:16 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

Proof. Let θ =
∑

j∈Zd

θjej ∈ Bd
2 be a minimizer. We want to show θj = θ∗

j for every j ∈ Zd.

Note that if θj · (−1)[j∈W] < 0, then we can flip the sign of θj to get a smaller objective
value, that is,

LD′
p,W

(θ′) − LD′
p,W

(θ) = (∥θ′∥2
2 − ∥θ∥2

2) · (1 − 4p2)/d + (2p⟨θ′, θ∗⟩ − 1)2 − (2p⟨θ, θ∗⟩ − 1)2

= (2p⟨θ′ − θ, θ∗⟩)(2p⟨θ′ + θ, θ∗⟩ − 2)

= (−4pθj · (−1)[j∈W])(2p⟨θ′ + θ, θ∗⟩ − 2) < 0,

where θ′ =
∑

k∈Zd\{j}
θkek − θjej , and the last inequality is because −4pθj · (−1)[j∈W] > 0

and 2p⟨θ′ + θ, θ∗⟩ ≤ 2p∥θ′ + θ∥2 · ∥θ∗∥2 ≤ 4p ≤ 1. Since θ was assumed a minimizer, for all
j ∈ Zd the sign of θj must be (−1)[j∈W].

Second, we show that we must have |θ0| = |θ1| = · · · = |θd−1|. Suppose, towards a
contradiction, that this is not the case. Consider θ′ =

∑
j∈Zd

uej · (−1)[j∈W], where u =√ ∑
j∈Zd

|θj |2/d. We have

LD′
p,W

(θ′)− LD′
p,W

(θ) = (2p⟨θ′ − θ, θ∗⟩)(2p⟨θ′ + θ, θ∗⟩ − 2)

= (2p/
√

d) · (du−
∑
j∈Zd

|θj |) · (2p⟨θ′ + θ, θ∗⟩ − 2) < 0.

The last inequality holds because again 2p⟨θ′ + θ, θ∗⟩ ≤ 4p ≤ 1 and in addition,

d ·
∑
j∈Zd

|θj |2 > (
∑
j∈Zd

|θj |)2

by the Cauchy–Schwarz inequality (which is strict if the |θj | are not all equal). Hence if θ is
indeed a minimizer, then its entries must all have the same magnitude.

Now we know a minimizer θ must be in the same direction as θ∗, we just don’t know yet
that the magnitudes of its entries are 1/

√
d. Suppose ∥θ∥2 = u ≤ 1 and θ = u · θ∗, then

LD′
p,W

(θ) = ∥θ∥2
2 · (1− 4p2)/d + (2p⟨θ, θ∗⟩ − 1)2 = (u2(1− 4p2)/d + (2pu− 1)2).

The discriminant of f(u) = u2(1− 4p2)/d + (2pu− 1)2 is less than 0, and u = 2p
4p2+(1−4p2)/d

is the global minimizer of f(u). Note that u = 2p
4p2+(1−4p2)/d > 1, and hence f(1) ≤ f(u) for

every u ≤ 1. Therefore we know θ∗ is the minimizer for Ridge with respect to D′
p,W . ◀

Next we show that the inner product between the minimizer and an approximate minimizer
for Ridge will be close to 1.

▶ Theorem 25. Let w = ⌊d/2⌋, W ⊂ Zd be a set of size w, ε ∈ (1000/d, 1/10000),
and p = 1/⌊1/ε⌋. Suppose θ ∈ Bd

2 is an ε/1000-minimizer for Ridge w.r.t. D′
p,W . Then

⟨θ, θ∗⟩ ≥ 0.999.

Proof. Because θ is an ε/1000-minimizer, we have

0.001ε ≥ LD′
p,W

(θ)− LD′
p,W

(θ∗) = (1− 4p2) · (∥θ∥2
2 − 1)/d + (2p⟨θ, θ∗⟩ − 1)2 − (2p− 1)2

=⇒ 2p⟨θ, θ∗⟩ ≥ 1−
√

1− 4p + 4p2 + 0.001ε− (1− 4p2) · (∥θ∥2
2 − 1)/d.

Y. Chen and R. de Wolf 38:17

Letting z = 4p− 4p2 − 0.001ε + (1− 4p2) · (∥θ∥2
2 − 1)/d, we have

2p⟨θ, θ∗⟩ ≥1−
√

1− z ≥ 1− (1− z/2) = z/2
=2p− 2p2 + (1− 4p2) · (∥θ∥2

2 − 1)/d− 0.001ε,

where the second inequality holds because z ∈ (0, 1). Dividing both sides by 2p, we have

⟨θ, θ∗⟩ ≥ 1− p + (1− 4p2) · (∥θ∥2
2 − 1)/(2pd)− 0.0005ε/p.

Because θ ∈ Bd
2 , p = 1/⌊1/ε⌋, and ε ∈ (1000/d, 1/10000), we get ⟨θ, θ∗⟩ ≥ 0.999. ◀

Combining the above theorem with the following theorem, we can see how to relate the
entries of an approximate minimizer for Ridge with respect to D′

p,W to the elements of the
hidden set W .

▶ Theorem 26. Suppose θ ∈ Bd
2 satisfies ⟨θ, θ∗⟩ ≥ 1 − 0.001. Then #{j ∈ Zd | θj · θ∗

j ≤
0} ≤ d/500.

Proof. If θj · θ∗
j ≤ 0 then |θj − θ∗

j | ≥ |θ∗
j | = 1√

d
, hence using Theorem 25 we have

1
d

#{j ∈ Zd | θj · θ∗
j ≤ 0} ≤ ∥θ − θ∗∥2

2 = ∥θ∥2
2 + ∥θ∗∥2

2 − 2⟨θ, θ∗⟩

≤ 2− 2(1− 0.001) = 1/500. ◀

We know θ∗ =
∑

j∈Zd

ej√
d
(−1)[j∈W], so by looking at the signs of entries of θ, we can find

an index set W̃ = {j ∈ Zd : θj > 0} satisfying that |W∆W̃ | ≤ d/500 ≤ w/200 because
w = ⌊d/2⌋. Therefore, once we have an ε/1000-minimizer for Ridge with respect to D′

p,W ,
we can solve DSFD′

p,W
.

With the reduction from DSFD′
p,W

to Ridge, we here show (similar to Lasso) a lower
bound for the worst-case symmetric set-finding problem WSSFd,w,p,N : given a matrix X ∈
{−1/

√
d, 1/
√

d}N×d where each column-sum is either 2pN/
√

d or −2pN/
√

d, the goal is to
find a set W̃ ⊂ Zd such that |W̃∆W | ≤ w/200, where W is the set of indices for those
columns whose entries add up to 2pN/

√
d and w = |W |. This problem is again a composition

of the approximate set finding problem in Section 4.2 and the Hamming-weight distinguisher
problem HDℓ,ℓ′ with ℓ = N

2 − pN and ℓ′ = N
2 + pN up to a scalar 1/

√
d. Following the proof

of Theorem 19, we prove a lower bound of Ω(1/p) queries for this problem.

▶ Theorem 27. Let N ∈ 2Z+, z ∈ {0, 1}N , and p ∈ (0, 0.5) be an integer multiple of
1/N . Suppose we have query access to z. Then every bounded-error quantum algorithm that
computes HD N

2 −pN, N
2 +pN makes Ω(1/p) queries.

Again we think of the input bits as ±1 and abuse the notation HD N
2 −pN, N

2 +pN for the
problem with ±1 input. Also, by the composition property of the adversary bound from
Belovs and Lee [12] (Theorem 20), we have a lower bound of Ω(

√
dw/p) for WSSFd,w,p,N

from the Ω(
√

dw) lower bound for ASFd,w and the Ω(1/p) lower bound for HD N
2 −pN, N

2 +pN .

▶ Corollary 28. Let N ∈ 2Z+ and p ∈ (0, 0.5) be an integer multiple of 1/N . Given a matrix
X ∈ {−1/

√
d, +1/

√
d}N×d such that there exists a set W ⊆ Zd with size w and

For every j ∈W ,
∑

i∈ZN

Xij = 2pN/
√

d.

For every j′ ∈W ,
∑

i∈ZN

Xij′ = −2pN/
√

d.

Then every bounded-error quantum algorithm that computes W̃ such that |W∆W̃ | ≤ w/200,
takes Ω(

√
dw/p) queries.

ICALP 2023

38:18 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

The final step for proving a lower bound for Ridge, using the same arguments as in
Section 4.3, is to provide a worst-case to average-case reduction for the symmetric set-finding
problem. We follow the same proof in Theorem 22 and immediately get the following theorem:

▶ Theorem 29. Let N ∈ 2Z+, p ∈ (0, 0.5) be an integer multiple of 1/N , w be a natural
number between 2 to d/2, and M be a natural number. Suppose X ∈ {−1/

√
d, +1/

√
d}N×d

is a valid input for WSSFd,w,p,N , and let W ⊂ Zd be the set of the w indices of the columns
of X whose entries add up to 2pN/

√
d. Let R ∈ ZM×d

N be a matrix whose entries are i.i.d.
samples from UN , and define X ′ ∈ {−1/

√
d, 1/
√

d}M×d as X ′
ij = XRijj. Then the vectors

(X ′
i, 1), where X ′

i is the ith row of X ′ and i ∈ ZM , are i.i.d. samples from D′
p,W .

By setting M = 1010 · ⌈log d⌉ · ⌊1/ε⌋2 = O((log d)/ε2) and letting S′ = {(X ′
i, 1)}M−1

i=0 be a
sample set with M i.i.d. samples from D′

p,W , with probability ≥ 9/10, an ε/2000-minimizer
for Ridge with respect to S′ is also an ε/1000-minimizer for Ridge with respect to distribution
D′

p,W from Theorem 5. By Theorem 26 and Theorem 25, an ε/1000-minimizer for Ridge with
respect to distribution D′

p,W gives us a set W̃ ⊂ Zd such that |W̃ ∆W | ≤ w/200, where W is
the set of indices for those columns of X whose entries add up to 2pN/

√
d. Hence we have a

reduction from the worst-case symmetric set-finding problem to Ridge. By this reduction
and by plugging w = ⌊d/2⌋ and p = 1/⌊1/ε⌋ in Corollary 28 (and N an arbitrary natural
number such that pN ∈ N), we obtain a lower bound of Ω(d/ε) queries for WSSFd,w,p,N ,
and hence for Ridge as well, which is the main result of this section.

▶ Corollary 30. Let ε ∈ (2/d, 1/1000), w = ⌊d/2⌋, p = 1/⌊1/ε⌋, and W ⊂ Zd with size w.
Every bounded-error quantum algorithm that computes an ε-minimizer for Ridge w.r.t. D′

p,W

uses Ω(d/ε) queries.

6 Future work

We mention a few directions for future work:
While the d-dependence of our quantum bounds for Lasso is essentially optimal, the
ε-dependence is not: upper bound

√
d/ε2 vs lower bound

√
d/ε1.5. Can we shave off

a 1/
√

ε factor from our upper bound, maybe using a version of accelerated gradient
descent [36] with O(1/

√
ε) iterations instead of Frank-Wolfe’s O(1/ε) iterations? Or can

we somehow improve our lower bound by embedding harder query problems into Lasso?
Similar question for Ridge: the linear d-dependence of our quantum bounds is tight,
but we should improve the ε-dependence of our upper and/or lower bounds. The most
interesting outcome would be a quantum algorithm for Ridge with better ε-dependence
than the optimal classical complexity of Θ̃(d/ε2); currently we do not know of any
quantum speedup for Ridge.
Can we speed up some other methods for (smooth) convex optimization? In particular,
can we find a classical iterative method where quantum algorithms can significantly
reduce the number of iterations, rather than just the cost per iteration as we did here?
There are many connections between Lasso and Support Vector Machines [32], and there
are recent quantum algorithms for optimizing SVMs [38, 41, 39, 1, 40]. We would like to
understand this connection better.

References
1 Jonathan Allcock and Chang-Yu Hsieh. A quantum extension of SVM-perf for training

nonlinear SVMs in almost linear time. Quantum, 4:342, 2020. arXiv:2006.10299.
2 Joran van Apeldoorn. A quantum view on convex optimization. PhD thesis, Universiteit van

Amsterdam, 2020.

https://arxiv.org/abs/2006.10299

Y. Chen and R. de Wolf 38:19

3 Joran van Apeldoorn and András Gilyén. Quantum algorithms for zero-sum games, 2019.
arXiv:1904.03180.

4 Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Convex optimiza-
tion using quantum oracles. Quantum, 4:220, 2020. arXiv:1809.00643.

5 Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Quantum SDP-
solvers: better upper and lower bounds. Quantum, 4:230, 2020. Earlier version in FOCS’17.
arXiv:1705.01843.

6 Joran van Apeldoorn and András Gilyén. Improvements in quantum SDP-solving with
applications. In Proceedings of 46th International Colloquium on Automata, Languages, and
Programming, volume 132 of Leibniz International Proceedings in Informatics, pages 99:1–99:15,
2019. arXiv:1804.05058.

7 Joran van Apeldoorn, Sander Gribling, Yinan Li, Harold Nieuwboer, Michael Walter, and
Ronald de Wolf. Quantum algorithms for matrix scaling and matrix balancing. In Proceedings
of 48th International Colloquium on Automata, Languages, and Programming, volume 198 of
Leibniz International Proceedings in Informatics, pages 110:1–17, 2021. arXiv:2011.12823.

8 Simon Apers and Ronald de Wolf. Quantum speedup for graph sparsification, cut approximation
and Laplacian solving. In Proceedings of 61st IEEE Annual Symposium on Foundations of
Computer Science, pages 637–648, 2020. arXiv:1911.07306.

9 Srinivasan Arunachalam and Reevu Maity. Quantum boosting. In Proceedings of 37th
International Conference on Machine Learning (ICML’20), 2020. arXiv:2002.05056.

10 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001. Earlier version in
FOCS’98. quant-ph/9802049.

11 Armando Bellante and Stefano Zanero. Quantum matching pursuit: A quantum algorithm for
sparse representations. Physical Review A, 105:022414, 2022.

12 Aleksandrs Belovs and Troy Lee. The quantum query complexity of composition with a
relation, 2020. arXiv:2004.06439.

13 Fernando Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta Svore, and Xiaodi
Wu. Quantum SDP solvers: Large speed-ups, optimality, and applications to quantum learning.
In Proceedings of 46th International Colloquium on Automata, Languages, and Programming,
volume 132 of Leibniz International Proceedings in Informatics, pages 27:1–27:14, 2019.
arXiv:1710.02581.

14 Fernando Brandão and Krysta Svore. Quantum speed-ups for solving semidefinite programs.
In Proceedings of 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS,
pages 415–426, 2017. arXiv:1609.05537.

15 Peter Bühlmann and Sara van de Geer. Statistics for High-Dimensional Data: Methods,
Theory and Applications. Springer, 2011.

16 Nicolò Cesa-Bianchi, Shai Shalev-Shwartz, and Ohad Shamir. Efficient learning with partially
observed attributes. Journal of Machine Learning Research, 12:2857–2878, 2011. arXiv:
1004.4421.

17 Shouvanik Chakrabarti, Andrew Childs, Tongyang Li, and Xiaodi Wu. Quantum algorithms
and lower bounds for convex optimization. Quantum, 4:221, 2020. arXiv:1809.01731.

18 Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. The power of block-encoded matrix
powers: improved regression techniques via faster Hamiltonian simulation. In Proceedings of
46th International Colloquium on Automata, Languages, and Programming, volume 132 of
Leibniz International Proceedings in Informatics, pages 33:1–33:14, 2019. arXiv:1804.01973.

19 Shantanav Chakraborty, Aditya Morolia, and Anurudh Peduri. Quantum regularized least
squares, 2022. arXiv:2206.13143.

20 Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, and Dacheng Tao. Quantum differen-
tially private sparse regression learning, 2020. arXiv:2007.11921.

21 Christoph Dürr and Peter Høyer. A quantum algorithm for finding the minimum, 1996.
arXiv:quant-ph/9607014.

ICALP 2023

https://arxiv.org/abs/1904.03180
https://arxiv.org/abs/1809.00643
httsp://arxiv.org/abs/1705.01843
https://arxiv.org/abs/1804.05058
https://arxiv.org/abs/2011.12823
https://arxiv.org/abs/1911.07306
https://arxiv.org/abs/2002.05056
https://arxiv.org/abs/2004.06439
https://arxiv.org/abs/1710.02581
https://arxiv.org/abs/1609.05537
https://arxiv.org/abs/1004.4421
https://arxiv.org/abs/1004.4421
https://arxiv.org/abs/1809.01731
https://arxiv.org/abs/1804.01973
https://arxiv.org/abs/2206.13143
https://arxiv.org/abs/2007.11921
https://arxiv.org/abs/quant-ph/9607014

38:20 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

22 Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95–110, 1956.

23 Ankit Garg, Robin Kothari, Praneeth Netrapalli, and Suhail Sherif. Near-optimal lower bounds
for convex optimization for all orders of smoothness. In Proceedings of 35th Conference on
Neural Information Processing Systems, 2021.

24 Ankit Garg, Robin Kothari, Praneeth Netrapalli, and Suhail Sherif. No quantum speedup
over gradient descent for non-smooth convex optimization. In Proceedings of 12th Innovations
in Theoretical Computer Science Conference, volume 185 of Leibniz International Proceedings
in Informatics, pages 53:1–53:20, 2021. arXiv:2010.01801.

25 András Gilyén, Seth Lloyd, and Ewin Tang. Quantum-inspired low-rank stochastic regression
with logarithmic dependence on the dimension, 2018. arXiv:1811.04909.

26 Sander Gribling and Harold Nieuwboer. Improved quantum lower and upper bounds for matrix
scaling. In Proceedings of 39th International Symposium on Theoretical Aspects of Computer
Science (STACS 2022), volume 219 of Leibniz International Proceedings in Informatics, pages
35:1–35:23, 2022. arXiv:2109.15282.

27 Aram Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for solving linear
systems of equations. Physical Review Letters, 103(15):150502, 2009. arXiv:0811.3171.

28 Elad Hazan and Tomer Koren. Linear regression with limited observation. In Proceedings
of the 29th International Conference on Machine Learning, 2012. arXiv:1206.4678 . More
extensive version at arXiv:1108.4559.

29 Arthur Hoerl and Robert Kennard. Ridge regression: biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

30 Adam Izdebski and Ronald de Wolf. Improved quantum boosting, 2020. arXiv:2009.08360.
31 Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceed-

ings of the 30th International Conference on Machine Learning, volume 28, pages 427–435,
2013.

32 Martin Jaggi. An equivalence between the Lasso and Support Vector Machines. In Johan
Suykens, Marco Signoretto, and Andreas Argyriou, editors, Regularization, Optimization,
Kernels, and Support Vector Machines. CRC Press, 2014. arXiv:1303.1152.

33 Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems. In Proceedings of
8th Innovations in Theoretical Computer Science Conference, volume 67 of Leibniz International
Proceedings in Informatics, pages 49:1–49:21, 2017. arXiv:1603.08675.

34 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
Adaptive Computation and Machine Learning series. MIT Press, second edition, 2018.

35 Ashwin Nayak and Felix Wu. The quantum query complexity of approximating the median
and related statistics. In Proceedings of the 31st Annual ACM Symposium on Theory of
Computing, pages 384–393. ACM, 1999. arXiv:quant-ph/9804066.

36 Yurii Nesterov. A method for solving the convex programming problem with convergence rate
O(1/k2). Proceedings of the USSR Academy of Sciences, 269:543–547, 1983.

37 Anupam Prakash. Quantum Algorithms for Linear Algebra and Machine Learning. PhD thesis,
University of California, Berkeley, 2014.

38 Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector machine for
big data classification. Physical Review Letters, 113(13):130503, 2014. arXiv:1307.0471.

39 Seyran Saeedi and Tom Arodz. Quantum sparse support vector machines, 2019. arXiv:
1902.01879.

40 Seyran Saeedi, Aliakbar Panahi, and Tom Arodz. Quantum semi-supervised kernel learning.
Quantum Machine Intelligence, 3:24, 2021.

41 Maria Schuld and Nathan Killoran. Quantum machine learning in feature Hilbert spaces.
Physical Review Letters, 122(13):040504, 2019. arXiv:1803.07128.

42 Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory to
Algorithms. Cambridge University Press, 2014.

https://arxiv.org/abs/2010.01801
https://arxiv.org/abs/1811.04909
https://arxiv.org/abs/2109.15282
https://arxiv.org/abs/0811.3171
https://arxiv.org/abs/1206.4678
https://arxiv.org/abs/1108.4559
https://arxiv.org/abs/2009.08360
https://arxiv.org/abs/1303.1152
https://arxiv.org/abs/1603.08675
https://arxiv.org/abs/quant-ph/9804066
https://arxiv.org/abs/1307.0471
https://arxiv.org/abs/1902.01879
https://arxiv.org/abs/1902.01879
https://arxiv.org/abs/1803.07128

Y. Chen and R. de Wolf 38:21

43 Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society, 58:267–288, 1996.

44 Hrishikesh Vinod. A survey of Ridge regression and related techniques for improvements over
ordinary least squares. The Review of Economics and Statistics, 60(1):121–131, 1978.

45 Chenyi Zhang, Jiaqi Leng, and Tongyang Li. Quantum algorithms for escaping from saddle
points. Quantum, 5:229, 2021. arXiv:2007.10253.

ICALP 2023

https://arxiv.org/abs/2007.10253

	1 Introduction
	1.1 Linear regression with norm constraints
	1.2 Our results
	1.2.1 Lasso
	1.2.2 Ridge

	1.3 Related work

	2 Preliminaries
	2.1 Computational model and quantum algorithms
	2.2 Expected and empirical loss
	2.3 Linear regression problems and their classical and quantum setup
	2.3.1 Lasso
	2.3.2 Ridge

	2.4 The KP-tree data structure and efficient state preparation

	3 Quantum Algorithm for Lasso
	3.1 The classical Frank-Wolfe algorithm
	3.2 Approximating the quadratic loss function and entries of its gradient
	3.3 Quantum algorithms for Lasso with respect to S
	3.3.1 Analysis of Algorithm 2
	3.3.2 Analysis of Algorithm 3

	3.4 Quantum algorithms for Lasso with respect to D

	4 Quantum query lower bounds for Lasso
	4.1 Finding a hidden set W using a Lasso solver
	4.2 Worst-case quantum query lower bound for the set-finding problem
	4.3 Worst-case to average-case reduction for the set-finding problem
	4.4 Classical lower bound for Lasso

	5 Quantum query lower bound for Ridge
	6 Future work

