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Abstract
This work continues the study of linear error correcting codes against adversarial insertion deletion
errors (insdel errors). Previously, the work of Cheng, Guruswami, Haeupler, and Li [6] showed the
existence of asymptotically good linear insdel codes that can correct arbitrarily close to 1 fraction
of errors over some constant size alphabet, or achieve rate arbitrarily close to 1{2 even over the
binary alphabet. As shown in [6], these bounds are also the best possible. However, known explicit
constructions in [6], and subsequent improved constructions by Con, Shpilka, and Tamo [9] all fall
short of meeting these bounds. Over any constant size alphabet, they can only achieve rate ă 1{8 or
correct ă 1{4 fraction of errors; over the binary alphabet, they can only achieve rate ă 1{1216 or
correct ă 1{54 fraction of errors. Apparently, previous techniques face inherent barriers to achieve
rate better than 1{4 or correct more than 1{2 fraction of errors.

In this work we give new constructions of such codes that meet these bounds, namely, asymptotic-
ally good linear insdel codes that can correct arbitrarily close to 1 fraction of errors over some constant
size alphabet, and binary asymptotically good linear insdel codes that can achieve rate arbitrarily
close to 1{2. All our constructions are efficiently encodable and decodable. Our constructions are
based on a novel approach of code concatenation, which embeds the index information implicitly into
codewords. This significantly differs from previous techniques and may be of independent interest.
Finally, we also prove the existence of linear concatenated insdel codes with parameters that match
random linear codes, and propose a conjecture about linear insdel codes.
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41:2 Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes

1 Introduction

Error correcting codes are fundamental objects in computer science and information theory.
Starting from the seminal work of Shannon and Hamming, the study of error correcting
codes has led to a deep understanding of how to ensure reliable communications in various
noisy channels. Furthermore, error correcting codes have found rich applications in other
seemingly unrelated areas such as complexity theory, learning theory, pseudorandomness and
many more. Traditionally, the errors studied are either erasures (where a transmitted symbol
is replaced by a ‘?’) or symbol modifications (where a transmitted symbol is replaced by a
different symbol), and they can be either random or adversarial. Through decades of effort,
we now have an almost complete understanding of codes for such errors, and constructions
with efficient encoding and decoding algorithms that match or are close to various known
bounds.

An important and more general type of errors, known as synchronization errors, however,
is much less understood. These errors include insertion and deletions (so we also call them
insdel errors for short), which can cause the positions of received symbols to shift. On the
other hand, they occur frequently in real world applications, including disk access, integrated
circuits, communication networks and so on. They are also closely related to applications in
computational biology and DNA-based storage systems [3, 25]. Although the study of codes
for such errors started around the same time as Shannon’s works, progress has historically
been slow due to the apparent difficulty of handling the loss of index information with such
errors. For example, many basic questions, such as the capacity of the binary deletion channel
with deletion probability p is still wide open, and the first explicit construction that has a
constant rate and can correct a constant fraction of adversarial errors is not known until
1999 [21].

From now on, we will focus exclusively on adversarial insdel errors. Over the past several
years, with the development of new techniques such as synchronization strings [17], there has
been a wave of new constructions of codes for these errors [17, 16, 22, 8, 4, 15, 19, 14, 5, 7,
18, 12, 20, 24, 14]. Some of them achieve excellent parameters, e.g., codes that approach the
singleton bound over a large constant alphabet [17], codes with almost optimal redundancy
over the binary alphabet [8, 15], list-decodable codes over large alphabets that can correct
more errors than the length of the codeword [18], and list-decodable codes over any alphabet
of positive rate for the information-theoretically largest possible combination of insertions
and deletions [12, 20, 24, 14]. However, none of the above constructions gives a linear code,
and the existence of asymptotically good linear codes for insdel errors over a constant size
alphabet is not known until the work of Cheng, Guruswami, Haeupler, and Li [6].

The motivation of studying linear codes comes from several aspects. First, they have
compact representations using either generator matrices or parity check matrices, which
directly give efficient encoding and testing algorithms with running time Opn2q. Second,
such codes have simple structures, so they are often easier to analyze and allow one to use
powerful techniques from linear algebra. Finally, linear codes have had great success in codes
for erasures and symbol modifications, achieving some of the most well known constructions
with (near) optimal parameters. Thus, one could ask if the same is true for insdel codes.

As is standard in the literature of error correcting codes, the two most important
parameters of a linear insdel code are δ, the fraction of insdel errors the code can correct; and
R, the rate of the code, defined as the message length divided by the codeword length. In [6],
the authors established several bounds regarding the tradeoff between these two parameters
for linear insdel codes. First, they showed that any linear code correcting δ fraction of insdel
errors must have rate at most 1

2 p1 ´ δq, regardless of the alphabet size. This is known as the
half-singleton bound and generalizes a previous result in [1], which shows that any linear code
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that can correct even a single deletion must have a rate of at most 1{2. This bound shows a
severe limitation of linear codes for insdel errors, as general codes can correct δ fraction of
errors with R approaching 1 ´ δ. Taking into consideration the alphabet size q, this bound
can be improved to 1

2 p1 ´
q

q´1 δq ` op1q, which is known as the half-Plotkin bound. On the
other hand, the authors also showed that over the field Fq, for any δ ą 0 there exists a linear
code family that can correct δ fraction of insdel errors, with rate p1 ´ δq{2 ´ Hpδq{ log2 q,
where H is the binary entropy function. In particular, this implies the existence of binary
linear codes with rate 1{2 ´ ε capable of correcting Ωpε log´1 1

ε q fraction of insdel errors for
any ε ą 0; and linear insdel codes over Fq of rate 1

2 p1 ´ δq ´ ε capable of correcting any
δ-fraction of insdel errors, for a large enough q “ 2Θpε´1

q, which approaches the half-singleton
bound. Hence, the rate can approach 1{2 even over the binary alphabet, and the fraction of
errors corrected can approach 1 over a constant size alphabet, both of which are the best
possible.

Going further, [6] also constructed explicit asymptotically good linear insdel codes.
However, the fraction of errors the code can correct and the rate of the code are both quite
small. [6] did not specify these constants, but a rough estimate shows that the code has
δ ă 1{400 and R ă 2´80. Thus a natural question left in their work is to improve these
parameters.

Recently, a subsequent work by Con, Shpilka, and Tamo [9] made progress in this direction.
For a field Fq with q “ polyp1{εq, they constructed explicit linear insdel codes that can correct
δ fraction of errors with rate R “ p1 ´ 4δq{8 ´ ε. For the field F2 their explicit linear code can
correct δ fraction of errors with rate R “ p1 ´ 54δq{1216. Hence, for a constant size alphabet
their construction can achieve δ ă 1{4 with a positive R, or R ă 1{8 with a positive δ. For
the binary alphabet, their construction can achieve δ ă 1{54 with a positive R, or R ă 1{1216
with a positive δ. One caveat is that their codes over the binary alphabet can only decode
efficiently from deletions (although they can also decode from insertions inefficiently), while
their codes over the large alphabet can decode efficiently from both deletions and insertions.
In another work by the same authors [10], they also showed the existence of Reed-Solomon
codes over a field of size nOpkq that have message length k, codeword length n, and can
correct n ´ 2k ` 1 insdel errors. This achieves the half-singleton bound. They complemented
the existential result by providing a deterministic construction over a field of size nkOpkq ,
which runs in polynomial time for k “ Oplog n{ log log nq. Nevertheless, in this paper we
only focus on the case of a constant alphabet size.

In summary, all known explicit constructions over constant size alphabets fall short of
getting rate close to 1{2, or getting the fraction of errors correctable close to 1. In fact,
previous techniques seem to face inherent barriers to achieve rate better than 1{4 or correct
more than 1{2 fraction of errors, which we will talk about in more details when we give an
overview of our techniques.

1.1 Our Results
In this paper we further improve the fraction of errors δ and the rate R that can be achieved
by linear insdel codes with efficient encoding and decoding algorithms. In the case of high
noise, we give explicit constructions of insdel codes with positive rate that can correct δ

fraction of errors with δ arbitrarily close to 1, over a constant size alphabet. In the case
of high rate, we give explicit constructions of insdel codes that can achieve rate arbitrarily
close to 1{2 and correct a positive constant fraction of errors, over the binary alphabet.1

1 It’s also easy to generalize our constructions to larger alphabet size, but for clarity we omit the details
in this version.
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Specifically, we have the following theorems.

▶ Theorem 1 (High noise). For any constant ε ą 0 there exists an efficient construction of
linear insdel codes over an alphabet of size polyp1{εq, with rate Ωpε2q that can correct 1 ´ ε

fraction of insdel errors (possibly inefficiently).

With efficient decoding, the rate becomes slightly worse.

▶ Theorem 2 (High noise). For any constant ε ą 0, there is a family of linear codes with
rate Ωpε4q and alphabet size polyp1{εq, that can be encoded in polynomial time and decoded
from up to 1 ´ ε fraction of insdel errors in polynomial time.

▶ Theorem 3 (High rate). For any constant ε ą 0, there is a family of binary linear codes
with rate 1{2 ´ ε, that can be encoded in polynomial time and decoded from Ωpε3 log´1 1

ε q

fraction of insdel errors in polynomial time.

Our constructions are based on code concatenation. We complement our explicit con-
structions by showing that there exist linear concatenated codes that match the parameters
of random linear codes. These constructions can be considered in a sense “semi-explicit”
since the outer code is explicit, and we only need to find explicit inner codes.

▶ Theorem 4. For any field Fq0 and any constant δ ą 0, there exists a family of linear
concatenated code over Fq0 where the outer code is a Reed-Solomon code, such that the code
has rate 1

2 p1 ´ δq ´ Hpδq{ log q0 ´ op1q and can correct δ fraction of insdel errors, where Hpq

is the binary entropy function.

We emphasize that the inner codes here may be different for different positions. So if one
wants to use brute force to search for a sequence of proper inner codes, then this may take
time at least 2n log2 n where n is the length of the outer codewords.

This theorem implies the following corollaries.

▶ Corollary 5. For any constant δ ą 0, there exists a family of binary linear concatenated
code where the outer code is a Reed-Solomon code, such that the code has rate 1

2 p1 ´ δq and
can correct Ωpδ log´1 1

δ q fraction of insdel errors.

▶ Corollary 6. For any constants δ, ε ą 0 there exists a family of linear concatenated code
over an alphabet of size q “ 2Θpε´1

q where the outer code is a Reed-Solomon code, such that
the code has rate 1

2 p1 ´ δq ´ ϵ and can correct δ fraction of insdel errors.

Finally, we study the question of whether binary linear insdel codes can achieve δ

arbitrarily close to 1{2 with a positive rate R. Notice that even for general binary codes, it
is well known that the maximum fraction of deletions that any non-trivial binary code of
size ě 3 can correct is below 1{2 since any 3 different n-bit binary strings must contain two
strings with the same majority bit, and thus their longest common subsequence is at least
n{2. For binary linear codes this can also be seen from the half-Plokin bound. A recent work
by Guruswami, He, and Li [13] in fact already provided a negative answer to this question
even for general binary codes. In particular, they showed that there exists an absolute
constant α ą 0 such that any binary code C Ď t0, 1un with |C| ě 2polylogn must have two
strings whose longest common subsequence has length at least p1{2 ` αqn. Thus C cannot
correct more than 1{2 ´ α fraction of insdel errors. Since linear codes are more restricted,
one may expect that a stronger result can be proved for binary linear codes. Specifically, we
have the following conjecture:
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▶ Conjecture 7. There exists an absolute constant α ą 0 such that any linear subspace C Ď Fn
2

with dimension ě 3 must have two strings (vectors) whose longest common subsequence has
length at least p1{2 ` αqn.

However, we are not able to prove this conjecture. Instead, we can prove a weaker result.

▶ Theorem 8. There exists an absolute constant α ą 0 such that any linear subspace C Ď Fn
2

with dimension ě 3 must have two strings (vectors) whose longest common subsequence has
length at least p 1

2 ` α
log n qn.

1.2 Overview of the Techniques
There have been only two previous works on explicit constructions of asymptotically good
linear insdel codes over fields of constant size, i.e., [6] and [9]. The apparent difficulty of
constructing such codes comes from the following aspects: First, many of the previous
constructions of (non-linear) insdel codes are based on adding index information to the
codewords, either in the form of direct encoding of indices, or more sophisticated objects such
as synchronization strings. Since all of these result in fixed strings, adding such information
in any naive way will lead to non-linear codes. Indeed, both [6] and [9] have to find alternative
ways to “embed” synchronization strings into a linear code. Specifically, [6] uses what is
called a synchronization sequence, which is a sequence of 0’s added in between each pair of
adjacent symbols in a codeword. This preserves the linearity if the original code is linear. [9],
on the other hand, embeds the synchronization string by combining a codeword symbol x

and a synchronization string symbol a into a pair px, a ¨ xq, where ¨ is the multiplication over
the corresponding field Fq. This also preserves the linearity over Fq, but now the symbols
from the synchronization strings are mixed with symbols from the codeword, and it is not
easy to tell them apart. Note that for decoding, one needs to first use the synchronization
string to recover the positions of the codeword symbols. To solve this problem, [9] also needs
to add buffers of 0’s between adjacent pairs, where the length of a buffer is at least as long
as the pair px, a ¨ xq.

It can be seen that the added 0’s in the above two approaches form an inherent barrier to
achieving high rate or high fraction of correctable errors. In [6], a constant number of 0’s are
added in between each pair of adjacent symbols in a codeword, which already decreases the
rate and the possible decoding radius to a small constant. In [9], the operation of converting
a codeword symbol x and a synchronization string symbol a into a pair px, a ¨ xq already
decreases the rate of the code to below 1{2, while adding 0’s as buffers decreases the rate
even more to below 1{4. Similarly, add 0’s as buffers also decreases the possible decoding
radius to below 1{2. For binary codes, [9] needs to use another layer of code concatenation,
which further decreases the rate and decoding radius.

The key idea in all our constructions is to eliminate the use of 0’s as buffers or synchroniz-
ation sequences. Instead, we embed synchronization information directly into the codewords.
To achieve this, we also use code concatenation, where for the outer code we choose a suitable
Reed-Solomon code. On the other hand, the key difference between our constructions and
standard concatenated codes is that we choose a different inner code for every position of
the outer code. This way, we can make sure that the inner codewords corresponding to outer
codeword symbols at different positions are far enough from each other, and thus we can
roughly tell them apart by just looking at the received codeword. By using linear inner codes
for all positions, this preserves the linearity of the code, and at the same time eliminates
the use of 0’s. On a high level, this is why our constructions can achieve either high rate
(arbitrarily close to 1{2) or high fraction of correctable errors (arbitrarily close to 1). We
now discuss our techniques in more details for the two cases.

ICALP 2023
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Constructions for high error. Note that to correct 1 ´ ε fraction of insdel errors, a linear
code must have alphbet size at least 1{ε by the half-Plotkin bound. Here we use an alphabet
of size polyp1{εq. With an appropriately chosen parameter γ “ Ωpεq, after picking an outer
Reed-Solomon code with codeword length n, rate γ and relative distance 1 ´ γ, our strategy
is to design n different inner codes C1

in, ¨ ¨ ¨ ,Cn
in. The goal is to ensure that codewords in

different inner codes have large edit distance, or equivalently, the length of their longest
common subsequence (LCS for short) is at most γn1 where n1 “ Oplog nq is the block length
of the inner code. However, since all these codes are linear, 0 is a codeword of each inner
code, and two 0’s (even from different inner codes) are guaranteed to have 0 edit distance.
We design the inner codes to ensure this is the only bad case.

More specifically, we ensure that for any two inner codewords x, y, unless they are both 0
or they correspond to the same message in one inner code Ci

in, their edit distance is large.
We show that if we pick n random linear codes for C1

in, ¨ ¨ ¨ ,Cn
in, then this property holds

with high probability. Furthermore, we can derandomize this by using a small biased sample
space to generate the n generator matrices of C1

in, ¨ ¨ ¨ ,Cn
in. Roughly, this is because the

property we want is local – it only looks at any two inner codewords x, y. By using a small
biased sample space, we can show that (roughly) under the above conditions, any non-trivial
parity of the bits (we treat a symbol in the alphabet of size polyp1{εq as a binary string of
length Oplogp1{εqq) of px, yq has a small bias. Hence a standard XOR lemma implies the
joint distribution of px, yq is close to uniform. Since n1 “ Oplog nq, we only need to look at
polypnq such pairs of px, yq. Thus it suffices to choose the error in the small biased sample
space to be 1{polypnq. This gives us a sample space of size polypnq and we can exhaustively
search for a good construction. This gives us n different inner codes with rate Ωpγq.

Using these inner codes, it is now relatively straightforward to argue about the parameters
of the concatenated code. The rate is Ωpγ2q “ Ωpε2q. To argue about the distance, we
consider the LCS between any two different codewords C1, C2, and divide it sequentially
into blocks according to the inner codewords of C1. Each block now covers a substring of
C2. Intuitively, by the property of our inner codes, each block contains only a small number
of matches compared to the total size of this block in C1 and the substring covered in C2,
unless it is a 0 inner codeword in C1 and is matched to another 0 inner codeword in C2, or it
is a match between the same inner codeword in a single inner code Ci

in. However our outer
code guarantees that the latter cannot happen too many times (i.e., at most Opγnq times).
Therefore the LCS has length at most Opγnn1q. By choosing γ appropriately, the code can
correct 1 ´ ε fraction of insdel errors.

We present a simple polynomial time decoding algorithm. Given any received string y,
we consider the partition of y into n substrings y1, ¨ ¨ ¨ , yn such that y “ y1 ˝ y2 ˝ ¨ ¨ ¨ ˝ yn,
where each yi can be the empty string. For each yi, we find the closest codeword xi P Ci

in in
edit distance and record their edit distance ∆i. We then minimize ∆ “

ř

iPrns ∆i, by using
a simple dynamic programming. We show that as long as there are not too many errors,
by using the optimal partition returned from the dynamic programming, one can correctly
recover a small fraction of the outer codewords. Intuitively, this is because if the partition
results in too many errors in the recovered outer codewords, then again by the property of
our inner codes, the quantity ∆ will be very large, unless there are a lot of errors. We then
use a list decoding algorithm for the Reed-Solomon code to get a list of candidate codewords,
and search the list to find the correct codeword, which is the one closest to y in edit distance.
For technical reasons, this decreases the rate of the code to Ωpε4q.
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Constructions with high rate. Now we explain our construction with high rate and polyno-
mial time encoding and decoding. We first exhibit a warm-up construction achieving rate
1{3 ´ γ. Then we improve the rate to 1{2 ´ γ, while the construction will be significantly
more involved due to additional issues arising in the analysis.

Inheriting the structure of the general construction, our first construction is as the
following. The outer code is a Reed-Solomon code with block length n, alphabet size n,
relative distance δ and rate p1 ´ δq, where δ “ γ{2. To achieve a high rate, we will design
the inner codes to have a large rate, ideally close to 1{2. At the same time, we also need to
ensure that the code can correct a positive constant fraction of errors, thus we want to make
sure that the LCS between any two different codewords is not too large.

As before, we will design the inner codes such that ideally, codewords from different inner
codes are far away from each other (or equivalently, have small LCS). However, there are
additional issues in the analysis of the LCS. First, the 0 codewords from different inner codes
are always the same. This is inevitable since we are dealing with linear codes. Second, in
a matching between two different codewords C1, C2, some inner codeword of C1 may be
matched to a substring of the concatenation of two adjacent inner codewords of C2. Thus it
is not enough to just ensure that codewords from different inner codes are far away from
each other. We note that this issue also occurs in our constructions for high noise. However,
there we designed the inner codes to have small rate but large distance, so the LCS between
different inner codewords is quite small. When some inner codeword of C1 is matched to a
substring of the concatenation of two adjacent codewords of C2, the size of the matching in
this part at most doubles the size of the LCS between two different inner codewords, and is
affordable in that case. Here however, since we are trying to achieve a high rate, the distance
between two different inner codewords becomes quite small, and the LCS becomes relatively
large (e.g., larger than 1{2 fraction). Hence, we cannot afford to double this size.

On a high level, we resolve the second issue by strengthening our local property of inner
codes, while our analysis will show that the first issue can also be resolved as a consequence.
We begin by discussing the local property we need to achieve rate 1{3 ´ γ. The distinct
binary inner codes C1

in,C2
in, . . . ,Cn

in are constructed to have block length n1, message length
k1 “ p1{3 ´ γ{2qn1, with the following property: for every i, j P rns, for every codeword w in
Ci

in, for every two codewords u, v from two adjacent inner codes Cj
in,Cj`1

in , unless w “ u or
w “ v, the distance between w and any substring of u ˝ v is at least d1 “ Ωpn1q. We first
explain why this property implies a good decoding radius and then explain how to construct
these inner codes.

We show the decoding radius by directly providing the following decoding algorithm.
On an input y which is a corrupted version of a codeword z, the algorithm first finds a
string z̃ P t0, 1unn1 which has a maximum block matching with y. A block matching is
defined to be a set of matches where each match, denoted as pi, rα, βsq, consists of a non-zero
inner codeword u P Ci

in and a substring yrα,βs, such that their edit distance is at most d1{2.
Furthermore, the matching is monotone in the sense that the substrings of y involved in the
matching do not overlap and the matches cannot cross. We call u a candidate string for
the i-th block. We give a simple dynamic programming algorithm to find a maximum block
matching together with a corresponding sequence of candidates. To construct z̃, we first fill
these candidates to their corresponding blocks and then set all the other blocks to be 0.

Now we show that as long as there are at most ρnn1 errors for some small constant ρ ą 0,
z̃ agrees with z in most of the blocks (inner codewords). To show this, divide z into blocks
z1 ˝ z2 ˝ ¨ ¨ ¨ ˝ zn such that each zi corresponds to an inner codeword. Similarly, divide y into
blocks y1 ˝ y2 ˝ ¨ ¨ ¨ ˝ yn such that each yi is the corrupted version of zi. Notice that there can

ICALP 2023
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be at most ρnn1

d1{2 “ pcγqn blocks with at least d1{2 errors, for some constant c “ cpρq. So the
maximum block matching has size at least n̂ ´ cγn where n̂ is the number of non-zero blocks
in z. Now consider a maximum block matching and the sequence of candidates returned by
the algorithm. We show that there are at most cγn candidates that are not equal to the
corresponding blocks of z, by using the local property. As we fill all the other blocks to be 0,
this also implies there are at most cγn zero-blocks being incorrectly recovered. Hence the
algorithm correctly recovers 1 ´ Opcγq fraction of blocks in z. By taking c (and thus also
ρ) to be a small enough constant, one can use the list-decoding algorithm of Reed-Solomon
codes to recover z.

Next, we explain how to construct the inner codes. We start by considering a random
construction, that is, all the inner codes are independent random linear codes. We show the
local property holds with high probability. Consider arbitrary codewords w P Ci

inzt0u, u P

Cj
in, v P Cj`1

in for some i, j P rns, where w ‰ u and w ‰ v. Here the inequality means the two
codewords are either from different inner codes or they correspond to different messages in
one inner code. Suppose there is a substring w1 of u ˝ v, which has distance ă d1 to w. So
the LCS between w and w1 should be ℓ ě

|w|`|w1
|´d1

2 . Notice that ℓ ď |w| ď n1. Consider
any monotone alignment between w and w1. Because w ‰ u, w ‰ v and the inner codes are
all independent and generated randomly, by a similar argument as in [6], the event that the
alignment is indeed a matching of bits happens with probability at most 2´ℓ. We then apply
a union bound over all possible alignments of size ℓ and all possible codewords w, u, v. A key
observation is that the number of all possible codewords w, u, v is 23k1 since we have three
different codewords here. However, we have ℓ ď n1. Therefore for the union bound to work,
we have to set k1 ă n1{3. This is the reason that we can only achieve rate close to 1{3 with
this construction.

Next, we derandomize the construction by replacing the uniform randomness used with
an ε-biased distribution. Here, as before, we crucially use the fact that our property for
the inner codes is local: the only place where we use randomness is when we bound the
probability that an alignment is a valid matching, and it only involves three codewords. Since
n1 “ Oplog nq, by using a standard XOR Lemma and taking ε “ 1{polypnq, we can argue
that when restricted to any three codewords, the ε-biased distribution is 1{polypnq close to
the uniform distribution in statistical distance. This is enough for the union bound since
there are at most polypnq such triples w, u, v.

Since we only need Oplog nq random bits to generate the above ε-biased distribution, one
can exhaustively search for a good construction that satisfies our local property. This also
takes polynomial time since one only needs to check every triple of inner codewords.

In our improved construction, we add new ideas to bypass the rate 1{3 barrier in the
above construction, by giving a new local property of the inner codes. Recall that the reason
we need to choose k1 ă n1{3 in the above construction is that the alignment we consider in
the local property consists of matches that involve three different codewords, which results
in a 23k1 term in the union bound, but the alignment has size at most n1. In the new local
property, we generalize this by considering alignments that involve 2s ` 1 different codewords
for some integer s. In a simplified version, consider any two different codewords C1, C2 of the
concatenated codes and an LCS between them, we analyze any s consecutive inner codewords
in C1, and how they can be matched to a substring in C2. Note that the s consecutive
inner codewords cannot be matched to a substring with length much larger than sn1, or
there are already many unmatched bits in C2. So we can imagine a new local property like
the following: let w be the concatenation of any s adjacent inner codewords, and u be the
concatenation of any s ` 1 adjacent inner codewords. As long as the codewords in w and
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u are sufficiently different, the distance between w and any substring of u is at least Ωpn1q.
The idea is that an alignment between w and u can have size up to sn1, while the union
bound gives a 2p2s`1qk1 term. Thus we can potentially achieve k1 ă s

2s`1 n1, and if s is large
enough, the rate is close to 1{2. Note that the warm-up construction i corresponds to the
case of s “ 1.

However, it is not straightforward to make this idea work. The main issue is that unlike
the simple case of s “ 1, when we consider s consecutive inner codewords for s ą 1, there
can be multiple 0 codewords in them, which can potentially be matched to the 0 codewords
in u. Furthermore, there can be inner codewords in w and u that correspond to the same
message in a single inner code. These issues will increase the probability that the alignment
is a valid matching and can cause the union bound to fail. To fix this, we require the “unique”
blocks in w to be dense. Specifically, we define a unique block of w (or u) to be a non-zero
inner codeword such that either no block of u (or w) is in the same inner code with it, or
any block of u (or w) in the same inner code with it corresponds to a different message. Now
we define the following new local property:

For every w which is a sequence of t “ Op
log 1

γ

γ2 q consecutive inner codewords, every u

which is a sequence of t ` 1 consecutive inner codewords, and every w1 which is a substring
of u, the distance between w and w1 is at least d1 “ Ωpγn1q, as long as the number of unique
blocks in w or u is at least s “ Ωpγtq. By the distance property of the outer code, for any two
different concatenated codewords, in at least one of them, the fraction of such t consecutive
inner codewords with at least s unique blocks is a constant.

Using this new property, we can design a similar decoding algorithm as that of the first
construction, and with a similar analysis, achieve decoding radius Ωpγ3n{ log 1

γ q.
We defer these details to the technical part and mainly explain here how to construct the

inner codes with the new property and why this indeed gives a rate of 1{2 ´ γ.
Similar to before, we start with a construction where all inner codes are independent ran-

dom linear codes, and later derandomize it with an ε-biased space. As long as the parameters
s, t are constants, it is easy to see that the derandomization step still works. Therefore, now
we only focus on the random construction and argue that the new local property holds with
high probability. For this, we use a delicate combinatorial and probabilistic argument.

Suppose the property is not satisfied with some concatenated codewords C1, C2. Then
there exists a w1 such that the edit distance between w, w1 is less than d1, which implies the
LCS between w and w1 is ℓ ą p|w| ` |w1| ´ d1q{2. Consider an arbitrary monotone alignment
M between w and w1 of size ℓ. We have two cases. The first case is that there is a pair
of indices pi, jq in M such that |i ´ j| ě d1. This implies that there cannot be any pair of
indices pi1, j1q in M such that i1 “ j1, for otherwise there are already at least d1 bits in C1 or
C2 that are not matched. Let t̂ be the larger number of non-zero blocks in w and w1. Note
that t̂ ě s. Since all inner codes are independent and random, and every pair of indices pi, jq

in M has i ‰ j, the probability that M is a matching is at most 2´ppt̂´1qn1
´Opd1

qq (w1 can
have length as small as pt ` 1qn ´ n ´ d1). Now if we apply the union bound, the main term
is actually the total number of possible tuples of the non-zero inner codewords. Since there
are at most 2t̂ non zero blocks in w and u, this number is at most 22t̂k1 . Thus as long as s is
a large enough integer, the rate of the code can approach 1{2.

The second case is that every pair of indices pi, jq in M has |i ´ j| ă d1. In this case, we
focus on the unique blocks. Let s1 be the larger number of unique blocks in w and u, and for
simplicity assume u has more unique blocks. We delete all matches where the endpoint in
u is not in a unique block, or the endpoint in w falls out of the block at the same position
as the block in u which contains the endpoint in u. Thus we attain a trimmed alignment
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M 1. Under the assumed condition in this case, we don’t lose too many matches. Indeed
the number of matches left is at least ℓ1 “ s1pn1 ´ d1q ´ n1 ´ d1. We now upper bound the
probability that there exists such an M 1 which is a valid matching. Since this event is implied
by the original event, this also provides an upper bound of the original event.

The probability that any M 1 is a valid matching is 2ℓ1 , by our definition of unique blocks.
Now in the union bound, the main term turns out to be the total number of possible tuples
of the inner codewords corresponding to the s1 unique blocks in u and the other s1 blocks at
the same positions in w, which is roughly 2p2s1

qk1 . Notice that s1 ě s. Thus in this case, as
long as s is large enough, the rate of the code can also approach 1{2.

The existence of linear concatenated codes matching random linear codes. This part
is similar in spirit to Thommesen’s work [23], which shows the existence of binary linear
concatenated codes with Reed-Solomon outer codes that asymptotically meet the Gilbert-
Varshamov bound. In particular, we also take a Reed-Solomon code as the outer code,
and use an independent random linear inner code for every symbol of the outer codeword.
Interestingly, here we take the outer code to be a rn, k “ p1 ´ γqn{2, d “ p1 ` γqn{2sq

Reed-Solomon code with q “ Θpnq, i.e., the rate of the outer code is less than 1{2. On the
other hand, we take all inner codes to have rate 1. Using a careful probabilistic counting
argument together with an estimate of the number of Reed-Solomon codewords with a specific
weight (as done in [23]), we can prove the existence of linear concatenated insdel codes with
parameters as in Theorem 4.

The choice of the parameters of the outer code is different from our explicit constructions,
suggesting that maybe different constructions based on these parameters can lead to better
explicit linear insdel codes.

Organization of the paper. Our general construction is exhibited in Section 3. The high
error construction and its analysis are given in Section 4. We put the technical details of the
rest of our results in the full version.

2 Preliminaries

Notation. Let Σ be an alphabet. For a string x P Σ˚,
1. |x| denotes the length of the string.
2. xri, js denotes the substring of x from position i to position j (both endpoints included).
3. xris denotes the i-th symbol of x.
4. x ˝ x1 denotes the concatenation of x and some other string x1 P Σ˚.
5. For a string s which is a concatenation of shorter strings s1, s2, . . . , st, the i-th block of s

refers to si.

▶ Definition 9 (Edit distance and Longest Common Subsequence). For any two strings
x, y P Σn, the edit distance ∆Epx, yq is the minimum number of edit operations (insertions
and deletions) required to transform x into y.2 A longest common subsequence of x and y

is a longest pair of subsequences of x and y that are equal as strings. We use LCSpx, yq to
denote the length of a longest common subsequence between x and y.

2 The standard definition of edit distance also allows substitution, but for simplicity we only consider
insertions and deletions here, as a substitution can be replaced by a deletion followed by an insertion.
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Note that ∆Epx, yq “ |x| ` |y| ´ 2 ¨ LCSpx, yq. We use ∆Hpx, yq to denote the Hamming
distance between two strings x and y.

▶ Definition 10. An pn, m, dq-code C is an error-correcting code (for Hamming errors) with
codeword length n, message length m, such that the Hamming distance between every pair of
codewords in C is at least d.

▶ Definition 11. Fix an alphabet Σ, an error-correcting code C Ď Σn for edit errors with
message length m and codeword length n consists of an encoding function Enc : Σm Ñ Σn

and a decoding function Dec : Σ˚ Ñ Σm. The code can correct k edit errors if for every y, s.
t. ∆Epy, Encpxqq ď k, we have Decpyq “ x. The rate of the code is defined as m

n .

We say C is a linear code if the alphabet Σ is a finite field Fq and the encoding function
Enc : Fm

q Ñ Fn
q is a Fq-linear map.

We use the following list decoding algorithm for Reed-Solomon codes due to Guruswami
and Sudan [11].

▶ Theorem 12. Given a family of Reed-Solomon codes of message rate γ, an error rate of
ε “ 1 ´

?
γ can be list-decoded in polynomial time.

We use Un to denote the uniform distribution on t0, 1un.

▶ Definition 13. An ε-biased distribution X over t0, 1un is such that for any S Ď rns,
| Pr r

À

iPS Xi “ 1s ´ 1{2| ď ε. A function g : t0, 1us Ñ t0, 1un is an ε-biased generator if
gpUsq is an ε-biased distribution.

The following ε-biased generator is used.

▶ Theorem 14 ([2]). For every n P N, every ε P p0, 1q, there exists an explicit ε-biased
generator t0, 1us ÝÑ t0, 1un with s “ Oplog n ` logp1{εqq.

We also need the following XOR lemma.

▶ Lemma 15 (XOR Lemma). The statistical distance between an ε-biased distribution and a
uniform distribution, both over t0, 1un, is at most ε

?
2n.

3 General Construction of Our Codes

All our codes follow the general strategy of code concatenation, which we describe below.
The outer code Cout with encoding function : Encout : Σk

out Ñ Σn
out is an rn, k, ds Reed

Solomon Code for Hamming errors. We then use n different inner codes C1
in, . . . ,Cn

in, such
that for any i P rns, Ci

in is a linear code Enci
in : Σout Ñ Σn1

in , where n1 is the block length of
the inner code. In this paper Σin always has constant size and we let n1 “ Θplog nq. For
different applications, we will need the inner codes to have slightly different properties.

Our final code C works naturally by first encoding the message using the outer code,
then encoding each symbol of the outer code using the inner codes. This gives a codeword
over Σin with length N “ n ¨ n1. If the outer code and all the inner codes are linear, the
concatenated code is also linear.

4 Constructions For High Noise

In this section we give our linear codes that can correct 1 ´ ε fraction of insdel errors, for
any constant ε ą 0. Our codes can still achieve a constant rate.
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The construction. Following our general construction, we take Cout to be an rn, k, dsn

Reed-Solomon code with |Σout| “ n, k “ γn and d “ p1 ´ γqn for some constant γ ą 0
to be chosen later. We construct n different inner codes C1

in, . . . ,Cn
in with alphabet size

|Σin| “ polyp1{γq, message length k1 “ Θplog nq, and codeword length n1 “ Θplog nq, with
the following property.

▶ Property 1. For any two codewords x P Ci
in, y P Cj

in, if either of the following two conditions
holds:
1. i ‰ j, and x ‰ 0n1 or y ‰ 0n1 .
2. i “ j and x ‰ y.

Then we have LCSpx, yq ď γn1.

▶ Lemma 16. There exists an efficient construction of n inner codes C1
in, . . . ,Cn

in, where
each Ci

in has alphabet size |Σin| “ polyp1{γq and rate Ωpγq.

Proof. We first show that if we pick n independent random linear inner codes C1
in, . . . ,Cn

in
over an alphabet size |Σin| “ polyp1{γq, then they satisfy Property 1 with high probability.
We then show how to derandomize the construction using a small biased sample space.

Fix a field Fq. For each Ci
in we independently pick log n uniformly random vectors in Fn1

q

with n1 “ Θplog n{γq as the basis for Ci
in, or equivalently, the rows in the generating matrix

of Ci
in. We bound the probability that there exist two codewords x P Ci

in, y P Cj
in that satisfy

the conditions of Lemma 16 but LCSpx, yq ą γn1.

▷ Claim 17. Consider any fixed common subsequence between x and y of length t, where the
corresponding indices in x are ts1, ¨ ¨ ¨ , stu and the corresponding indices in y are tr1, ¨ ¨ ¨ , rtu.
Then

Prr@k P rts, xsk
“ yrk

s ď q´t.

To prove the claim we have two cases.
Case 1: i ‰ j, and x ‰ 0n1 or y ‰ 0n1 . This is the easy case. Since i ‰ j, and all the

entries in the generating matrices of Ci
in and Cj

in are chosen independently uniformly from
Fq, we know that the events xsk

“ yrk
are all independent, even if x “ 0n1 or y “ 0n1 .

Furthermore, the probability of each such event is 1{q. Hence the claim follows.
Case 2: i “ j. In this case, the events xsk

“ yrk
are not necessarily all independent.

However, the claim still follows from the following claim in [6], which deals exactly with
this situation.

▷ Claim 18. [Claim 4.2 of [6]] Let G be a random generating matrix for a linear code over
Fq. For any two different messages xi, xj and codewords Ci “ xiG, Cj “ xjG, consider
any fixed common subsequence between Ci and Cj of length t, where the corresponding
indices in Ci are ts1, ¨ ¨ ¨ , stu and the corresponding indices in Cj are tr1, ¨ ¨ ¨ , rtu. Then

Prr@k P rts, Ci
sk

“ Cj
rk

s ď q´t.

Now by a union bound, and noticing that the total number of possible cases where two
strings of length n1 have a common subsequence of length γn1 is at most

`

n1

γn1

˘2
, we have

PrrProperty 1 does not holds ď n2q2 log n

ˆ

n1

γn1

˙2
q´γn1

ď

ˆ

e

γ

˙2γn1

n2q2 log n´γn1

.

Therefore, one can set q “ p e
γ q3 and n1 “ Θplog n{γq so that the above probability is

q´Ωplog nq “ 1{polypnq.
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Next we show how to derandomize the above construction using a small biased space.
Without loss of generality we assume the field we use is Fq with q “ 2ℓ. Thus, by choosing an
arbitrary basis b1, ¨ ¨ ¨ , bℓ in Fq we can identify the field with the vector space Fℓ

2, such that
any a P Fq can be expressed as a “

ř

iPrℓs aibi, where @i, ai P F2. In this way, the generating
matrix of each Ci

in can be viewed as consisting of ℓn1 log n “ Θpℓ log2 nq bits.
We pick a τ -biased sample space with nℓn1 log n bits for some τ “ 1{polypnq to be chosen

later. Note that by Theorem 14 this can be generated by Oplog nq uniform random bits.
Given ℓ bits a1, ¨ ¨ ¨ , aℓ which defines the field element a “

ř

iPrℓs aibi, and any p P Fq,
consider the operation p ¨ a and the corresponding coefficient in the basis b1. It’s not hard to
see that this is a F2-linear function (i.e., a parity) of a1, ¨ ¨ ¨ , aℓ. Call this parity Lppa1, ¨ ¨ ¨ , aℓq.
We have the following claim.

▷ Claim 19. Lppa1, ¨ ¨ ¨ , aℓq ” 0 if and only if p “ 0.

Proof of the claim. The “if” part is trivially true. For the other part, note that if p ‰ 0 then
pb1, ¨ ¨ ¨ , pbℓ must also be linearly independent and thus form a basis of Fq. Therefore, some
pbi must have a non-zero coefficient in b1 and thus Lppa1, ¨ ¨ ¨ , aℓq has a term ai in the parity,
therefore it cannot be the 0 function. ◁

Note that there are altogether 2ℓ different parity functions involving a1, ¨ ¨ ¨ , aℓ, and
q “ 2ℓ elements in Fq. Thus the previous claim immediately implies the following claim.

▷ Claim 20. Any parity function involving a1, ¨ ¨ ¨ , aℓ is equivalent to Lppa1, ¨ ¨ ¨ , aℓq for
some p P Fq.

Now consider the two codewords x P Ci
in, y P Cj

in. Let x0 and y0 be the corresponding
messages for x and y respectively. We now have the following claim.

▷ Claim 21. Unless i “ j and y0 “ p ¨ x0 or x0 “ p ¨ y0 for some p P Fq, under the τ -biased
sample space, the joint distribution of px, yq is qn1

τ -close to the uniform distribution over
F2n1

q .

Proof of the claim. Let x “ px1, ¨ ¨ ¨ , xn1 q P Fn1

q “ Fℓn1

2 and y “ py1, ¨ ¨ ¨ , yn1 q P Fn1

q “ Fℓn1

2 .
Consider any non-trivial parity of the 2ℓn1 bits, which by Claim 20 corresponds to the
coefficient of b1 under some function

ř

kPrn1spp
x
kxk ` py

kykq, where @k, px
k, py

k P Fq, and they
are not all 0.

If i ‰ j, then
ř

kPrn1s px
kxk and

ř

kPrn1s py
kyk use different bits in the τ -biased sample

space. Since x, y are not both 0n1 , the resulted parity is a non-trivial parity of the bits in the
sample space, which by definition has bias at most τ .

Otherwise we have i “ j. Let G be the generating matrix for Ci
in, thus x “ x0G and

y “ y0G. For any k P rn1s, let Gk be the k’th column of G. We have

ÿ

kPrn1s

ppx
kxk ` py

kykq “
ÿ

kPrn1s

ppx
kx0Gk ` py

ky0Gkq “
ÿ

kPrn1s

ppx
kx0 ` py

ky0qGk.

Notice that each entry in each Gk is independently uniformly chosen from Fq “ Fℓ
2. Thus by

Claim 19 if the coefficient of the above sum in b1 is the trivial parity 0, then we must have
@k P rn1s, px

kx0 ` py
ky0 “ 0. This implies that either y0 “ p ¨ x0 or x0 “ p ¨ y0 for some p P Fq.

Otherwise, the parity is a non-trivial parity of the bits in the sample space, which by
definition has bias at most τ . Now, by Lemma 15, the joint distribution of px, yq is qn1

τ -close
to the uniform distribution over F2n1

q . ◁
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Back to the proof of our lemma. If the conditions of the above claim hold, then the
joint distribution of px, yq is qn1

τ -close to the uniform distribution. Hence, the probability
that there exists any common subsequence of length γn1 between x and y is at most
`

n1

γn1

˘2
q´γn1

` qn1

τ .
On the other hand, if the conditions of the above claim do not hold, then without loss of

generality assume that y0 “ p ¨ x0 for some p P Fq. Hence p ‰ 1. In this case, notice that we
also have y “ p ¨ x, and thus the probability that there exists any common subsequence of
length γn1 between x and y is completely determined by the random variables in x. Note
that any non-trivial parity of the bits in x is also a non-trivial parity of the bits of the
τ -biased sample space, which has bias at most τ . By Lemma 15, the distribution of x is
qn1

{2τ -close to being uniform on Fn1

q .
We have the following claim.

▷ Claim 22. Let x be a uniformly random vector in Fn1

q , and y “ p ¨ x. Then

PrrDa common subsequence of length t between x and ys ď

ˆ

n1

t

˙2
q´t.

Proof of the claim. Consider any fixed common subsequence of length t between x and y.
Assume where the corresponding indices in x are ts1, ¨ ¨ ¨ , stu and the corresponding indices
in y are tr1, ¨ ¨ ¨ , rtu, such that s1 ă s2 ă ¨ ¨ ¨ ă st and r1 ă r2 ă ¨ ¨ ¨ ă rt. For any k P rts, let
mk “ maxpsk, rkq. Notice that m1 ă m2 ă ¨ ¨ ¨ ă mt. Define Ek to be the event xsk

“ yrk
.

For each k P rts, if sk “ rk, then

PrrEks “ Prrxsk
“ p ¨ xsk

s “ Prrxsk
“ 0s “

1
q

.

Furthermore, since sk “ rk “ mk is larger than all tsk1 , rk1 , k1 ă ku, the event Ek is
independent of all tEk1 , k1 ă ku. Thus

PrrEk|tEk1 , k1 ă kus “
1
q

.

Otherwise, sk ‰ rk and without loss of generality assume sk ą rk. This means sk “ mk

and is larger than all tsk1 , rk1 , k1 ă ku. We can now first fix all txsk1 , yrk1 , k1 ă ku and yrk
,

and conditioned on this fixing xsk
is still uniform over Fq. Thus

PrrEks “ Prrxsk
“ p ¨ xrk

s “
1
q

.

Note that any such fixing also fixes the outcomes of all tEk1 , k1 ă ku. Hence we also have

PrrEk|tEk1 , k1 ă kus “
1
q

.

Therefore, the above equation holds in all cases, and for all k. This gives

Prr
č

kPrts

Eks ď q´t,

and the claim follows from a union bound. ◁
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Since x is qn1
{2τ -close to being uniform on Fn1

q , the probability that there exists any common
subsequence of length γn1 between x and y is at most

`

n1

γn1

˘2
q´γn1

` qn1
{2τ in this case.

To summarize, using the τ -biased sample space we always have that the probability
that there exists any common subsequence of length γn1 between x and y is at most
`

n1

γn1

˘2
q´γn1

` qn1

τ . By another union bound, we have

PrrProperty 1 does not holds ď n2q2 log n

˜

ˆ

n1

γn1

˙2
q´γn1

` qn1

τ

¸

ď

ˆ

e

γ

˙2γn1

n2q2 log n´γn1

` n2qn1
`2 log nτ.

Therefore, one can still set q “ p e
γ q3, n1 “ Θplog n{γq, and τ “ q´Ωplog n{γq “ 1{polypnq

so that the above probability is q´Ωplog nq “ 1{polypnq.
Once we know this, we can exhaustively search the τ -biased sample space and find a

sample point which gives us a construction that satisfies Property 1. Since we only have
polypnq sample points and checking each sample point takes polynomial time, altogether this
takes polynomial time. ◀

Note that our concatenated code C now has rate Ωpγ2q. Further, Property 1 implies the
following property:

▶ Property 2.
1. @i ‰ j, we have Ci

in
Ş

Cj
in “ t0n1

u.
2. For any i, j P rns and any two codewords x P Ci

in, y P Cj
in, if x ‰ y then LCSpx, yq ď γn1.

Let z be any substring of a codeword from the concatenated code C, and assume z is a
substring of zj ˝ zj`1 ˝ ¨ ¨ ¨ ˝ zj`ℓ, where @t, zj`t is a codeword in Cj`t

in . We say the codewords
tzj`t, t “ 0, ¨ ¨ ¨ , ℓu contribute to the string z.

We now show that Property 1 and Property 2 give us the following lemma.

▶ Lemma 23. Let x be a codeword from the code Ci
in. Let z be any substring of a codeword

from the concatenated code C, and tzj`t, t “ 0, ¨ ¨ ¨ , ℓu are the inner codewords contributing
to z. If @t, zj`t ‰ x, then we have LCSpx, zq ă 2γp|x| ` |z|q.

Proof. By Property 2, the longest common subsequence between x and any zj`t has length
at most γn1. If ℓ “ 1, then we have

LCSpx, zq ď γn1 ă 2γp|x| ` |z|q.

Otherwise we have ℓ ě 2. Notice that |z| ą pℓ ´ 2qn1. Thus we have

LCSpx, zq ď ℓγn1 ď 2γpℓ ´ 1qn1 ă 2γp|x| ` |z|q. ◀

We can now prove the following lemma.

▶ Lemma 24. For any two different codewords C1, C2 P C, we have ∆EpC1, C2q ą 2p1´6γqN .

Proof. We upper bound LCSpC1, C2q as follows. Consider a particular longest common
subsequence and divide it sequentially according to the n inner codewords in C1. Let the
codewords in C1 be x1, ¨ ¨ ¨ , xn and the corresponding substrings in C2 under the LCS be
z1, ¨ ¨ ¨ , zn.
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By Lemma 23, for any i P rns, we must have LCSpxi, ziq ď 2γp|xi| ` |zi|q, unless some
inner codeword in zi is equal to xi. This could happen either because xi “ 0n1 or because zi

contains part of xi from exactly the i’th inner code. In the latter two cases, we call such
an index i bad. Note that for a bad i we have LCSpxi, ziq ď n1, and there are at most γn

such bad indices for either case, by our choice of the outer code. Let t be the number of bad
indices, thus t ď 2γn. Therefore,

LCSpx, zq “
ÿ

i is not bad
LCSpxi, ziq `

ÿ

i is bad
LCSpxi, ziq

ď 2γ
ÿ

i is not bad
p|xi| ` |zi|q ` tn1

ă 2γp2n1nq ` 2γnn1 “ 6γN,

where the last inequality follows from the fact that if the number of bad indices is larger than 0,
then

ř

i is not badp|xi| ` |zi|q ă 2n1n. Therefore ∆EpC1, C2q ą 2N ´ 12γN “ 2p1 ´ 6γqN . ◀

Setting γ “ ε{6, this gives the following theorem.

▶ Theorem 25. For any constant ε ą 0 there exists an efficient construction of linear insdel
codes over an alphabet of size polyp1{εq, with rate Ωpε2q that can correct 1 ´ ε fraction of
insdel errors (possibly inefficiently).
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