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Abstract
In a recent article, Alon, Hanneke, Holzman, and Moran (FOCS ’21) introduced a unifying framework
to study the learnability of classes of partial concepts. One of the central questions studied in their
work is whether the learnability of a partial concept class is always inherited from the learnability of
some “extension” of it to a total concept class.

They showed this is not the case for PAC learning but left the problem open for the stronger
notion of online learnability.

We resolve this problem by constructing a class of partial concepts that is online learnable, but
no extension of it to a class of total concepts is online learnable (or even PAC learnable).
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1 Introduction

In many practical learning problems, the learning task is tractable because we are only
required to predict the labels of the data points that satisfy specific properties. In the setting
of binary classification problems, instead of learning a total concept h : X → {0, 1}, we
are often content with learning a partial version of it h̃ : X → {0, 1, ⋆}, where h̃(x) = ⋆

means that both 0 and 1 are acceptable predictions. This relaxation of allowing unspecified
predictions renders a wider range of learning tasks tractable.

Consider, for example, predicting whether a person approves or disapproves of various
political stances by observing their previous voting pattern. This person might not hold a
strong opinion about particular political sentiments, and it might be impossible to predict
their vote on those issues based on their previous history. However, the learning task might
become possible if we allow both “approve” and “disapprove” as acceptable predictions in
those cases where a firm conviction is lacking.
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42:2 Online Learning and Disambiguations of Partial Concept Classes

A well-studied example of this phenomenon is learning half-spaces with a large margin.
In this problem, the domain is the set of points in a bounded region in an arbitrary Euclidean
space, and the concepts are half-spaces that map each point to 1 or 0 depending on whether
they belong to the half-space or not. It is well-known that when the dimension of the
underlying Euclidean space is large, one needs many samples to learn a half-space. However,
in the large margin setting, we are only required to correctly predict the label of a point if
its distance from the defining hyperplane is bounded from below by some margin. Standard
learning algorithms for this task, such as the classical Perceptron algorithm, due to Rosenblatt
[9], show that this relaxation of the learning requirement makes the problem tractable even for
high-dimensional Euclidean spaces. Motivated by such examples, Alon, Hanneke, Holzman,
and Moran [1] initiated a systematic study of the learnability of partial concept classes
H ⊆ {0, 1, ⋆}X . They focused on the two frameworks of probably approximately correct (PAC)
learning and online learning. We refer to [1] for the definition of PAC learnability of partial
concept classes. We define online learnability in Definition 4.

PAC learning is an elegant theoretical framework characterized by the combinatorial
parameter of the Vapnik–Chervonenkis (VC) dimension. The fundamental theorem of PAC
learning states that a total binary concept class is PAC learnable if and only if its VC
dimension is finite. Similarly, online learnability of total concept classes is characterized by
a combinatorial parameter called the Littlestone dimension (LD). We formally define the
VC dimension and the Littlestone dimension in Definitions 14 and 15 respectively. Alon,
Hanneke, Holzman, and Moran [1] proved that these characterizations of PAC and online
learnability extend to the setting of partial concept classes.

▶ Theorem 1 ([1, Theorems 1 and 15]). Let H ⊆ {0, 1, ⋆}X be a partial concept class.
H is PAC learnable if and only if VC(H) < ∞.
H is online learnable if and only if LD(H) < ∞.

It follows from the definitions of VC and LD dimensions that for every partial concept
class H ⊆ {0, 1, ⋆}X , we have VC(H) ≤ LD(H). In particular, online learnability always
implies PAC learnability.

One of the central questions studied in [1] is whether the learnability of a partial
concept class is always inherited from the learnability of some total concept class. To make
this question precise, we need to define the notion of disambiguation of a partial concept
class. While we defer the formal definitions to Section 2.2, one may understand a strong
disambiguation of a partial class as simply an assignment of each ⋆ to either 1 or 0 for each
partial concept in the class. When X is infinite, it is more natural to consider the weaker
notion of disambiguation that we shall define in Definition 17. When X is finite, the notions
of disambiguation and strong disambiguation coincide.

Consider the problem of learning the partial concept class H ⊆ {0, 1, ⋆}X in PAC learning
or online learning. If the partial concept class H has a disambiguation H ⊆ {0, 1}X that is
PAC learnable, then H is PAC learnable. This follows from VC(H) ≤ VC(H), or simply by
running the PAC learning algorithm of H on H. Similarly, if a disambiguation H of H is
online learnable, then H is online learnable.

Is the learnability of every partial concept class inherited from the learnability of some
disambiguation to a total concept class?

▶ Question 2 (Informal [1]). Does every learnable partial class have a learnable disambigu-
ation?

Equipped with the VC dimension characterization of Theorem 1, [1] proved that for PAC
learning, the answer to Question 2 is negative.
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▶ Theorem 3 ([1, Theorem 11]). For every n ∈ N, there exists a partial concept class
Hn ⊆ {0, 1, ⋆}[n] with VC(Hn) = 1 such that any disambiguation H of Hn has VC(H) ≥
(log n)1−o(1). Moreover, for X = N, there exists H∞ ⊆ {0, 1, ⋆}X with VC(H∞) = 1 such
that VC(H) = ∞ for every disambiguation H of H∞.

While Theorem 3 gives a strong negative answer to Question 2 in the case of PAC learning,
the question was left open for online learning. Roughly speaking, this question strengthens
the bounded-VC assumption on H to bounded Littlestone dimension (LD), which pertains
to online learnability of H.

The authors in [1] also proposed a second open problem that replaces the bounded-VC
dimension assumption by the assumption of polynomial growth. This assumption is weaker
than bounded LD dimension but stronger than bounded VC dimension.

As we discuss below, our main result resolves these two open problems.

Online learnability

Online learning is performed in a sequence of consecutive rounds, where at round t, the
learner is presented with an instance xt ∈ X and is required to predict its label. After
predicting the label, the correct label yt ∈ {0, 1} is revealed to the learner. Note that even
for partial concept classes, we require that the correct label is 0 or 1. The learner’s goal
is to make as few prediction mistakes as possible during this process. We assume that the
true labels are always realizable, i.e. there is a partial concept h ∈ H with h(xi) = yi for all
i = 1, . . . , t.

▶ Definition 4 (Online Learnability). A partial concept class H ⊆ {0, 1, ⋆}X is online learnable
if there is a mistake bound m := m(H) ∈ N such that for every T ∈ N, there exists a learning
algorithm that on every realizable sequence (xi, yi)i=1,...,T makes at most m mistakes.

Online learnability for total classes is equivalent to the bounded Littlestone dimension. In
Theorem 1, Alon, Hanneke, Holzman, and Moran [1] showed that the same equivalence carries
out in the setting of partial classes. They asked the following formulation of Question 2.

If a partial class is online learnable, is there a disambiguation of it that is online learnable?

More precisely, they pose the following question:

▶ Problem 5 ([1]). Let H be a partial class with LD(H) < ∞. Does there exist a disambigu-
ation H of H with LD(H) < ∞? Is there one with VC(H) < ∞?

We give a negative answer to Problem 5:

▶ Theorem 6 (Main Theorem). For every n ∈ N, there exists a partial concept class
Hn ⊆ {0, 1, ⋆}[n] with LD(Hn) ≤ 2 such that every disambiguation H of Hn satisfies
LD(H) ≥ VC(H) = Ω(log log n). Consequently, for X = N, there exists H∞ ⊆ {0, 1, ⋆}X with
LD(H∞) ≤ 2 and LD(H) ≥ VC(H) = ∞ for every disambiguation H of H∞.

Polynomial growth

A general strategy to prove a super-constant lower bound on the VC dimension of a total
concept class H ⊆ {0, 1}n is to show that the class is of super-polynomial size. This is
the approach utilized in Theorem 3 and Theorem 6. For a total concept class H ⊆ {0, 1}n

with VC dimension d, one has 2d ≤ |H| ≤ O(nd): the lower bound is immediate from
the definition of VC dimension, and the upper bound is the consequence of the celebrated
Sauer-Shelah-Perles (SSP) lemma.

ICALP 2023
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▶ Theorem 7 (Sauer-Shelah-Perles lemma [10]). Let H ⊆ {0, 1}n and VC(H) = d. Then

|H| ≤
(

n

≤ d

)
:=

d∑
i=0

(
n

i

)
= O(nd).

The direct analog of the SSP lemma is not true for partial concept classes: [1] proved
that there exists H ⊆ {0, 1, ⋆}[n] with VC(H) = 1 such that every disambiguation H has size
|H| ≥ nΩ(log n). This result, combined with the SSP lemma for total classes, immediately
implies Theorem 3.

Interestingly, under the stronger assumption of the bounded Littlestone dimension, the
polynomial growth behavior of the original SSP lemma remains valid.

▶ Theorem 8 ([1]). Every partial concept class H ⊆ {0, 1, ⋆}[n] with LD(H) ≤ d has a
disambiguation H with |H| ≤ O(nd).

We say that a partial concept class H ⊆ {0, 1, ⋆}X has polynomial growth with parameter
d ∈ N if for every finite X ′ ⊆ X , there is a disambiguation H|X ′ of H|X ′ of size at most
O(|X ′|d). Note that by Theorem 8, every partial concept class with Littlestone dimension d

has polynomial growth with parameter d.
Alon, Hanneke, Holzman, and Moran asked the following question:

▶ Problem 9 ([1]). Let H ⊆ {0, 1, ⋆}X be a partial concept class with polynomial growth.
Does there exist a disambiguation H of H such that VC(H) < ∞?

Note that Problem 9 cannot be resolved (in the negative) by a naive application of the
SSP lemma to disambiguations of H or its restrictions. However, Theorem 6 combined with
Theorem 8 refutes Problem 9 as well.

▶ Theorem 10. For every n ∈ N, there is H ⊆ {0, 1, ⋆}[n] with polynomial growth with
parameter 2 such that every disambiguation H of H has VC(H) = Ω(log log n).

Consequently, for X = N, there exists H∞ ⊆ {0, 1, ⋆}X with polynomial growth with
parameter 2 such that every disambiguation H∞ of H∞ has VC(H∞) = ∞.

The Alon-Saks-Seymour Problem

The proof of Theorem 3 in [1] hinges on the breakthrough result of Göös [4] and its
subsequent improvements [2] that led to almost optimal super-polynomial bounds on the
“biclique partition number versus chromatic number” problem of Alon, Saks, and Seymour.
The biclique partition number of a graph G, denoted by bp(G), is the smallest number of
complete bipartite graphs (bicliques) that partition the edge set of G. Alon, Saks, and
Seymour conjectured that the chromatic number of a graph with biclique partition number
k is at most k + 1. Huang and Sudakov refuted the Alon-Saks-Seymour conjecture in [6]
by establishing a superlinear gap between the two parameters. Later in a breakthrough,
Göös [4] proved a superpolynomial separation.

Our main result, Theorem 6, also builds on the aforementioned graph constructions.
However, unlike previous works, our theorem demands a reasonable upper bound on the
number of vertices. Since the constructions result from a complex sequence of reductions
involving query complexity, communication complexity, and graph theory [3, 4, 5, 2], it is
necessary to scrutinize them to ensure that the required parameters are met. We present a
reorganized and partly simplified sequence of constructions in Section 3.3 that establishes
the following theorem.
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▶ Theorem 11 (Small-size refutation of the Alon-Saks-Seymour conjecture). There exists a
graph G on 2Θ(k4 log3 k) vertices that admits a biclique partition of size 2O(k log4 k) but its
chromatic number is at least 2Ω(k2).

Theorem 11 is essentially due to [2]. Our contribution to this theorem is obtaining an explicit
and optimized bound on the size of G.

Standard Optimal Algorithm

Theorem 6 provides an example partial class with Littlestone dimension ≤ 2, such that
the VC dimension of every disambiguation is Ω(log log n). Whether one can improve the
Ω(log log n) lower bound is unclear. In particular, it is an interesting question whether
every disambiguation of a partial class of Littlestone dimension at most 2 has VC dimension
O(log log n). One natural candidate approach for obtaining such an upper bound would be
to utilize the Standard Optimal Algorithm (SOA).

SOA is an online learning algorithm devised by Littlestone [7] that can learn classes with
bounded Littlestone dimensions. Alon, Hanneke, Holzman, and Moran, in their proof of
Theorem 8, showed that applying SOA to a partial concept class H with Littlestone dimension
d yields a disambiguation of size |H| ≤ O(nd) and consequently VC dimension O(d log n).
This shows that the lower bound of Theorem 6 on VC dimension of disambiguations cannot
be improved beyond O(log n). It is hence natural to ask whether it is possible to obtain an
improved upper bound on the VC dimension of the SOA-based disambiguation.

We answer this question in the negative by constructing a family of partial concept classes
H of Littlestone dimension d where the disambiguation obtained by the SOA algorithm has
VC dimension Ω(d log(n/d)).

▶ Theorem 12. For every natural numbers d ≤ n, there exists a partial concept class
Hn,d ⊆ {0, 1, ⋆}[n] with d ≤ LD(Hn,d) ≤ d + 1 such that the SOA disambiguation of Hn,d has
VC dimension Ω(d log(n/d)).

2 Preliminaries and Background

For a positive integer k, we denote [k] := {1, . . . , k}. We adopt the convention that {0, 1}0

or {0, 1, ⋆}0 contains the empty string only, which we denote by ().
We adopt the standard computer science asymptotic notations, such as Big-O, and use

the asymptotic tilde notations to hide poly-logarithmic factors.

2.1 VC Dimension and Littlestone Dimension
Let H ⊆ {0, 1, ⋆}X be a partial concept class. When the domain X is finite, we sometimes
view H as a partial matrix MX ×H, where each row corresponds to a point x ∈ X and each
column corresponds to a concept h ∈ H, and the entries are defined as M(x, h) = h(x).

Next, we define the VC dimension and the Littlestone dimension of partial classes, which
generalize the definitions of these notions for total classes. As shown in [1], the VC and
Littlestone dimensions for partial classes capture PAC and online learnability, respectively.

▶ Definition 13 (Shattered set). A finite set of points C = {x1, . . . , xn} ⊆ X is shattered by
a partial concept class H ⊆ {0, 1, ⋆}X if for every pattern y ∈ {0, 1}n, there exists h ∈ H with
h(xi) = yi for all i ∈ [n].

ICALP 2023



42:6 Online Learning and Disambiguations of Partial Concept Classes

▶ Definition 14 (VC dimension). The VC dimension of a partial class H, denoted by VC(H),
is the maximum d such that there exists a size-d subset of X that is shattered by H. If no
such largest d exists, define VC(H) = ∞.

Viewed as a matrix, the VC dimension of H is the maximum d such that the associated
partial matrix MX ×H contains a zero/one submatrix of dimensions d×2d, where the columns
enumerate all d-bit zero/one patterns.

The Littlestone dimension is defined through the shattering of decision trees instead of
sets. Consider a full binary decision tree of height d where every non-leaf v is labelled with
an element xv ∈ X . We identify every node of this tree by the string v ∈

⋃d
k=0{0, 1}k that

corresponds to the path from the root to the node. That is, the root is the empty string, its
children are the two elements in {0, 1}, and more generally, the children of a node v⃗ ∈ {0, 1}k

are the two strings v⃗0 and v⃗1 in {0, 1}k+1.
We say that such a tree is shattered by a partial concept class H if for every leaf y ∈ {0, 1}d,

there exists h ∈ H such that h(xy[<i]) = yi for each i ∈ [d], where y[< i] is the first (i − 1)-th
bits of y. In other words, applying the decision tree to h will result in the leaf y.

▶ Definition 15 (Littlestone dimension). The Littlestone dimension of a partial concept class
H, denoted by LD(H), is the maximum d such that there is an X -labelled height-d full binary
decision tree that is shattered by H. If no such largest d exists, define LD(H) = ∞.

The dual of a concept class H is the concept class with the roles of points and concepts
exchanged. Concretely, the dual class of H ∈ {0, 1, ⋆}X , denoted by H⊤, is the collection of
functions fx : H → {0, 1, ⋆} for every x ∈ X , which is defined by fx(h) = h(x) for each h ∈ H.
When X is finite, taking the dual corresponds to transposing the matrix of the concept class.
The VC-dimension of the dual-class is related to that of the primal class by the inequality

VC(H⊤) ≤ 2VC(H)+1 − 1

(see [8]), which translates to a lower bound of the VC-dimension of the primal class.

2.2 Disambiguations
We start by formally defining strong disambiguation and disambiguation. As mentioned
earlier, the two notions coincide when the domain X is finite.

▶ Definition 16 (Strong Disambiguation). A strong disambiguation of a partial concept class
H ⊆ {0, 1, ⋆}X is a total concept class H ⊆ {0, 1}X such that for every h ∈ H, there exists a
h̄ ∈ H that is consistent with h on the points h−1({0, 1}).

▶ Definition 17 (Disambiguation). A disambiguation of a partial concept class H ⊆ {0, 1, ⋆}X

is a total concept class H ⊆ {0, 1}X such that for every h ∈ H and every finite S ⊆ h−1({0, 1}),
there exists h̄ ∈ H that is consistent with h on S.

A learning algorithm can often provide a disambiguation of a partial concept class by
assigning the prediction of the algorithm to unspecified values. Relevant to our work is the
disambiguation by the Standard Optimal Algorithm of Littlestone. It was observed in [1]
that this algorithm can provide “efficient” disambiguations of partial classes with bounded
Littlestone dimensions. We describe this disambiguation next.

Consider a partial concept class H ⊆ {0, 1, ⋆}X with a countable domain X and an ordering
x1, x2, . . . of X . Given b⃗ ∈ {0, 1, ⋆}k, let H|⃗b be the set of concepts h where h(xi) = bi for
every i ∈ [k]. For convenience, we identify H|() = H. For the purpose of the algorithm, we
adopt the convention LD(∅) = −1.
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The SOA obtains a disambiguation iteratively and assigns a 0/1 value to each ⋆ in H: for
each k ∈ N, consider H|⃗b for every b⃗ ∈ {0, 1}k−1. Pick c ∈ {0, 1} which maximizes LD(H|⃗bc),
breaking ties by favoring c = 0, and assign c to h(xk) = ⋆ for every h ∈ H|⃗b⋆.

We use the notation HSOA for the SOA disambiguation of a partial concept class H. As
mentioned earlier, for a partial class with Littlestone dimension d, Theorem 8 gives an upper
bound of

(
n

≤d

)
= O(nd) on

∣∣∣HSOA
∣∣∣. The theorem follows from the mistake bound of SOA

for online learning, which relies on the crucial property that at least one choice of c ∈ {0, 1}
satisfies LD(H|⃗bc) ≤ LD(H|⃗b) − 1 whenever H|⃗b ̸= ∅.

3 Proofs

In this section, we present the proofs of Theorems 6, 10, 11, and 12.

3.1 Proofs of Theorems 6 and 10
As mentioned earlier, Theorem 10 is an immediate corollary of Theorem 6 and Theorem 8.
We focus on proving Theorem 6.

Suppose G = (V, E) is the graph supplied by Theorem 11 on |V | = n = 2Θ(k4 log3 k)

vertices with a biclique partition of size m = 2O(k log4 k). We will use G to build a partial
concept class G ⊆ {0, 1, ⋆}V . This construction is simply the dual of the partial concept class
of [1] in their proof of Theorem 6.

Let {B1, . . . , Bm} be the size-m biclique partition of the edges of G. We fix an orientation
Bi = Li × Ri for each biclique. Define G ⊆ {0, 1, ⋆}V as follows. For each i ∈ [m], associate
a concept hi : V → {0, 1, ⋆} to the biclique Bi, defined by

hi(v) =


0 if v ∈ Li

1 if v ∈ Ri

⋆ otherwise
.

We first observe that the Littlestone dimension of this concept class is at most 2.

▷ Claim 18. LD(G) ≤ 2.

Proof. We show that G, viewed as a matrix, does not contain
[
1 0
1 0

]
as a submatrix and

then show that the existence of this submatrix is necessary for having a Littlestone dimension
greater than 2.

If
[
1 0
1 0

]
appears in G as a submatrix, then there exist i ̸= j and u ̸= v ∈ V (G) such

that hi(v) = hj(v) = 1 and hi(u) = hj(u) = 0. However, this means that v ∈ Ri ∩ Rj

and u ∈ Li ∩ Lj , which in turn implies that the edge {u, v} is covered by both Bi and Bj ,
contradicting the assumption that each edge is covered exactly once.

On the other hand, for a class H ⊆ {0, 1, ⋆}X with Littlestone dimension greater than
2, there exists a shattered X -labelled height-3 full binary tree. In particular, there exists
h, h′ ∈ H and points x(), x1, x10 such that

h(x()) = 1, h(x1) = 0, h(x10) = 0,

h′(x()) = 1, h′(x1) = 0, h′(x10) = 1.

This means that the submatrix restricted to the columns {x(), x1} and the rows {h, h′} is[
1 0
1 0

]
. We conclude that LD(G) ≤ 2. ◁

ICALP 2023



42:8 Online Learning and Disambiguations of Partial Concept Classes

Proof of Theorem 6. Consider the partial concept class G ⊆ {0, 1, ⋆}V above. By Claim 18,
we have LD(G) ≤ 2. We show that for every disambiguation G of G, we have VC(G) ≥
Ω(log log n). The argument here is similar to the proof of Theorem 3.

Consider a disambiguation G of G. Note that if two columns u and v are identical in G,
then there is no edge between u and v, as otherwise, some hi would have assigned 0 to one of
u and v and 1 to the other. Therefore, if two columns u and v are identical, we can color the
corresponding vertices with the same color. Consequently, the number of distinct columns
in G is at least the chromatic number χ(G) ≥ 2Ω(k2). By the SSP lemma (Theorem 7), if
VC(G⊤) ≤ d, then G must have at most O(md) distinct columns. Therefore,

2Ω(k2) ≤ O(md).

Substituting m = 2Õ(k) shows that d = Ω̃(k). Finally,

VC(G) ≥ Ω(log VC(G⊤)) ≥ Ω(log k) ≥ Ω(log log n).

This completes the proof of the first part of Theorem 6.
For the second part, we adopt the same construction in the proof of [1, Theorem 11]. Let

H∞ be a union of disjoint copies of Hn over n ∈ N, each supported on a domain Xn mutually
disjoint from others and the partial concepts of Hn extend outside of its domain by ⋆. Since
any disambiguation H of H∞ simultaneously disambiguates all Hn, the Sauer-Shelah-Perles
lemma implies that VC(H) must be infinite. ◀

3.2 Disambiguations via the SOA algorithm (Theorem 12)
This section is dedicated to the proof of Theorem 12.

Proof of Theorem 12. We prove the statement by showing that for every r, d ∈ N, there
exists a partial concept class Hr,d on [n], where n = d(2r +r), such that d ≤ LD(Hr,d) ≤ d+1
and the SOA disambiguation has VC dimension ≥ dr and at least 2dr distinct rows. The
other cases of n follow by trivially extending the domain.

For any r, d ∈ N, define

Fr,d = {F ⊆ [d2r] : |F | = d}.

Note that |Fr,d| =
(

d2r

d

)
≥ 2dr. We enumerate the sets in Fr,d as F1, . . . , F(d2r

d ) in the natural
order.

Next, we define the partial concept class Hr,d on domain [d(2r + r)]. The class consists of
the partial concepts hi,j for i ∈ [

(
d2r

d

)
] and j ∈ [dr] defined as follows:

hi,j(x) =


1 if x ∈ Fi

0 if x ∈ [d2r] \ Fi

β(i, j) if x = d2r + j

⋆ otherwise

,

where β(i, j) denotes j-th bit of the dr-bit binary representation of i if i ∈ [2dr], and
β(i, j) = ⋆ otherwise.

We first prove that d ≤ LD(Hr,d) ≤ d + 1. Note that there is a set of 2d indices I ⊆ [d2r]
which

{Fi ∩ [d] : i ∈ I} = P([d]),
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therefore [d] can be shattered by {hi,1 : i ∈ I} and hence LD(Hr,d) ≥ VC(Hr,d) ≥ d. On the
other hand, note that |f−1(1)| ≤ d + 1 for any f ∈ Hr,d, which implies that LD(Hr,d) ≤ d + 1.

Next, we consider the SOA disambiguation. We claim that {d2r + 1, . . . , d(2r + r)} is
shattered by {hi,1 : i ∈ [2dr]}. There are no disambiguations for x ∈ [d2r]. For x > d2r, note
that for any b⃗ ∈ {0, 1}x−1, either Hr,d |⃗b = ∅ or

Hr,d |⃗b = {hi,j : j ∈ [dr]},

where i ∈ [d2r] such that Fi = {k ∈ [d2r] : bk = 1}. We focus on the latter case and restrict
to i ∈ [2dr]. There is exactly one c ∈ {0, 1} such that Hr,d |⃗bc ̸= ∅, namely c = β(i, x − d2r)
and in this case Hr,d |⃗bc = {hi,c}. This forces the algorithm to disambiguate every function f

with b⃗ ∈ {0, 1}x−1 by setting f(x) = hi,c(x) = β(i, x − d2r). In this manner, every hi,j is
eventually disambiguated into the same total function:

hi,j(x) =


1 if x ∈ Fi

0 if x ∈ [d2r] \ Fi

β(i, x − d2r) if x > d2r

.

In particular, for every i ∈ [2dr], the bit string (hi,1(d2r + 1), . . . , hi,1(d2r + dr)) is the dr-bit
binary representation of i. This provides a witness for which VC(Hr,d

SOA) ≥ dr. ◀

As an illustration, we provide the matrix representation of H1,2 and some essential steps
of the SOA disambiguation below in Figure 1.

1 1 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 1 0 1
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 1 0 1
0 1 0 1
0 1 0 1
0 0 1 1
0 0 1 1




(a) Matrix representation of H1,2: all empty
spaces are filled with stars.

1 1 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 1
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 1 0
0 1 1 0 1 1
0 1 1 0 1 1
0 1 0 1
0 1 0 1
0 0 1 1
0 0 1 1




(b) The SOA disambiguation of H1,2: the
shaded entries indicate where the shattering
occurs.

Figure 1 H1,2 and its SOA disambiguation.

3.3 Small-size refutation of the Alon-Saks-Seymour conjecture
(Theorem 11)

In this section, we present the construction of Theorem 11 in detail. The starting point is
constructing a Boolean function due to [2] in query complexity. This Boolean function then
goes through several reductions to be converted into a graph, as described below.

We first introduce some basic definitions related to the notion of certificate complexity.
Let f : {0, 1}n → {0, 1} be a Boolean function. For b ∈ {0, 1} and an input x ∈ f−1(b), a
partial input ρ ∈ {0, 1, ⋆}n is called a b-certificate if x is consistent with ρ and for every
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x′ ∈ {0, 1}n consistent with ρ, we have f(x′) = b. The size of ρ is the number of non-⋆ entries
of ρ. Define Cb(f, x) as the smallest size of a b-certificate for x. The b-certificate complexity
of f , denoted Cb(f), is the maximum of Cb(f, x) over all x ∈ f−1(b).

The unambiguous b-certificate complexity of f , denoted UCb(f), is the smallest k such
that
1. Every input x ∈ f−1(b) has a b-certificate ρx of size at most k;
2. For every x ̸= y in f−1(b), we have ρx ̸= ρy.

The main result of [2] is the following separation between UC1 and C0.

▶ Theorem 19 ([2, Theorem 1]). There is a function f : {0, 1}12n4 log2 n → {0, 1} such that
UC1(f) = O(n log3 n) and C0(f) = Ω(n2).

The next step of the construction is to transform the function separating the certificate
complexities UC1 and C0 into a communication problem. This is achieved by the “lifting” trick:
given a function f : {0, 1}n → {0, 1} and a “gadget” function g : {0, 1}k × {0, 1}k → {0, 1},
we define f ◦ gn : {0, 1}nk × {0, 1}nk → {0, 1} as

f ◦ gn([x1, . . . , xn], [y1, . . . , yn]) = f(g(x1, y1), . . . , g(xn, yn)).

For a communication problem f : {0, 1}m × {0, 1}m → {0, 1} and b ∈ {0, 1}, let Covb(f)
denote the minimum number of b-monochromatic rectangles required to cover all the b-entries
of f . We denote by UCovb(f) the minimum number of b-monochromatic rectangles required
to partition all the b-entries of f . The following theorem provides a connection between the
communication complexity parameters and the certificate complexity parameters.

▶ Theorem 20 ([5, Theorem 33]). There exists a gadget g : {0, 1}k × {0, 1}k → {0, 1} with
k = Ω(log n) such that for every f : {0, 1}n → {0, 1}, we have

log Covb(f ◦ gn) = Ω(k Cb(f)).

Note that for every b ∈ {0, 1}, we have log UCovb(f ◦ gn) ≤ 2k UCb(f). This combined
with Theorem 20 allows one to “lift” the UC1 vs C0 separation of Theorem 19 into a UCov1
vs Cov0 separation.

▶ Corollary 21. There exists a function f : {0, 1}O(n4 log3 n) × {0, 1}O(n4 log3 n) → {0, 1} such
that

log Cov0(f) = Ω(n2) and log UCov1(f) = n log4 n.

Next, we show how to convert these communication parameters to graph parameters of
the biclique partition number and chromatic number.

▶ Lemma 22. Let h : {0, 1}t × {0, 1}t → {0, 1} be a Boolean function with Cov0(h) = c and
UCov1(h) = m. There exists a graph G = (V, E) on at most 22t vertices with bp(G) ≤ m2

and χ(G) ≥
√

c.

Proof. Define the graph G with V := h−1(0) as follows. Two vertices (x, y), (x′, y′) ∈ V are
adjacent in G iff h(x, y′) = 1 or h(x′, y) = 1. By construction, if {(x1, y1), . . . , (xℓ, yℓ)} ⊆ V

is an independent set, then {x1, . . . , xℓ} × {y1, . . . , yℓ} is a 0-monochromatic rectangle for h.
Thus every proper vertex coloring of G with χ(G) colors corresponds to a 0-cover of h with
χ(G) many 0-monochromatic rectangles. Therefore, χ(G) ≥ c.
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We next show that there exists a small set of bicliques such that every edge of E is covered
at least once and at most twice by these bicliques. Let h−1(1) =

⋃m
i=1(Ai ×Bi) be a partition

of h−1(1) into m many 1-monochromatic rectangles. Note that every 1-monochromatic
rectangle Ai × Bi corresponds to a biclique Qi := S−

i × S+
i in G, where

S−
i := {(x, y) ∈ V (G) : x ∈ Ai} and S+

i = {(x, y) ∈ V (G) : y ∈ Bi}.

Notice that each edge {(x, y), (x′, y′)} of G is covered at least once by Q1, . . . , Qm, and it is
covered at most twice, the latter happening when h(x, y′) = h(x′, y) = 1.

We have thus constructed a graph G on at most 22t vertices such that χ(G) ≥ c, and
there are at most m bicliques where every edge in G appears in at least one and at most two
bicliques.

Define H2 as the subgraph of G that consists of all the edges covered by exactly two
bicliques among Q1, . . . , Qm. For every i, j ∈ [m], define Qij = (S−

i ∩ S+
j ) × (S+

i ∩ S−
j ). Note

that each Qij is a biclique of H2, and moreover, each edge of H2 appears in exactly one Qij .
Hence, the biclique partition number of H2 is at most m2. Now, if χ(H2) ≥

√
c, we obtain

H2 as the desired graph. Suppose otherwise that χ(H2) <
√

c, and consider a proper vertex
coloring of H2 with

√
c colors with color classes V1, . . . , V√

c. Since χ(G) ≥ c, there must
exist i such that the induced subgraph of G on Vi, denoted by G[Vi], satisfies χ(G[Vi]) ≥

√
c.

Since Vi is an independent set of H2, thus the restrictions of bicliques Q1, . . . , Qm to Vi form
a biclique partition of G[Vi]. ◀

Lemma 22 and Corollary 21 together imply Theorem 11.

▶ Remark 23. In addition to providing effective bounds on the size of the graph, Lemma 22 also
simplifies the original chain of reductions utilized in prior work [2, 4, 3, 11] toward achieving
a super-polynomial separation between the biclique partition and chromatic numbers. We
will briefly describe the original proof below and highlight the differences.

(i) Similar to our proof of Theorem 11, the chain of reduction begins with the function f

provided by Corollary 21, such that

log Cov0(f) = Ω(n2) and log UCov1(f) = n log4 n.

(ii) Yannakasis [11] (see also [4, Figure 1]) showed how to use f to construct a graph F

on UCov1(f) = 2O(n log4 n) vertices such that every Clique-Stable set separator of F is
of size at least Cov0(f) = 2Ω(n2). Here, a Clique-Stable set separator is a collection of
cuts in F such that for every disjoint pair (C, I) of a clique C and a stable set I in F ,
there is a cut (A, B) in the collection with C ⊆ A and I ⊆ B.

(iii) Bousquet et. al., [3, Lemma 23] show how to use F to construct a new graph G with
the so-called oriented biclique packing number at most 2n log4 n and chromatic number
χ(G) ≥ 2Ω(n2).

(iv) The graph G is then turned into a separation between the biclique partition number
and chromatic number in a different graph H via a final reduction in [3].

The above chain of reductions is not sufficient for our application because the graph G

of Step (iii) has a vertex for each pair (C, I) of a clique C and a stable set I of F , and as
a result, there are no effective upper-bounds on the number of vertices of G. Our proof of
Theorem 11 bypasses Step (ii) and employs a more direct approach to construct a small-size
graph G that has similar properties to the graph G of Step (iii).
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4 Concluding remarks

A few natural questions remain unanswered. The first question is whether a similar example
H for Theorem 6 with the stronger assumption LD(H) = 1 exists.

▶ Problem 24. Let H be a partial class with LD(H) = 1. Does there exist a disambiguation
of H by a total class H such that LD(H) < ∞? Is there one with VC(H) < ∞?

Theorem 10 shows that for partial classes, having polynomial growth is not a sufficient
condition for PAC learnability. A natural candidate reinstatement of the theorem is to work
with the more restrictive assumption of linear growth.

▶ Problem 25. Let H ⊆ {0, 1, ⋆}X have polynomial growth with parameter 1. Does there
exist a disambiguation H of H with VC(H) < ∞?

Another question is whether one can improve the lower bound of Ω(log log n) in Theorem 6
to Ω(log n).

▶ Problem 26. Can the lower bound in Theorem 6 be improved to VC(H) ≥ Ω(log n)?

Forbidding combinatorial patterns

A natural method to prove upper bounds on the VC dimension of a concept class is establishing
that it does not contain a specific combinatorial pattern. For example, the construction
for Theorem 3 in [1] utilized the fact that the concept class (viewed as a matrix) does not

contain the combinatorial patterns
[
1 1
0 0

]
and

[
1 0
0 1

]
, which are patterns that are in any

concept class H with VC(H) ≥ 2. Similarly, the dual construction in Theorem 6 forbids the

pattern
[
1 0
1 0

]
, a compulsory pattern for any concept class H with LD(H) ≥ 3.

▶ Problem 27. Suppose H ⊆ {0, 1, ⋆}[n] does not contain the pattern
[
1 1
0 1

]
. Does every

disambiguation H of H satisfy VC(H) = O(1)?
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