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Abstract
We investigate local computation algorithms (LCA) for two-coloring of k-uniform hypergraphs. We
focus on hypergraph instances that satisfy strengthened assumption of the Lovász Local Lemma
of the form 21−αk(∆ + 1)e < 1, where ∆ is the bound on the maximum edge degree. The main
question which arises here is for how large α there exists an LCA that is able to properly color such
hypergraphs in polylogarithmic time per query. We describe briefly how upgrading the classical
sequential procedure of Beck from 1991 with Moser and Tardos’ Resample yields polylogarithmic
LCA that works for α up to 1/4. Then, we present an improved procedure that solves wider range
of instances by allowing α up to 1/3.
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1 Introduction

The problem of hypergraph coloring often serves as a benchmark for various probabilistic
techniques. The task is to answer whether there exist (or to explicitly find) a proper coloring,
that is, such an assignment of colors to the vertices of a hypergraph that no edge contains
vertices all of the same color. In fact, the problem of two-coloring1 of linear hypergraphs was
one of the main motivations for introducing Local Lemma in the seminal paper of Erdős and
Lovász [9]. It is well known that determining whether the given hypergraph admits proper
two-coloring is NP-complete [15]. This result holds even for hypergraphs with all edges of
size 3. In this work, we discuss sublinear algorithms for two-coloring of uniform hypergraphs
within the framework of Local Computation Algorithms.

We are going to work with k-uniform hypergraphs2. For the rest of the paper, n is used
to denote the number of vertices of considered uniform hypergraph, m its number of edges,
and k size of the edges. We assume that k is fixed (but sufficiently large to avoid technical

1 In two-coloring problem we can assign to each vertex one of two available colors.
2 In k-uniform hypergraph each edge contains exactly k vertices.
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48:2 Local Computation Algorithms for Hypergraph Coloring – Following Beck’s Approach

details) and that n tends to infinity. For a fixed hypergraph, we denote by ∆ its maximum
edge degree. In the instances with which we are going to work, ∆ is bounded by a function
of k, so in terms of n it is O(1). This implies that the number of edges m is at most linear
in n. We also assume that the considered hypergraphs do not have isolated vertices. Then,
we also have m = Θ(n).

1.1 Local Computation Algorithms
Rubinfeld, Tamir, Vardi and Xie proposed in [21] a general model of sublinear sequential
algorithms called Local Computation Algorithms (LCA). The model is intended to capture
the situation where some computation has to be performed on a large instance but, at any
specific time, only parts of the answer are required. The interaction with a local computation
algorithm is organized in the sequence of queries about fragments of a global solution. The
algorithm shall answer each consecutive query in sublinear time (wrt the size of the instance),
systematically producing a partial answer that is consistent with some global solution. The
model allows for randomness, and algorithm may occasionally fail.

For example, for the hypergraph two-coloring problem, the aim of an LCA procedure
is to find a proper coloring of a given hypergraph. The algorithm can be queried about
any vertex, and in response, it has to assign to the queried vertex one of the two available
colors. For any sequence of queries, with high probability, it should be possible to extend the
returned partial coloring to a proper one.

Formally, for a fixed problem, a procedure is a (t, s, δ)-local computation algorithm, if
for any instance of size n and any sequence of queries, it can consistently answer each of
them in time t(n) using up to s(n) space for computation memory. The time t(n) has to be
sublinear in n, but a polylogarithmic dependence is desirable. The value δ(n) shall bound the
probability of failure for the whole sequence of queries. It is usually demanded to be small.
The computation memory, the input, and the source of random bits are all represented as
tapes with random access (the last two are not counted in s(n) limit). The computation
memory can be preserved between queries. In particular, it can store some partial answers
determined in the previous calls. For the precise general definition of the model consult [21].

A procedure is called query oblivious if the returned solution does not depend on the
order of the queries (i.e. it depends only on the input and the random bits). It usually
indicates that the algorithm uses computation memory only to answer the current query and
that there is no need to preserve information between queries. It is a desirable property, since
it allows to run queries to algorithm in parallel. In a follow-up paper [3], Alon, Rubinfeld,
Vardi, and Xie presented generic methods of removing query order dependence and reducing
necessary number of random bits in LCA procedures. In the same paper, these techniques
were applied to the example procedures (including hypergraph coloring) from [21] converting
them to query oblivious LCAs. The improved procedures work not only in polylogarithmic
time but also in polylogarithmic space. Mansour, Rubinstein, Vardi, and Xie in [16] improved
analysis of this approach.

1.2 Constructive Local Lemma and LCA
The Lovász Local Lemma (LLL) is one of the most important tools in the field of local
algorithms. In its basic form, it allows one to non-constructively prove the existence of
combinatorial objects omitting a collection of undesirable properties, so-called bad events.
A brief introduction to this topic and a summary of various versions of LLL can be found in
the recent survey by Faragó [11].
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For a fixed k-uniform hypergraph, let p = 2−k denote the probability that, in a uniformly
random coloring, a fixed edge is monochromatic in a specific color. A straighforward
application of the symmetric version of Local Lemma (see e.g., [11]) proves that the condition
2p (∆ + 1) e < 1, is sufficient for a hypergraph with the maximum edge degree ∆, to be
two-colorable.

For many years, Local Lemma resisted attempts to make it efficiently algorithmic. The
first breakthrough came in 1991, when Beck [5], working on the example of hypergraph two-
coloring, showed a method of converting some of LLL existence proofs into polynomial-time
algorithmic procedures. However, in order to achieve that, the assumptions of Local Lemma
had to be strengthened and took form

2 pα (∆ + 1) e < 1. (1)

For α = 1 the inequality reduces to the standard assumption. The above inequality constraints
∆, and the constraint becomes more restrictive as α gets smaller. The original proof of Beck
worked for α < 1/48. From that time, a lot of effort has been put into studying applications
to specific problems and pushing α forward, as close as possible to standard LLL criterion
[2, 18, 7, 22, 19].

The next breakthrough was made by Moser in 2009. In cooperation with Tardos, Moser’s
ideas have been recasted in [20] into general constructive formulation of the lemma. They
showed that, assuming so called variable setting of LLL, a natural randomized procedure
called Resample3 quickly finds an evaluation of involved random variables for which none
of the bad events hold. They also proved that, in typical cases, the expected running time
of the procedure is linear in the size of the instance. For the problem of two-coloring of
k-uniform hypergraphs, the total expected number of resamplings is bounded by m/∆ (see
Theorem 7 in [11]).

Adjusting constructive LLL to LCA model remains one of the most challenging problems
in the area. It turns out, however, that previous results on algorithmization of Local Lemma
can be adapted in the natural way. In fact, the first LCA algorithm for the hypergraph
coloring from [21], is built on the variant of Beck’s algorithm that is described in the book
by Alon and Spencer [4]. That version works for α < 1/11, and runs in polylogarithmic time
per query. Later refinements focused on optimizing space and time requirements ([3], [16]),
however, for polylogarithmic LCAs the bound on α has not been improved. In a recent work,
Achlioptas, Gouleakis, and Iliopoulos [1] showed how to adjust Resample to LCA model.
They did not manage, however, to obtain a polylogarithmic time. Their version answers
queries in time t(n) = nβ(α). They establish some trade-off between the bound on α and the
time needed to answer a query. In particular, when α approaches 1/2 then β(α) tends to 1,
which results in a very weak bound on the running time per query.

1.3 Main result

Our research focuses on the following general question in the area of local constructive versions
of the Lovász Local Lemma: up to what value of α there exists a polylogarithmic LCA for
the problem of two-coloring of k-uniform hypergraphs satisfying condition 2(∆ + 1)e < 2αk.
We prove the following theorem:

3 As long as some bad events are violated, the procedure picks any such event and resamples all variables
on which that event depends.
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48:4 Local Computation Algorithms for Hypergraph Coloring – Following Beck’s Approach

▶ Theorem 1 (main result). For every α < 1/3 and all large enough k, there exists a local
computation algorithm that, in polylogarithmic time per query, with probability 1−O(1/n)
solves the problem of two-coloring for k-uniform hypergraphs with maximum edge degree ∆,
that satisfies 2e(∆ + 1) < 2αk.

Within the notation of [21] we present (polylog(n),O(n),O(1/n))-local computation algo-
rithm that properly colors hypergraphs that satisfy the above assumption. Our algorithm is
not query oblivious. Moreover, typical methods of eliminating the dependence on the order
of queried vertices do not seem to be applicable without sacrificing constant α. Consult the
full version of this paper [8] for the complete proof of the theorem.

For comparison, Alon et al. [3] after Rubinfeld et al. [21] present a query oblivious
(polylog(n), polylog(n),O(1/n))-local computation algorithm working for hypergraphs satis-
fying

16 ∆(∆− 1)3(∆ + 1) < 2k1 ,

16 ∆(∆− 1)3(∆ + 1) < 2k2 , (2)
2e(∆ + 1) < 2k3 ,

where k1, k2 and k3 are positive integers such that k = k1 + k2 + k3. These assumptions
correspond to α < 1/11.

The analysis of the LCA procedure from [3] guarantees only that the running time is of
the order O

(
log∆(n)

)
. Mansour et al. in [16] focus on improving time and space bounds

within polylogarithmic class, removing the dependency on the maximal edge degree from
the exponent. They obtain an LCA working in O

(
log4(n)

)
time and space, assuming that

k ≥ 16 log(∆) + 19, so it requires even stronger bound on α.

1.4 LOCAL distributed algorithms
The model of Local Computation Algorithms is related to the classical model of local
distributed computations by Linial [14] (called LOCAL). For comparison of these two models,
see work of Even, Medina, and Ron [10]. Chang and Pettie observed recently in [6] that within
LOCAL model, the general problem of solving Local Lemma instances with a dependency
graph of bounded degree is in some sense complete for a large class of problems (these are the
problems which can be solved in sublogarithmic number of rounds). They also conjectured
that for sufficiently strengthened condition of Local Lemma (like taking small enough α

in (1)) there exists a distributed LOCAL algorithm that solves the problem in O(log log n)
rounds. The straightforward simulation of such an algorithm within LCA framework would
yield a procedure that, at least for fixed maximum degree, answers queries in polylogarithmic
time.

Recently, progress towards this conjecture has been made by Fischer and Ghaffari [12], who
proved that there exists an algorithm for Local Lemma instances that works in 2O

(√
log log n

)
rounds. The influence of the degree of underlying dependency graph on running time has been
later improved by Ghaffari, Harris and Kuhn in [13]. In particular, for sufficiently constrained
problem of hypergraph two-coloring, that result allows one to obtain an LCA procedure
that answers queries in sublinear time. The time, however, would be superpolylogarithmic.
Moreover, the necessary strengthening of Local Lemma assumptions appears to be much
stronger than the one required to apply the result of Rubinfeld et al. [21].

The possibility of simulation of LOCAL algorithms within LCA model implies that if
Chang and Pettie conjecture holds, then any problem satisfying sufficiently strengthened LLL
conditions can be solved in LCA model in polylogarithmic time per query. We can therefore
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formulate a weaker conjecture that for some α every such α-strengthened problem can be
solved in LCA in polylogarithmic time per query. For the specific problem of hypergraph
coloring, this property is known to hold. We can, however, ask what is the maximum such α

for a fixed problem. That is precisely the general problem stated at the beginning of Section
1.3. It is interesting to note that our algorithms make essential use of the sequential nature
of LCA. For that reason, they cannot be translated to O(log log n) LOCAL algorithms. This
also illustrates an important difference between the models.

2 Main techniques and ideas of the proof

The algorithmic procedure of Beck [5] is divided into two phases. In the first one, which we
call the shattering phase, it builds a random partial coloring that guarantees that a fraction
of all edges are already properly colored. Moreover, the edges which are not yet taken care
of have sufficiently many non-colored vertices to make sure that the partial coloring can
be completed to a proper one. They also form connected components of logarithmic sizes
which can be colored independently. Then, in the second phase, which we call the final
coloring phase, an exhaustive search is used to complete the coloring of each component.
This results in a sequential procedure with polynomial running time. In order to reduce
the running time to almost linear, the shattering phase can be applied twice. Then, the
final components w.h.p. are of size O(log log(n)). The polylogarithmic LCA procedure for
hypergraph coloring from [21] followed that approach and simulates locally two shattering
phases and an exhaustive search when answering a single query. Division into these three
phases is directly reflected in the conditions (2) required by the procedure.

While it is not known whether it is possible to design an LCA algorithm based solely on
Resample, combining it with previous local algorithms brings significant improvements. It
turns out that, within polylogarithmic time, after only one shattering phase, the coloring can
be completed with the use of Resample. This simple modification, with slightly improved
analysis, is sufficient to derive Theorem 1 for α ≤ 1/4. This is our first contribution. That
procedure provides a reference point for explaining the intuitions and motivations that
underlie the further improvements that we derive. In particular, we define a notion of
component-hypergraph that allows for a more fine-grained analysis of the components of the
residual hypergraph. For that reason, we present our base algorithm in detail in Section 3.

The first modification that we make in order to improve the base algorithm is that
within the shattering phase we sample colors for all vertices. Then, for some vertices, the
color is final, and for others, it is allowed to change the assigned color in the final coloring
phase. Coloring all the vertices during the first phase somehow blurs the border between the
shattering and final coloring phases. Its main purpose is to enable a more refined partition
of the residual hypergraph into independent fragments. It also allows to determine some
components of the residual hypergraph for which no recoloring would be necessary. This
corresponds to a situation in which the first sampled colors in Resample happen to define a
proper coloring. Altogether, we managed to significantly reduce the pessimistic size of the
independent fragments colored in the final coloring phase, which enables further relaxation of
the necessary conditions on α to α < 1/3. The improved procedure is described in Section 4.

In order to analyze the procedures, we employ a common technique of associating some
tree-like witness structures with components that require recoloring. Every such structure
describes a collection of events associated with some edges of the hypergraph. All these
events are determined by the colors assigned in the shattering phase. For the base algorithm,
these structures are quite typical. However, in order to achieve the better bound on α, we

ICALP 2023
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developed more sophisticated structures that are capable of tracking different kinds of events,
which can also depend on the colors that are allowed to be recolored. Different kinds of events
come with different bounds on probability. An important aspect of the analysis concerns
amortization of different kinds of events within a single structure. The construction of these
structures is our main technical contribution. Its detailed description can be found in the
full version of this paper [8].

We finally note that, while our methods are not general enough to work for all instances
satisfying the strengthened assumptions of LLL, they can be applied to a number of problems
similar to hypergraph coloring, like, e.g. k-SAT.

3 Establishing base result

In this section we show how the Beck’s algorithm can be combined with Resample to
construct a local computation algorithm that works in polylogarithmic time per query for α

up to 1/4. In other words, we prove Theorem 1 under the stronger assumption that α ≤ 1/4.
To keep the exposition simple, we first present a global randomized algorithm. Then, we
comment on how to adapt this procedure to LCA model. The analysis of the procedure can
be found in the full version of this paper [8].

Let H = (V, E) be a hypergraph that satisfies the assumptions of Theorem 1 for a fixed
α ≤ 1/4. For technical convenience, we assume that αk is an integer4. By assigning a random
color, we mean choosing uniformly one of the two available colors. For a set of edges S, by
V (S) we mean all vertices covered by the edges from S. For an edge f , N(f) denotes the set
of edges intersecting f . We use a naming convention that is similar to other works on the
subject – in particular, our view of Beck’s algorithm is influenced by its descriptions by Alon
and Spencer [4] and Molloy and Reed [17], as well as LCA realization given in [21].

3.1 Global coloring procedure
The algorithm starts with choosing an arbitrary order of vertices. Then, it proceeds in
two phases: the shattering phase and the final coloring phase. The shattering phase colors
some vertices of the input hypergraph and then splits the edges of the hypergraph that
are not properly colored yet into final components – subhypergraphs that can be colored
independently. The final coloring phase completes the coloring by considering the final
components separately, one by one.

3.1.1 The shattering phase
The procedure processes vertices sequentially according to the fixed ordering. For every
vertex, it either assigns a random color to the vertex or leave it non-colored in case it belongs
to a bad edge. An edge is called bad if it contains (1− α)k colored vertices and is still not
colored properly (that is, all these vertices have the same color). Once an edge becomes bad,
no more vertices from that edge will be colored – such vertices are called troubled. Vertices
with assigned colors are called accepted.

Upon completion of the shattering phase, there are three types of edges:
safe edges – properly colored by the accepted vertices,
bad edges – containing exactly (1− α)k accepted vertices, all of the same color,
unsafe edges – containing fewer than (1− α)k accepted vertices, all of the same color.

4 In fact, for the given k it is only reasonable to take α in the form of t/k, where t is an integer 2 ≤ t ≤ k.
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Observe that in the resulting (partial) coloring, every edge that is not colored properly has
at least αk troubled vertices, which will be colored in the next phase. Note also that it might
happen that some unsafe edge has no colored vertices at all.

The colors of accepted vertices are not going to be changed, so the safe edges are already
taken care of. Therefore, we focus on bad and unsafe edges. Let Ebad denote the set of all
bad edges. Consider hypergraph (V (Ebad), Ebad). It is naturally decomposed into connected
components.

▶ Definition 2. Every component of the hypergraph (V (Ebad), Ebad) is called a bad-
component.

Note that every troubled vertex belongs to some bad-component. On top of them we build an
abstract structure to express dependencies between bad-components through unsafe edges.

▶ Definition 3. A component-hypergraph is constructed as follows: its vertices are bad-
components of H and for every unsafe edge f intersecting more than one bad-component, an
edge that contains all bad-components intersected by f is added to it.

For each connected component of the component-hypergraph (that is, a maximal set
of bad-components that is connected in the component-hypergraph) we construct a final
component by taking the union of those bad-components (hence a final component is a
subhypergraph of H). The shattering phase is successful if each final component contains at
most 2(∆ + 1) log(m) bad edges. If this is not the case, the procedure declares a failure. It
turns out that this is very unlikely to happen.

3.1.2 The final coloring phase
For each final component C determined during the shattering phase, we add to C all unsafe
edges intersecting it, and then, we restrict C to troubled vertices5. We obtain a hypergraph
C′ containing at most 2(∆ + 1)2 log(m) edges, and each of them has at least αk vertices. The
maximum edge degree in C′ cannot be larger than ∆, which is the maximum edge degree
in H. Since 2e(∆ + 1) < 2αk (by the assumptions of Theorem 1), Lovász Local Lemma
ensures that C′ is two-colorable. Hence, by the theorem of Moser and Tardos Resample
finds a proper coloring of it using on average |E(C′)|/∆ resamplings (see Theorem 7 in [11]).

When the final coloring phase is over, all final components are properly colored. Since
each bad or unsafe edge is dealt within some final component, and each safe edge was properly
colored during the shattering phase, it is now guaranteed that the constructed coloring is
proper for the whole H.

3.2 LCA realization
We employ quite standard techniques to obtain an LCA realization of the described algorithm.
We articulate it below to provide a context for the description of our main algorithm. An
important property of the described procedure is that the ordering of vertices does not have
to be fixed a priori. In fact it can be even chosen in an on-line manner by an adversary.
Following [21], we are going to exploit the freedom of choice of ordering. The LCA version
of the algorithm is going to simulate the global version run with a specific ordering. That
ordering is constructed dynamically during the evaluation and is driven by the queries. Apart

5 Restriction of H = (V, E) to V ′ ⊆ V is defined as H ′ = (V ′, {e ∩ V ′| e ∈ E, e ∩ V ′ ̸= ∅}).
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from some minor adjustment (resulting from adaptation to LCA model) when the algorithm
is queried about vertex v, it performs all the work of the standard algorithm needed to assign
a final color to v. The LCA version is presented in Listings 1, 2, 3, and 4. All colors assigned
during work of the algorithm are stored in the computation memory (which is preserved
between queries). For convenience, we also store there the status of each vertex – uncolored,
accepted or troubled. Initially all vertices are uncolored.

Algorithm 1 LCA for uniform hypergraph coloring – main function.

1 Procedure query(v - vertex):
2 if v is uncolored then
3 if all edges containing v are not bad then
4 assign a random color to v and mark it as accepted // shattering
5 else mark v as troubled
6 if v is troubled then
7 Cv ← build_final_component(v) // shattering
8 color_final_component(Cv) // final coloring
9 return color assigned to v

3.2.1 query

When a vertex v has been already marked as accepted, its color is immediately returned. If it
has not been processed before, the algorithm checks whether v belongs to any bad edge (that
requires inspecting the current statuses of all the edges that contain v). If not, a random color
is assigned to v, the vertex is marked as accepted, and the procedure returns the assigned color.
On the other hand, when v belongs to a bad edge, it is marked as troubled. The algorithm
then determines the final component containing v in procedure build_final_component.
These steps can be viewed as the shattering phase. Afterwards, the final coloring phase is
performed for the final component in procedure color_final_component.

Algorithm 2 Building the final component for v that belongs to some bad edge.

1 Procedure build_final_component(v - troubled vertex):
2 B ← ∅ // initialize set of bad edges of the component
3 U ← ∅ // initialize set of unsafe edges to process
4 e← any bad edge containing v

5 mark e as explored and run expand_bad_component(e, B, U)
6 // process surrounding unsafe edges
7 while U is not empty do
8 f ← next edge from U (remove it from U)
9 expand_via_unsafe(f , B, U)

10 // return hypergraph built on set of bad edges
11 return C = (V (B), B)
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3.2.2 build_final_component
This procedure builds the set B of bad edges of the final component of v, exploring the line
graph of H6. It uses a temporary flag explored to mark visited edges (this flag is not preserved
between queries). The construction starts from a bad edge containing troubled vertex v and
expands it to a bad-component. Then, as long as possible, set B is extended by edges of
neighboring bad-components, which can be reached through unsafe edges adjacent to B. If at
some point the number of bad edges in B exceeds the prescribed bound 2(∆+1) log(m), then
the procedure declares a failure (note that it cannot be restarted since LCA model does not
allow to change colors returned for previous queries). Construction of the final component is
done when there are no more bad edges to add. Then, the hypergraph C = (V (B), B) built
on the collected bad edges is returned.

The expansion of bad-components is done within subprocedure expand_bad_component.
It starts from the given bad edge and explores the line graph by inspecting the adja-
cent edges. For each adjacent edge, its type (safe, unsafe, or bad) is determined using
determine_edge_status. Determining status of an edge may require processing some un-
colored vertices of that edge. For each of them, the procedure check whether it is troubled.
If it is not, a random color is assigned to the vertex and the vertex is marked as accepted.

Algorithm 3 Subprocedures for the final component construction.

1 Procedure expand_bad_component(e - bad edge, B - bad edges, U - unsafe edges):
2 Q← {e} // initialize set of bad edges to process
3 while Q is not empty do
4 f ← next edge from Q (remove it from Q)
5 add f to B and if |B| > 2(∆ + 1) log(m) then FAIL
6 for g ∈ N(f) which are not explored do
7 mark g as explored and determine_edge_status(g)
8 if g is bad then add g to Q

9 if g is unsafe then add g to U

10

11 Procedure expand_via_unsafe(f - unsafe edge, B - bad edges, U - unsafe edges):
12 for g ∈ N(f) which are not explored do
13 determine_edge_status(g)
14 if g is bad then
15 mark g as explored and run expand_bad_component(g, B, U)
16

17 Procedure determine_edge_status(g - edge):
18 for each w in g that is uncolored unless g becomes safe do
19 if some edge containing w (including g) is bad then mark w as troubled
20 else assign a random color to w and mark it as accepted
21 count accepted vertices and check their colors to determine status of g

During the expansion through unsafe edges we keep a set U of not processed unsafe
edges that intersects any edge of B. As long as U is not empty, we pick any unsafe f

from U and process it by expand_via_unsafe. Here we determine the statuses of all edges

6 The line graph L(H) is the graph built on E(H) in which two distinct vertices (representing edges of
H) are adjacent if the corresponding edges intersect.
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adjacent to f and if we encounter a bad edge which is not in B, then we add it and expand
a bad-component containing it. For technical convenience, during bad-component expansion
we collect non-explored adjacent unsafe edges and add them to U .

Algorithm 4 Finding coloring inside the final component.

1 Procedure color_final_component(C - hypergraph):
2 add to C all unsafe edges intersecting C
3 C′ ← restriction of C to troubled vertices
4 te ← |E(C′)|/∆ // expected time of one RESAMPLE trial
5 for trial = 1 to 2 log(m) do
6 // RESAMPLE with limited number of steps
7 assign random colors to V (C′)
8 for step = 1 to 2te do
9 if there is monochromatic f ∈ E(C′) then

10 assign new random colors to all vertices of f

11 else
12 // C′ is properly colored
13 mark all vertices of C′ as accepted and return
14 FAIL

3.2.3 color_final_component
Final component C is extended with unsafe edges that intersect it. Then it is restricted to
the set of its troubled vertices. The resulting hypergraph is denoted by C′. The algorithm
tries to find a proper coloring of C′ using Resample procedure. To ensure polylogarithmic
time, it is run only for the limited number of resampling steps. To decrease the probability
of a failure, the procedure may be restarted a few times. When a proper coloring is found,
each vertex of C′ is marked as accepted. From now on, all edges of C are treated as safe.
However, if all trials were unsuccessful, the procedure declares a failure.

4 Main result – algorithm

We show how to improve the base procedure described in the previous section to obtain
an algorithm that can be used to prove Theorem 1, that is, an algorithm that works
in polylogarithmic time per query on input hypergraphs that satisfy strengthened LLL
condition (1) for α < 1/3. Actually, our procedure can be used to find a proper coloring
also for instances that satisfy that condition with any α ∈ (0, 1), but the running time is
not guaranteed for α ≥ 1/3. We start with introducing the main ideas behind algorithm
improvement and describe its global version. Then, we discuss how to adapt it to the model of
the local computation algorithms, and finally we present a description of the LCA procedure.
The analysis of the algorithm can be found in the full version of this paper [8].

4.1 A general idea
It is a common approach in randomized coloring algorithms to start from an initial random
coloring and then make some correction to convert it to a proper one (like in Resample [20]
or in Alon’s parallel algorithm [2]). This is not the case of Beck’s procedure, in which a
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proper coloring is constructed incrementally, but coloring of some vertices (those marked
as troubled) is postponed to the later phase. Our approach lies somewhere in between. We
generally try to follow the latter one, but we sample colors for the troubled vertices already in
the shattering phase. Such colors are considered as proposed, and we reserve the possibility of
changing them in the final coloring phase. We use the information about the proposed colors
to shrink the area that will be processed in the final coloring phase. In particular, if we look
at the colors proposed for troubled vertices, then only those final components that contain
a monochromatic edge require recoloring. Moreover, if we carefully track dependencies
between bad-components (see Definition 2), it is also possible to decrease the sizes of the
final components. We explain this idea in more detail in the following subsections.

4.1.1 Activation of bad-components

Imagine that all the vertices were colored in the shattering phase and we want to determine
the final components. We look at the component-hypergraph (see Definition 3) and have to
decide which of the bad-components should be recolored. We start from bad-components
that are intersected by monochromatic edges - we mark them as initially active and treat
them as seeds of final components. The remaining ones are currently inactive. Our intention
is to recolor only active components in the final coloring phase. Note that it might not
be sufficient to alter the coloring in a way that makes initially active components properly
colored, because after their recoloring, it is possible that some unsafe edge which get both
colors in the shattering phase becomes monochromatic. That is why the activation has to be
propagated. We use the following propagation rule:

let At be the set of troubled vertices that are covered by active bad-components, and
f be an unsafe edge that intersects At; if f \ At is monochromatic, then all inactive
bad-components that intersect f become active and all bad-components that intersect f

are merged into one (eventually final) component.
The above propagation rule is applied as long as possible. When it stops, it is guaranteed
that all monochromatic edges are inside active components and all unsafe and bad edges
outside of active components are properly colored by the vertices that are outside of active
bad-components. In particular, we can accept all the colors proposed for inactive vertices.

4.1.2 Edge trimming

We employ an additional technique, which can further reduce the area of the final components.
Observe that, in order to guarantee two-colorability of the final components, it is enough
to ensure that each edge has at least αk vertices to recolor inside one final component. It
means that if some active component already contains αk troubled vertices of some edge,
then it is not necessary to propagate activation through that edge. Thus, we can improve
the propagation rule in the following way. Consider an unsafe edge f for which f \ At is
monochromatic (recall that At denotes the set of currently active troubled vertices). If some
active component contains at least αk troubled vertices of f , then f is trimmed to that
active component. Otherwise, all bad-components intersected by f are activated and merged
into one component (as described in the previous section).

We point out that the direct inspiration for this technique came from the work of Czumaj
and Scheideler [7] in which the edge trimming is actively used during the construction of
the area to be recolored. One of the consequences of using it is that the shapes of the final
components depend on the specific order in which activation is propagated.
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4.2 Global coloring procedure
Similarly to the base algorithm from Section 3.1, the improved procedure performs the
shattering phase and then the final coloring phase. The former is modified according to the
ideas described in the previous subsection. In particular, each vertex gets a color but we
use the notions of proposed and accepted colors to distinguish colors that can be changed.
The latter phase is almost the same. Pseudocode of the whole procedure can be found in
Listing 5 in Appendix A.

4.2.1 The shattering phase
The procedure processes the vertices in a fixed order. For each vertex, it marks it as accepted
or troubled, and then chooses a random color for it. A vertex is accepted if, at the time of
processing, it does not belong to any of the bad edges. Otherwise, it is troubled. An edge
becomes bad when its set of accepted vertices reaches size (1−α)k and is still monochromatic.

After processing all the vertices, safe and unsafe edges are determined in the same way as
in the base algorithm. Additionally, by a monochromatic edge, we mean an edge for which all
its vertices (accepted and troubled) have the same color. The colors of the accepted vertices
are called accepted colors. The colors of the troubled vertices are called proposed colors. By
accepting a color assigned to a vertex, we mean changing its status to accepted.

The next step involves determining the final components. We work with the component-
hypergraph. We are going to mark some bad-components and unsafe edges as active. By
an active component, we mean a maximal set of active bad-components which is connected
in the component-hypergraph via active unsafe edges. We start with marking as active all
monochromatic unsafe edges and all bad-components that are intersected by any (bad or
unsafe) monochromatic edge. Let At denote the set of troubled vertices that are currently
covered by active bad-components. Then, as long as there exists an inactive unsafe edge f

satisfying the following conditions:
f is monochromatic outside the active troubled area (i.e., f \At is monochromatic), and
each active component contains less than αk troubled vertices of f ,

we activate f and activate all bad-components intersected by f . When this propagation
rule can no longer be applied, we accept the colors of all the troubled vertices from inactive
bad-components. At that time, each active component determines a final component as
the union of its bad-components. Just like in the base algorithm, the shattering phase is
successful if each final component contains at most 2(∆ + 1) log(m) bad edges. Otherwise,
the procedure declares a failure.

4.2.2 The final coloring phase
We implement one modification at the beginning of the final coloring phase. For each final
component C, we add to C not all unsafe edges intersecting it, but only those that have at
least αk troubled vertices in V (C). Then, we proceed exactly as in the base algorithm: we
restrict C to the troubled vertices and apply Resample.

4.3 Ideas behind LCA realization
In the base case, the conversion of the global algorithm to LCA is straightforward. In fact,
the LCA version determines the same area to recolor (assuming that both versions process the
vertices in the same order). For the improved algorithm described in the previous subsection,
conversion to LCA is more complex and alters the behavior of the algorithm. The main
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difficulty is that for a bad-component alone that is not initially active, it is not easy to quickly
decide whether it is going to be activated or not. There might exist a long chain of activation
leading to an activation of the considered bad-component, and we do not know in which
direction to search for the sources of this eventual activation. Moreover, even if we find out
that it will be activated, it is not obvious what the shape of the final component containing
it will be, since it requires performing activation propagation and determining activation
statuses of neighboring bad-components as well. To address these problems, when a troubled
vertex of some bad-component is queried, we focus on finding an area containing that vertex
that can be recolored independently from the remaining part of the input hypergraph. It
means that from the beginning of the procedure the component of that vertex is treated as
active and we allow trimming unsafe edges to that component. Moreover, we use additional
techniques described below to limit the expansion of the processed area in a single query.

4.3.1 Trimming to bad-component
We extend edge trimming to the case when an unsafe edge f has at least αk troubled vertices
in some bad-component S, and the set of those vertices together with the accepted vertices of
f is not monochromatic. In such a case, f can be trimmed by removing from it the troubled
vertices that do not belong to S. Note that we do not check here whether S is active or not.
The idea behind this step is that from now on S is responsible for the proper coloring of f .
If at some point, the colors of the vertices of S get accepted without any resamplings, then f

will be obviously colored properly. Otherwise, if S becomes active, then f will be trimmed
anyway, and S has enough troubled vertices of f to not break two-colorability of S.

4.3.2 Activation exclusion
The necessary condition for an inactive bad-component S to be activated is that there is
an unsafe edge f whose accepted vertices and troubled vertices in f ∩ V (S) are of the same
color. When there is no such edge or all such edges were trimmed to other components, then
S cannot be activated. Therefore if it is not initially active, it stays inactive. In such a case,
we can accept all the proposed colors for the vertices of S. As a result, some unsafe edges
become properly colored, and we can treat them as safe. This, in turn, may enable proving
that neighboring bad-components will also not be activated. The same reasoning can be
applied to a set C of bad-components. If none of the bad-components in C is initially active
and there are no unsafe edges intersecting some bad-component outside C that may activate
bad-component from C, then we can conclude that all bad-components in C remain inactive.

4.3.3 Conditional expansion
The idea described in the previous subsection can be used for a bad-component to perform
some kind of search for a potential reason of activation. If S1 is not initially active, we
inspect unsafe edges that may cause the activation of S1. We can select any such f , and ask
whether other bad-component S2 intersected by f may become active. We can continue that
procedure as long as there is a risk of activating any Si from the group of bad-components
visited so far. In the end, we either find some initially active component or we prove that all
the considered bad-components cannot be activated. It turns out that, if we do not follow
the edges that can be trimmed with the trimming to bad-component technique, then the
processed area during such a search is unlikely to be large.

The possibility of finding an initially active bad-component can be used in expansion of
the component to extend it by a neighboring area. For a selected bad-component adjacent to
the currently constructed eventually final component, we launch a search and either we find
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some monochromatic edge (initially active component) and extend the component with the
whole searched area, or convince ourselves that this area cannot be activated. In the latter
case we can simply accept the proposed colors in that area. In the former we can perform
the expansion because the occurrence of a monochromatic edge, as an unlikely event, in
a sense amortizes the expansion of the component. In fact, we can stop the search procedure
not only when we find a monochromatic edge but also in a less restrictive case when we find
an unsafe edge intersecting at least two disjoint bad edges outside the search area. This
possibility follows from the technical details of the analysis.

4.4 LCA procedure
We describe the improved LCA procedure in reference to the base algorithm presented in
Section 3.2. As previously, the ordering of the vertices is constructed dynamically and is
driven by the queries and the work of the algorithm. For a set of edges S, by Vt(S) we mean
all troubled vertices in V (S). For an edge f , we denote by f |t the set of troubled vertices of
f , and by f |a the set of accepted vertices of f .

4.4.1 query
The main procedure is almost identical to its counterpart in the base algorithm (Listing 1).
The only difference is that when processing a vertex v of a bad edge, it is not only marked
as troubled, but also a random color is assigned to v.

4.4.2 build_final_component
This procedure is the heart of the algorithm and is substantially more complex than its
analogue in the base version. It is presented in Listings 6 and 7 available in Appendix A.
It also makes use of subprocedures defined earlier (see Listing 3), with one modification in
determine_edge_status – once a vertex w is marked as troubled, a random color is also
assigned to w. As previously, the procedure works on the line graph of H and grows a set B of
bad edges that will be converted to a final component at the end of the procedure. It always
starts from the bad-component containing the queried vertex v, and expands it by neighbor
bad-components via unsafe edges. The main change is that in the base algorithm each unsafe
edge causes expansion of the component, here unsafe edges are processed more carefully.
Throughout the procedure we make sure that the size of B does not exceed 2(∆ + 1) log(m)
bound on number of edges – if that happens, the procedure stops and declares a failure.

Let U be the set of not processed unsafe edges intersecting V (B). If some edge can be
trimmed to V (B), it can be safely removed from U . Thus, we may assume that each f in
U has fewer than αk troubled vertices in V (B). Since every unsafe edge has more than αk

troubled vertices, each f from U has to intersect at least one bad-component outside V (B).
The procedure applies the following extension rules as long as possible:

(r1) if there exists f in U that intersects at least two disjoint bad edges outside B, or
(r2) if there exists f in U for which all the vertices of f outside of Vt(B) are monochromatic,

then B is extended with all bad edges from the bad-components intersected by f ;
(r3) if there are no edges in U that meet the conditions (r1) or (r2), but there exists f in
U that has fewer than αk troubled vertices outside V (B),

then call expand_or_accept procedure (described in the following subsection) for f , which
implements the conditional expansion technique, and extend B with the returned set of bad
edges (which may happen to be empty).
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Note that, when there are no edges that meet conditions (r1) or (r2), then for any
remaining f from U it is guaranteed that f intersects exactly one bad-component outside
V (B) and f \ Vt(B) is not monochromatic. If such f does not satisfy condition (r3), it has
at least αk troubled vertices in that external bad-component, so it can be trimmed to it
(according to trimming to bad-component technique). Thus, f can be removed from U .

After each extension rule, the processed edge is removed from U . On the other hand,
when B is extended, new unsafe edges may be added to U , but we remove those that can
now be trimmed to V (B). Since edges which do not fulfill any of the extension rules are also
removed from U , finally U becomes empty and the procedure stops. At this point, B is a set
of bad edges which are surrounded only by safe and trimmed unsafe edges.

4.4.3 expand_or_accept
This procedure is an implementation of the conditional expansion technique, through a given
unsafe edge e. Similarly to build_final_component, it grows a set A of bad edges, which
we call a search area, and makes sure that its size does not exceed 2(∆ + 1) log(m) bound (if
that happens, the whole algorithm stops and declares a failure). Initially, A is empty. Then
it becomes expanded by bad-components which may lead to initially active bad-component,
starting from the not explored bad-component intersected by e. The expansion naturally
stops when there are no more candidate bad-components. The procedure, however, can also
stop earlier in case when some monochromatic edge or unsafe edge intersecting two disjoint
not explored bad edges is found.

Let Q be the set of unsafe edges to be processed (initially it is empty). Let C be the set
of bad edges of the currently expanded bad-component. Let UC denote the set of unsafe
edges intersecting V (C) but not adjacent to the edges of B and A (these are simply those
unsafe edges adjacent to the edges in C that were not explored before expansion of C). The
procedure extends A with all edges from C, and then looks for the following amortizing
configuration:

(e1) if C contains monochromatic edge f

then the procedure stops and returns set A;
(e2) if UC contains a monochromatic edge f , or
(e3) if UC contains an edge f , which intersects at least two disjoint bad edges outside C,

then first set A is extended with all the bad edges of the bad-components intersected by f ,
and then the procedure stops and returns A.

When no such configuration is found, all unsafe edges in UC are not monochromatic and,
moreover, each intersects at most one bad-component outside A. We focus on the edges from
UC that can cause an activation of C – these are the edges whose troubled vertices in V (C)
together with accepted vertices are monochromatic. Each such an edge f has to intersect
exactly one external bad-component and troubled vertices of that component together with
f |a ensure a proper coloring of f . If there are at least αk troubled vertices of f in that
external bad-component, f can be trimmed to it (according to the technique of trimming
to bad-component). That is why we add to Q only those edges from UC that may cause
activation of C and have fewer than αk troubled vertices outside of V (C).

When processing of C is finished, we pick any edge from Q (the set of unsafe edges to be
processed) and repeat the above steps for the external bad-component intersected by the
selected edge. It may happen that this component has already been added to A, in a such
case the procedure continues picking edges from Q. When the procedure finishes without
encountering amortizing configuration, there are no monochromatic edges in A and all unsafe
edges intersecting V (A) are either properly colored by the colors of the accepted vertices and
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the vertices from Vt(A), or are trimmed to bad-components outside it. Thus, an activation
of whole A is excluded. Then we mark all vertices in Vt(A) as accepted and treat edges
properly colored by their colors as safe. In that case, the procedure returns the empty set.

Note that during this procedure, we do not apply edge trimming to V (A) when it covers
at least αk troubled vertices of some unsafe edge, since it can result in a false activation (in
case the edge is monochromatic inside V (A)). We also ignore all unsafe edges intersecting
V (B) (they were explored before call to expand_or_accept) since, due to not satisfying (r1)
and (r2) they cannot be used in an amortizing configuration or cause an activation (it is
guaranteed that they are not monochromatic outside Vt(B)).

4.4.4 color_final_component
The last procedure is almost identical to its counterpart in the base algorithm (Listing 4).
Recall that the only change is at the beginning of the procedure. Instead of extending C
with all unsafe edges intersecting it, only those unsafe edges that have at least αk troubled
vertices in V (C) are added. Then we proceed as in the base algorithm.
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A Listings of the improved procedure

A.1 Listing of the global algorithm
Algorithm 5 Improved algorithm for uniform hypergraph coloring.

1 Procedure hypergraph_coloring(H - hypergraph):
2 // I. SHATTERING PHASE
3 let (v1, v2, ...vn) be an ordering of V (H)
4 for i = 1 to n do
5 if all edges containing vi are not bad then
6 mark vi as accepted
7 else
8 mark vi as troubled
9 assign a random color to vi

10 determine status of each e ∈ E(H) // e is bad, safe, or unsafe
11 explore the line graph and build component-hypergraph HC = (VC , EC)
12 // activation of bad-components
13 // - let UC be the set of unsafe edges corresponding to EC

14 // - let U(B) denote unsafe edges intersecting component B

15 // - let UC(B) = U(B) ∩ UC

16 // - let Vt(C) denote set of troubled vertices in component C
17 A ← ∅ // initialize set of active components
18 Q← ∅ // unsafe edges to process
19 // - initial activation
20 foreach B ∈ VC do
21 if some e ∈ E(B) or f ∈ U(B) is monochromatic then
22 mark B as active
23 add B to A and add all edges from UC(B) to Q

24 else mark B as inactive
25 foreach f ∈ UC do
26 if f is monochromatic then merge in A all C ∈ A intersected by f

27 // - activation propagation
28 while Q is not empty do
29 f ← next edge from Q (remove it from Q)
30 if ∀C∈A |f ∩ Vt(C)| < αk and f \ Vt(

⋃
A) is monochromatic then

31 // - activate new bad-components through f

32 foreach B ∈ VC such that B is inactive and f intersects B do
33 mark B as active
34 add B to A and add all edges from UC(B) to Q

35 // - merge active components through f

36 merge in A all C ∈ A intersected by f

37

38 // II. FINAL COLORING PHASE - color each final component
39 foreach C ∈ A do
40 foreach f ∈ U(C) such that |f ∩ Vt(C)| ≥ αk do add f to C
41 C′ ← restriction of C to troubled vertices
42 Resample(C′)
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A.2 Listing of build_final_component (LCA)

Algorithm 6 Improved LCA procedure for the final component construction.

1 Procedure build_final_component(v - troubled vertex):
2 B ← ∅ // initialize set of bad edges of the component
3 U ← ∅ // initialize set of unsafe edges to process
4 Us ← ∅ // unprocessed unsafe edges able to launch search
5 e← any bad edge containing v

6 mark e as explored and run expand_bad_component(e, B, U)
7 // process surrounding unsafe edges according to extension rules
8 while U ̸= ∅ or Us ̸= ∅ do
9 while U is not empty do

10 f ← next edge from U (remove it from U)
11 if f has < αk troubled vertices in V (B) then
12 if f satisfies rule (r1) or (r2) then
13 expand_via_unsafe(f , B, U)
14 else if f can satisfy rule (r3) then
15 add f to Us // f \ V (B) has < αk troubled vertices
16 if Us is not empty then
17 f ← next edge from Us (remove it from Us)
18 if f has < αk troubled vertices in V (B) then
19 // f satisfies rule (r3)
20 (A, UA)← expand_or_accept(f , B, U)
21 B = B ∪A and if |B| > 2(∆ + 1) log(m) then FAIL
22 U = U ∪ UA

23 // return hypergraph built on set of bad edges
24 return C = (V (B), B)
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A.3 Listing of expand_or_accept (LCA)

Algorithm 7 Conditional expansion via unsafe edge e (exploring a search area).

1 Procedure expand_or_accept(e - unsafe edge):
2 A← ∅ // initialize set of bad edges of the search area
3 UA ← ∅ // initialize set of unsafe edges around search area
4 Q← {e} // unprocessed unsafe edges allowing expansion
5 // process selected surrounding unsafe edges
6 while Q is not empty do
7 f ← next edge from Q (remove it from Q)
8 // expand with the external component to which leads f

9 (C, UC)← (∅, ∅)
10 expand_via_unsafe(f , C, UC)
11 A = A ∪ C and if |A| > 2(∆ + 1) log(m) then FAIL
12 UA = UA ∪ UC

13 // inspect new edges – look for amortizing configuration
14 if (e1) is satisfied (there is a monochromatic edge in C) then
15 return (A, UA)
16 else if there is an unsafe edge f in UC satisfying (e2) or (e3) then
17 expand_via_unsafe(f , A, UA)
18 return (A, UA)
19 // select edges that may cause an activation
20 else
21 for g in UC do
22 if g|a ∪ (g|t ∩ V (C)) is monochromatic then
23 if g \ V (C) has < αk troubled vertices then add g to Q

24 // activation exclusion
25 mark all troubled vertices in V (A) as accepted
26 return (∅, ∅)
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