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Abstract
Motivated by an application from geodesy, we study the connected k-center problem and the connected
k-diameter problem. These problems arise from the classical k-center and k-diameter problems by
adding a side constraint. For the side constraint, we are given an undirected connectivity graph G on
the input points, and a clustering is now only feasible if every cluster induces a connected subgraph
in G. Usually in clustering problems one assumes that the clusters are pairwise disjoint. We study
this case but additionally also the case that clusters are allowed to be non-disjoint. This can help to
satisfy the connectivity constraints.

Our main result is an O(1)-approximation algorithm for the disjoint connected k-center and
k-diameter problem for Euclidean spaces of low dimension (constant d) and for metrics with constant
doubling dimension. For general metrics, we get an O(log2 k)-approximation. Our algorithms work
by computing a non-disjoint connected clustering first and transforming it into a disjoint connected
clustering.

We complement these upper bounds by several upper and lower bounds for variations and special
cases of the model.
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Figure 1 Gauge stations around the globe, with station location data from PSMSL
(http://www.psmsl.org/data/obtaining/), plotted onto the map from the Natural Earth data
set (https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-coastline/).
Highlighted are three stations in Central America, and the numbers are Fréchet distances computed
on the curves defined by sea levels between 1953 and 1968.

1 Introduction

Clustering problems occur in a wide range of application domains. Because of the general
importance and interesting combinatorial properties, well-known k-clustering problems like
k-center, k-median, and k-means have also been vastly studied in theory. These problems are
NP-hard and APX-hard, but many constant-factor approximation algorithms for them are
known. All k-clustering problems ask to partition a set of points (usually in a general metric
space or in Euclidean space) into k clusters, often by picking k centers and assigning every
point to its closest center. The clusters are then evaluated based on the distances between
the points and their corresponding centers. For example in the case of k-center, the objective
is to minimize the maximum distance between any point and its closest center.

In applications, clustering problems are often subject to side constraints. Consequently,
clustering with side constraints has also become a thriving topic for designing approximation
algorithms. Probably the most known example is clustering with capacities where the number
of points in a cluster is limited. Notice how this constraint prevents us from assigning points
to their closest center because there might not be enough space. So, for example, uniform
capacitated (center-based) clustering consists of finding k centers and an assignment of
points to those centers such that every center gets at most U points (and then evaluating
the desired objective). Finding a constant factor approximation for uniform capacitated
k-median clustering is a long standing open problem. Other constraints that have been
studied are for example lower bounds (here, a cluster has to have a certain minimum number
of points, so it may be beneficial to open less than k clusters) and clustering with outliers
(here we are allowed k + z clusters, but z of them have to be singletons, i.e. outliers). There
are also results on constraints that restrict the choice of centers, for example by demanding
that the centers satisfy a given matroid constraint. Among the newer clustering problems
with constraints are those that evolve around aspects of fairness. These constraints are
typically more complex and can either be point-based or center-based. Each constrained
clustering problem, old or new, comes with a unique combinatorial structure, giving rise to a
plethora of insights on designing approximation algorithms.

In this paper, we study a constraint that stems from the area of sea level geodesy but
which is also of interest for other domains (discussed briefly below). For the application
that motivated our work, consider the left picture in Figure 1. We see the location of tide
gauge stations around the globe from the PSMSL data set [13, 9]. At every station, sea level
heights have been collected over the years, constituting monthly time series. These records

http://www.psmsl.org/data/obtaining/
https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-coastline/
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can be used to reconstruct regional or global mean sea levels. However, the tide gauges have
usually been constructed for practical purposes and not for sea level science. As a result,
they are unevenly distributed over the globe. One way out of this is to replace clusters of
tide gauges by representative records to thin out the data set. Our general goal is therefore
to cluster the tide gauges into a given number k of clusters. However, the objective is not
based on the gauge stations’ geographic distance but on the time series. We wish to combine
gauge stations with similar time series into one, i.e., when we cluster, we want to find clusters
where the center’s time series is similar to the records collected at the tide gauges represented
by that center. We can model the distance between time series by a metric distance measure
for time series or curves (like the Fréchet distance). As the objective we pick k-center, so we
want to minimize the maximum distance between the center and the points that are replaced
by it. Now we get to the complication: The gauge stations are also points on the map. We
do not want to have points in the same cluster that are geographically very far away.

It is not immediately clear how to best model this scenario. We could resort to bicriteria
approximation and look for solutions where both the time series of points in a cluster are
similar and the radius of clusters is small, by either looking at the Pareto front or weighting
the two objectives. Alternatively, we could fix a threshold and limit the geographic distance
between centers and points, i.e., demand that a point x can only be assigned to center c if
its geographic distance is at most some T . Both modelings have the drawback that they
really only capture the distance on the map, while in reality, we would like to have somewhat
coherent clusters that correspond to non-overlapping areas on the map. Indeed, we might be
fine with having points of large geographic distance in the same cluster if all points ‘between’
them are also in the same cluster (i.e., that larger area of the sea behaves very similar with
respect to the gauge station measurements).

The modeling that we study incorporates this via a preprocessing step. We assume that
the points have been preprocessed such that we get a connectivity graph like shown on the
right in Figure 1. The graph on the map was computed by finding a minimum spanning tree
of the points, but it could be computed in other ways, too. The important part is that it
captures a neighborhood structure. To model coherence, we now demand that clusters are
connected in this graph. Figure 2 gives an example.

▶ Problem 1. In a connected k-clustering problem, we are given points V , a metric d

on V , a number k, and an unweighted and undirected connectivity graph G = (V, E). A
feasible solution is a partitioning of V into k clusters C1, . . . , Ck which satisfies that for every
i ∈ {1, . . . , k} the subgraph of G induced by Ci is connected.

For the connected k-center problem, a solution also contains centers c1, . . . , ck corre-
sponding to the clusters C1, . . . , Ck and the objective is to minimize the maximum radius
maxi∈[k],x∈Ci

d(x, ci). For the connected k-diameter problem the objective is to minimize
the maximum diameter maxi∈[k] maxx,y∈Ci d(x, y). It is easy to see that the connected k-
clustering problem generalizes the classic k-center and k-diameter problem whose connectivity
graph G is a complete graph.

Interestingly, the connected k-center problem was independently defined in an earlier
paper by Ge et al. [4] (previously unknown to us. We thank the anonymous reviewer who
pointed us to this reference). In that paper, connected clustering is motivated in the context
of applications where both attribute and relationship data is present. It is applied to scenarios
of community detection and gene clustering, showing the wide applicability of the modeling.
We discuss their work further in the related work section.

ICALP 2023
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Figure 2 An example. The solid edges form the metric: Vertices connected by a solid edge have
distance 1 and all other distances are 2. The dashed edges form the connectivity graph. Both
pictures show the same graph. The optimal k-center solution with centers {c, d} and clusters {a, b, d}
and {c, e, f} is not connected. Any optimal (disjoint) connected k-center solution has radius 2.

Disjoint vs non-disjoint clusters, restricted graph classes

Notice that we demand that the Ci are disjoint. For some clustering problems with constraints
the objective value can be decreased when we are allowed to assign points to more than
one cluster: For example, lower bounds are easier to satisfy when points can be reused.
The same is true for connected clustering: It is easier to satisfy connectivity when we can
put important points into multiple clusters. For our application, we want to have disjoint
clusters, but we still study the variation for completeness and also since it allows for better
approximation algorithms that can be at least tested for their usefulness in the application
(e.g., leaving it to the user to resolve overlaps). Notice that in Figure 2, allowing non-disjoint
clusters enables the solution {c, d} with clusters {a, b, c, d}, {c, d, e, f} which has cost 1.

▶ Definition 2. We distinguish between connected k-clustering with disjoint clusters and
with non-disjoint clusters, referring to whether the clusters Ci have to be pairwise disjoint or
not.

Finally, we observe that in our application the connectivity graph is not necessarily
arbitrary. Depending on the way that we build the graph, it could be a tree (the minimum
spanning tree) or even a line (if we follow the coast line). Thus, we are interested in the
problem on restricted graph classes as well.

Results and techniques

Our main result is an approximation algorithm that works for both the disjoint connected
k-center problem and the disjoint connected k-diameter problem for general connectivity
graphs G. For general metrics, the algorithm computes an O(log2 k)-approximation. If the
metric has bounded doubling dimension D, the approximation ratio improves to O(23·D),
and for Euclidean spaces, to O(d · 2d). To obtain these results we first compute a non-
disjoint clustering. Then we develop a method using a concept of a layered partitioning (see
Definition 10) to make the clusters disjoint. We show how to obtain such a partitioning for
different metrics. Both steps are novel and form the main contribution of this paper. In
addition, in the full version of this paper we study how to compute well-separated partitions
if the number of clusters is small, particularly when k = 2.

We also study restricted connectivity graphs (lines, stars and trees) and also the easier
case of non-disjoint connected clustering. In this context we discuss greedy algorithms and
obtain hardness results via reductions. The rest hardness proof in the full version of this
paper is technically more involved. An overview of our results is given in Table 1, the more
details are given in Section 2.
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Table 1 An overview of the bounds shown in this paper and the literature for connected k-
clustering. The notation [ℓ, u] stands for a lower bound ℓ and an upper bound u on the best possible
approximation factor (achievable in polynomial time and assuming P ̸= NP ). Results marked by
“*” are proven in the full version of this paper.

Restriction
Objective k-Center k-Diameter

disjoint non-disjoint disjoint non-disjoint
G is a line

1
Ge et al. [4]

1
Cor. 4

1
Cor. 4

G is a star / tree [2, 2]
Lem. 5, Thm. 6

Doubling dimension D O(23D)
Thm. 23

[2, 2]
Cor. 7, Lem. 9

O(23D)
Thm. 23

[2, 2]
Cor. 7, Lem. 9

Lp metric in dimension d O(d · 2d)
Thm. 20

O(d · 2d)
Thm. 20

No Restrictions [3∗, O(log2 k)]
Thm. 18

[2, O(log2 k)]
Lem. 5, Thm. 18

Related work

The k-center problem and the k-diameter problem are both NP-hard to approximate better
than by a factor of 2 (see [10, 7] for k-center, k-diameter follows along the same lines). There
are two popular 2-approximation algorithms for k-center which both also work for k-diameter
with the same approximation guarantee [5, 8]. There are various results on side constraints
for k-center and related k-clustering problems, including [1, 2, 3, 11] and many others. A
more extensive list of results is contained in the full version of this paper, and we only review
closely related work in the following. The connected k-center problem with disjoint clusters
has been introduced and studied by Ge et al. [4]1. Besides other results, Ge et al. present
a greedy algorithm for the problem and claim that it computes a 6-approximation. In the
full version of this paper we present an example showing that this greedy algorithm actually
only obtains an Ω(k)-approximation. The greedy algorithm is based on the approach of
transforming a non-disjoint clustering into a disjoint one. In this transformation, it does
not change the centers, i.e., it uses the given centers of the non-disjoint clustering also as
centers for the disjoint clustering. In addition, we prove in the full version of this paper a
lower bound showing that no algorithm based on transforming a non-disjoint clustering into
a disjoint one with the same centers can compute an O(1)-approximation. Hence, without
fundamental changes of the algorithm, no O(1)-approximation can be obtained. We even
show that in general the optimal non-disjoint clustering can be better than the optimal
disjoint clustering by a factor of Ω(log log k). Hence, if one uses only the radius of an optimal
non-disjoint clustering as a lower bound for the radius of an optimal disjoint clustering, one
cannot show a better approximation factor than Ω(log log k). To the best of our knowledge,
no other approximation algorithms with provable guarantees for the connected k-center or
k-diameter problem are known.

Ge et al. introduce the connected k-center problem to model clustering problems where
both attribute and relationship data is present. They perform experiments in the context of
gene clustering and community detection and demonstrate that for both these applications
modelling them as connected clustering problems leads to superior results compared to
standard clustering formulations without connectivity constraint. For community detection
for example, they construct datasets from DBLP2 where researchers are supposed to be

1 We thank an anonymous reviewer for pointing us to this reference
2 https://dblp.org/
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clustered according to their main research area. Based on keyword frequencies they defined a
distance measure for the researchers. At the same time, the coauthor network can be used as
a connectivity graph. The advantage of connected clustering compared to traditional models
is that it naturally takes into account both the distance measure and the coauthor network.
For their experiments, Ge et al. develop a heuristic called NetScan for the connected k-center
problem with disjoint clusters, which is reminiscent of the k-means method, and efficient on
large datasets. In their experiments, the outcomes of this heuristic were significantly better
than the outcomes of state-of-the-art clustering algorithms that take into account either only
the distance measure or only the coauthor network. The work of Ge et al. has attracted some
attention and it is cited in many other articles on community detection and related subjects.

Furthermore, Ge et al. show that already for k = 2, the connected k-center problem
with disjoint clusters is NP-hard. They also argue that it is even NP-hard to obtain a
(2− ϵ)-approximation for any ϵ > 0. Additionally they give an algorithm based on dynamic
programming with running time O(n2 log n) that solves the connected k-center problem with
disjoint clusters optimally when the connectivity graph is a tree.

Gupta et al. [6] study the connected k-median and k-means problem and prove upper
and lower bounds on their approximability. Related to our motivation, Liao and Peng [12]
consider the connected k-means problem to model clustering of spatial data with a geo-
graphic constraint. They develop a local-search based heuristic and conduct an experimental
evaluation.

Outline

In Section 2 we discuss the general setting and results for restricted graph classes. Section 3
covers the case of non-disjoint connected clustering. Then in Section 4, we show the results
on the connected clustering problems for general connectivity graphs and disjoint clusterings.

2 Setup and review of results on restricted graph classes

For all approximation algorithms in this paper, we use the following well-known framework
for k-center approximation due to Hochbaum and Shmoys [8]. It is built upon the following
fact: For the k-diameter or k-center problem (connected or not), the value of the cost function
is always equal to one of the at most n2 different distances between two points in V where
n = |V |. This is true because it is either the distance between two points in the same
cluster (k-diameter) or it is the distance between a point and its center (k-center). Thus, a
standard scheme to follow is to sort these distances in time O(n2 log n) and then search for
the optimum value by binary search. The problem then reduces to finding a subroutine for
the following task.

▶ Problem 3. If there is a solution which costs r for a given r, find a solution that costs at
most α · r. Otherwise, report that r is too small.

An algorithm that solves this task can easily be turned into an α-approximation by
searching for the smallest r for which the algorithm returns a solution. The running time of
the resulting algorithm is O(n2 log n) for the preprocessing plus O(log n) times the running
time of the subroutine.

Lines, stars and trees

Connected k-clustering demands that the clusters are connected in a given connectivity graph
G. How tricky is this condition? Maybe it can actually help to solve the problem? This is
true if G is very simple, i.e., a line. We include the following proof as a warm-up.
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▶ Corollary 4. When the connectivity graph G is a line graph, then the connected k-center
problem and the connected k-diameter problem can be solved optimally in time O(n2 log n)
both with disjoint and non-disjoint clusters. This is true even if the distances are not a
metric.

Proof. We only show how to solve the connected k-center problem with non-disjoint clusters.
The full proof can be found in the full version of this paper. The line graph G is defined by
vertices V = {v1, v2, ..., vn} and edges E = {{vi, vi+1} | i ∈ {1, . . . , n− 1}}. Assume that r

is given.
Notice that any connected cluster is a subpath of G. We start by precomputing for

every vi how far a cluster with center at vi can stretch to the left and right: Let ai be the
smallest ℓ such that d(vj , vj′) ≤ r for all j, j′ ∈ {ℓ, . . . , i} and let bi be the largest ℓ such that
d(vj , vj′) ≤ r for all j, j′ ∈ {i, . . . , ℓ}. We can compute all ai and all bi in time O(n2). Now
we cut the line into clusters. We start by finding an index i with ai = 1 for which bi is as
large as possible because we have to cover the first vertex and want to cover as many other
vertices as possible. We place a center at vi and know that all vertices until vbi

are covered
by the cluster. Now we know that the next cluster has to contain vbi+1, so we search for an
i′ which satisfies bi + 1 ∈ {ai′ , . . . , bi′}, if there are multiple, we take the one with maximum
bi′ . This finds the center which covers vbi+1 and the largest number of additional vertices.
We place a center at vi′ . It may be that i′ < i as in Figure 2) and thus the clusters have
to overlap (recall that we are in the non-disjoint case). The process is iterated until vn is
covered. If the number of clusters is more than k, we report that r was too small, otherwise,
we report the clustering. This way we solve Problem 3 for α = 1 in time O(n2). ◀

For trees, k-center and k-diameter differ. Surprisingly, the connected k-diameter problem
is already NP-hard if G is a star. We prove the following lemma by a reduction from the
uniform minimum multicut problem on stars in the full version of this paper.

▶ Lemma 5. Let ϵ > 0. Assuming P ̸= NP, there is no (2− ϵ)-approximation algorithm for
the connected k-diameter problem with disjoint clusters even if G is a star.

Notice how the connected k-diameter problem with G being a star is thus very different
from the k-diameter problem where the metric is given by a graph metric that is a star. The
latter problem can be solved optimally by sorting the edges by weight and then deleting
the k − 1 most expensive edges to form k connected components which form an optimal
clustering. Say we have distances d(e1) ≥ d(e2) ≥ . . . ≥ d(en), then this optimal clustering
has cost d(ek) + d(ek+1). However, any clustering that keeps an edge from {e1, . . . , ek−1}
costs at least d(ek+1) + d(ek−1) ≥ d(ek) + d(ek+1) since it deletes at most k − 1 edges.

Ge et al. [4] show that the connected k-center problem is still solvable optimally for trees
by dynamic programming.

▶ Theorem 6 (Ge et al. [4]). When the connectivity graph G is a tree, then the connected
k-center problem with disjoint clusters can be solved optimally in time O(n2 log n). This is
true even if the distances are not a metric.

It follows immediately that the connected k-diameter problem with disjoint clusters on
trees can be 2-approximated by the same algorithm because the diameter of the produced
solution is always at most twice the radius. This is interesting because our reduction
in Lemma 5 shows that this is tight, i.e., using the dynamic programming algorithm for
k-diameter achieves the best possible approximation ratio (assuming P ̸= NP ).

ICALP 2023
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3 General G, non-disjoint clusters

The connected k-center and k-diameter problems with non-disjoint clusters behave similarly
to the unconstrained versions. On the positive side, there is a 2-approximation; on the
negative side, it is NP-hard to approximate these problems better than 2. In contrast to the
case of disjoint clusters, APX-hardness starts with stars for both k-center and k-diameter.
We show this via reductions from clique cover and set cover in the full version of this paper.

▶ Corollary 7. Let ϵ > 0. Assuming P ̸= NP, there is no (2− ϵ)-approximation algorithm
for the connected k-diameter problem with non-disjoint clusters, even if G is a star. The
same is true for the connected k-center problem with non-disjoint clusters.

For the positive result, the classical result by Hochbaum and Shmoys [8] can be used. We
discuss it in detail because we need it as a basis for our algorithms. For the unconstrained
k-center problem, Problem 3 for α = 2 can be solved as follows: Given input V , k, and a
radius r, one picks an arbitrary point x ∈ V and puts all nodes within distance 2r of x into
one cluster. When r is at least the radius of the optimal k-clustering, this cluster will contain
all nodes that are in the same optimal cluster as x. The cluster is then removed from V and
the process is repeated until all nodes are covered. If the number of clusters is at most k,
the solution is returned, otherwise, it is reported that r was too small.

This algorithm can easily be adapted to the connected k-center problem with non-disjoint
clusters by the following observation: Let x and y be two nodes from the same optimal
cluster with center c and radius r. Then x and y are connected in the connectivity graph by
a path that contains only nodes within distance 2r from x and y. So the algorithm is: When
a node x is selected, put all nodes into a cluster that have distance at most 2r from x and are
reachable from x in the connectivity graph via a path on which all nodes have a distance of
at most 2r from x. This set can be determined by the BFS-type algorithm ComputeCluster
(see Algorithm 1 with R = 2r). Say the resulting cluster is T . Do not remove T from G

Algorithm 1 ComputeCluster(G, M, R, c).

Input: points V , graph G = (V, E), metric M = (V, d), radius R, node c ∈ V

1 T ← {c};
2 N ← {u ∈ V \ T | ∃v ∈ T, (v, u) ∈ E : d(u, c) ≤ R};
3 while N ̸= ∅ do
4 T ← T ∪N ;
5 N ← {u ∈ V \ T | ∃v ∈ T, (v, u) ∈ E : d(u, c) ≤ R};

Output: cluster T

but only mark all nodes in T as covered. As long as there are uncovered nodes, pick an
arbitrary such node and form a cluster of radius 2r around it (in general this cluster will
also contain nodes that are already covered). This will result in at most k connected clusters
with radius 2r if r is at least the radius of an optimal connected k-clustering. We call this
algorithm GreedyClustering and we give its pseudocode as Algorithm 2. In general, the
sets Tc computed by this algorithm are not disjoint but the centers are pairwise distinct.

▶ Lemma 8. Let r∗ denote the radius of an optimal connected k-center clustering with
non-disjoint clusters. For r ≥ 2r∗, Algorithm 2 computes a center set C with |C| ≤ k.

Proof. Consider a node c ∈ V that is chosen as a center by the algorithm and the optimal
cluster O node c is contained in. This cluster is centered around some node c′ and has a
radius of at most r∗. Hence, by the triangle inequality all nodes in O have a distance of at
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Algorithm 2 GreedyClustering(G, M, r).

Input: graph G = (V, E), metric M = (V, d), radius r

1 C ← ∅; // center nodes
2 V ′ ← V ; // uncovered nodes
3 while V ′ ̸= ∅ do
4 select a node c ∈ V ′ and add it to C;
5 Tc ← ComputeCluster(G, M, r, c);
6 V ′ ← V ′ \ Tc;

Output: centers C, sets Tc for all c ∈ C

x

u

e

z

c

r 2r

r

r

The optimal connected 2-clustering has centers x and z

with clusters {x, u} and {z, c, e} and a radius of r. The
greedy algorithm started with x forms {x, u, z} as the
first cluster. After that, only c and e remain. Without
z, they are not connected anymore and have to go into
different clusters.

Figure 3 An example where greedy disconnects an optimum cluster.

most 2r∗ from c. Also since O is connected, all nodes in O are reachable from c. In particular,
all nodes in O are reachable from c on paths that contain only nodes within distance 2r∗

of c. This implies that for r ≥ 2r∗, the set Tc is a superset of the optimal cluster O. Since
the centers in Algorithm 2 are chosen among the uncovered nodes, all chosen centers must
be from distinct optimal clusters. This implies that there can be at most k centers in C. ◀

The same algorithm works for the connected k-diameter problem when ComputeCluster
is evoked with R = r (not 2r) if r is at least the optimal diameter. By adding all points in
distance r to the cluster of the chosen center x, it is ensured that the optimum cluster is
added if r is at least the optimum value (since the distance between two points is then at most
r). Furthermore, the resulting cluster has diameter at most 2r by the triangle inequality.

▶ Lemma 9. There exists a 2-approximation algorithm for the connected k-center problem
with non-disjoint clusters and also for the connected k-diameter problem with non-disjoint
clusters.

4 General G, disjoint clusters

The disjoint case for general connectivity graphs is more challenging. To keep the presentation
simple, we focus in the following on the connected k-center problem: Given an unweighted
graph G = (V, E) and a metric space M = (V, d) with d : V × V → R, find k node-disjoint
connected subgraphs of G (clusters) that cover all vertices and minimize the maximum radius
of these subgraphs. An adaptation to the connected k-diameter problem can be found in the
full version of this paper.

We start with the algorithm GreedyClustering from the previous section on the non-
disjoint case. Notice that in general, the output of this algorithm is not node-disjoint. We
could opt to delete the nodes in T computed by Algorithm 1 to enforce disjointness, however,
the problem is this: The first cluster that the algorithm forms around a vertex x is guaranteed
to be a superset of the optimal cluster that x is contained in. It might be a strict superset
and contain a node that belongs to a different optimal cluster. This node will get removed
from G together with all other nodes in the cluster around x. However, its removal might

ICALP 2023
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make the optimal cluster it is contained in unconnected. This is problematic because then k

connected clusters might not suffice anymore to cover all points from G even if we guessed
the optimal radius r correctly. See Figure 3 for an example where this happens.

4.1 Making the clusters disjoint
In this section we describe how to transform the set of non-disjoint clusters computed by
GreedyClustering into a set of pairwise disjoint clusters that cover all points at the cost of
increasing the radius or diameter. This transformation has to be performed very carefully in
order to not increase the radius or diameter by too much.

Let C with |C| ≤ k denote the set of centers around which the non-disjoint clusters have
been formed by the algorithm and let r denote their radius. The following two observations
are helpful: (1) When two centers are more than 2r apart then their corresponding clusters
are disjoint. (2) If a set of centers have pairwise distance at most L then merging the
corresponding clusters results in a single cluster with radius at most r + L and diameter at
most 2r + L.

If it is possible to partition the centers into groups such that all centers within the same
group have a distance of at most L and all centers from different groups have a distance
of more than 2r, we could make the clusters disjoint as follows: as long as there are two
non-disjoint clusters whose centers are in the same group of the partition, merge them into
a single cluster. In the end, the algorithm will return no more than |C| ≤ k clusters. By
isolating some singletons as new clusters, we obtain a solution with exactly k clusters as
required without worsening the solution. After this, all clusters whose centers are in the
same group are disjoint (if not they would have been merged) and clusters whose centers
are in different groups are disjoint because their centers are far enough from each other.
Hence, such a partition results in a solution with disjoint clusters with radius r + L and
diameter 2r + L. A key idea in our algorithm for the general case is to find such a partition
of the centers in C with small L. However, observe that this is not possible in general. A
simple counterexample would be that all centers are equally spaced on a line with distance r

between two consecutive centers. Then all centers have to be in the same group and L would
be (k − 1)r, resulting in an approximation factor of Ω(k).

To circumvent this problem, we do not partition all centers from C at once but we start
with a partition of a subset of C that satisfies the properties above (i.e., centers in the same
group have distance at most L, while centers in different groups have a distance of more
than 2r). We call this the first layer of the partition. Then we remove all centers contained
in the first layer from C and proceed with the remaining centers analogously: Let C ′ denote
the set of centers not contained in the first layer. We find a partition of a subset of C ′ that
satisfies the properties above and call this the second layer of the partition. We repeat this
process until all points from C are in some layer. We call such a partition a well-separated
partition. Figure 4 shows possible partitions for the example above.

▶ Definition 10. Let M = (C, d) be a metric and r > 0. An r-well-separated parti-
tion with ℓ ∈ N layers and with parameters (h1, . . . , hℓ) is a partition of C into groups
{C1,1, . . . , C1,ℓ1}, {C2,1, . . . , C2,ℓ2}, . . . , {Cℓ,1, . . . , Cℓ,ℓℓ

} with the following properties.
(i) The groups cover all points from C, i.e.,

⋃
i∈[ℓ],j∈[ℓi] Ci,j = C.

(ii) The groups are pairwise disjoint, i.e., ∀i, i′, j, j′ with i ̸= i′ or j ̸= j′, Ci,j ∩ Ci′,j′ = ∅.
(iii) For i ∈ [ℓ], we call the sets Ci,1, . . . , Ci,ℓi the sets on layer i. Two different sets from

the same layer are more than 2r away, i.e., ∀i ∈ [ℓ], v ∈ Ci,j , v′ ∈ Ci,j′ with j ̸= j′,
d(v, v′) > 2r.

(iv) For i ∈ [ℓ], the maximum diameter of a group on layer i is at most hi, i.e.,
maxj maxv,v′∈Ci,j

d(v, v′) ≤ hi.
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r r r r r r

Figure 4 We consider an instance with 7 centers on a line where consecutive centers have a
distance of r. The top figure shows a well-separated partition of this instance with L = 0 and ℓ = 3
layers. The colors depict the different layers and the colored rectangles depict the clusters of radius R

around these centers. On the blue layer there are, e.g., three groups where each group consists
of a single blue center. The bottom figure shows a well-separated partition of the same instance
with L = r and ℓ = 2. The blue layer contains two groups of two centers each, while the red layer
contains two groups, one with two centers and one with only one center.

It is not clear at first glance why a well-separated partition is helpful for obtaining a
solution with disjoint clusters. For every layer of the partition, we can use the reasoning
above. That is, we merge all non-disjoint clusters whose centers are in the same group to
obtain disjoint clusters with radius r + L and diameter 2r + L. However, a cluster is then
only disjoint from all clusters on the same layer but in general not from clusters on other
layers (see Figure 4). A main ingredient of our algorithm is a non-trivial way to merge
clusters on different layers. For this, we add the layers one after another. Consider the case
of two layers. The clusters from the first layer are disjoint from each other. We add the
clusters of the second layer one after another. For each cluster from the second layer, we
first check with which clusters from the first layer it overlaps. If there is more than one, we
split the cluster from the second layer into multiple parts and merge the parts with different
clusters from the first layer with which they overlap. This is done in such a way that the
final result is a set of disjoint connected clusters. We prove with an inductive argument that
the radius and diameter of these clusters is O(ℓ · L), where ℓ denotes the number of layers of
the well-separated partition.

The following lemma describes an algorithm that adjusts the clusters layer by layer to
make them pairwise disjoint.

▶ Lemma 11. Consider an instance (G = (V, E), M = (V, d), k) of the connected k-center
problem and assume that Algorithm 2 computes a center set C ⊆ V with |C| ≤ k for some
radius r. Furthermore, let an r-well-separated partition of C with ℓ layers and parame-
ters (h1, . . . , hℓ) be given. Then we can efficiently find a feasible solution for the connected
k-center problem with disjoint clusters with radius at most (2ℓ− 1)r +

∑ℓ
i=1 hi.

Proof. According to Definition 10 and Algorithm 2, we have the following properties:
(i)

⋃
i∈[ℓ],j∈[ℓi] Ci,j = C

(ii) ∀i, i′, j, j′ with i ̸= i′ or j ̸= j′: Ci,j ∩ Ci′,j′ = ∅
(iii) ∀i ∈ [ℓ], c ∈ Ci,j , c′ ∈ Ci,j′ with j ̸= j′: d(c, c′) > 2r and Tc ∩ Tc′ = ∅
(iv) ∀i ∈ [ℓ], j ∈ [ℓi], c, c′ ∈ Ci,j : d(c, c′) ≤ hi

(v)
⋃

i∈[ℓ],j∈[ℓi]
⋃

c∈Ci,j
Tc = V

In the first step, we adjust the clusters by merging all non-disjoint clusters whose centers
belong to the same group. To be precise, for each group Ci,j we do the following: As long as
there are two different centers c ∈ Ci,j and c′ ∈ Ci,j with Tc ∩ Tc′ ̸= ∅, we remove c′ from
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Ci,j and replace Tc by Tc ∪ Tc′ . That is, we merge the two clusters Tc and Tc′ and define
c as its center. Since centers in the same group on layer i have a distance of at most hi,
after this step the clusters in each group Ci,j are pairwise disjoint and have a radius of at
most r + hi and a diameter of at most 2r + hi. They are still connected because we only
merge connected clusters that have at least one node in common.

Since clusters in different groups of the same layer are pairwise disjoint anyway, all clusters
on the same layer are pairwise disjoint after this step. Hence, in the next step we only need
to describe how clusters from different layers can be made disjoint. For this, it will be helpful
to view the clusters as trees. To make this more precise, consider a cluster Tc with center c.
We know that the subgraph of G induced by Tc is connected. For any cluster Tc we choose
an arbitrary spanning tree in this induced subgraph and consider c to be the root of this tree.
Let Ti denote the set of all such trees in the i-th layer for i ∈ [ℓ]. In the following we will use
the terms clusters and trees synonymously. By abuse of notation we will use Tc to denote
both the cluster with center c and the spanning tree with root c, depending on the context.

For every i ∈ [ℓ], all trees in Ti are node-disjoint. We will now describe how to ensure
that trees on different layers are also node-disjoint. For this, we will go through the
layers i = 1, 2, . . . , ℓ in this order and replace Ti by an adjusted set of trees T ′

i . We will
construct these trees so that at each step i ∈ [ℓ] all trees from ∪j∈[i]T ′

j are pairwise disjoint.
Furthermore, at step i the radius of any tree from ∪j∈[i]T ′

j will be bounded from above by
(2i− 1)r +

∑
j∈[i] hj . Finally, our construction ensures that in the end, the trees in ∪i∈[ℓ]T ′

i

cover all nodes in V . Hence, these trees form a feasible solution to the connected k-center
problem with disjoint clusters with the desired radius.

We set T ′
1 = T1. Then for i = 1, the desired properties are satisfied because the trees

on layer 1 are pairwise disjoint and have a radius of at most r + h1. Now assume that
the properties are true for some i and let us discuss how to ensure them also for i + 1.
We start with T ′

i+1 = ∅ and add trees to it one after another. Consider an arbitrary tree
T ∈ Ti+1 = (V ′, E′) with center c and let V ∗ ⊆ V ′ denote the nodes that also occur in
some tree T ′ ∈ T ′

j for some j ∈ [i]. Observe that any node from V ∗ can be contained in at
most one such tree T ′ because by the induction hypothesis all trees in ∪j∈[i]T ′

j are pairwise
disjoint. If V ∗ is empty then the tree T is disjoint from all trees in ∪j∈[i+1]T ′

j and does not
need to be adjusted. In this case we simply add it to T ′

i+1.
If V ∗ contains only a single node v then we merge the tree T with the unique tree T ′

from T ′
j for some j ≤ i that also contains node v, i.e., we replace T ′ by T ∪ T ′ in T ′

j . Tree T ′

has a radius of at most (2i− 1)r +
∑

j∈[i] hj . Since the diameter of T is at most 2r + hi+1,
the radius of the union of T and T ′ with respect to the center of T ′ is at most (see Figure 5)

(2r + hi+1) + (2i− 1)r +
∑
j∈[i]

hj = (2(i + 1)− 1)r +
∑

j∈[i+1]

hj . (1)

Now consider the case that V ∗ contains more than one node. In this case we cannot
simply merge T with some tree from ∪j∈[i]T ′

j because the resulting tree would not be disjoint
from the other trees. We also cannot merge all trees that contain nodes from V ′ into a single
cluster because the radius of the resulting cluster could be too large. Instead we split the
tree T into multiple components and we merge these components separately with different
trees from ∪j∈[i]T ′

j . For each node v ∈ V ∗ that is not the root c of T we consider the path
from c to v and let e denote the last edge on this path (i.e., the edge leading to v). We
remove edge e from the tree T and thereby split the tree T into two components. Since we do
this for every node from V ∗ \ {c}, the tree T will be split into |V ∗ \ {c}|+ 1 pairwise disjoint
connected components. Each of these components that does not contain the root c contains
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c′
v c

Figure 5 This figure shows the tree T ′ with center c′ in black and the tree T with center c in
gray. These trees have node v in common. When T and T ′ are merged into a single tree, the radius
of this new tree with respect to c′ is larger than the radius of T ′ by at most the diameter of T .

c

Figure 6 This figure shows the tree T in black. The nodes in V ∗ are marked gray and the edges
that are removed from T are shown dotted. The orange trees depict the trees on lower layers that
contain the nodes from V ∗ and with which the corresponding components are merged.

exactly one node from V ∗. Hence, for each of these components there is a unique tree from
∪j∈[i]T ′

j from which it is non-disjoint. We merge every component with the tree from which
it is non-disjoint (see Figure 6). In the component that contains the root, only the root might
belong to V ∗. If this is the case, we merge it with the unique tree from ∪j∈[i]T ′

j from which
it is non-disjoint. Otherwise, we add this component to T ′

i+1. Since T has a diameter of at
most 2r + hi+1, the same is true for each of the components. By the induction hypothesis,
each tree from ∪j∈[i]T ′

j has a radius of at most (2i− 1)r +
∑

j∈[i] hj . Hence, as in (1), the
radius of the merged clusters is bounded from above by (2(i + 1)− 1)r +

∑
j∈[i+1] hj . ◀

▶ Corollary 12. If there exists a polynomial-time algorithm that computes for any metric (C, d)
and any r an r-well-separated partition with ℓ layers and parameters (h1, . . . , hℓ) then there
exists an approximation algorithm for the connected k-center problem with disjoint clusters
that achieves an approximation factor of 4ℓ− 2 + 2

∑ℓ
i=1 hi/r.

Proof. To obtain the desired approximation factor, we first determine the smallest r for which
Algorithm 2 returns a center set C with |C| ≤ k. Due to Lemma 8, this radius r will be at
most 2r∗, where r∗ denotes the radius of an optimal connected k-clustering with non-disjoint
clusters. Let r∗

D denote the radius of an optimal connected k-clustering with disjoint clusters.
Then r∗

D ≥ r∗ ≥ r/2. According to Lemma 11, the polynomial-time algorithm for computing
an r-well-separated partition can then be used to compute a connected k-clustering with
disjoint clusters and radius at most (2ℓ− 1)r +

∑
i∈[ℓ] hi. The approximation factor of this

k-clustering is

(2ℓ− 1)r +
∑

i∈[ℓ] hi

r∗
D

≤
(2ℓ− 1)r +

∑
i∈[ℓ] hi

r/2 = 4ℓ− 2 + 2
∑
i∈[ℓ]

hi

r
. ◀
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The same algorithm that we developed in this sections for the connected k-center problem
can also be used for the connected k-diameter problem without any modifications. Only the
analysis of the approximation factor needs to be adapted slightly.

Lemma 8 is changed as follows.

▶ Lemma 13. Let r∗ denote the diameter of an optimal connected k-diameter clustering
with non-disjoint clusters. For r ≥ r∗, Algorithm 2 computes a center set C with |C| ≤ k.

Observe that the diameter of the clusters Tc that are computed by Algorithm 2 for some r

can be at most 2r.
A straightforward adaption of Lemma 11 yields the following result.

▶ Lemma 14. Consider an instance (G = (V, E), M = (V, d), k) of the connected k-diameter
problem and assume that Algorithm 2 computes a center set C ⊆ V with |C| ≤ k for some
radius r. Furthermore, let an r-well-separated partition of C with ℓ layers and parame-
ters (h1, . . . , hℓ) be given. Then we can efficiently find a feasible solution for the connected
k-diameter problem with disjoint clusters with diameter at most (4ℓ− 2)r + h1 + 2

∑ℓ
i=2 hi.

Overall we obtain the following corollary.

▶ Corollary 15. If there exists a polynomial-time algorithm that computes for any metric (C, d)
and any r an r-well-separated partition with ℓ layers and parameters (h1, . . . , hℓ) then there
exists an approximation algorithm for the connected k-diameter problem with disjoint clusters
that achieves an approximation factor of 4ℓ− 2 + h1/r + 2

∑ℓ
i=2 hi/r.

4.2 Finding well-separated partitions
With the discussion above, finding a good approximation algorithm is reduced to finding
an efficient algorithm for computing an r-well-separated partition with small L and few
layers. For general metrics, we present an efficient algorithm that computes a well-separated
partition with L = O(r · log k) and ℓ = O(log k). This yields a clustering of radius and
diameter O(r · log2 k). Details can be found in the proof of Theorem 18 in the next section.
We give better results for computing well-separated partitions for Lp-metrics and metric
spaces with bounded doubling dimension in Theorem 20 and Theorem 23. Overall, we get
the following results.

▶ Theorem 16. There exists an O(log2 k)-approximation algorithm for the connected k-center
problem with disjoint clusters and for the connected k-diameter problem with disjoint clusters.
The approximation ratio improves

to O(23·dim(M)) if the metric space has bounded doubling dimension dim(M), and
to O(d · 2d) if the distance is an Lp-metric in Rd.

It is an intriguing question if better well-separated partitions exist for general metrics
and for the special metrics that we have considered. By our framework, better partitions
would immediately give rise to better approximation factors.

We prove in the full version a lower bound of Ω(log log k) for our algorithmic framework.
To be precise, we construct an instance in a general metric space together with a set of
k centers C that could be produced by the algorithm GreedyClustering such that even
the optimal disjoint solution with centers C is worse than the optimal disjoint solution for
arbitrary centers by a factor of Ω(log log k). Hence, to prove a constant-factor approximation
in general metric spaces, one cannot rely on the centers chosen by GreedyClustering.
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4.2.1 Well-separated partitions in general metrics
According to Corollaries 12 and 15, we only need to find an efficient algorithm for computing
an r-well-separated partition to obtain an approximation algorithm for the connected k-center
and k-diameter problem.

Algorithm 3 computes an r-well separated partition layer by layer. For each layer it
creates the groups in a greedy fashion: At the beginning of a layer i, the set U ′ of all nodes
that are not assigned to previous layers is considered. The goal is to assign as many of these
nodes to the current layer i as possible. For this, we start with an arbitrary node u ∈ U ′

that is not assigned to any previous layer and we create a group around u. First the group
consists only of u itself. Then we iteratively augment the group by adding all nodes to
the group that have a distance of at most 2r from some node that already belongs to the
group. We repeat this augmentation step multiple times one after another. We stop when
the number of new nodes that join the group is smaller than twice the number of nodes
that have already been added to the group for the first time. Then the group around u is
finished and added to layer i. All nodes in the group are removed from U ′. Furthermore, we
also remove all nodes that have a distance of at most 2r from this group from U ′. These
nodes have to be assigned to other layers that are created later to ensure property (iii) in
Definition 10. As long as U ′ is not empty, we repeat the process to create another group on
layer i. The pseudocode is shown as Algorithm 3.

Algorithm 3 PartitionGeneralMetric((C, d), r).

Input: metric (C, d), radius r

1 U ← C; // nodes that still have to be assigned
2 i← 0;
3 while U ̸= ∅ do
4 i← i + 1; // start a new layer
5 j ← 0;
6 U ′ ← U ; // nodes that could still be assigned on i-th layer
7 while U ′ ̸= ∅ do
8 j = j + 1; // create a new group in i-th layer
9 select a node u ∈ U ′, Ci,j ← {u} and N0(u)← {u};

10 U ′ ← U ′ \ {u};
11 U ← U \ {u};
12 s = 1;
13 while s ̸= 0 and U ′ ̸= ∅ do
14 Ns(u)← {x ∈ U ′ | ∃v ∈ Ns−1(u) : d(v, x) ≤ 2r};

// nearby nodes of nodes Ci,j in U ′

15 if |Ns(u)| ≥ 2 · |Ci,j | then
16 Ci,j ← Ci,j ∪Ns(u); // add nearby nodes to Ci,j

17 U ′ ← U ′ \Ns(u);
18 U ← U \Ns(u);
19 s = s + 1;
20 else
21 U ′ ← U ′ \Ns(u); // nearby nodes cannot be on i-th layer
22 s = 0; // end group of node u

Output: {C1,1, C1,2, . . .}, {C2,1, C2,2, . . .}, . . .
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▶ Lemma 17. Let (C, d) be an arbitrary metric with k := |C| and r > 0. Let ℓ = 1+⌊log 3
2
(k)⌋

and h = 4r⌊log3 k⌋. The output of Algorithm 3 is an r-well-separated partition with at most
ℓ layers and parameters (h, . . . , h).

Proof. Let {C1,1, . . . , C1,ℓ1}, {C2,1, . . . , C2,ℓ2}, . . . , {Cℓ,1, . . . , Cℓ,ℓℓ
} denote the output of Al-

gorithm 3. The algorithm ensures that every point from C is contained in exactly one
group Ci,j because when nodes are deleted from U in Line 18 they have been added to Ci,j

in Line 16. Furthermore U ′ is always a subset of U and so no node can be assigned to
multiple clusters. Furthermore, Lines 14 and 21 ensure that nodes in different groups of
the same layer are more than 2r apart. This shows that the properties (i), (ii), and (iii) in
Definition 10 are satisfied.

Next we show property (iv) that the maximum diameter of every group is h. As long as
the number of nearby nodes in Ns(u) is at least twice the number of the previously grouped
nodes in ∪s−1

t=1 Nt(u), we add these nearby nodes to the current group. As long as this is true
we have

|Ns(u)| ≥ 2 ·
s−1∑
t=0
|Nt(u)|.

Together with |N0(u)| = 1, this implies | ∪s
t=1 Nt(u)| ≥ 3s for every s by a simple inductive

argument. Since this set cannot contain more than k = |C| nodes, we have Ci,j =
⋃h

s=1 Ns(u)
for some h ≤ ⌊log3 k⌋. For any s ≥ 1, any node in Ns(u) has a distance of at most 2r

from some node in Ns−1(u). Since u is the only node in N0(u), this implies that any node
has a distance of at most 2rh from u. Hence, the diameter of every group is at most
4rh ≤ 4r⌊log3 k⌋. This shows property (iv) in Definition 10.

Now it only remains to bound the number of layers of the partition. When a new layer is
started, U ′ is set to U , the set of yet unassigned nodes in Line 6. When a group is formed
then its current neighbors Ns(u) get removed from U ′ in Line 21. These are exactly the
nodes that do not get assigned to the current layer and have to be assigned to other layers
afterwards. Since line 21 is only reached if |Ns(u)| is smaller than twice |Ci,j |, at least one
third of the initially unassigned nodes get assigned to groups on the current layer and at
most two thirds are postponed to other layers afterwards. This implies that after ℓ layers,
there are no more than ( 2

3 )ℓ · k nodes left to be assigned. Hence, the number of layers cannot
be more than 1 + ⌊log 3

2
(k)⌋. ◀

Based on Corollaries 12 and 15, it is now easy to prove the following theorem.

▶ Theorem 18. There exists an O(log2 k)-approximation algorithm for the connected k-center
problem and for the connected k-diameter problem with disjoint clusters.

Proof. According to Lemma 17, one can efficiently compute for any metric an r-well-separated
partition with at most ℓ layers and parameters (h, . . . , h) for ℓ = 1 + ⌊log 3

2
(k)⌋ = O(log k)

and h = 4r⌊log3 k⌋ = O(r · log k).
By Corollary 12 this implies that we can efficiently find a solution for the connected

k-center problem with disjoint clusters with approximation factor

4ℓ− 2 + 2
ℓ∑

i=1
h/r = O(ℓ + ℓh/r) = O(log k + log2 k) = O(log2 k).
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Figure 7 In the upper row, colorings for d = 1 and d = 2 are shown. In the lower row on the
right, a coloring for d = 3 is shown. It is composed of alternatingly using the 2-dimensional colorings
shown on the left.

By Corollary 15, it also implies that we can efficiently find a solution for the connected
k-diameter problem with disjoint clusters with approximation factor

4ℓ− 2 + h1/r + 2
ℓ∑

i=2
hi/r = O(ℓ + ℓh/r) = O(log k + log2 k) = O(log2 k). ◀

4.2.2 Well-separated partitions in Euclidean metrics
In this section, we study how to compute an r-well-separated partition if the metric is an
Lp-metric in the d-dimensional space Rd for some p ∈ {1, 2, . . . ,∞}.

▶ Lemma 19. For any Lp-metric in Rd, an r-well-separated partition with 2d layers and
parameters (h, . . . , h) with h = 3d1/pr can be computed in polynomial time.

Proof. First we partition the space Rd into d-dimensional hypercubes with side length 3r.
These hypercubes are chosen such that they are pairwise disjoint and that they cover the
entire space. Then we color these hypercubes such that no two neighboring hypercubes get
the same color where also diagonal neighbors are taken into account (see Figure 7). Based on
this coloring we create the following r-well-separated partition: each color corresponds to one
layer of the partition and within a layer all nodes that belong to the same hypercube form a
group. Since the distance of two hypercubes of the same color is at least 3r, property (iii) of
Definition 10 is satisfied. Properties (i) and (ii) are satisfied because the hypercubes partition
the space Rd. Finally, the diameter of any of the hypercubes is bounded from above by
(
∑d

i=1(3r)p)1/p = 3d1/pr, which also proves property (iv).
It remains to bound the number of layers, i.e., the number of different colors necessary to

color the hypercubes. One can prove by induction that 2d colors are sufficient. For d = 1,
one simply colors the hypercubes alternatingly with two different colors. For d ≥ 2, we first
pick two different colorings of Rd−1 with 2d−1 colors each such that the two colorings do not
have a color in common. Then we color the hypercubes in Rd by alternatingly using one
of the two (d− 1)-dimensional colorings. This way, we obtain a coloring of the hypercubes
in Rd with 2d colors (see Figure 7). ◀
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Based on Corollaries 12 and 15, it is now easy to prove the following theorem.

▶ Theorem 20. For any Lp-metric in Rd, there exists an O(d · 2d)-approximation algorithm
for the connected k-center problem and for the connected k-diameter problem with disjoint
clusters.

Proof. According to Lemma 19, we can efficiently compute an r-well-separated partition
with 2d layers and parameters (h, . . . , h) for h = 3d1/pr.

By Corollary 12 this implies that we can efficiently find a solution for the connected
k-center problem with disjoint clusters with approximation factor

4ℓ− 2 + 2
ℓ∑

i=1
h/r = O(d · 2d).

By Corollary 15, it also implies that we can efficiently find a solution for the connected
k-diameter problem with disjoint clusters with approximation factor

(4ℓ− 2) + h1/r + 2
ℓ∑

i=2
hi/r = O(d · 2d). ◀

4.2.3 Well-separated partitions in metrics with small doubling dimension
In this section, we study how to compute an r-well-separated partition if the metric has
constant doubling dimension. This generalizes Lemma 19 for Euclidean spaces.

▶ Definition 21 (doubling dimension). The doubling constant of a metric space M = (X, d)
is the smallest number k such that for all x ∈ X and r > 0, the ball Br(x) := {y ∈ X |
d(x, y) ≤ r} can be covered by at most k balls of radius r/2, i.e.,

∀x ∈ X : ∀r > 0 : ∃Y ⊆ X, |Y | ≤ k : Br(x) ⊆
⋃

y∈Y

Br/2(y).

The doubling dimension of M is defined as dim(M) = ⌈log2 k⌉.

▶ Lemma 22. For any metric M = (X, d) with doubling dimension dim(M), an r-well-
separated partition with 23·dim(M) layers and parameters (h, . . . , h) with h = 2r can be
computed in polynomial time.

Proof. First we partition X greedily into balls of radius r: As long as not all points of X

are covered, we choose arbitrarily an uncovered point x from X and put x into one group
together with all uncovered points that have a distance of at most r from x. This way, we
get a partition of X into groups with radius at most r.

Next, we try to reduce the number of groups by local improvements. We say that two
groups are neighboring if the distance of their centers is at most 4r. As long as there is
a group that has at least 23·dim(M) neighbors, we replace this group and its neighbors by
23·dim(M) groups as follows: Let x be a center of a group that has at least 23·dim(M) neighbors,
and let the centers of the neighbors be Y ⊆ X. Since x has a distance of at most 4r from all
centers in Y , we have

Br(x) ∪y∈Y Br(y) ⊆ B5r(x).

By definition of the doubling dimension, the ball B5r(x) can be covered by 2dim(M) balls
of radius 5r/2, each of these can be covered by 2dim(M) balls of radius 5r/4 < 2r, and
each of these can be covered by 2dim(M) balls of radius 5r/8 < r. Hence, the points in
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Br(x)∪y∈Y Br(y) can be covered by 23·dim(M) balls of radius r. In our partition, we replace the
groups around x and around y ∈ Y by the groups induced by these balls. Since this reduces
the number of groups by at least one, after a linear number of these local improvements, no
local improvement is possible anymore, i.e., every group has less than 23·dim(M) neighbors.

We have obtained a partition of X into groups, where each group has a radius of at most r.
Furthermore, each group has a center and two groups are neighbors if their centers have a
distance of at most 4r. Furthermore, every group has less than 23·dim(M) neighbors. The
groups will form the groups in the r-well-separated partition. Since points from groups that
are not neighbored have a distance of more than 2r, two groups that are not neighbored can
be on the same layer of the partition without contradicting property (iii) from Definition 10.
The diameter of each group is at most h = 2r. It remains to distribute the groups to the
different layers of the partition. For this we find a coloring of the groups such that neighboring
groups get different colors. The neighborhood defines implicitly a graph with the groups as
vertices with degree at most 23·dim(M) − 1. Any such graph can be colored with 23·dim(M)

colors by a greedy algorithm. Now we assign the groups according to the colors to different
layers, resulting in an r-well-separated partition with at most 23·dim(M) layers. ◀

Based on Corollaries 12 and 15, it is now easy to prove the following theorem.

▶ Theorem 23. For any metric M = (X, d) with doubling dimension dim(M), there exists
an O(23·dim(M))-approximation algorithm for the connected k-center problem and for the
connected k-diameter problem with disjoint clusters.

Proof. According to Lemma 19, we can efficiently compute an r-well-separated partition
with 23·dim(M) layers and parameters (h, . . . , h) for h = 2r.

By Corollary 12 this implies that we can efficiently find a solution for the connected
k-center problem with disjoint clusters with approximation factor

4ℓ− 2 + 2
ℓ∑

i=1
h/r = O(23·dim(M)).

By Corollary 15, it also implies that we can efficiently find a solution for the connected
k-diameter problem with disjoint clusters with approximation factor

4ℓ− 2 + h1/r + 2
ℓ∑

i=2
hi/r = O(23·dim(M)). ◀

5 Conclusions

We studied the connected k-center and k-diameter problem and proved several new results
on the approximability of different variants of these problems. In particular, we developed
a general framework to obtain approximation algorithms for the disjoint versions of these
problems that relies on the existence of well-separated partitions. While we obtain constant-
factor approximations for Lp-metrics in constant dimension and metrics with constant
doubling dimension, our general upper bound is O(log2 k). Since all our lower bounds are
constant, an obvious open question is to close the gaps between the upper and lower bounds.
One possibility to approach this would be to derive better well-separated partitions. However,
we also show that with our approach no bound better than O(log log k) can be shown.

ICALP 2023
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