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Abstract
Motivated by recent progress on stochastic matching with few queries, we embark on a systematic
study of the sparsification of stochastic packing problems more generally. Specifically, we consider
packing problems where elements are independently active with a given probability p, and ask whether
one can (non-adaptively) compute a “sparse” set of elements guaranteed to contain an approximately
optimal solution to the realized (active) subproblem. We seek structural and algorithmic results
of broad applicability to such problems. Our focus is on computing sparse sets containing on the
order of d feasible solutions to the packing problem, where d is linear or at most polynomial in 1

p
.

Crucially, we require d to be independent of the number of elements, or any parameter related to
the “size” of the packing problem. We refer to d as the “degree” of the sparsifier, as is consistent
with graph theoretic degree in the special case of matching.

First, we exhibit a generic sparsifier of degree 1
p

based on contention resolution. This sparsifier’s
approximation ratio matches the best contention resolution scheme (CRS) for any packing problem
for additive objectives, and approximately matches the best monotone CRS for submodular objectives.
Second, we embark on outperforming this generic sparsifier for additive optimization over matroids
and their intersections, as well as weighted matching. These improved sparsifiers feature different
algorithmic and analytic approaches, and have degree linear in 1

p
. In the case of a single matroid,

our sparsifier tends to the optimal solution. In the case of weighted matching, we combine our
contention-resolution-based sparsifier with technical approaches of prior work to improve the state of
the art ratio from 0.501 to 0.536. Third, we examine packing problems with submodular objectives.
We show that even the simplest such problems do not admit sparsifiers approaching optimality. We
then outperform our generic sparsifier for some special cases with submodular objectives.
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1 Introduction

Our starting point for this paper is the beautiful line of recent work on variants of the
stochastic matching problem, seeking approximate solutions with limited query access to the
(stochastic) data [9, 3, 2, 4, 8, 7, 6, 5]. Notably, many of the algorithms in these works are
non-adaptive, and can therefore be interpreted as “sparsifiers” for the stochastic problem.
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51:2 On Sparsification of Stochastic Packing Problems

These works feature powerful new algorithmic and analytic sparsification techniques of
possibly more general interest, suggesting that effective sparsifiers might exist well beyond
matching and closely related problems.

Our goal in this paper is to coalesce a broader agenda on the sparsification of combinatorial
stochastic optimization problems more generally, beginning with the natural and broad class
of packing problems. We ask, and make progress on, the fundamental questions: For which
stochastic packing problems is effective sparsification possible? What are the algorithmic
techniques and blueprints which are broadly applicable? What are the barriers to progress?

Concretely, we examine stochastic packing problems (SPPs) of the following (fairly
general) form. We are given a set system (E, I), where E is a finite set of elements and
I ⊆ 2E is a downwards-closed family of feasible sets (often also referred to as independent
sets, in particular for matroids). Also given is an objective function f : 2E → R+, which we
assume to be either additive (a.k.a. modular) or submodular. The stochastic uncertainty is
described by a given probability p ∈ [0, 1]: We assume that each element of E is active, i.e.,
viable for being selected, independently with probability p. The goal of the SPP is to select
a feasible set of active elements maximizing the objective function.

When the set R of active elements is given, or can be queried without restriction, this
reduces to non-stochastic optimization for the induced subproblem on R. We refer to the
output of such an omniscient [approximation] algorithm as an [approximate] stochastic
optimum solution. We are instead concerned with algorithms that approximate the stochastic
optimum by querying the activity status of only a small, a.k.a. “sparse”, set of elements
Q ⊆ E. In particular, as in much of the prior work we require the queried set Q to be chosen
non-adaptively. Such algorithms can equivalently be thought of as factoring into two steps:
First, a sparsification algorithm (or sparsifier for short) computes a (possibly random) set of
elements Q. Second, we learn R∩Q, and an [approximate] optimization algorithm is applied
to the (now fully-specified) subproblem induced by R ∩Q. Since the second (optimization)
step is familiar and well-studied, our focus is on the first step, namely sparsification.

We evaluate a sparsifier by two quantities. The first quantity is a familiar one, namely
its approximation ratio. Specifically, a sparsifier is α-approximate if it guarantees an α-
approximation to the stochastic optimum solution when combined with a suitable algorithm
in the second (optimization) step. The second quantity is a measure of the “sparsity” of
the set Q selected by the sparsifier. We say our sparsifier is of degree d if it guarantees
E[|Q|] ≤ d · r, where r = max{|S| : S ∈ I} is the rank of the set system (E, I). Intuitively,
the sparsification degree refers to the level of “contingency” or “redundancy” in the sparsified
instance, relative to the size of maximal feasible solutions. Loosely speaking, the degree of
a sparsifier roughly measures “how many” feasible solutions are maintained to account for
uncertainty in the problem. Somewhat fortuitously, our definition of degree specializes to the
(average) graph-theoretic degree in the special case of matching, lending consistency with
prior work on stochastic matching with few queries.

We study sparsifiers whose degree admits an upperbound that is independent of the
size of the system; The degree bound can not depend on the number of elements or the
rank of the set system, for example. We focus especially on the “polynomial regime”, where
the degree is restricted to be at most polynomial in 1

p . We pursue sparsifiers which are
constant-approximate, or in the best case (1− ϵ)-approximate for arbitrarily small ϵ > 0.

Results and Techniques
We begin with the observation that a degree of at least 1

p is necessary for constant-approximate
sparsification, even for the simplest of packing problems: a rank one matroid and the
unweighted additive objective. We then establish a “baseline” of possibility for all stochastic
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packing problems, through a generic sparsifier with this same degree 1
p . This sparsifier is

simple: it computes (or estimates) the marginals {qe}e∈E of the stochastic optimum solution,
and outputs a set Q which includes each element e independently with probability qe

p . For
SPPs with an additive objective, we show that this sparsifier’s approximation ratio matches
the balance ratio of the best contention resolution scheme (CRS)1. for the set system. When
the objective is submodular, we approximately match the balance ratio of the best monotone
CRS up to a factor of 1− 1

e . We note that contention resolution is only used as a proof tool
to certify our sparsifier’s approximation guarantee, and is not invoked algorithmically. In
settings where the marginals {qe}e∈E are intractable to compute, this sparsifier can be made
computationally efficient by resorting to approximation, in which case its approximation
ratio degrades in the expected manner. This generic result yields constant-approximate
sparsifiers of degree 1

p for a large variety of set systems for which contention resolution has
been studied, including matroids and their intersections.

Next, we embark on “beating” this contention resolution baseline for natural SPPs. We
succeed at doing so for additive (weighted) optimization over matroids, matroid intersections,
and matchings. For a single matroid, we derive a simple greedy sparsifier which is (1− ϵ)-
approximate and has degree 1

p · log(1/ϵ). This sparsifier repeatedly adds a maximum weight
independent set of the matroid to the sparse set Q, and removes it from the matroid, until
the desired degree is reached. Though our sparsifier is simple, its analysis is (we believe
necessarily) less so.

For matroid intersections, we first argue that adaptations of our single-matroid sparsifier
cannot succeed, due to feasible sets not “combining well” as they do in the case of a single
matroid. Instead, our sparsifier for matroid intersections repeatedly samples the stochastic
optimum solution and adds it to the sparse set Q, for a degree of O( 1

pϵ · log(1/ϵ)). The
approximation ratio of our sparsifier for the intersection of k matroids is 1−ϵ

k+1/(k+1) , which
beats the best known bound on the correlation gap of 1/(k + 1) [1]. The analysis of this
sparsifier is again nontrivial, and utilizes basis exchange maps.

For matroids and matroid intersections, we note that analysis techniques employed by
prior work on matching do not appear to suffice. In particular, prior work on matching
often employs concentration arguments on the active degree of matroid “flats” containing
an element; this is sufficient in the case of matching, since each element is in at most two
binding flats (one for each partition matroid). For general matroids, such concentration
arguments fail to bound the degree in a manner independent of the number of elements,
necessitating alternative proof approaches like ours.

For general (non-bipartite) matching, we augment our contention-resolution-baseline
sparsifier with samples from the stochastic optimum solution, for a total degree of O(1/p).
We show that the samples from the stochastic optimum combine well with our baseline
sparsifier. We obtain an approximation ratio which is a function of the (as yet not fully
known) correlation gap of the matching polytope. This function exceeds the identity function
everywhere, implying that our sparsifier strictly improves on the contention resolution
baseline. Plugging in the best known lowerbound of 0.474 on the correlation gap from [17],
we guarantee that our sparsifier is 0.536 approximate. This improves on the state of the
art in the polynomial regime, 0.501-approximate sparsifier of degree poly (1/p) due to [8].
In addition, assuming the conjecture from [20] which states the existence of 0.544 balanced
CRS for general matching polytope implies that our sparsifier is 0.598 approximate.

1 This is equal to the set system’s correlation gap, as shown by [12].
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Table 1 Summary of information theoretic sparsifiers for additive objectives. Here, n is the
number of elements and W is the maximum element weight.

Previous Results This Work

Constraint Approx.
Ratio Sparsification Degree Approx.

Ratio
Sparsification

Degree
Matroid 1 − ϵ [14] O

(
1
p

log Rank
ϵ

)
1 − ϵ 1

p
· log

(
1
ϵ

)
k-Matroid

Intersection
1−ϵ
2k

[18] O
(

W
p

log n log
(

n
ϵ

)
k
ϵ3

)
1−ϵ

k+ 1
k+1

1
ϵ·p · log

(
1
ϵ

)
General

Matching 1 − ϵ [6] O (exp(exp(exp(1/p)))) 0.536 O
(

1
p

)
General

Matching 0.501 [8] O
(

1
p

)
0.536 O

(
1
p

)

Finally, we further examine stochastic packing problems with submodular objectives.
Our (1− ϵ)-approximate sparsifier for weighted matroid optimization might tempt one to
conjecture a similar result for submodular optimization over simple enough set systems.
However, we show by way of an information-theoretic impossibility result that no sparsifier
with degree bound independent of the number of elements can beat (1 − 1/e), even for
optimizing a coverage function subject to a uniform matroid constraint. We complement this
impossibility result with algorithmic sparsification results for optimizing coverage functions
over matroids, improving over the guarantees provided by our baseline generic sparsifier.
Due to limited space, the results for submodular SPPs are detailed in the full version of this
paper [13](Section 8).

Additional Discussion of Related Work
The exploration of sparsifying SPPs was initiated by [9], who focus on the unweighted
stochastic matching problem. This problem has since been studied extensively in a series
of works [4, 8, 7, 6] which attempt to beat the benchmark set by [9]. In the “polynomial-
degree regime”, the state-of-the-art sparsifier for unweighted stochastic matching is a 0.66-
approximation due to [2]. Recent work by [5] improves this approximation to e

e+1 for
unweighted bipartite matching. For weighted stochastic matching in the polynomial-degree
regime, the current best known sparsifier is a 0.501-approximation due to [8]. Going
beyond polynomial degree, [7, 6] constructed a (1− ϵ)-approximate sparsifier with degree
exp(exp(exp(1/p)))the weighted general matching problem. The sparsifiers designed for the
stochastic matching problems rely heavily on structural properties particular to matching.
Our techniques, on the other hand, are targeted at more general packing problems.

To the best of our knowledge, the work of [18, 19] stands alone in directly studying the
sparsification of SPPs beyond matching. In [18], they proposed a general framework for
solving stochastic packing integer programs. As a corollary of their techniques, they obtain
non-adaptive sparsifiers for several additive SPPs. However, the degree of their sparsification
algorithms intrinsically depends on the number of elements in settings where a single element
may be in an exponential number of binding constraints (as is the case for matroids). Our
work, in contrast, proposes several algorithmic techniques that yield approximate sparsifiers
with degree independent of the number of elements.

Also related is the work of [14], which studies the covering analogue of our question for
matroids. They show how to construct a set of size O( Rank

p log Rank
ϵ ) which is guaranteed

to contain a minimum-weight base of the matroid with high probability. This implicitly
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Table 2 Summary of information theoretic sparsifiers for monotone submodular objectives. All
mentioned results are shown in this paper.

Constraint Approximation Ratio Sparsification
Degree Note

r-Uniform
Matroid

(
1 − 1

e

)
·
(

1 − 1√
r+3

)
1
p

(
1 − 1

e

)
upperbound,

Optimal when r → ∞
Matroid

(
1 − 1

e

)2 1
p

1 − 1
e

upperbound
k-Matroid

Intersection
(
1 − 1

e

)
· 1

k+1
1
p

implies an O( 1
p log Rank

ϵ )-degree sparsifier for weighted stochastic packing on matroids. Their
analysis is tight for the covering setting, and it appears nontrivial to adapt their techniques
for the packing setting in order to remove the degree’s dependence on the rank. We compare
our results for additive SPPs with prior work in Table 1.

The manuscript [19] proposes sparsifiers for SPPs with a monotone submodular objectives.
However, their sparsification algorithms are intrinsically adaptive in nature. To the best of
our knowledge, ours is the first work that analyzes SPPs with submodular objectives in the
non-adaptive setting. We summarize our results for submodular SPPs in Table 2.

2 Problem Definition

We consider packing problems of the form ⟨E, I, f⟩ where E is a ground set of elements with
cardinality n, f : 2E → R≥0 is an objective function, and I ⊆ 2E is a downwards-closed
family of independent sets (a.k.a. feasible sets). We use r = argmax{|I| : I ∈ I} to denote
the rank of the set system I. The aim of the packing problem is to select an independent set
O ∈ I that maximizes f(O).

In this paper, we study packing problems in a particular setting with uncertainty paramet-
rized by p ∈ [0, 1]. In a stochastic packing problem (SPP) ⟨E, I, f, p⟩, nature selects a random
set R ⊆ E of active elements such that Pr[e ∈ R] = p independently for all e ∈ E. We
are then tasked with solving the induced (random) packing problem on the active elements,
namely ⟨R, I|R, f |R⟩ where I|R and f |R denote the restriction of I and f to subsets of
R, respectively. We refer to an [approximately] optimum solution to ⟨R, I|R, f |R⟩ as an
[approximate] stochastic optimum solution. We use OPT to denote the expected value of a
stochastic optimum solution, i.e.,

OPT(E, I, f, p) = ER

max
T ∈I
T ⊆R

f(T )

 ,

where R ⊆ E is the random set which each element of E independently with probability p.
We assume that the set R of active elements is a-priori unknown, and that we can query

elements in E to check their membership in R. Motivated by settings in which queries are
costly, we seek algorithms which query a small (we say “sparse”) subset of the elements, and
moreover choose those queries non-adaptively. Such non-adaptive algorithms can be thought
of as factoring into two steps: A sparsification step which selects the small set Q ⊆ E of
queries, and an optimization step which solves the packing problem ⟨R∩Q, I|R∩Q, f |R∩Q⟩
induced by the queried active elements. For the optimization step, we assume access to a
traditional [approximation] algorithm. Our focus is on algorithms for the sparsification step,
which we define formally next.

ICALP 2023
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A sparsification algorithm (or sparsifier for short) A takes as input an SPP J = ⟨E, I, f, p⟩
from some family of SPPs, and outputs a (possibly random) set of elements Q ⊆ E. The
twin goals here are for Q to be “sparse” in a quantified formal sense we describe shortly,
while guaranteeing that optimally solving the “sparsified” SPP J |Q = ⟨Q, I|Q, f |Q, p⟩ yields
an approximate solution to the original SPP J . We say that the sparsification algorithm A
is α-approximate if it guarantees OPT(J |Q) ≥ α OPT(J) – i.e., an optimal solution to the
sparsified SPP is an α-approximate solution to the original SPP. We sometimes identify the
sparsified SPP J |Q with Q when J is clear from the context.

To quantify sparsity, we say that A has sparsification degree d if it guarantees that
E[|Q|]

r ≤ d, where r is the rank of the set system I, and expectation is over the internal
random coins of A. Intuitively, the degree of sparsification refers to the level of “contingency”
or “redundancy” in the sparsified instance, relative to the size of maximal feasible solutions.
Loosely speaking, the degree of a sparsifier roughly measures “how many” feasible solutions
it maintains to account for uncertainty in the problem.

In the absence of a bound on degree, an approximation factor of α = 1 is trivially
achievable. We aim to construct approximate sparsifiers of low degree for natural classes of
SPPs. We begin by observing that a degree of Ω(1/p) is necessary for constant approximation,
even for the simplest of constraints.

▶ Example 1. Consider the SPP with n elements, the unweighted additive objective function
f(S) = |S|, a rank-one matroid constraint, and activation probability p = 1/n. There is at
least one active element with probability 1− (1− p)n ≥ 1− 1/e, therefore OPT ≥ 1− 1/e.
On the other hand, a set of elements Q will contain no active elements with probability
(1− p)|Q| ≥ 1− |Q| · p = 1− |Q|

n . When |Q| = o(1/p) = o(n), there are no active elements
in Q with probability 1− o(1). Therefore, any constant-approximate sparsifier must have
degree Ω(1/p).

We also show in in the full version of this paper [13] that, unsurprisingly, there exist
stochastic packing problems which do not admit constant approximate sparsifiers with degree
poly(1/p). Given these simple impossibility results, we ask a natural question:

▶ Question 2. Which stochastic packing problems admit constant approximate sparsifiers of
degree O

(
1
p

)
, or more loosely poly

(
1
p

)
?

In this paper, we focus on designing sparsification algorithms for stochastic packing
problems with additive or nonnegative monotone submodular objectives.

A Note on Input Representation

Many of our results are information theoretic, and therefore make no assumptions on
how a stochastic packing problem is represented. Most of our algorithmic results, on the
other hand, only require solving realized (non-stochastic) instances of the packing problem,
possibly approximately. Specifically, for a stochastic packing problem ⟨E, I, f, p⟩ we often
assume access to a [β-approximate] stochastic optimal oracle. Such an oracle samples a
[β-approximate] solution to the (random) packing problem ⟨R, I|R, f |R⟩, where R includes
each element of E independently with probability p, and I|R and f |R denote the restriction
of I and f to R respectively. For our algorithmic results on matroids, we additionally assume
access to an independence oracle, as is standard.
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3 Sparsification from Contention Resolution

In this section, we show how to generically derive a sparsifier for a stochastic packing problem
from bounds on contention resolution for the associated set system. First, we recall the
relevant definition of contention resolution.

▶ Definition 3 ([12]). Let (E, I) be a set system, and let PI = convexhull{1I : I ∈ I} denote
the associated polytope. A Contention Resolution Scheme (CRS) π for PI is a (randomized)
algorithm which takes as input a point x ∈ PI and a set of active elements R(x) ⊆ E,
including each element i ∈ E independently with probability xi, and outputs a feasible subset
πx(R(x)) ⊆ R(x), πx(R(x)) ∈ I. For b, c ∈ [0, 1], we say a CRS is (b, c)-balanced if for all
i ∈ E and x ∈ b · PI , Pr[i ∈ πx(R(x)) | i ∈ R(x)] ≥ c. A CRS π is monotone if for every
S ⊆ T ⊆ E we have that Pr[i ∈ π(S) | i ∈ S] ≥ Pr[i ∈ π(T ) | i ∈ T ].

Our generic sparsifier is randomized, has degree 1
p , and is shown in Algorithm 1. Our

sparsifier computes estimated marginals q for the stochastic optimum solution. For an
information-theoretic result, we can assume these to be exact. Then it samples each element
e ∈ E in a sparse set Q with probability qe

p .
When the objective function f is additive, our sparsifier has an approximation factor that

matches the balance ratio of the best CRS for PI .2 For nonnegative monotone submodular
functions, the approximation factor matches the balance ratio of the best monotone CRS for
PI . This is due to the observation that each element e ∈ E is included in the active subset
of the sparse set Q with probability qe and the fact that q ∈ PI . The detailed proof for
Theorem 4 can be found in the full version [13].

Algorithm 1 Generic Sparsifier for a Stochastic Packing Problem ⟨E, I, f, p⟩.
Input: Stochastic packing problem ⟨E, I, f, p⟩

Compute the marginals q of the stochastic optimum solution, or an approximation thereof.
Q← ∅;
for all e ∈ E do

Add e to Q with probability qe

p (independently)
end for
Output: Sparse set Q.

▶ Theorem 4. Consider Algorithm 1, implemented with exact (possibly non-polynomial-
time) computation of the marginals q. When f is additive, and PI admits a c-balanced
CRS, the algorithm is a c-approximate sparsifier of degree 1

p . When f is a nonnegative
monotone submodular, and PI admits a c-balanced monotone CRS, the algorithm is a
c

(
1− 1

e

)
-approximate sparsifier of degree 1

p .

To make our sparsifier algorithmically efficient, q may be estimated by sampling from a
(possibly approximate) stochastic optimum oracle, in which case our guarantees degrade in
the expected manner due to sampling errors and/or the approximation inherent to the oracle.
We present the detailed analysis with approximate stochastic optimal oracles in Appendix B
in the full version [13]. Theorem 4 and Theorem 4.3 (In full version [13]) together with
contention resolution schemes from prior work [1, 12, 17] and approximate stochastic optimal
oracles that employ approximation algorithms from [11, 16], imply constant approximate
sparsifier for a broad class of packing constrains summarized in Table 3.

2 This balanced ratio is equal to the correlation gap of the set system I, as per [12].

ICALP 2023
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Table 3 Approximation Ratio of Generic Sparsifier of degree 1
p

for various packing constraint
families with additive and non-negative monotone submodular function.

Additive Objective Submodular Objective

Constraint Information
Theoretic Poly-Time Information

Theoretic Poly-Time

Matroid
(
1 − 1

e

)
(1 − ϵ) ·

(
1 − 1

e

) (
1 − 1

e

)2 (1 − ϵ) ·
(
1 − 1

e

)3

k-matroid
intersection

1
k+1 (1 − ϵ) · 1

k2−1 · 1−1/e
k+1 (1 − ϵ) · 1−1/e

k2−1 ·

Matching 0.474 (1 − ϵ) · 0.474 (1 − 1
e
) · 0.43 (1 − 1

e
)2 · 0.43

The following proposition (whose proof is delegated to the full version [13]) shows that
Algorithm 1 is optimal for matroids and additive objectives among sparsifiers of degree 1/p.
This strongly suggests that sparsification is intimately tied to contention resolution when
the degree is restricted to 1/p. In particular, exceeding degree 1/p appears necessary for
outperforming the correlation gap of a set system in general.

▶ Proposition 5. Consider the family of stochastic packing problems with matroid constraints
and additive objectives. There is no degree 1

p sparsifier for this family that achieves an
approximation ratio 1− 1/e + Ω(1).

We note that 1− 1/e is the best possible balance ratio for contention resolution on the
rank one matroid, as shown in [12] through the correlation gap. Given the above discussion,
it is natural to ask whether we can design sparsifiers of degree O(1/p), or even poly(1/p),
whose approximation ratio α exceeds the best CRS balance ratio c, i.e., can we have α > c

with degree linear or polynomial in 1/p? Recent progress on this question for bipartite
matching constraints came in a pair of recent works. Behnezhad et.al. [5] designed a

e
e+1 ≈ 0.731-approximate sparsifier with degree poly(1/p) for unweighted bipartite matching.
Their approximation factor is strictly better than a known upper bound of 0.544 on the
correlation gap (and hence the best balance ratio) of bipartite matching, due to [15]. To
our knowledge, this is the only sparsifier in the literature with degree polynomial in 1

p and
approximation ratio provably exceeding the correlation gap of the set system. Another recent
result due to Behnezhad et al [7] achieves a 0.501-approximate sparsification with degree
polynomial in 1/p for weighted matching. This outperforms the best known contention
resolution scheme for matching[10], though not clearly the best possible. Prior to our work,
there was no known sparsifier for any weighted stochastic packing problem which provably
outperforms the correlation gap using degree poly(1/p).

In the following sections, we will construct degree O(1/p) sparsifiers for matroids, matroid
intersections, and matching which improve on the contention-resolution-based guarantees
provided in this section. For matroids and matchings, our sparsifiers provably outperform
contention resolution. For matroid intersections, we outperform the best known CRS.

4 Additive Optimization over a Matroid

In this section, we design an improved sparsifier for the stochastic packing problem ⟨E, I, f, p⟩
when M = (E, I) is a matroid and f is additive. For an arbitrary ϵ > 0, our sparsifier
is (1− ϵ)-approximate and has degree 1

p log 1
ϵ . Throughout, we use {we}e∈E to denote the

weights associated with the additive function f , and use R ⊆ E to denote the (random) set
of active elements which includes each e ∈ E independently with probability p. We also
sometimes use r as shorthand for Rank(M). We present basic preliminaries of matroid
theory in the full version [13]
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▶ Theorem 6. Let M = (E, I) be a matroid, f be an additive function and p ∈ [0, 1].
Algorithm 2 is a (1− ϵ)-approximate polynomial time sparsifier for the stochastic packing
problem ⟨E, I, f, p⟩ with sparsification degree 1

p · log
( 1

ϵ

)
.

Previously, the best known sparsifer for matroid was (1 − ϵ)-approximate with degree
O (1/p log (Rank/ϵ)) implicit in [14]. In contrast, the sparsification degree of our algorithm
is independent of the “size” of the matroid. As we argued in introduction, such a size-
independent guarantee appears to be beyond the techniques used in earlier works [14, 18].

Algorithm 2 Sparsifier for (M, f, p), when M is a matroid and f is additive.

Set M0 =M and Q = ∅.
for t in {1, . . . , τ} where τ = 1

p · log( 1
ϵ )

Let It ← argmaxI∈It−1 f(I), where It−1 is the collection of independent sets in Mt−1.
Update Mt ←Mt−1 \ It.

Output: Q =
⋃τ

t=1 It.

It is clear that the sparsifier in Algorithm 2 has degree τ = 1
p · log( 1

ϵ ), and can be
implemented in polynomial time given an independence oracle for the matroid M. The
remainder of this section is devoted to proving that it is (1− ϵ)-approximate, as needed to
complete the proof of Theorem 6. Our proof will consist of two parts. First, we will analyze
Algorithm 2 in the special case of unit weights (a.k.a. unweighted). Second, we reduce the
analysis of the weighted problem to that of the unweighted problem.

4.1 Special Case: Unweighted Optimization

In this subsection, we assume that elements of the matroid M all have unit weight. In this
case, observe that Algorithm 2 repeatedly removes an arbitrary basis of the matroid and
adds it to the sparse set Q. More precisely, in iteration t the set It is a basis of the remaining
matroid Mt−1 :=M\

⋃t−1
j=1 Ij .

In this unweighted case, the stochastic optimal value is the expected rank of the active
elements R, and our claimed approximation guarantee can be expressed as E[Rank(Q∩R)] ≥
(1− ϵ)E[Rank(R)]. To establish this, consider the following informal (but ultimately flawed)
argument, starting with the observation that It ∩ R spans a p fraction of the rank of the
remaining matroidMt−1 in expectation. This observation suggests that the rank of elements
not spanned by Q ∩ R should shrink by a factor of (1− p) with each iteration. Induction
would then guarantee that after 1

p · log
( 1

ϵ

)
iterations we have covered a (1− ϵ) fraction of

the rank of the matroid.
The above rough argument is a good starting point. Indeed, it succeeds when all (or many)

of the bases I1, . . . , Iτ are full-rank or close to it. These are precisely the scenarios in which
E[Rank(R)] ≈ Rank(M). However, in general OPT = E[Rank(R)] can be significantly
smaller than Rank(M) – in the worst case up to a factor of p smaller – in which case the the
rank of It may drop precipitously with t and the above inductive analysis falls apart. Such
scenarios are not simply outliers that we can assume away: they are unavoidable products of
the weighted-to-unweighted reduction we present in the next subsection, and can account for
a large fraction of the weighted stochastic optimal. This seems to necessitate a more nuanced
proof approach in which we compare E[Rank(Q ∩R)] with E[Rank(R)]. We present such a
proof next, built upon the following definitions and structural properties.
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▶ Definition 7. A nested system of spanning sets (NSS) for a matroid M is a sequence
I1, I2, . . . Iτ of sets such that for any j ∈ [τ ], Ij is a full rank set of elements in M\ I1:j−1,
where I1:j−1 =

⋃j−1
ℓ=1 Iℓ.

▶ Observation 8. The sets I1, . . . , Iτ from Algorithm 2 are an NSS of M.

The following lemma states that the property of being an NSS is preserved under contraction.

▶ Lemma 9. Let M = (E, I) be a matroid and let I1, . . . Iτ be an NSS of M. For an
arbitrary independent set S of M, let I ′

j = Ij \ S for all j. Then, the sequence I ′
1, . . . I ′

τ is
an NSS of M/S.

Proof. Fix an arbitrary j ∈ {1, . . . , τ}. It is clear that I ′
j is a subset of the elements of

M/S \ I ′
1:j−1. It remains to show that I ′

j is full rank in M/S \ I ′
1:j−1, as follows.

RankM/S(I ′
j) = RankM(Ij ∪ S)− |S| (By (2) and definition of I ′

j)

= RankM((E \ I1:j−1) ∪ S)− |S| (Ij is full rank in M\ I1:j−1)
= RankM((E \ S \ I ′

1:j−1) ∪ S)− |S| (By definition of I ′
j)

= RankM/S(E \ S \ I ′
1:j−1) (By (2))

= Rank(M/S \ I ′
1:j−1) ◀

▶ Observation 10. If I1, . . . , Iτ is an NSS of M, then I2, . . . Iτ is an NSS of M\ I1.

Now, we will prove the desired result for unweighted matroids.

▶ Lemma 11. Let M be a matroid, and let I1, . . . Iτ be an NSS of M. Then,

E[Rank(I1:τ ∩R)] ≥ (1− (1− p)τ ) · E[Rank(R)]

Proof. Let E denote the elements of M. We will apply induction on τ to prove this result.
The base case of τ = 0 is trivial.

Consider τ ≥ 1. Let S be an arbitrary maximal independent subset of R ∩ I1, and let
Rank′ denote the rank function of the (random) matroid M′ =M/S \ I1 with elements
E \ I1. Using (2) we can write

Rank(R ∩ I1:τ ) = Rank(R ∩ I1) + Rank′(R ∩ I2:τ ) (1)

The expectation of the first term is E[Rank(R ∩ I1)] = r · p. To bound the expectation
of the second term, we first condition on R ∩ I1, which also fixes S and M′. It follows from
Lemma 9 and Observation 10, as well as the fact that S ⊆ I1 is disjoint from I2:τ , that
I2, . . . Iτ is an NSS of M′. This allows us to invoke the inductive hypothesis to obtain

E[Rank′(R ∩ I2:τ )] ≥ (1− (1− p)τ−1) · E[Rank′(R \ I1)].

We use a well-known fact about the rank function of the contracted matroid given by

RankM/S(T ) = RankM(T ∪ S)−RankM(S) = RankM(T ∪ S)− |S|. (2)

Equation (2) and the definition of S implies that Rank′(R \ I1) = Rank((R \ I1) ∪ S) −
Rank(S) = Rank(R) −Rank(R ∩ I1). Also using the fact E[Rank(R ∩ I1)] = r · p, we
obtain
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E[Rank′(R ∩ I2:τ )] ≥ (1− (1− p)τ−1) · E[Rank′(R \ I1)]
= (1− (1− p)τ−1)(E[Rank(R)]− E[Rank(R ∩ I1)])
= (1− (1− p)τ−1)E[Rank(R)]− (1− (1− p)τ−1) · r · p (3)

Finally, we combine (1), and (3) to conclude

E[Rank(R ∩ I1:τ )] ≥ (1− (1− p)τ−1)E[Rank(R)] + (1− p)τ−1 · r · p
≥ (1− (1− p)τ−1 + p(1− p)τ−1)E[Rank(R)]
= (1− (1− p)τ )E[Rank(R)] ◀

By observation 8, we get the following corollary of Lemma 11.

▶ Corollary 12. Consider a stochastic matroid optimization problem ⟨E, I, f, p⟩ for p ∈ [0, 1]
and f(S) = |S| for all S ⊆ E. Algorithm 2 is a (1− ϵ)-approximate sparsifier with degree
1
p · log

( 1
ϵ

)
.

4.2 Proof of Theorem 6

In this section, we will complete the proof of Theorem 6 by reducing the analysis for a general
(weighted) additive function to that of the unweighted case. We order the elements e1, . . . en

in decreasing order of their weights w1 ≥ . . . ≥ wn. Without loss of generality we assume
wn > 0, and for notational convenience we define wn+1 = 0. The following lemma says that
if a sparsifier is α-approximate for the unweighted problem on elements above any given
weight threshold, then it is also α-approximate for the weighted problem.

▶ Lemma 13. For all j ∈ [n] with wj > wj+1, if a set Q ⊆ E satisfies

E[Rank(Q ∩R ∩ {e1, . . . ej})] ≥ (1− ϵ)E[Rank(R ∩ {e1, . . . ej})], (4)

then E[f(opt(Q ∩ R))] ≥ (1 − ϵ)E[f(opt(R))]. Here, we denote opt(S) ∈ argmaxI⊆S
I∈I

f(I),
with ties broken arbitrarily.

The above lemma follows from the optimality of the greedy algorithm for weighted
optimization over matroids. We relegate the (fairly standard) proof to the full version [13].

To conclude the proof of Theorem 6, we show in the following lemma that the output of
Algorithm 2 satisfies condition (4).

▶ Lemma 14. For all j ∈ [n] with wj > wj+1, the output set Q of Algorithm 2 satisfies

E[Rank(Q ∩R ∩ {e1, . . . , ej})] ≥ (1− (1− p)τ )E[Rank(R ∩ {e1, . . . , ej})]

To provide more intuition, let I1, . . . , Iτ be the sets defined in Algorithm 2, and E =
{e1, . . . ej} be the top weight j elements. It is sufficient to show that the sets It ∩E form a
sequence of nested spanning sets for the restricted matroid M on elements E. The optimal
choice of of It in Algorithm 2, together with the matroid structure, implies that It ∩ E has
full rank in M\ I1:t−1. We complete the proof in the in the full version [13]. Combining
Lemmas 13 and 14 completes the proof of Theorem 6.
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5 Improved Sparsifier for Stochastic Weighted Matching

In the instance of stochastic weighted matching ⟨E, I, f, p⟩, the elements E are the edges of
a known weighted graph G := (V, E, w), I is the set of all matchings in the graph G, and f

is an additive function with element weights {we}e∈E . For simplicity, we sometimes denote
the stochastic matching instance ⟨E, I, f, p⟩ by ⟨G, p⟩ when it is clear from the context.

The aim of a sparsifier for this problem is to query a poly (1/p)-degree subgraph H of G

such that the expected weight of the maximum matching on active edges of H approximates
the optimum value of ⟨G, p⟩. The current state-of-the-art poly (1/p)-degree sparsifier for
the stochastic weighted matching problem achieves a 0.501 approximation ratio due to [8]3.
In this section, we present a new poly(1/p)-degree sparsifier for the stochastic weighted
matching that improves the approximation ratio to 0.536.

Our sparsifier for the stochastic weighted matching problem consists of two phases. In the
first phase, it samples a set of edges QCRS using the generic sparsifier described in Algorithm 1.
In the second phase, we independently select T samples Q1, . . . , QT from the stochastic
optimum oracle Dopt, which is similar to the method used in [8]. This second phase alone
already provides a 0.501 approximation, but by incorporating the edges sampled in the first
phase, we are able to improve the approximation ratio to 0.536. The main result of this
section is presented in the following theorem.

Algorithm 3 Sparsifier for Weighted Stochastic Matching Problem ⟨G, p⟩.

1: Compute the marginals q of the stochastic optimum solution.
2: Add each edge e ∈ E to the set QCRS independently with probability qe

p .
3: Sample Q1, . . . , QT ∼ Dopt independently and add them to QGreedy for T = 1/ϵ8p.
4: Output: Q = QCRS ∪QGreedy.

▶ Theorem 15. Let G = (V, E, w) be a weighted graph and p ∈ (0, 1). If the matching
polytope of G admits an α-balanced contention resolution scheme, then Algorithm 3 is the
(1 − O(ϵ)) · max

{
1
2 ,

(
1+αe2

1+e2

)}
-approximate polynomial time sparsifier for the stochastic

weighted matching problem ⟨G, p⟩ with sparsification degree O(1/ϵ8p).

Our theorem combined with 0.474-balanced CRS for machining polytope from [17] implies
0.536-approximate sparsifier for stochastic weighted matching. Assuming the conjecture from
[20] which states the existence of 0.544 balanced CRS for general matching polytope implies
that Algorithm 3 is ∼ 0.6 approximate.

The proof of Theorem 15 relies on p being small. So, before we prove the theorem, in
Lemma 16, we show that for any ϵ > 0 (constant), without loss of generality we can assume
p ≤ ϵ4. The proof of this part is rather technical and, we defer it to the full version [13] due
to space constraints.

▶ Lemma 16 (Reduction Lemma). If there exists an α-approximate sparsifier with degree d/p

for the class of stochastic weighted matching with p ≤ ϵ4 then there exists an α-approximate
sparsifier for the same problem class and arbitrary p ∈ (0, 1) with sparsification degree d

p·ϵ4 .

For the rest of the section, we assume that p ≤ ϵ4. We first define the set of crucial edges
and non-crucial edges formally in the following definition.

3 Recent work by [6] constructs (1−ϵ)-approximate sparsifier with degree exp(exp(exp(1/ϵ, 1/p))), however,
in this work, we focus on sparsifiers with degree poly(1/p)
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▶ Definition 17. Given ⟨G, p⟩, let qe be the probability of an edge e being in the stochastic
optimum solution. We define crucial edges as C := {e ∈ E : qe ≥ τ(ϵ)} and non-crucial
edges as NC := {e ∈ E : qe < τ(ϵ)} where τ(ϵ) := ϵ3p

20·log 1
ϵ

is the threshold.

Given ⟨G, p⟩ and set of crucial and non-crucial edges C and NC, we let OPTC and
OPTNC be the contributions of crucial and non-crucial edges in the stochastic optimum, i.e.∑

e∈C we · qe and
∑

e∈NC we · qe. Note that

OPT = OPTC + OPTNC .

In order to prove Theorem 15, we provide a procedure to construct a matching M ⊆ Q∩R

such that E
[∑

i∈M we

]
≥ (1−O(ϵ)) ·max

{
1
2 ,

(
1+αe2

1+e2

)}
·OPT. Our procedure constructs

three matchings MC, MNC, MAUG ⊆ R ∩ Q and then picks the matching with the maximum
weight. We construct matchings MC, MNC on the queried active crucial and non-crucial edges
in QGreedy similar to the [8] which satisfies the desired properties described in Lemma 18
and Lemma 19. First, we state that each crucial edge e ∈ C appears in the QGreedy with
probability 1 − ϵ which shows the existence of matching MC ⊆ Q ∩ R ∩ C with expected
weight at least (1− ϵ) ·OPTC.

▶ Lemma 18 (Crucial Edge Lemma [8]). Given a stochastic weighted matching instance ⟨G, p⟩
and QGreedy is the set defined in Algorithm 3, let MC be the maximum weight matching in the
graph QGreedy ∩ C ∩R, then E

[∑
e∈MC

we

]
≥ (1− ϵ) ·OPTC .

Now, following the [8, Lemma 4.7], in Lemma 19, we construct a matching MNC ⊆
R ∩QGreedy ∩ NC on active queried non-crucial edges, such that each e ∈ NC is present in MNC

with probability at least (1 − O(ϵ)) · qe. We further prove an important property of MNC

that states that for any non-crucial edge e ∈ NC, the probability of e ∈MNC can not decrease
when we condition on the events that some of the neighbors of e are inactive4.

▶ Lemma 19 (Non-Crucial Edges). Given a stochastic weighted matching instance ⟨G, p⟩, let
QGreedy be the set defined in Algorithm 3. There exists a matching MNC ⊆ QGreedy ∩ NC ∩R

such that for any non-crucial edge e ∈ NC, Pr[e ∈ MNC] ≥ (1− 12ϵ) · qe. This implies that,
E

[∑
e∈MNC

we

]
≥ (1− 12ϵ) ·OPTNC. Moreover, for any subset S ⊆ N(e) where N(e) is the

set of edges incident to e in graph G, we have

Pr[e ∈MNC | S ∩R = ∅] ≥ (1− 12 · ϵ) · qe. (5)

The proof of the lemma is technically involved and therefore it is delegated to the full
version [13]. Lemma 18 and Lemma 19 together imply that our sparsifier is at least 1/2
approximate.

We note that QCRS is the output of generic sparsifier discussed in Algorithm 1 (Section 3).
Let MCRS := π(QCRS∩R) be the matching constructed by an α-balanced CRS π which ensures
Pr[e ∈ MCRS] ≥ α · qe for all e ∈ E. We refer MCRS as CRS-BaseMatching. Crucially, MCRS

is independent of the edges sampled in QGreedy as well as MNC and MC. Using Independ-
ence between MCRS and MNC, we construct the third matching MAUG on the set of edges
QCRS ∪ (QGreedy ∩ NC) ∪ R. Our augmentation simply adds a non-crucial edge e ∈ MNC to
CRS-BaseMatching if both endpoints of the edge e are unmatched in CRS-BaseMatching.
Algorithm 4 describes our augmentation procedure in detail.

4 We noticed a bug in the proof of a similar lemma presented in [8], further used in [7, 6]. In order to
prove the lemma and the monotonicity property (5), we require slightly different proof techniques.
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Our key observation is that any non-crucial edge e ∈ NC has a small probability of being
sampled in the set QCRS. However, with some non-trivial probability, both endpoints of
the edge e will be unmatched in CRS-BaseMatching. More formally, first we show that
for any non-crucial edge e := (u, v) ∈ NC, both endpoints of e are unmatched in the
CRS-BaseMatching with probability at least 1/e2. The intuition here is that as p ≤ ϵ4, the
number of incident edges on the endpoints of the edge e in the set QCRS are concentrated
around 2/p with high probability. Such a property ensures that if all these incident edges
are inactive, then both endpoints of e are unmatched in CRS-BaseMatching.

Later, we use the property (5) of MNC from Lemma 19 to guarantee that when a non-
crucial edge e /∈ QCRS and both endpoints of e are unmatched in CRS-BaseMatching, we can
guarantee that e ∈ MNC with probability approximately qe. Therefore, we can add such a
non-crucial edge e to CRS-BaseMatching with probability approximately qe

e2 . Combining this
intuition, we prove the following key lemma whose proof is delegated to the full version [13].

▶ Lemma 20. Let MAUG be the output of the procedure described in Algorithm 4 then,

Pr[e ∈MAUG] ≥ qe · α ∀e ∈ C and Pr[e ∈MAUG] ≥ qe ·
(

α + 1−O(ϵ)
e2

)
∀e ∈ NC.

Algorithm 4 Construction of the matching MAUG on Q ∩ R.

1: MNC be the matching on QGreedy ∩R ∩ NC satisfying property of stated Lemma 19.
2: MCRS ← π(QCRS ∩R) be the matching produced by α-balanced truncated CRS.
3: MAUG ←MCRS.
4: ∀e ∈MNC, add e to the matching MAUG if both endpoints of e are unmatched in MAUG.

Combining Lemma 18, Lemma 19 and Lemma 20, we show that the expected weight of
the best matching among MCRS, MNC, and MAUG exhibits the desired approximation ratio. We
complete the proof of Theorem 15 in the full version [13].

6 Additive Optimization over the Intersection of k Matroids

Given our (1 − ϵ)-approximate sparsifier for additive optimization over a single matroid
constraint, a natural question is whether the natural generalization of this algorithm to the
intersection of matroids is (1− ϵ)-approximate. This turns out to not be the case even for
bipartite matching (the intersection of two partition matroids) due to [9]. The main challenge
here is that, unlike for a single matroid, multiple solutions for matroid intersection do not
always “combine” well. In this section, we prove a slightly weaker sparsification result for
additive optimization over the intersection of k matroid constraints, which nevertheless beats
the best known bound of 1/(k + 1) on the correlation gap of k-matroid intersection (see [1]),
and therefore outperforms our generic sparsifier for this problem. The following theorem is
the main result of this section.

▶ Theorem 21. For each ϵ > 0, there is a (1−ϵ)
k+ 1

k+1
-approximate sparsifier of degree

O
(

1
ϵ·p log 1

ϵ

)
for stochastic packing problem ⟨E, I, f, p⟩ when (E, I) is the intersection of k

matroids and f is additive.

Our sparsifier samples Q1, . . . , Qτ independently from stochastic optimum oracle Dopt as a
sparsifier. Similar algorithms with degree poly(1/p) have been considered for the stochastic
matching [8, 7], and were shown to be 0.6568-approximate for the unweighted and 0.501-
approximate for a weighted matching with degree poly(1/p).
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Algorithm 5 Sparsifier for additive optimization over the intersection of k matroid constraints.
Input: ⟨E, I, f, p⟩ with the intersection of k matroids constraints and additive f ; DOPT

Sample Q1, . . . , Qτ ∼ DOPT independently for τ ← 2
ϵp log 2

ϵ ;
Output: Q = ∪τ

i=1Qi.

In order to prove Theorem 21, we provide a procedure for constructing a feasible solution
I ⊆ Q ∩ R such that E[

∑
i∈I we] ≥ (1−ϵ)

k+1/(k+1) OPT. The backbone of our analysis lies in
Lemma 22. As a first step, let S1 and S2 be two independent sets of the same matroid and
R ⊆ E be the (random) set of active elements with parameter p. We propose a procedure
(details in Algorithm 6 in the full version [13]) that swaps active elements from S1, i.e. S1∩R,
with elements of S2 such that each element of S2 is “protected” independently with probability
1− p. Hence, the expected value of updated set S2 is ≥ E[f(S1 ∩R)] + (1− p) · f(S2).

The key intuition here is that the exchange property of matroids allows us to swap
any element e ∈ S1 with a different element f ∈ S2 without violating the feasibility of S2.
Therefore, if e is inactive then e can not swap out f from S2 and hence we “protect” f in
S2 with probability 1− p. However, the main challenge here is after a single swap between
e and f , sets S1 and S2 get updated and f can potentially be swapped with some f ′ ∈ S2.
Our procedure overcomes this challenge by carefully choosing swaps of elements between S1
and S2 while maintaining feasibility.

We extend this idea to when S1 and S2 are two independent sets in the intersection of k

matroids. We run the procedure described in Algorithm 6 in the full version [13] for each
matroid and obtain sets T feasible in the intersection of all matroids such that each element
of S2 is added to T independently with probability (1− p)k. The details of procedure and
proof of Lemma 22 is relegated to the full version of the paper [13]

▶ Lemma 22. Let M1, . . .Mk be matroids with Mℓ = (E, Iℓ), and let I =
⋂k

ℓ=1 Iℓ be their
common independent sets. Let S1 and S2 be in I. Let R ⊆ E include each element of E

independently with probability p. Let T (ℓ) ∈ Iℓ be the output of Algorithm 6 in full version
[13] for matroid Mℓ, for each ℓ ∈ [k]. The set T :=

⋂k
ℓ=1 T (ℓ) satisfies:

1. S1 ∩ S2 ⊆ T with probability 1.
2. T ∈ I with probability 1.
3. (S1 \ S2) ∩R ⊆ T , i.e. Pr[e ∈ T ] = p for all e ∈ S1 \ S2.
4. Pr[f ∈ T ] ≥ (1− p)k for all f ∈ S2 \ S1

We utilize the above lemma and propose a procedure to construct a feasible set I ⊆ Q∩R.
At a high level, our procedure iteratively observes active elements in the set Qi and swaps
elements in Qi+1, . . . , Qn by Qi ∩ R using Lemma 22. To this end, Lemma 22 ensures
that each element in Qj for j > i is not swapped (“protected”) with probability at least
(1−p). Using this argument inductively, we prove the following lemma that lower bounds the
probability of selecting each element e ∈ Q whose proof is in the full version [13]. We then
use the lemma and carefully analyze the probability of each element e ∈ E in the constructed
set I ⊆ R ∩Q to conclude the proof of Theorem 21.

▶ Lemma 23. Let I∗ = I(τ) be the output of Algorithm 7 in full version [13]. For any
e ∈ E, we have

Pr[e ∈ I∗ | e ∈ Qi \ ∪i−1
ℓ=1Qi] ≥ p · (1− p)k(i−1)
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7 Open Questions

We believe that our results portend a deeper connection between the sparsification and
contention resolution. The results of Section 3 show that contention resolution serves to
lower-bound the sparsification ratio. We ask whether the connection goes both ways. In
particular, does the existence of a c-sparsifier of degree 1/p imply a contention resolution
scheme with balance c? This is intimated by Proposition 5. Does the existence of a
c-sparsifier of degree poly(1/p) imply a contention resolution scheme with balance Ω(c)
(or some other expression involving c and the degree)? Formalizing a tighter connection
between sparsification and contention resolution (equivalently, the correlation gap) might
lead to new structural and computational insights for the latter.
In Section 4, we show that a greedy sparsifier 1 − ϵ approximate with degree O(1/p)
for additive optimization subject to a matroid constraint. We conjecture that a similar
greedy sparsifier exists for the intersection of k matroids, obtaining a 1−ϵ

k -approximation
with degree O(1/p). A similar greedy sparsifier, albeit with degree O(1/p1/ϵ), was shown
to be 1/2-approximate for the special case of unweighted bipartite matching in [9].
Our results in Section 5 improve the state of the art sparsifier for weighted (non-bipartite)
matching in the polynomial degree regime. Moreover, since our approximation guarantee
is a function of the correlation gap, progress on the correlation gap of the matching
polytope will lead to further improved sparsifiers. Finding the best possible sparsification
ratio in the polynomial degree regime remains open, however, with 1− ϵ still on the table.
Beyond polynomial degree, a 1− ϵ approximate sparsifier with degree exp(exp(exp(1/p)))
was already shown by [6].
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