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Abstract
Single-hop radio networks (SHRN) are a well studied abstraction of communication over a wireless
channel. In this model, in every round, each of the n participating parties may decide to broadcast
a message to all the others, potentially causing collisions. We consider the SHRN model in the
presence of stochastic message drops (i.e., erasures), where in every round, the message received by
each party is erased (replaced by ⊥) with some small constant probability, independently.

Our main result is a constant rate coding scheme, allowing one to run protocols designed to work
over the (noiseless) SHRN model over the SHRN model with erasures. Our scheme converts any
protocol Π of length at most exponential in n over the SHRN model to a protocol Π′ that is resilient
to constant fraction of erasures and has length linear in the length of Π.

We mention that for the special case where the protocol Π is non-adaptive, i.e., the order of
communication is fixed in advance, such a scheme was known. Nevertheless, adaptivity is widely
used and is known to hugely boost the power of wireless channels, which makes handling the general
case of adaptive protocols Π both important and more challenging. Indeed, to the best of our
knowledge, our result is the first constant rate scheme that converts adaptive protocols to noise
resilient ones in any multi-party model.
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1 Introduction

Over the last decades, wireless communication found many applications and has transformed
technology. On the theoretical side, wireless systems were studied by numerous works, many
of which consider the single-hop radio networks (SHRN) model of Chlamtac and Kutten [7],
which abstracts a simple broadcast channel.

The classical model of SHRN assumes that the communication is noiseless, guaranteeing
that (if no “collisions” occur) the message broadcast in a round will be received correctly
by all the parties. In contrast, recently, Censor-Hillel, Haeupler, Hershkowitz, and Zuzic [6],
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initiated the study of the radio networks model under stochastic message drops (a.k.a,
stochastic erasures). In their model, each party only gets the message that was broadcast
with probability 1 − ϵ, independently, for some small constant ϵ. Otherwise, the round
is “erased” for this party, meaning that it is received as a silent round, as if nothing was
broadcast.

While the (noiseless) radio networks model is, by now, mostly well understood, and while
noise is inherent in almost all communication systems, the relative power of noisy radio
networks is far less explored. In this work we study the power of the SHRN model under the
message drop noise of [6].

1.1 Our Result
Our main result is that the model of SHRN with message drops is as powerful as that of
(noiseless) SHRN, in the sense that any protocol that was designed to work over the latter
can be made to work over the former with a small overhead to the communication. An
informal statement of our main result is in Theorem 1 (see Theorem 2 for a formal statement,
the assumed model is discussed next).

▶ Theorem 1. Let n ∈ N be the number of participants, ϵ ∈ (0, 1) be the noise rate, and Γ
be a non-empty alphabet set. For any protocol Π of length T ≤ 2n over the (n, Γ)-broadcast
channel, there is a protocol Π′ with O(T ) rounds over the (n, ϵ, Γ)-noisy broadcast channel
that simulates1 Π, and errs with probability polynomially small in T .

We mention that our scheme works for protocols of length T ≤ 2n, as, if T is much larger
than 2n, there will be rounds where the messages received by all parties are erased (see
Section 2.4). We also mention that our scheme uses a combinatorial building block called a
tree code (see Section 2.2), and like other works that use tree codes, it is not computationally
efficient, as no efficient tree code construction is known. Whether or not longer protocols can
be handled with constant rate, and whether computationally efficient schemes are possible,
are two intriguing questions we leave open.

The collision-as-silence-as-erasures SHRN model

We next overview the noise model of [6] used by Theorem 1 (for formal definitions, see
Section 3): A protocol over the (n, ϵ, Γ)-noisy broadcast channel is a communication protocol
between n communicating parties that proceeds in synchronous rounds. In each round, each
party can decide to either broadcast a symbol from Γ or stay silent. If more than one party
broadcasts in a given round (a collision), or none of the parties broadcast (a silent round),
then the “⊥” symbol is received by all the parties2. Otherwise, exactly one of the parties
broadcasts a symbol, and each party receives the broadcast symbol with probability 1− ϵ,
and ⊥ with probability ϵ, independently3. A protocol over the (n, Γ)-broadcast channel is a
protocol over the (n, 0, Γ)-noisy broadcast channel, i.e., one where erasures do not occur.

1 By “Π′ that simulates Π”, we mean that a transcript for Π can be retrieved from a transcript for Π′,
see Theorem 2.

2 The name collision-as-silence is because the same ⊥ symbol is received in both collision and silent
rounds. This model is, perhaps, the most common model in the literature. Another very popular model
is the collision detection model, where collision and silence are perceived as different symbols. Theorem 1
is stated for the collision-as-silence model, but applies to the collision detection model as well.

3 Modeling erasures as the same symbol as collisions/silences only makes our result stronger. As explained
in Section 2.3, this makes our erasure model closer to the corruption model.
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1.2 Corruption Noise and Adaptivity
The corruption noise model

One of the original motivations for our work was exploring the power of the SHRN model
under stochastic corruption noise, a noise model that received quite a bit of attention over
the last few years (see, e.g., [10, 11]). In this model, in every round, each party receives
the correct symbol output by the channel with probability 1 − ϵ, and receives one of the
other symbols with probability ϵ, independently4. Observe that protecting protocols against
corruptions is at least as hard as protecting them against message drops.

Adaptivity and the [10] scheme

An encouraging piece of evidence, indicating that it may be possible to make SHRN protocols
resilient to corruption noise with small overhead, was recently given by Efremenko, Kol, and
Saxena [10], who designed such a scheme for a restricted set of protocols called non-adaptive
protocols. Still, our initial belief was that such a scheme is impossible in the general case of
adaptive protocols.

Non-adaptive (a.k.a, oblivious or static) protocols are a restricted set of protocols where
it is known ahead of time which party broadcasts in what round, while adaptive protocols
allow the parties to decide whether or not they wish to broadcast at a given round based on
their input and their received transcript up until the current round.

While non-adaptive protocols are useful, they do not fully utilize the power of the
wireless channel, and communication-efficient protocols for some central problems are, in fact,
adaptive (e.g., the celebrated Decay protocol for computing the size of a network [3]). This
additional power of adaptive protocols is what makes their conversion to noise-resilient ones
more challenging, and, indeed, the [10] scheme may fail when applied to adaptive protocols Π.

When starting this project, we identified two inherent reasons (see Section 2.1) for the
failure of [10] when applied to adaptive protocols and hoped to show that these must lead to
a blowup of Ω̃(log n) in the communication. As most interactive coding lower bounds for
multi-party protocols also extend to the message drop model (e.g., [4, 11]), as a first step, we
attempted to convince ourselves that no constant rate simulation scheme exists even for the
SHRN model with message drop noise.

To our surprise, we were able to overcome both problems in the message drop model
and design a scheme that also works for adaptive protocols. As far as we know, the scheme
converting noiseless to noise-resilient protocols we construct in our proof of Theorem 1 is the
first constant overhead scheme that handles adaptive protocols in any multi-party setting.

We are still very interested in the more general question of making SHRN protocols
resilient to corruption noise, as we believe it is a basic and “clean” coding question. Our
result can be interpreted as saying that (at least for protocols that are not extremely long)
either a high-rate scheme is possible or a novel lower bound approach is required.

1.3 Related Work
Interactive coding. Interactive error correcting codes encode interactive communication

protocols designed to work over noiseless channels to protocols that also work over noisy
channels. The study of interactive codes was initiated by a seminal paper of Schulman [25]

4 Care needs to be taken while defining an error model for corruptions, as some definitions may allow for
signaling-based protocols [20].
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that considered two-party protocols, which was also the topic of many follow-up works.
Interactive codes for multi-party distributed channels received quite a bit of attention over
the last few years. These include codes for peer-to-peer channels [24, 21, 20, 1, 4, 16, 17]
and codes for various wireless channels [5, 10, 6, 11, 12, 2, 8].

Coding for wireless systems. The models of wireless communication considered in the con-
text of noise-resilience differ on a few axes. The first axis is the adaptivity of the simulation
protocol: in some papers the target simulation protocol is allowed to be adaptive and
in others it must be non-adaptive. (Of course, if the noiseless protocols considered are
adaptive, the simulation needs to be adaptive. However, simulations of non-adaptive
noiseless protocols by adaptive noise-resilient protocols have been considered). The
second axis is whether single or multi-hop networks are considered. Finally, the last
axis is whether the noise is modeled as stochastic erasures (message drops) or stochastic
corruptions (change of symbols).

Non-adaptive simulations. The study of noise in wireless systems can be traced back to [14]
that answered an open problem of [15] by giving an O(n log log n) length communication
protocol for the bit exchange problem (all n parties have an input bit and all parties want
to know the input of all the other parties). The underlying model was the noisy broadcast
channel, which is a non-adaptive, single-hop model with corruption errors. A matching
lower bound for this problem was later given by [18]. The communication complexity of
other specific n-bit functions, like the OR, majority, and parity functions, were studied
under related models by [27, 22, 13, 23, 18]. The non-adaptive single-hop model was
studied under erasure noise by [19], where an O(n log∗ n) protocol is given for the bit
exchange problem, breaking the Ω(n log log n) lower bound proved for corruption errors.
The general case of simulating any non-adaptive protocol by an noise resilient non-
adaptive protocol was very recently studied by [9]. Their main result is that, for protocols
of length polynomial in n, such a simulation requires Θ̃(

√
log n) multiplicative overhead

in the communication complexity.
Adaptive simulations. The work of [10] gave a scheme for converting any non-adaptive

noiseless protocol to an adaptive noise-resilient one with only a constant multiplicative
overhead, over a single-hop network with corruption errors (in particular, implying an
adaptive noise-resilient bit exchange protocol with O(n) communication).

Multi-hop radio networks. The work of [10] (and our current work) consider the setting
where the parties are connected in a clique (a single-hop network), as it is assumed that
when a party transmits, all other parties can hear the transmission. As mentioned above,
this topology is the single most extensively studied, as it represents the simplest broadcast
channel. However, wireless systems can have arbitrary topologies.
In contrast to [10], in [11] it is shown that such a scheme is impossible over general
multi-hop networks, where each of the n communicating parties is associated with a node
in the graph, and when a party broadcasts, its message is only received by its neighbors
in the graph (if there are no collisions). Specifically, [11] shows that in some networks, the
cost of noise-resilience is Ω(log n), even for simulating non-adaptive protocols by adaptive
protocols. A matching O(log n)-overhead scheme for converting any noiseless protocol to
a noise resilient one over any network is also given by [11].
The recent work of [6], considered general radio networks under message drop noise.
They show that any protocol over any network can be converted to a noise resilient
one with a multiplicative O(∆ log2 ∆) overhead to the communication, where ∆ is the
maximum degree of a node in the network. For the special case in which the noiseless
protocol we wish to convert is non-adaptive, a scheme with an improved overhead of
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poly(log ∆, log log n) is shown [6]. For networks with small ∆, this implies an efficient
simulation of noiseless protocols. However, for networks with large ∆, the [6] simulation
can have a huge overhead. This is not for no reason, as the Ω(log n) lower bound of [11]
mentioned above also applies to the message drop noise and implies that there exist
network topologies with large ∆ for which an Ω(log ∆) overhead is necessary. Our result
shows for the important single-hop topology, these communication overheads can be
avoided altogether.

2 Proof Sketch

In this section, we give a detailed sketch of our protocol.
As mentioned in Section 1.2, one of the main motivations for our work was studying the

rate of interactive codes over the SHRN model with corruptions. The restricted case where
the protocol Π to be simulated is non-adaptive was studied by [10], but their scheme fails for
adaptive protocols. We next explain the inherent reasons for this failure and then outline
our solutions for erasure noise.

2.1 The [10] Scheme
The rewind-if-error framework

The [10] scheme utilizes the rewind-if-error framework, which was initially designed for the
two-party setting [25]. Rewind-if-error coding schemes consist of many iterations, where each
iteration consists of two phases: a simulation phase, where a small number of rounds of the
noiseless protocol Π are executed, and a consistency check phase where the parties attempt
to check if they have the same received transcript or whether an error occurred (e.g., by
comparing hashes of their received transcripts). If the check phase passes, parties continue
the simulation, otherwise they rewind and re-simulate the last few rounds.

A careful examination of the [10] scheme shows that it breaks down when applied to
adaptive protocols for the following two fundamental reasons:
Repeated rewinds. The first problem is that with noise rate ϵ, we should expect about ϵn

parties to experience message drops in every round of the simulation phase. Since ϵ is
constant, ϵn≫ 1. This implies that the consistency check phase will almost always fail
and trigger a rewind, and no progress will ever be made. This situation can be trivially
corrected by repeating each broadcast symbol O(log n) times, and thereby effectively
reducing the noise rate to less than 1

n . However, this is unaffordable for a constant
overhead simulation.
We note that this repeated rewinds problem is avoided by [10] as, although the total
number of parties n is large, the assumed non-adaptivity of Π can be used to determine a
small subset S of parties that critically need to know the simulated transcript. These are
the parties that will broadcast in the rounds immediately following the current one. The
remaining parties broadcast later in the future and therefore have more time to decode
the symbol broadcast in the current round. Then, [10] show that it is enough to make
sure that parties in S are not experiencing message drops, which helps reduce overhead
down to a constant. Since in the adaptive case, it is possible that any of the n parties
broadcasts next, this approach cannot be implemented.

Message certification. An even bigger problem we encounter when attempting to run the [10]
scheme on adaptive protocols is that it crucially uses the fact that the symbol received
from the channel in every round can be certified by at least one of the parties: Since Π is
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assumed to be non-adaptive, it can also be assumed that a single party broadcasts in
every round (collisions and silences can be eliminated ahead of time). Furthermore, this
party (and all other parties) knows that it is the only one to broadcast. Therefore, if
party i broadcast the symbol σ in round t of Π and some claimed transcript of Π has a
symbol different from σ in round t, party i can “object” to this transcript to trigger a
rewind.
The adaptive setting is different though. Consider, for example, the case where Π is
adaptive and in some rounds has multiple parties broadcasting simultaneously, causing a
collision. We call such collisions intended collisions. Suppose, however, that in round t,
party i was the only one to broadcast, but the claimed transcript for Π has ⊥ in round t.
Since party i may no longer know that it is the only one to broadcast in this round, it
may deem it possible that others have broadcast as well, leading to an intended collision,
and thus will not object. The other, silent, parties may not object either as they may
think that this is a collision or a silent round.

2.2 Avoiding The Repeated Rewinds Problem

A protocol Π exhibiting repeated rewinds

To explain how our scheme handles the first (and easier) repeated rewinds problem described
above, consider the following protocol Π that exhibits it (the second, message certification
problem, does not occur): The protocol is played over an underlying complete binary tree
of depth T < 2n. Each of the n parties gets as input, one symbol bv ∈ {0, 1, ⋆} for each
vertex v in the tree, where the inputs are sampled as follows: First, we select one of the
root-to-leaf paths in the tree uniformly at random and call it the “correct path”. We assign
each of the vertices v on this path to exactly one of the n parties uniformly at random. Here,
by “assigning vertex v to party i” we mean that party i gets a bit bv ∈ {0, 1} for vertex v. If
vertex v is not assigned to party i, party i gets bv = ⋆. Additionally, each of the vertices v

outside this path is assigned to many parties, say, to a set of n
2 parties selected uniformly at

random.
In the noiseless protocol Π, all parties start from the root of the tree, and, upon reaching

node v, a party that was not assigned v (has bv = ⋆) stays silent, and a party that was
assigned v broadcasts its bit bv. Since each of the vertices on the correct path was assigned
to exactly one party, exactly one party broadcasts a bit, and all parties then progress to the
child of v indicated by this bit (that is, if 0 is broadcast they update v to be the left child of
v, otherwise to the right child). This is done until a leaf is reached, which is also the output
of the protocol.

Observe that since on every vertex of the correct path a single party broadcasts (and
the parties know that this is the case), the message certification problem does not occur.
However, since any of the n parties may potentially be the one to broadcast in the next
round, the repeated rewinds problem occurs.

The play-it-safe simulation scheme

To avoid repeated rewinds in our simulation of Π, we make sure that parties never go off
the correct path (i.e., no party ever reaches a vertex v that is not on the correct path) by
guaranteeing that the parties never broadcast when it is not their turn to broadcast. To this
end, our policy for the parties is that they always play it safe and never broadcast unless
they know the entire transcript so far.
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Of course, it may be the case that the received transcript of the party who should
broadcast next contains erasures, causing it to refrain from broadcasting. Since no other
party broadcasts, this will be a silent round and all parties will receive ⊥. Upon receiving ⊥,
parties do not update their current node v in the tree. Thus, no progress is made in this
round, where progress is measured as the number of steps taken on the correct path (the
depth of v in the tree). Note, however, that indeed in this protocol parties never go off the
correct path.

To allow progress to resume, we need to ensure that the erasures in the transcript of the
party that should broadcast next are resolved (hopefully, within a few rounds). To this end,
we pick one of the parties (say, the first party) to be the leader. After every communication
round, this leader re-broadcasts the symbol it received from the channel on a tree code
[26]. A tree code is essentially an error correcting code that can be computed “online” and
ensures that the messages sent until round t will eventually be decoded correctly, where the
probability of correct decoding greatly increases with the number of rounds that have passed
since round t. Thus, parties that suffer an erasure will be able to recover the missing symbol
over the next few iterations by observing what was received from the leader on the tree code.
This means that, while progress may pause, it will resume within a few rounds.

2.3 Avoiding The Message Certification Problem
A harder-to-simulate protocol Π

Now let us address the second (and more severe) problem of message certification. Observe
that in our simulation of the above protocol Π we did not encounter this problem. The
reason is that on every vertex on the correct path a single party is scheduled to broadcast.
We now consider the more general case where some of the vertices on the correct path are
given to more than one party. For concreteness, say that a quarter of the vertices v on the
correct path are given to exactly 2 parties, and an additional quarter is given to n

2 parties
(that is, in total, there is an intended collision on half of the vertices on the correct path).
Additionally, assume that the underlying tree is ternary (instead of binary), and the children
of every non-leaf vertex are labeled by {0, 1,⊥}. In a case of an intended collision, the ⊥
child of the current vertex should be taken.

Erasures can cause errors

Observe that the play-it-safe simulation protocol we had before has to change: When
designing it, we assumed that there are no collisions on the correct path, thus progress was
paused when a ⊥ symbol was received (that is, the parties did not update their current
vertex v in the tree). As intended collisions are now possible, we ask that, upon receiving ⊥,
the parties update v to the ⊥ child of v.

Observe however, that since the parties are unable to differentiate intended collisions
from erasures, as both are received as ⊥, they may go off the correct path and will need to
eventually detect the error and rewind. We note that working in the erasure model typically
means that a party that does not have the correct transcript knows that it does not have the
correct transcript. However, as is evident here, this reasoning does not apply to our erasure
model. In this sense, our model is closer to the corruptions model than other erasure models.

In our simulation, parties can go off the correct path in round t if the party that was
supposed to broadcast in round t (say party i) did not do so as it did not know the full
transcript so far. By not broadcasting, party i potentially converts the output of the channel
in round t from a bit to ⊥ (this happens when party i was supposed to be the only one
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to broadcast) or from ⊥ to a bit (this happens when one additional party was supposed
to broadcast). Recall that, owing to the usage of a tree code, party i eventually learns the
complete transcript until the missed round t. When this happens, we can have party i object
in the next consistency check in order to trigger a rewind. However, because the rate of
erasures is constant and parties broadcast very often (recall that a quarter of the vertices on
the correct path are given to n

2 parties), there are likely to be too many missed rounds and
such objections will once again cause repeated rewinds.

Critical parties

To implement a rewind-if-error mechanism without repeated rewinds, we observe that rewinds
are required only when the output symbol was changed due to party i (a party that was
scheduled to broadcast in round t) not broadcasting in round t. Note that this only happens
if the output symbol in round t is not a collision. In this case, we say that party i is critical5
for round t. We use the policy that party i only objects to round t if it is critical to round t6.
Note that this policy does not cause repeated rewinds: if many parties were supposed to
broadcast in round t, none of them is critical (this round will be a collision round even if one
of these parties will not broadcast). Otherwise, if few parties were supposed to broadcast
in round t, then there is a good chance that round t is not erased in any of the received
transcripts of these parties.

Collision-not-as-silence

To be able to implement the policy, party i needs to know if it was critical to the round t that
it missed. Observe that if round t was a collision round even without party i broadcasting,
then party i is not critical for round t, and no rewind is necessary. It is not hard to see that
this is in fact the only case where a party who missed a round is not critical for this round.
This means that testing criticality boils down to the ability to differentiate a collision round
from a silent round.

To differentiate collision rounds from silent rounds, we use a known radio networks
collision detection trick. Assume for the purposes of this sketch that there is some player,
say the leader, that is known to not broadcast in this round7. We “run” the round twice,
once in a black-box way (without the leader broadcasting), and once again while having the
leader broadcast. If the round was a silent round, then the parties receive a ⊥ in the first
run, and a bit (non-⊥ symbol) in the second, while if the round was a collision, they will
receive ⊥ in both the runs. As they receive a different combination of symbols, they can
distinguish between collisions and silences8. Note that the argument above assumes sender
collision-detection, i.e., the parties that are transmitting also receive a symbol in that round.
However, this assumption is not needed, see Footnote 10 and Remark 3.

5 We mention that this definition differs slightly from the technical sections, but implements a similar
idea.

6 Observe that a priori, it is not clear if the parties know they are critical. We deal with this later in this
section. We also note that the notion of critical parties does not appear in the algorithm description
and is used only in the analysis.

7 This assumption can easily be removed by, e.g, running the round an extra time where only the leader
will broadcast.

8 We note that noise can erase the symbol broadcast by the leader in the second run and effectively erase
a silence out to look like a collision. We distinguish between these and regular collisions using the
method described in Section 2.4.
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2.4 Erasures To And From The Leader
Recall from Section 2.2 that after every round the leader re-transmits the symbol that it
received from the channel in this round. We next discuss issues that can arise when the
communication to/from the leader is erased.

Erasures to the leader

Consider the case where the true output of the channel in a given round is a bit, but the leader
receives ⊥ due to an erasure (re-transmitting this ⊥ may cause the execution of the protocol
to go off the correct path). However, since erasures are assumed to happen independently,
then with probability exponentially small in n, at least one of the other parties receives
the erased bit and can object in the next consistency check to trigger a rewind. Using the
assumption that the length of the protocol is at most exponential in n, we get that all such
leader errors will be corrected with high probability. We mention that this is the only place
in our proof where we use the bound on the length of the protocol.

Erasures from the leader: Collision-as-silence-not-as-erasures

Now consider the situation where the leader receives a bit and re-transmits it, but, due to
erasures, some parties receive a ⊥. By updating their current node v using this ⊥, these
parties may fall off the correct path. As mentioned in Section 2.3, this type of error occurs
as the channel does not distinguish between erasures and collisions/silences.

To circumvent this problem, we convert our collision-as-silence-as-erasures channel to a
collision-as-silence-not-as-erasures channel. This is done by having the leader broadcast a
special symbol9 other than 0, 1, and ⊥, in the case it receives ⊥. As the other parties know
that the leader never broadcasts ⊥, they can deduce that any ⊥ they may receive from it is
due to an erasure. On the other hand, if they receive the special symbol, they can conclude
that the round is a collision/silence.

2.5 Implementing Check Phases
The simulation scheme we discuss so far is in the rewind-if-error framework. In this sketch
we attempted to show that whenever the parties go off the correct path due to erasures, at
least one of the parties is able to detect the problem and object in the next check phase.

To implement a check phase, we ask parties that wish to object to broadcast a bit (say, 1),
and ask all other parties to keep silent. Then, the collision detection subroutine described
above allows the parties to tell whether 0, 1, or more than 1 parties were broadcasting, and
thus also allows them to tell whether there exists an objecting party and a rewind should
take place.

3 The Model

In this paper, we study the broadcast channel with random erasures, assuming the collision-
as-silence-as-erasures model. To define the model and throughout this paper, we will use the
following notation. For a string s, we shall use |s| to denote the length of s. For i ∈ [|s|],
let si denote the ith coordinate of s and s<i, s≤i denote the prefix of the first i − 1 and i

9 The actual proof does not require an additional symbol. Rather, we encode every symbol by two
symbols.
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coordinates of s, respectively. For two strings s, t over the same alphabet, denote by ∆(s, t)
the Hamming distance between s and t, by LCP(s, t) the longest common prefix of the strings
s and t, and by s∥t the concatenation of s and t.

The (n, ϵ, Γ)-noisy broadcast channel is defined by a number n ≥ 0 of parties, an error
parameter ϵ > 0, and an alphabet set Γ satisfying |Γ| > 1. We shall refer to player 1 as the
leader Ld, use ⊥ to denote a special symbol not in Γ (this symbol will represent collisions,
silences, and deletions), and define Γc = Γ∪{⊥}. We also define the (n, Γ)-broadcast channel
to be the noiseless version of this channel, i.e., when ϵ = 0.

Definition of a protocol

A (deterministic) protocol Π over the (n, ϵ, Γ)-noisy broadcast channel is defined as:

Π =
(

T,
{
X i

}
i∈[n],Y,

{
M i

j

}
i∈[n],j∈[T ], out

)
. (1)

Here, T = ∥Π∥ is the number of rounds (or the length) of the protocol, X i is the input space
for player i, Y is the output space of the protocol, M i

j : X i × Γj−1
c → Γc is the function

player i uses to determine what message to send in round j, and out : ΓT
c → Y is the function

the leader uses to determine the output from its received transcript. As usual, we define a
randomized protocol to be a distribution over (deterministic) protocols.

Execution of a protocol

The protocol Π starts with all players i ∈ [n] having an input xi ∈ X i and proceeds in T

rounds, maintaining the invariant that before round j, for all j ∈ [T ], all players i have a
transcript πi

<j ∈ Γj−1
c . In round j, player i broadcasts zi = M i

j

(
xi, πi

<j

)
∈ Γc. Define the

function:

combine
(
z1, · · · , zn

)
=

{
zi, if ∃ unique i ∈ [n] such that zi ̸= ⊥
⊥, otherwise

. (2)

Now, the symbol πi
j received by player i in round j equals combine

(
z1, · · · , zn

)
, with

probability 1− ϵ, and equals ⊥, with probability ϵ, independently for all i ∈ [n] and j ∈ [T ].10

In the latter case, we say the message to player i in round j was erased by the noise. Player
i appends πi

j to πi
<j to get a transcript πi

≤j and continues the execution of the protocol.
After T rounds, the leader outputs ΠLd(X) = out(πLd

≤T ) ∈ Y. (Note that using only
O(max{T, log n}) additional transmissions, the leader can communicate the output to all
the other parties in a reliable manner by encoding with a standard error correcting code.)
We shall sometimes omit Ld when the channel is noiseless, as in this case, all the players
receive the same transcript and can compute the output.

4 Our Simulation Protocol

We formalize Theorem 1 as Theorem 2 (below). (Note that by having the parties repeat
every round of the original protocol Π constantly many times and taking the majority of the
outputs, we get the channel noise rate to be smaller than 10−10).

10 We remark that in the literature (e.g., [6]), the broadcast channel (single-hop radio networks) is often
defined such that a player that broadcasts a symbol (other than ⊥) in a round does not receive any
symbol from the channel in that round (in other words, there is no sender collision-detection). However,
for simplicity of presentation, in this paper we assume this stronger model. We explain how to make
our protocol work with no sender collision-detection in Remark 3.
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▶ Theorem 2 (Formal Version of Theorem 1). There exists a constant C such that the following
holds: Fix ϵ = 10−10, n > 0, an alphabet set Γ satisfying |Γ| > 1. For any protocol Π of
length T ≤ 2n in the (n, Γ)-broadcast channel, there is a protocol Π′ over the (n, ϵ, Γ)-noisy
broadcast channel, with ∥Π′∥ ≤ CT , and such that for all inputs X =

(
x1, x2, · · · , xn

)
for

the players, we have:

Pr
(
Π′Ld(X) ̸= Π(X)

)
≤ 2− min(n,T ),

where the probability is over the noise in the channel.

We note that when n is small, so is T , so Π can be simulated by simply repeating each
round sufficiently many times. As such, without loss of generality, we may assume that n is
large.

The proof of Theorem 2 spans the rest of this paper. In this section we give the simulation
protocol Π′, and in Appendix B we give its analysis.

Let n, ϵ, Γ be as in the theorem statement and assume without loss of generality that
Γ = [|Γ|]. Fix a protocol Π. Observe that fixing Π also fixes T,

{
X i

}
i∈[n],

{
M i

j

}
i∈[n],j∈[T ],

etc. as in Equation (1). As a randomized protocol is simply a distribution over deterministic
protocols, we can assume without loss of generality, that the protocol Π is deterministic. We
also assume without loss of generality that the output of Π is just its transcript. In order to
define the protocol Π′, we first set up some notation.

Protocol notation

Define the sets PLd = [n] (all parties including the leader), and P = {2, 3, . . . , n} (all parties
excluding the leader).

As motivated in Section 2, our protocol shall implicitly implement a collision detection
model, having two separate symbols for collisions and silences. We shall use a special symbol
⊥C /∈ Γ to denote a collision and ⊥S /∈ Γ to denote a silence. Define Γcs = Γ ∪ {⊥C ,⊥S}.

Additionally let R /∈ Γ be a special symbol indicating that the leader wants to rewind a
round, and denote by Γcsr = Γcs ∪{R}. We shall treat both ⊥C and ⊥S as ⊥ in our protocol,
and output a string in ΓT

cs. We also redefine the message functions, M i
j , to take inputs from

Γj−1
cs instead of Γj−1

c , treating both ⊥C and ⊥S as ⊥, e.g., M i
j(xi,⊥C∥⊥S) = M i

j(xi,⊥∥⊥).
For simplicity, we shall pad the protocol Π with ⊥ infinitely many times and correspondingly
define, for all i ∈ [n], j > T , the value M i

j(·, ·) = ⊥.
Our protocol will use a (Γcsr, Γ, RTC, 0.4)-tree code TC, where RTC ≥ max

(
105, 10R

)
is a

sufficiently large constant and R is as promised by Theorem 5. This tree code will only be
written to by the leader, and will be used to log the leader’s simulated transcript. In our
protocol, when we say the leader writes s ∈ Γcsr to the tree code, we mean that it computes
and broadcasts TC(ρ∥s), where ρ is the string of all the symbols it wrote to the tree code
before the current s. We shall also use D-TC to denote the tree code decoding function from
Definition 6.

We give a formal description of our protocol Π′ in Algorithm 1.

▶ Remark 3. Recall from Footnote 10 that we are assuming a broadcast model with sender
collision-detection. In other words, we assume that players that are talking (broadcasting
a symbol other than ⊥) also receive an output symbol from the channel. We next claim
that our simulation protocol Π′ can be made to work over the channel with no sender
collision-detection, that is, when only players that listen (broadcast ⊥), get the output
symbol from the channel.
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Algorithm 1 The simulation protocol Π′.

Input: Each party i ∈ PLd holds an input xi ∈ X i.
Output: The leader outputs π ∈ ΓT

cs, that represents a transcript for Π.
1: for t ∈

[
105T

]
do

2: Each player i ∈ PLd runs parse on τ i to get output
(
πi, ri

)
, where:

τ i, for i ∈ P , is the concatenation of all messages received by player i at Line 8 up
to this point (possibly none).
τLd is the concatenation of all messages broadcast (as opposed to received) by the
leader at Line 8 up to this point (possibly none).

3: Each player i ∈ PLd computes zi ←M i
|πi|+1

(
xi, πi

)
. Set zi ← ⊥ if πi = fail.

4: The parties run detect-collisions, using zi as the input for player i ∈ P.
Let wi be the output for player i ∈ PLd.

5: The leader represents wLd ∈ Γcs as an element of Γ4 and broadcasts it in 4 rounds.
Let w̃i be the symbol decoded by player i ∈ P , or ⊥ if the player fails to decode.

6: Each player i ∈ P sets a flag ei ∈ {1,⊥} as follows:

ei ←

{
1, if ri = true or w̃i = ⊥C ̸= wi

⊥, otherwise
.

7: The parties run detect-collisions, using ei as the input for player i ∈ P.
Let eLd be the output for the leader.

8: The leader writes sLd ∈ Γcsr to the tree code, where

sLd ←


R, if eLd ̸= ⊥S

wLd, else if zLd = ⊥
zLd, else if wLd = ⊥S

⊥C , otherwise

.

9: end for
10: The leader runs parse on τLd to get output

(
πLd, rLd)

, where τLd is as in Line 2. The
leader then outputs πLd

≤T .

Algorithm 2 Algorithm detect-collisions, that distinguishes between collisions and silence.

Input: Each player i ∈ P has a symbol zi ∈ Γc that it wishes to broadcast in this round.
Output: Each player i ∈ PLd outputs a guess wi ∈ Γcs for the combined symbol.
11: In one round of communication, each player i ∈ P broadcasts zi and the leader broad-

casts ⊥.
Let ui be the symbol heard by player i ∈ PLd.

12: In one round of communication, each player i ∈ P broadcasts zi and leader broadcasts 1.
Let ui be the symbol heard by player i ∈ PLd.

13: Each player i ∈ PLd returns wi, where

wi ←


ui, if ui ̸= ⊥
⊥S , else if ui ̸= ⊥
⊥C , otherwise

.
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Algorithm 3 Algorithm parse, run locally by a player i ∈ PLd to decode and parse the tree code.

Input: Player i has τ ∈ Γ∗
c , its view of the symbols encoded over the tree code.

Output: Player i outputs a transcript π ∈ Γ∗
c or fail if it failed to decode the tree code, and

a rewind flag r ∈ {true, false} which is true if the player found a problem with π.
14: Initialize π to be the empty string, ℓ←∞.
15: Let ρ← D-TC(τ).
16: If ρ = fail, terminate and return (fail, false).
17: for k ∈ [|ρ|] do
18: if ρk = R then
19: π ← π<|π|.
20: if |π| < ℓ then
21: ℓ←∞.
22: end if
23: else
24: π ← π∥ρk.
25: if D-TC

(
τ≤(k−1)RTC

)
= fail and M i

|π|
(
xi, π<|π|

)
̸= ⊥ and ρk ̸= ⊥C then

26: ℓ← min(ℓ, |π|).
27: end if
28: end if
29: end for
30: Return (π, ℓ ̸=∞).

There are two sources of problems if we assume no sender collision-detection. The first
is that players i ∈ P are expected to get their own wi at Line 4, which they use to detect
erasures experienced by the leader (compute ei in Line 6). However, as erasures are one-sided,
if at least two different players i ̸= i′ ∈ P talk in the same round, the leader and all listening
players will receive the correct symbol, i.e., ⊥C , as the value of wi. As such, if an erasure
causes the leader to get an incorrect wLd, there is at most one player i ∈ P who is talking.
Thus, almost all players in P are listening, so they will have their own wi, and this erasure
is likely to be detected.

The second issue that arises is that the leader is expected to both talk and listen at
Line 12. Recall that the purpose of algorithm detect-collisions is to run a round of the original
protocol and essentially tell whether 0, 1, or ≥ 2 players in P are talking. The leader acts as
a “noisemaker” in Line 12 to distinguish the case of 0 talking players from the case of ≥ 2
talking players. However, the role of a noisemaker can be handled by any other player, as
long as that player would never have talked in this round otherwise.

This gives rise to the following modification of algorithm detect-collisions: We partition
the parties in P into two non-empty sets P1 and P2. We then have parties in P1 perform
algorithm detect-collisions with an arbitrary player in P2 acting as a noisemaker, and vice
versa. This allows the leader to determine whether there were 0, 1, or ≥ 2 players talking in
P1 and in P2, from which they can tell if there were 0, 1, or ≥ 2 players talking in P.

As there are no other cases in the protocol Π′ where a player both talks and uses the
value given to it by the channel, these changes are sufficient to make the algorithm work
with no sender collision-detection.
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A Technical Preliminaries

A.1 Tree Codes
Our algorithms make use of tree codes, first introduced in [26].

▶ Definition 4 (Tree Codes). Let X and Γ be two alphabet sets, RTC > 0 be an integer,
and δ ∈ (0, 1). An (X , Γ, RTC, δ)-tree code is a function TC : X ∗ → ΓRTC such that for any
integer k ≥ 0 and strings x, x′ ∈ X k, defining TC(x) = TC(x≤1)∥TC(x≤2)∥ · · · ∥TC(x), we
have:

∆
(
TC(x), TC(x′)

)
≥ δRTC · (k − |LCP(x, x′)|).

▶ Theorem 5 ([26]). There exists a constant R ≥ 0 such that for any alphabet sets X , Γ
and all RTC ≥ R · log|X |

log|Γ| , there exists an (X , Γ, RTC, 0.4)-tree code.

We will also need a way of decoding tree codes from erasures. Recall the notation Γ,⊥, Γc

from above, and let wi,j = (wi)j .

▶ Definition 6 (Decoding from Erasures). Let TC be an (X , Γ, RTC, δ)-tree code. The decoding
function of TC, denoted D-TC : (ΓRTC

c )∗ → X ∗ ∪ {fail}, is given by the following: For an
integer k ≥ 0 and w ∈ (ΓRTC

c )k,

D-TC(w) =
{

z, if ∃ unique z ∈ X k : ∀i ∈ [k], j ∈ [RTC] : wi,j ∈ {⊥, TCj(z≤i)}
fail, otherwise

.

▷ Claim 7. Let TC be an (X , Γ, RTC, δ)-tree code and let D-TC be its decoding function.
Let k ≥ 0 be an integer and let z ∈ X k. Then, for any τ̃ ∈

(
ΓRTC

c

)k such that ∀i ∈ [k], j ∈
[RTC] : τ̃i,j ∈ {⊥, TCj(z≤i)}, it holds that D-TC(τ̃) ∈ {z, fail}.

B Analyzing the Protocol

In this section we prove that the simulation protocol Π′ given in Section 4 satisfies Theorem 2.
We omit the proofs of lemmas in this section for space. They can be found in the full

version of the paper.
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Iterations and rounds

Observe that our protocol Π′ has T ′ = 105T iterations and each iteration has R′ = RTC + 8
rounds of communication: 2 rounds in the call to detect-collisions in Line 4, 4 rounds in
Line 5, 2 rounds in the call to detect-collisions in Line 7, and RTC rounds in Line 8.

The noise indicator

For t ∈ [T ′], r ∈ [R′], and i ∈ [n], we define the indicator random variable Nt,r,i to be
1 if and only if the message received by player i in the rth round of communication in
iteration t is erased due to noise. For a set S ⊆ [T ′], we shall use NS to denote the collection
N = {Nt,r,i}t∈S,r∈[R′],i∈[n] and sometimes abbreviate N[T ′] as N and N[t] as N≤t for all t ∈ [T ′].
Observe that our definition implies that the variables in N are mutually independent and
identically distributed, and take the value 1 with probability ϵ.

Note that fixing any instantiation N of N together with the inputs X to the parties fixes
the entire execution of Π′. In fact, for all t ∈ [T ′], fixing any instantiation N≤t of N≤t fixes
the execution of the first t iterations of Π′. This means that it also fixes the values of all the
variables in these iterations.

Variables

For i ∈ [n] and a variable var in Algorithms 1 and 3,11 we shall use vari
t(N) to denote the

value of variable var as seen by player i at the end of iteration t when the noise is N . We
shall use t = 0 to denote the values at the start of the execution and drop N when it is
clear from context. As explained above, these values are determined by N≤t. We also use
πLd

T ′+1(N) to refer to the leader’s πLd at Line 10.

The collision-not-as-silence model

To help with our analysis, we define a function combine-CD that intuitively captures the beha-
vior of a broadcast channel with collision-detection. Formally, we have, for z1, z2, · · · , zn ∈ Γ∗

c ,

combine-CD
(
z1, · · · , zn

)
=


⊥S , if ∀i ∈ [n] : zi = ⊥
zi, if ∃ unique i ∈ [n] such that zi ̸= ⊥
⊥C , otherwise

. (3)

For the rest of the text, fix inputs X =
(
x1, x2, · · · , xn

)
for the players. We abuse

notation slightly and denote by Π = Π(X) the transcript of the noiseless protocol Π when the
inputs to the parties are as in X and the model uses combine-CD in place of combine (thus,
Π ∈ ΓT

cs). This is without loss of generality as a transcript in the collision-not-as-silence
model only has more information than one in the collision-as-silence model.

B.1 Technical Lemmas and One-Sided Error
A key property of our model is the fact that our noise is one-sided: After collisions are
resolved, the resulting symbol will either be received correctly, or will be replaced by a ⊥.
This means that if a player hears a symbol that is not ⊥, that player will accurately know
that that is the “correct” symbol, and that they were not affected by noise.

11 We do not use this notation for variables in Algorithm 2 as that is invoked twice in every iteration.
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This property means that we can make several very useful claims, which we use throughout
the rest of this paper.

▶ Lemma 8. For all t ∈ [T ′], all i ∈ [n], and all instantiations N of N,

πi
t(N) ∈

{
fail, πLd

t (N)
}

.

As a player i ∈ [n] sets zi as a deterministic function of xi and πi at Line 3, we also
directly get the following corollary.

▶ Corollary 9. For all t ∈ [T ′], all i ∈ [n], and all instantiations N of N,

zi
t(N) ∈

{
⊥, M i

|πLd
t (N)|+1

(
xi, πLd

t (N)
)}

.

Likewise, we can also analyse the behaviour of Algorithm 2, during the two calls at Line 4
and Line 7, to see the way the noise can affect the executions of this algorithm.

▶ Lemma 10. For all t ∈ [T ′], all i ∈ [n], and all instantiations N of N,

wi
t(N) ∈

{
⊥C , combine-CD

(
⊥, z2

t (N), . . . , zn
t (N)

)}
.

▶ Lemma 11. For t ∈ [T ′] and any instantiation N of N, we have:

eLd
t (N) = ⊥S =⇒ combine-CD

(
⊥, e2

t (N), e3
t (N), · · · , en

t (N)
)

= ⊥S .

We also show some properties of the symbol sLd, and how it relates to the transcript that
players maintain.

▶ Lemma 12. For all t ∈ [T ′] and any instantiation N of N such that eLd
t (N) = ⊥S and

wLd
t (N) = combine-CD

(
⊥, z2

t (N), . . . , zn
t (N)

)
, we have

sLd
t (N) = combine-CD

(
zLd

t (N), z2
t (N), . . . , zn

t (N)
)
.

We also analyse the behaviour of Algorithm 3, and in particular how π and ρ behave in
that algorithm.

▶ Lemma 13. For all t ∈ [T ′] and all instantiations N of N,

ρLd
t (N) = sLd

1 (N)∥ · · · ∥sLd
t−1(N).

▶ Lemma 14. For all t ∈ [T ′], all i ∈ [n], and all instantiations N of N,
If sLd

t (N) ̸= R, then

πLd
t+1(N) = πLd

t (N)∥sLd
t (N).

If sLd
t (N) = R, then

πLd
t+1(N) =

(
πLd

t (N)
)

<|πLd
t (N)|.

B.2 Bad Events
B.2.1 Noise Events
Next, we define and analyze some events based on the variable N.
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The event Ewo
t,r

For t ∈ [T ′], r ∈ [R′], the event Ewo
t,r occurs if the communication in round r in iteration t is

erased for a significant fraction of the players (it is “wiped out”). Formally, we have:

Ewo
t,r :=

 ∑
i∈[n]

Nt,r,i ≥
n

10

. (4)

The event Edc
t,i

For t ∈ [T ′], i ∈ [n], the event Edc
t,i occurs if the communication in the first execution of

detect-collisions, i.e., at least one of rounds 1 and 2, in iteration t is erased for player i.
Formally, we have:

Edc
t,i := (∃r ∈ [2] : Nt,r,i = 1). (5)

The event Eor
t

For t ∈ [T ′], we define the event Eor
t to occur if the communication in the second execution

of detect-collisions (which effectively computes a logical OR of the ei’s), i.e., in at least one
of rounds 7 and 8 in iteration t is erased for the leader. Formally, we have:

Eor
t := (∃r ∈ {7, 8} : Nt,r,Ld = 1). (6)

The event Etc
t′,t,i

For 0 ≤ t′ < t ≤ T ′ and i ∈ [n], define the following event concerning the rounds 9 to R′ in
each iteration, i.e., the rounds where the leader broadcasts on the tree code:

E tc
t′,t,i :=

 t∑
s=t′+1

R′∑
r=9

Ns,r,i ≥
2RTC

5 · (t− t′)

. (7)

B.2.2 Bad Iterations

We now define sets of “bad” iterations for a given execution. Intuitively, these are iterations
where our protocol does not make progress. For an instantiation N of N, we have:

Bwo(N) =
{

t ∈ [T ′] | ∃r ∈ [R′] : N ∈ Ewo
t,r

}
.

Bdc(N) =
{

t ∈ [T ′] | N ∈ Edc
t,Ld

}
.

Bor(N) = {t ∈ [T ′] | N ∈ Eor
t }. (8)

▶ Lemma 15. It holds that:
1. Pr(Bwo(N) ̸= ∅) ≤ 2.25−n.

2. Pr
(∣∣Bdc(N) ∪ Bor(N)

∣∣ ≥ T ′

50

)
≤ e− T ′

100 .

We note that our assumption that T ≤ 2n is only used in Item 1 of Lemma 15.
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B.3 Bad Intervals
B.3.1 Critical Players
We now define and show results about players “critical” to the protocol, i.e., those needed to
make sure we make progress in our simulation. For a set S of integers and an integer k define
S≤k to be the set consisting of the k smallest elements of S. If |S| ≤ k, we define S≤k = S.
For a transcript π ∈ Γ∗

cs, we define the set S(π) to be the set of all non-leader players who
would broadcast in the noiseless protocol when their received transcript is π. Formally,

S(π) =
{

i ∈ P |M i
|π|+1

(
xi, π

)
̸= ⊥

}
.

▶ Definition 16 (Critical Players). For π ∈ Γ∗
cs, we define the set of players that are π-critical

as Crit(π) = S(LCP(π, Π))≤2.

We note that this definition is made for analysis purposes and no single player can
necessarily compute the set Crit(·).

B.3.2 Bad Intervals
Next, we define the set of possible augmented transcripts and bad intervals.

▶ Definition 17. For 0 ≤ t′ ≤ t ≤ T ′ and an instantiation N≤t′ of N≤t′ , define the set:

Augt(N≤t′) =
{

π ∈ Γ∗
cs | ∃N(t′,t] : πLd

t (N≤t) = π
}

.

▶ Definition 18. Let N be an instantiation of N. We define B†(N) to be the set of all
intervals (t′, t] satisfying 0 ≤ t′ < t ≤ T ′ for which there exists π ∈ Augt(N≤t′) and i ∈ Crit(π)
such that E tc

t′,t,i occurs when N = N . We also define:

B(N) =
⋃

(t′,t]∈B†(N)

(t′, t].

▶ Lemma 19. It holds that:

Pr
(
|B(N)| ≥ T ′

50

)
≤ 10− T ′

50 .

To finish this subsection, we show that B(·) has all the iterations where a critical player
fails to decode the tree code.

▶ Lemma 20. For any instantiation N of N and all t /∈ B(N), for all i ∈ Crit(πLd
t (N)), we

have πi
t(N) = πLd

t (N).

B.4 A Potential Function
We now define the potential function that we shall use in the analysis. For t ∈ {0} ∪ [T ′] and
an instantiation N of N, we define:

Φt(N) = 2 ·
∣∣LCP

(
πLd

t+1(N), Π
)∣∣− ∣∣πLd

t+1(N)
∣∣. (9)

Our definition clearly implies Φ0(N) = 0 and Φt(N) ≤
∣∣LCP

(
πLd

t+1(N), Π
)∣∣ for all N .

Moreover, as either one symbol is appended to or removed from the end of πLd in every
iteration, we have that Φt(N) ≥ Φt−1(N)− 1 for all N and t ∈ [T ′]. In Lemma 25 we will
now show that if t is not in one of the bad sets defined above, then the potential increases by
at least 1. But first, we state some helpful lemmas.

ICALP 2023
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▶ Lemma 21. For any instantiation N of N and any t /∈ Bwo(N), we have:

sLd
t (N) ∈

{
R, combine-CD

(
zLd

t (N), z2
t (N), . . . , zn

t (N)
)}

For i ∈ [n], define the variable r̂i to be the value of r output by Algorithm 3, when run
by player i, with Line 15 replaced12 by ρ← D-TC

(
τLd)

. This value is only used for analysis
purposes and cannot be computed by the player during the execution of the protocol (as they
may not know τLd). We now claim several useful properties of r̂i

t, and how it relates to ri
t.

▶ Lemma 22. For t ∈ [T ′] and any instantiation N of N such that Bwo(N) = ∅, we have:(
∄j ∈

[∣∣πLd
t (N)

∣∣] :
(
πLd

t (N)
)

j
̸= Πj

)
=⇒

(
∄i ∈ P : r̂i

t(N) = true
)

.

We also prove a modified converse version of the previous lemma.

▶ Lemma 23. For t ∈ [T ′] and any instantiation N of N such that Bwo(N) = ∅, we have:(
∃j ∈

[∣∣πLd
t (N)

∣∣] :
(
πLd

t (N)
)

j
̸= Πj

)
=⇒

(
∃i ∈ Crit(πLd

t (N)) : r̂i
t(N) = true

)
,

▶ Lemma 24. For t ∈ [T ′], i ∈ [n] and any instantiation N of N, ri
t(N) ∈

{
r̂i

t(N), false
}

.
Furthermore, if πi

t(N) = πLd
t (N), then ri

t(N) = r̂i
t(N).

▶ Lemma 25. For t ∈ [T ′] and any instantiation N of N such that Bwo(N) = ∅, we have:

t /∈ Bdc(N) ∪ Bor(N) ∪ B(N) =⇒ Φt(N) ≥ Φt−1(N) + 1.

B.5 Finishing the proof of Theorem 2
We are now ready to finish the proof of Theorem 2.

Proof of Theorem 2. Let C ≥ 100RTC. Fix ϵ, n and Γ as in the statement of the theorem.
We claim that the algorithm provided in Algorithm 1 satisfies all the properties claimed by
the theorem. It can be observed that Algorithm 1 takes at most CT rounds of communication,
so it just suffices to just show that Pr

(
Π′Ld(X) ̸= Π(X)

)
≤ 2− min(n,T ).

By Lemmas 15 and 19 and a union bound, we get that an instantiation N of N satisfies∣∣Bdc(N) ∪ Bor(N) ∪ B(N)
∣∣ ≤ T ′

25 and Bwo(N) = ∅ except with probability at most

10− 1
50 T ′

+ e− 1
100 T ′

+ 2.25−n ≤ 2− min(n, 1
100 T ′) ≤ 2− min(n,T ).

Lemma 25 then states that for all such N , for all t /∈ Bdc(N) ∪ Bor(N) ∪ B(N), Φt(N) ≥
Φt−1(N) + 1. At the same time, we recall that Equation (9) also gives that for all t ∈ [T ′],
Φt(N) ≥ Φt−1(N)− 1. Thus, we see that

ΦT ′(N) ≥
(

T ′ − T ′

25

)
− T ′

25 ≥
9
10T ′ ≥ T.

Furthermore, we consult Equation (9) to get that∣∣LCP
(
πLd

T ′+1(N), Π
)∣∣ ≥ ΦT ′(N) ≥ T,

which implies that
(
πLd

T ′+1(N)
)

≤T
= Π≤T . so the leader’s output at Line 10 is equal to Π≤T .

As this happens except with probability at most 2− min(n,T ), this concludes the proof. ◀

12 We stress that Line 25 still uses τ i and not τLd.
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