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Abstract
We study the single-site Glauber dynamics for the fugacity λ, Hard-Core model on the random
graph G(n, d/n). We show that for the typical instances of the random graph G(n, d/n) and for
fugacity λ < dd

(d−1)d+1 , the mixing time of Glauber dynamics is n1+O(1/ log log n).
Our result improves on the recent elegant algorithm in [Bezáková, Galanis, Goldberg and

Štefankovič; ICALP’22]. The algorithm there is an MCMC-based sampling algorithm, but it is
not the Glauber dynamics. Our algorithm here is simpler, as we use the classic Glauber dynamics.
Furthermore, the bounds on mixing time we prove are smaller than those in Bezáková et al. paper,
hence our algorithm is also faster.

The main challenge in our proof is handling vertices with unbounded degrees. We provide
stronger results with regard the spectral independence via branching values and show that the our
Gibbs distributions satisfy the approximate tensorisation of the entropy. We conjecture that the
bounds we have here are optimal for G(n, d/n).

As corollary of our analysis for the Hard-Core model, we also get bounds on the mixing time
of the Glauber dynamics for the Monomer-Dimer model on G(n, d/n). The bounds we get for this
model are slightly better than those we have for the Hard-Core model
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1 Introduction

The Hard-Core model and the related problem of the geometry of independent sets on the
sparse random graph G(n, d/n) is a fundamental area of study in discrete mathematics
[17, 11], in computer science they are studied in the context of the random Constraint
Satisfaction Problems [10, 20], while in statistical physics they are studied as instances of
disordered systems. Using the so-called Cavity method [25, 2], physicists make some impressive
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54:2 Mixing Time of Glauber Dynamics

predictions about the independent sets of G(n, d/n), such as higher order replica symmetry
breaking etc. Physicists’ predictions are (typically) mathematically non-rigorous. Most of
these predictions about independent sets still remain open as basic natural objects in the
study such as the partition function, or the free energy are extremely challenging to analyse.

The Hard-Core model with fugacity λ > 0, is a distribution over the independent sets of
an underlying graph G such that every independent set σ is assigned probability measure µ(σ)
which is proportional to λ|σ|, where |σ| is the cardinality of σ. Here, we consider the case
where the underlying graph is a typical instance of the sparse random graph G(n, d/n). This
is the random graph on n vertices, while each edge appears independently with probability
p = d/n. The quantity d > 0 corresponds to the expected degree. For us here the expected
degree is a bounded constant, i.e., we have d = Θ(1), hence the graph is sparse.

Our focus is on approximate sampling from the aforementioned distribution using Glauber
dynamics. This is a classic, very popular, algorithm for approximate sampling. The popularity
of this process, mainly, is due to its simplicity and the strong approximation guarantees that
provides. The efficiency of Glauber dynamics for sampling is studied by means of the mixing
time.

Recently, there has been an “explosion” of results about the mixing time of Glauber
dynamics for worst-case instances the problem, e.g. [1, 9, 8, 12]. Combined with the earlier
hardness results in [29, 30, 19] one could claim that for worst-case instances the behaviour
of Glauber dynamics for the Hard-Core model, but also the related approximate sampling-
counting problem, is well understood. Specifically, for the graphs of maximum degree ∆,
Glauber dynamics exhibits O(n log n) mixing time for any fugacity λ < (∆−1)∆−1/(∆−2)∆,
while the hardness results support that this region of λ is best possible.

The aforementioned upper bound on λ coincides with the critical point for the
uniqueness/non-uniqueness phase transition of the Hard-Core model on the infinite ∆-regular
tree [24]. At this point in the discussion, perhaps, it is important to note the dependency of
the critical point on the maximum degree. This is the point where the situation with the
random graph G(n, d/n) differentiates from the worst case one.

For G(n, d/n) and for the range of the expected degree d we consider here, typically,
almost all of the vertices in the graph, e.g., say 99%, are of degree very close to d. On the other
hand, the maximum degree of G(n, d/n) is as large as Θ( log n

log log n ), i.e., it is unbounded. In
light of this observation, it is natural to expect that the Glauber dynamics on the Hard-Core
model mixes fast for values of the fugacity that depend on the expected degree, rather the
maximum degree. Note that, this implies to use Glauber dynamics to sample from the
Hard-Core model with fugacity λ taking much larger values than what the worst-case bound
implies.

For d > 1, let λc(d) = dd

(d−1)(d+1) . One of the main result in our paper is as follows: we
show that for any d > 1 and for typical instances of G(n, d/n), the Glauber dynamics on the
Hard-Core with any fugacity λ < λc(d), exhibits mixing time which is n1+ C

log log n = n1+o(1),
for some absolute constant C > 0 which depends only on λ and d.

It is our conjecture that the bound on the mixing time for the hard-core is tight. Further-
more, following intuitions from [10], as well as from statistical physics predictions in [2], it is
our conjecture that the bound λc(d) on the fugacity λ is also tight, in the following sense:
for λ > λc(d) it is not precluded that there is a region where efficient approximate sampling
is possible, however, the approximation guarantees are weaker than those we have here.

Our result improves on the elegant sampling algorithm that was proposed recently in [3]
for the same distribution, i.e., the Hard-Core model on G(n, d/n). That algorithm, similarly
to the one we consider here, relies on the Markov Chain Monte Carlo method. The authors
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use Spectral Independence [1, 9] to show that the underlying Markov chain exhibits mixing
time which is O

(
n1+θ

)
for any λ < λc(d) and arbitrary small consant θ > 0. The idea

that underlies the algorithm in [3] is reminiscent of the variable marking technique that was
introduced in [26] for approximate counting with the Lovász Local Lemma, and was further
exploited in [14, 16, 21, 18]. Here, we use a different, more straightforward, approach and
analyse directly the Glauber dynamics.

Note that both algorithms, i.e., here and in [3], allow for the same range for the fugacity
λ. On the other hand, the algorithm we study here is the (much simpler) Glauber dynamics,
while the running time guarantees we obtain here are asymptotically better.

Previous works in the area, i.e., even before [3], in order to prove their results and avoid
the use of maximum degree, have been focusing on various parameters of G(n, d/n) such as
the expected degree [13], or the connective constant [28]. Which, as it turns out are not that
different with each other. Here, we utilise the notion of branching value, which is somehow
related to the previous ones.

The notion of the branching value as well as its use for establishing Spectral Independence
was introduced in [3]. Unfortunately, the result there were not sufficiently strong to imply
rapid mixing of Glauber dynamics. Their analytic tools for Spectral Independence (and
others) seems to not be able to handle all that well vertices with unbounded degree. Here we
derive stronger results for Spectral independence than those in [3] in the sense that they are
more general and more accurate. Specifically, in our analysis we are able to accommodate
vertices of all degrees, while we use a more elaborate matrix norm to establish spectral
independence, reminiscent of those introduced in [12]. Furthermore, we utilise results from
[8] that allow us deal with the unbounded degrees of the graph in order to establish our
rapid mixing results.

2 Results

Consider the fixed graph G = (V, E) on n vertices. Given the parameter λ > 0, which we call
fugacity, we define the Hard-Core model µ = µG,λ to be a distribution on the independent
sets of the graph G, Specifically, every independent set σ is assigned probability measure
µ(σ) defined by

µ(σ) ∝ λ|σ| , (1)

where |σ| is equal to the size of the independent set σ.
We use {±1}V to encode the configurations of the Hard-Core model, i.e., the independent

sets of G. Particularly, the assignment +1 implies that the vertex is in the independent set,
while −1 implies the opposite. We often use physics’ terminology where the vertices with
assignment +1 are called “occupied”, whereas the vertices with −1 are “unoccupied”.

We use the discrete time, (single site) Glauber dynamics to approximately sample from
the aforementioned distributions. Glauber dynamics is a Markov chain with state space the
support of the distribution µ. Typically, we assume that the chain starts from an arbitrary
configuration X0 ∈ {±1}V . For t ≥ 0, the transition from the state Xt to Xt+1 is according
to the following steps:
1. Choose uniformly at random a vertex v.
2. For every vertex w different than v, set Xt+1(w) = Xt(w).
3. Set Xt+1(v) according to the marginal of µ at v, conditional on the neighbours of v

having the configuration specified by Xt+1.

ICALP 2023



54:4 Mixing Time of Glauber Dynamics

It is standard that when a Markov chain satisfies a set of technical conditions called
ergodicity, then it converges to a unique stationary distribution. For the cases we consider here,
Glauber dynamics is trivially ergodic, while the stationary distribution is the corresponding
Hard-Core model µ.

Let P be the transition matrix of an ergodic Markov chain {Xt} with a finite state space
Ω and equilibrium distribution µ. For t ≥ 0 and σ ∈ Ω, let P t(σ, ·) denote the distribution
of Xt when the initial state of the chain satisfies X0 = σ. The mixing time of the Markov
chain {Xt}t≥0 is defined by

Tmix = max
σ∈Ω

min
{

t > 0 | ∥P t(σ, ·) − µ∥TV ≤ 1
2e

}
.

Our focus is on the mixing time of Glauber dynamics for the Hard-Core model for the case
where the underlying graph is a typical instance of G(n, d/n), where the expected degree
d > 0 is a assumed to be a fixed number.

2.1 Mixing Time for Hard-Core Model
For z > 1, we let the function λc(z) = zz

(z−1)(z+1) . It is a well-known result from [24] that the
uniqueness region of the Hard-Core model on the k-ary tree, where k ≥ 2, holds for any λ

such that

λ < λc(k) .

The following theorem is the main result of this work.

▶ Theorem 1. For fixed d > 1 and any λ < λc(d), there is a constant C > 0 such that the
following is true:

Let µG be the Hard-Core model with fugacity λ on the graph G ∼ G(n, d/n). With
probability 1 − o(1) over the instances of G, Glauber dynamics on µG exhibits mixing time

Tmix ≤ n(1+ C
log log n ) .

2.2 Extensions to Monomer-Dimer Model
Utilising the techniques we develop in order to prove Theorem 1, we get mixing time bounds
for the Glauber dynamics on the Monomer-Dimer model on G(n, d/n).

Given a fixed graph G = (V, E) and a parameter λ > 0, which we call edge weight, we
define the Monomer-Dimer model µ = µG,λ to be a distribution on the matchings of the
graph G such that every matching σ is assigned probability measure µ(σ) defined by

µ(σ) ∝ λ|σ| , (2)

where |σ| is equal to the number of edges in the matching σ.
Note that the Hard-Core model considers configurations on the vertices of G, while the

Monomer-Dimer model considers configurations on the edges. Similarly to the independent
sets, we use {±1}E to encode the matchings of G. Specifically, the assignment +1 on the
edge e implies that the edge is in matching, while −1 implies the opposite.

For the Monomer-Dimer model the definition of Glauber dynamics {Xt}t≥0 extends in
the natural way. That is, assume that the chain starts from an arbitrary configuration
X0 ∈]±1E . For t ≥ 0, the transition from the state Xt to Xt+1 is according to the following
steps:
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1. Choose uniformly at random an edge e.
2. For every edge f different than e, set Xt+1(f) = Xt(f).
3. Set Xt+1(e) according to the marginal of µ at e, conditional on the neighbours of e having

the configuration specified by Xt+1.

We consider the case of the Monomer-Dimer distribution where the underlying graph is
an instance of G(n, d/n). We prove the following result.

▶ Theorem 2. For fixed d > 1 and any λ > 0, there is a constant C > 0 such that the
following is true:

Let µG be the Monomer-Dimer model with edge weight λ on the graph G ∼ G(n, d/n).
With probability 1 − o(1) over the instances of G, Glauber dynamics on µG exhibits mixing
time

Tmix ≤ n

(
1+C

√
log log n

log n

)
.

The proof of Theorem 2 can be found in the full version of this paper.
For the Monomer-Dimer model on general graphs, the best-known result is the Õ(n2m)

mixing time of the Jerrum-Sinclair chain [23], where m = |E| is the number of edges. For
graphs with bounded maximum degree ∆ = O(1), the spectral independence technique
proved the O(n log n) mixing time of Glauber dynamics [9]. However, this result cannot be
applied directly to the random graph G(n, d/n), because the maximum degree of a random
graph is typically unbounded. For the Monomer-Dimer model on G(n, d/n), [3] gave a
sampling algorithm with running time n1+θ, where θ > 0 is an arbitrarily small constant, and
[22] also proved the n2+o(1) mixing time of Glauber dynamics in a special case λ = 1. Our
result in Theorem 2 proves the n1+o(1) mixing time of Glauber dynamics, which improves
all the previous results for the Monomer-Dimer model on the random graph G(n, d/n) with
constant λ. It is an open problem to improve the mixing time in Theorem 2. Moreover, for
general graphs, the tight mixing time of Glauber dynamics for the Monomer-Dimer model is
also a challenging open problem.

We remark that for the Monomer-Dimer model, we actually proved the n1+o(1) mixing
time of Glauber dynamics on all graphs satisfying ∆ log2 ∆ = o(log2 n). See the full version
of this paper for a more general result.

This version of the paper focuses on the Hard-Core model, i.e., proving Theorem 1. The
proofs for the Monomer-Dimer model is in the full version.

Notation
Suppose that we are given a Gibbs distribution µ on the graph G = (V, E). We denote with
Ω the support of µ.

Suppose that Ω is a set of configurations at the vertices of G. Then, for any Λ ⊆ V and
any τ ∈ {±1}Λ, we let µΛ,τ (or µτ if Λ is clear from the context) denote the distribution µ

conditional on that the configuration at Λ is τ . Alternatively, we use the notation µ(· | (Λ, τ))
for the same conditional distribution. We let Ωτ ⊆ Ω be the support of µΛ,τ . We call τ

feasible if Ωτ is nonempty.
For any subset S ⊆ V , let µS denote the marginal of µ at S, while let ΩS denote the

support of µS . In a natural way, we define the conditional marginal. That is, for Λ ⊆ V \ S

and σ ∈ {±1}Λ, we let µΛ,σ
S (or µσ

S if Λ is clear from the context) denote the marginal at
S conditional on the configuration at Λ being σ. Alternatively we use µS(· | (Λ, σ)) for µσ

S .
We let Ωσ

S denote the support of µσ
S .

ICALP 2023



54:6 Mixing Time of Glauber Dynamics

All the above notation for configurations on the vertices of G can be extended naturally
for configurations on the edges of the graph G. We omit presenting it, because it is very
similar to the above.

2.3 Hard-Core Model – Entropy Tensorisation for Rapid Mixing
We prove Theorem 1 by exploiting the notion of approximate tensorisation of the entropy.

Let µ be a distribution with support Ω ⊆ {±1}V . For any function f : Ω → R≥0, we let
µ(f) =

∑
x∈Ω µ(x)f(x), i.e., µ(f) is the expected value of f with respect to µ. Define the

entropy of f with respect to µ by

Entµ(f) = µ
(

f log f
µ(f)

)
,

where we use the convention that 0 log 0 = 0.
Let τ ∈ ΩV \S for some S ⊂ V . Define the function fτ : Ωτ

S → R≥0 by having fτ (σ) =
f(τ ∪ σ) for all σ ∈ Ωτ

S
1. Let Entτ

S(fτ ) denote the entropy of fτ with respect to the
conditional distribution µτ

S . Furthermore, we let

µ(EntS(f)) =
∑

τ∈ΩV \S

µV \S(τ)Entτ
S(fτ ) ,

i.e., µ(EntS(f)) is the average of the entropy Entτ
S(fτ ) with respect to the measure µV \S(·).

When S = {v}, i.e., the set S is a singleton, we abbreviate µ(Ent{v}(f)) to µ(Entv(f)).

▶ Definition 3 (Approximate Tensorisation of Entropy). A distribution µ with support Ω ⊆
{±1}V satisfies the approximate tensorisation of entropy with constant C > 0 if for all
f : Ω → R≥0 we have that

Entµ(f) ≤ C ·
∑
v∈V

µ (Entv(f)) .

On can establish bounds on the mixing time of Glauber dynamics by means of the approx-
imate tensorisation of entropy of the equilibrium distribution µ. Specifically, if µ satisfies
the approximate tensorisation of entropy with constant C, then after every transition of
Glauber dynamics, the Kullback–Leibler divergence2 between the current distribution and
the stationary distribution decays by a factor which is at least (1 − C/n), where n = |V | is
the number of variables.

As far as the mixing time of Glauber dynamics is concerned, if a distribution µ satisfies
the approximate tensorisation of entropy with parameter C then we have following well
known relation (e.g. see [9, Fact 3.5]),

Tmix ≤
⌈

Cn

(
log log 1

µmin
+ log(2) + 2

)⌉
, where µmin = min

x∈Ω
µ(x) . (3)

In light of the above, Theorem 1 follows as a corollary from the following result.

1 With a slight abuse of notation we use τ ∪ σ to indicate the configuration what agrees with τ at S and
with σ at V \ S.

2 For discrete probability distributions P and Q on a discrete space X , the Kullback–Leibler divergence
is defined by DKL(P ||Q) =

∑
x∈X P (x) log P (x)

Q(x) .
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▶ Theorem 4 (Hard-Core Model Tensorisation). For any fixed d > 1 and any λ < λc(d), there
is a constant A > 0 that depends only on d and λ such that the following is true:

Let µG be the Hard-Core model with fugacity λ on the graph G ∼ G(n, d/n). With
probability 1 − o(1) over the instances of G, µG satisfies the approximate tensorisation of
entropy with parameter nA/ log log n.

Proof of Theorem 1. Theorem 1 follows from Theorem 4 and (3).
Specifically, plugging the result from Theorem 4 into (3) we get the following: with

probability 1 − o(1) over the instances of G we have that

Tmix ≤ n1+ A
log log n

(
log log 1

µmin
+ log(2) + 2

)
≤ n1+ A

log log n

(
log log

(
1 + λ + λ−1)n + log(2) + 2

)
= n1+ A

log log n
(
log n + log log(1 + λ + λ−1)

)
≤ n1+ 2A

log log n .

For the second derivation, we note that for the Hard-Core distribution µ = µG, we have that
µmin is at least min{1, λn}/(1 + λ)n, which implies that µmin ≥ (1 + λ + λ−1)−n.

Note that Theorem 1 follows from the above, by setting C = 2A. ◀

3 Our Approach & Contributions

In this section we describe our approach towards establishing our results. Our focus is on
the Hard-Core model.

3.1 Tensorisation and Block-Factorisation of Entropy
We establish the tensorisation of the entropy, described in Theorem 4, by exploiting the
recently introduced notion of block factorisation of entropy in [5]. Specifically, we build on
the framework introduced in [9] to relate the tensorisation and the block factorisation of the
entropy.

The framework in [9] relies on the assumption that the maximum degree of the underlying
graph is bounded. Otherwise, the results it implies are not strong. In our setting here, a
vanilla application of this approach would not be sufficient to give the desirable bounds
on the tensorisation constant due to the fact that the typical instances of G(n, d/n) have
unbounded maximum degree. To this end, we employ techniques from [8].

Given the graph G = (V, E), and the integer ℓ ≥ 0, we let
(

V
ℓ

)
denote all subsets S ⊆ V

with |S| = ℓ.

▶ Definition 5 (ℓ-block Factorisation of Entropy). Let µ be a distribution over {±1}V and
1 ≤ ℓ ≤ |V | = n be an integer. The distribution µ satisfies the ℓ block factorisation of entropy
with parameter C if for all f : Ω → R≥0 we have that

Entµ(f) ≤ C(
n
ℓ

) ∑
S∈(V

ℓ )
µ (EntS(f)) . (4)

The notion of the ℓ block factorisation of entropy generalises that of the approximate
tensorisation of entropy. Specifically, a distribution that satisfies the ℓ = 1 block factorisation
of entropy with parameter C, also satisfies the approximate tensorisation of entropy with
parameter C/n.

ICALP 2023



54:8 Mixing Time of Glauber Dynamics

As far as the Hard-Core model on G(n, d/n) is concerned, we show the following theorem
via the spectral independence technique, which is one of the main technical results in our
paper.

▶ Theorem 6. For fixed d > 1 and any 0 < λ < λc(d), consider G ∼ G(n, d/n) and let µG

be the Hard-Core model on G with fugacity λ. With probability 1 − o(1) over the instances of
G the following is true: There is a constant K = K(d, λ) > 0, such that for

1
α

= K log n
log log n ,

for any 1/α ≤ ℓ < n, µG satisfies the ℓ-block factorisation of entropy with parameter
C = ( en

ℓ )1+1/α.

Let us have a high level overview of how we use the ℓ-block factorisation and particularly
Theorem 6 to establish our entropy tensorisation result in Theorem 4.

Note that Theorem 6 essentially implies the following: Suppose that G = (V, E) is a
typical instance of G(n, d/n). Then, the Hard-Core model µ on G, with fugacity λ < λc(d),
is such that for any f : Ω → R>0 we have

Entµ(f) ≤
( e

θ

)1+1/α 1(
n
ℓ

) ∑
S∈(V

ℓ )
µ (EntS(f)) , (5)

where ℓ = ⌈θn⌉ and θ ∈ (0, 1) is a constant satisfying ⌈θn⌉ ≥ 1/α = Ω(log n/ log log n).
Let G[S] be the subgraph of G that is induced by the vertices in the set S. On the RHS

of (5), the entropy is evaluated with respect to conditional distributions µτ
S , which is the

Hard-Core model on the subgraph G[S] given the boundary condition τ on V \ S.
We let C(S) denote the set of connected components in G[S]. With a slight abuse of

notation, we use U ∈ C(S) to denote the set of vertices in the component U , as well. It is not
hard to see that the Hard-Core model µτ

S , for τ ∈ ΩV \S , factorises as a product distribution
over Gibbs marginals at the components U ∈ C(S), i.e.,

µτ
S =

⊗
U∈C(S)

µτ
U .

We use the following result for the factorisation of entropy on product distributions [6, 4, 9].

▶ Lemma 7 ([9, Lemma 4.1]). For any S ⊆ V , any τ ∈ ΩV \S, any f : Ωτ
S → R≥0,

Entτ
S(f) ≤

∑
U∈C(S)

µτ
S [EntU (f)] .

Combining Lemma 7 and (5) we get that

Entµ(f) ≤
( e

θ

)1+1/α

ES∼(V
ℓ )

[∑
U∈C(S) µ (EntU (f))

]
, (6)

where S ∼
(

V
ℓ

)
denotes that S is a uniformly random element from

(
V
ℓ

)
.

The above step allows us to reduce the proof of approximate tensorisation to that of the
components in C(S). We choose the parameter ℓ = ⌈θn⌉ so that the connected components
in C(S) are typically small.

In light of the above, Theorem 4 follows by establishing two results: The first one is
to derive a bound on the constant of the approximate tensorisation of entropy for the
components of size k in C(S), for each k > 0. The second result is to derive tail bounds on
the size of the components in C(S) for S ∼

(
V
ℓ

)
. Since the components are small with high

probability, the following crude bound on the approximate tensorisation of entropy is enough
for our analysis.
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▶ Lemma 8. For any fixed d > 0, for any λ < λc(d), consider G ∼ G(n, d/n). With
probability 1 − o(1) over the instances of G, the following is true:

For any k ≥ 1 and H ⊆ V such that |H| = k, the Hard-Core model µH on G[H] with
fugacity λ satisfies the approximate tensorisation of entropy with constant

AT(k) ≤ min
{

2k2 (1 + λ + 1/λ)2k+2
, 3 log (1 + λ + 1/λ) · ((1 + λ)k)2+2η

}
, (7)

where η = B(log n)1/r, while B = B(d, λ) and r = r(d) ∈ (1, 2) are constants that depend on
d, λ.

As far as size of the components in C(S) is concerned, we use the following result from [3].

▶ Lemma 9 ([3]). Let d > 1 be a constant. There is a constant L = L(d) such that the
following holds with probability at least 1 − o(1) over the G ∼ G(n, d/n). Let S ∼

(
V
ℓ

)
, while

let Cv ⊆ S be the set of vertices that are in the same component as vertex v in G[S]. For
any integer k ≥ log n, it holds that

Pr[|Cv| = k] ≤ (2e)eLk

(
2ℓ

n

)k

≤ (2e)eLk (2θ)k
.

Theorem 4 follows by combining Theorem 6, with Lemmas 9 and 8. For a full proof of
Theorem 4, see Section 5.

3.2 Spectral Independence with Branching Values
An important component in our proof of Theorem 6 is to establish Spectral Independence
bounds for the Hard-Core model on typical instances of G(n, d/n).

For worst-case graph instances (i.e., non random), typically, we establish Spectral Inde-
pendence for a region of the parameters of the Gibbs distribution which is expressed in terms
of the maximum degree ∆ of the underlying graph G. As far as G(n, d/n) is concerned, the
maximum degree does not seem to be the appropriate graph parameter to consider for this
problem.

Here, we utilise the notion of branching value. The notion of the branching value as well
as its use for establishing Spectral Independence was introduced in [3]. Unfortunately, the
result there were not sufficiently strong to imply rapid mixing of Glauber dynamics. Here we
derive stronger results for Spectral independence than those in [3] in the sense that they are
more general and more accurate. Specifically, in our analysis we are able to accommodate
vertices of all degrees, while we use a more elaborate matrix norm to establish spectral
independence, reminiscent of those introduced in [12]. Furthermore, we utilise results from
[8] that allow us deal with the unbounded degrees of the graph in order to establish our
rapid mixing results.

Before getting to further details in our discussion, let us first introduce some basic
notions. We start with the pairwise influence matrix IΛ,τ

G and the related notion of Spectral
Independence. These notions were first introduced in [1]. In this paper, we use the absolute
version introduced in [15].

Consider a fixed graph G = (V, E). Assume that we are given a Gibbs distribution µ on
the configuration space {±1}V . We define the pairwise influence matrix IΛ,τ

G as follows: for
a set of vertices Λ ⊂ V and a configuration τ at Λ, the matrix IΛ,τ

G is indexed by the vertices
in V \ Λ, while for any two vertices, different with each other u, w ∈ V \ Λ, if w can take
both values ±1 given τ , we have that

ICALP 2023



54:10 Mixing Time of Glauber Dynamics

IΛ,τ
G (w, u) = ||µu(· | (Λ, τ), ({w}, +)) − µu(· | (Λ, τ), ({w}, −))||TV ; (8)

if w can only take one value in ±1 given τ , we have IΛ,τ
G (w, u) = 0. Also, we have that

IΛ,τ
G (w, w) = 0 for all w ∈ V \ Λ. That is, the diagonal of IΛ,τ

G is always zero.
Recall that, above, µu(· | (Λ, τ), ({w}, 1)) is the Gibbs marginal that vertex u, conditional

that the configuration at Λ is τ and the configuration at w is 1. We have the analogous for
µu(· | (Λ, τ), ({w}, −1)).

▶ Definition 10 (Spectral Independence). For a real number η > 0, the Gibbs distribution µG

on G = (V, E) is η-spectrally independent, if for every 0 ≤ k ≤ |V | − 2, Λ ⊆ V of size k and
τ ∈ {±1}Λ the spectral radius of IΛ,τ

G satisfies that ρ(IΛ,τ
G ) ≤ η.

We bound the spectral radius of IΛ,τ
G by means of matrix norms. Specifically, we use the

following norm of IΛ,τ
G∣∣∣∣∣∣D−1 · IΛ,τ

G · D
∣∣∣∣∣∣

∞
, (9)

where D is the diagonal matrix indexed by the vertices in V \ Λ such that

D(u, u) =
{

degG(v)1/χ if degG(v) ≥ 1
1 if degG(v) = 0 ,

(10)

where the parameter χ is being specified later.
Let G = (V, E) be a fixed graph. For any vertex v ∈ V and integer ℓ ≥ 0, we use Nv,ℓ

to denote the number of simple paths with ℓ + 1 vertices that start from v in graph G. By
definition, we have that Nv,0 = 1.

▶ Definition 11 (d-branching value). Let d ≥ 1 be a real number and G = (V, E) be a graph.
For any vertex v ∈ V , the d-branching value Sv is defined by

∑
ℓ≥0 Nv,ℓ/dℓ.

We establish spectral independence results that utilise the notion of d-branching value
that was introduced in [3]. The following theorem is an example of the Spectral Independence
results we derive here. In our proof, we actually use the stronger result in Theorem 19 . This
analysis of spectral independence is of independent interest.

▶ Theorem 12. Let d > 1 be a real number and G = (V, E) be a graph. Let µG be the
Hard-Core model with fugacity λ < λc(d). For any α > 0 such that the d-branching value
Sv ≤ α for all v ∈ V the following is true: µG is η-spectrally independent for

η ≤ C0 · α1/r ,

where C0 = C0(d, λ) and r = r(d) ∈ (1, 2) are constants.

There are a couple of interesting point about Theorem 12 to make. The first one is that
the bound on η does not have any dependence on the degrees of the graph G. This is because
we utilise the matrix norm ∥D−1 · IΛ,τ

G · D∥∞ instead of ∥IΛ,τ
G ∥∞ that is typically used to

establish the bound on the spectral independence. Furthermore, note that Theorem 12 is
not necessarily about G(n, d/n), i.e., it applies to an arbitrary graph. As a matter of fact
in order to use the above result for G(n, d/n) we need to establish bounds on its branching
value. To this end, we use the following result from [3] so that we can take α = log n in
Theorem 12.
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▶ Lemma 13 ([3, Lemma 9]). Let d ≥ 1. For any fixed d′ > d, with probability 1 − o(1) over
G ∼ G(n, d/n), the d′-branching factor of every vertex in G is at most log n.

It is worth mentioning that Lemma 13, here, is a weaker version of Lemma 9 in [3], i.e.,
we do not really need the the full strength of the result there.

In light of the above results, an interesting open problem is to turn the branching-value
based spectral independence result in Theorem 12 into rapid mixing bound one for Glauber
dynamics on a general graphs with bounded branching value. Note that this is not possible
with the techniques we develop here.

Concluding this short introductory section about Spectral Independence, let us remark
that for our results we work with the so-called Complete Spectral Independence for the
Hard-Core model, introduced in [7, 8]. This is more general a notion compared to the
(standard) Spectral Independence. For further discussion see Section 4.2.

4 Entropy Factorisation from Stability and Spectral Independence

In this section we establish the ℓ-block factorisation of entropy for the Hard-Core model on
G(n, d/n) as it is described in Theorem 6. To this end, we employ techniques from [8]. This
means that we study the Hard-Core model on G(n, d/n) in terms of the stability of ratios of
the marginals and the so-called Complete Spectral Independence.

4.1 Ratios of Gibbs Marginals & Stability
Consider the fixed graph G = (V, E) and a Gibbs distribution µ on this graph. For a vertex
w ∈ V , the region K ⊆ V \ {w} and τ ∈ {±1}K , we consider the ratio of marginals at w

denoted as RK,τ (w) such that

RK,τ
G (w) = µw(+1 | K, τ)

µw(−1 | K, τ) . (11)

Recall that µw(· | K, τ) denotes the marginal of the Gibbs distribution µ(· | K, τ) at
vertex w. Also, note that the above allows for RK,τ (w) = ∞, e.g., when µw(−1 | K, τ) = 0
and µw(+1 | K, τ) ̸= 0.

▶ Definition 14 (Marginal stability). Let ζ > 0 be a real number. The Gibbs distribution
µG on G = (V, E) is called ζ-marginally stable if for any Λ ⊂ V , any w ∈ V \ Λ, for any
configuration τ at Λ and any S ⊆ Λ we have that

RΛ,τ
G (w) ≤ ζ and RΛ,τ

G (w) ≤ ζ · RS,τS

G (w) . (12)

As far as the stability of the Hard-Core marginals at G(n, d/n) is concerned, we prove
the following result.

▶ Theorem 15 (Stability Hard-Core Model). For any fixed d > 0, for any λ < λc(d), consider
G ∼ G(n, d/n) and let µG be the Hard-Core model on G with fugacity λ. With probability
1 − o(1) over the instances G, µG is 2(1 + λ)

2 log n
log log n -marginally stable.

Proof. Let ζ = 2(1 + λ)2 log n
log log n . Also, let N(w) be the set of the neighbours of w.

For any Λ ⊆ V and any τ ∈ {±}Λ, we have that µw(+1 | Λ, τ) ≤ λ
1+λ . One can see that

the equality holds if N(w) ⊆ Λ and for every u ∈ N(w) we have that τ(w) = −1. Noting
that RΛ,τ

G (w) is increasing in the value of the Gibbs marginal µw(+1 | Λ, τ), it is immediate
that
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Pr
[
RΛ,τ

G (w) ≤ λ < ζ ∀Λ ⊆ V, ∀w ∈ V \ Λ
]

= 1 . (13)

It remains to show that

Pr
[
RΛ,τ

G (w) ≤ ζ · RS,τS

G (w) ∀Λ ⊂ V, ∀S ⊂ Λ, ∀w ∈ V \ Λ
]

= 1 − o(1) . (14)

In light of (13), (14) follows by showing that

Pr
[
RS,τS

G (2) > 2λ (1 + λ)−2 log n
log log n ∀Λ ⊂ V, ∀S ⊂ Λ, ∀w ∈ V \ Λ

]
= 1 − o(1) . (15)

If there is u ∈ N(w) such that τ(u) = +1, then RΛ,τ
G (w) = 0 and (14) holds trivially since

RS,τS

G (w) ≥ 0. We focus on the case that all vertices u ∈ N(w) ∩ Λ satisfy τ(u) = −1.
Let E be the event that none of the vertices in N(w) is occupied, while let γS be the

probability of the event E under the Gibbs distribution µ(· | S, τS). It is standard to show
that

RS,τS

G (w) =
λ

1+λ γS

1 − λ
1+λ γS

.

Noting that the function f(x) = x
1−x is increasing in x ∈ (0, 1), while γS ≥ ( 1

1+λ )degG(w), we
have that

RS,τS

G (w) ≥
λ

1+λ ( 1
1+λ )degG(w)

1 − λ
1+λ ( 1

1+λ )degG(w) = λ

(1 + λ)degG(w)+1 − λ
.

From the above, it is immediate to get (15). Specifically, it follows from the above inequality
and a standard bound on the maximum degree of random graph which implies that for any
fixed number ϵ > 0, the maximum degree in G is less than (1 + ϵ) log n

log log n with probability
1 − o(1) .

This concludes the proof of Theorem 15. ◀

4.2 (Complete) Spectral Independence
The notions of the pairwise influence matrix IΛ,τ

G and the Spectral Independence, as we
introduce them in Section 3.2, are typically used to establish bounds on the spectral gap for
Glauber dynamics and hence derive bounds on the mixing time of the chain.

The authors in [9], make a further use of Spectral Independence to obtain the approximate
tensorisation of entropy. Unfortunately, a vanilla application of their technique is not sufficient
to prove our tensorisation results, mainly, because of the unbounded degrees we typically
have in G(n, d/n).

In this work, we exploit ideas from [9] together with the related notion of the Complete
Spectral Independence, in order to establish our factorisation results for the entropy in
Theorem 6. Specifically, we utilise the connection between complete spectral independence
and the ℓ block factorisation of entropy that was established in [8] (see further details in the
following section).

Since the notions of the pairwise influence matrix IΛ,τ
G and the Spectral Independence

are so important, let us recall them once more, even though they have already been defined
in Section 3.2. Consider a fixed graph G = (V, E). Assume that we are given a Gibbs
distribution µ on the configuration space {±1}V .
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We define the pairwise influence matrix IΛ,τ
G as follows: for a set of vertices Λ ⊂ V and a

configuration τ at Λ, the matrix IΛ,τ
G is indexed by the vertices in V \ Λ, while for any two

vertices v, w ∈ V \ Λ, different with each other, if w can take both values ±1 given τ , we
have that

IΛ,τ
G (w, u) = ||µu(· | (Λ, τ), ({w}, +)) − µu(· | (Λ, τ), ({w}, −))||TV ; (16)

if w can only take one value in ±1 given τ , we have IΛ,τ
G (w, u) = 0. Also, we have that

IΛ,τ
G (w, w) = 0 for all w ∈ V \ Λ. That is, the diagonal of IΛ,τ

G is always zero.
Recall that, above, µu(· | (Λ, τ), ({w}, 1)) is the Gibbs marginal that vertex u, conditional

that the configuration at Λ is τ and the configuration at w is 1. We have the analogous for
µu(· | (Λ, τ), ({w}, −1)).

▶ Definition 16 (Spectral Independence). For a real number η > 0, the Gibbs distribution µG

on G = (V, E) is η-spectrally independent, if for every 0 ≤ k ≤ |V | − 2, Λ ⊆ V of size k and
τ ∈ {±1}Λ the spectral radius of IΛ,τ

G satisfies that ρ(IΛ,τ
G ) ≤ η.

We proceed to introduce the Complete Spectral Independence. First, consider the notion
of the Magnetising operation.

▶ Definition 17 (Magnetising operation). Let µG be a Gibbs distribution on the graph
G = (V, E). For any local fields ϕ⃗ ∈ RV

>0, the magnetised distribution ϕ⃗ ∗ µ satisfies

∀σ ∈ {±1}V , (ϕ⃗ ∗ µ)(σ) ∝ µ(σ)
∏

v∈V :σv=+1
ϕv .

We denote ϕ⃗ ∗ µ by ϕ ∗ µ if ϕ⃗ is a constant vector with value ϕ.

Suppose that µ is the Hard-Core model on G with fugacity λ. It is immediate that the
magnetisied distribution ϕ⃗ ∗ µ can be viewed as the non-homogenious Hard-Core model such
that each vertex v has its own fugacity λv = λ · ϕv.

▶ Definition 18 (Complete Spectral Independence). For two reals η > 0 and s > 0, the Gibbs
distribution µG on G = (V, E) is (η, s)-completely spectrally independent, if the magnetised
distribution ϕ⃗ ∗ µ is η-spectrally independent for all ϕ⃗ ∈ (0, 1 + s]V .

As far as the Hard-Core model on the random graph G(n, d/n) is concerned, we prove
the following result.

▶ Theorem 19. For any fixed d > 1 and λ < λc(d), there exist bounded constants r =
r(d, λ) ∈ (1, 2), B = B(d, λ) > 0 and s = s(d, λ) > 0 such that the following holds:

Consider G ∼ G(n, d/n) and let µG be the Hard-Core model on G with fugacity λ. With
probability 1 − o(1) over the instances of G, µG is (B · (log n)1/r, s)-completely spectrally
independent.

The proof of Theorem 19 appears in the full version of this paper, where we first relate the
influence matrix on the graph to the influence matrix on the self-avoiding walk tree [31, 27]
and then use the potential function in [28] to analysis the weighted total influence on the
self-avoiding walk tree.

4.3 Entropy Block Factorisation - Proof of Theorem 6
The following theorem, from [8], allows us to derive a bound on the ℓ- block factorisation
parameter of the entropy by using the result in Theorem 15 for the stability of Gibbs
marginals and the result in Theorem 19 for Complete Spectral Independence.
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▶ Theorem 20 ([8, Lemma 2.3]). Let η > 0, ξ > 0 and ζ > 0 be parameters. Let µG be
a Gibbs distribution on G = (V, E). If µG is (η, ξ)-completely spectrally independent and
ζ-marginally stable, then for any 1/α ≤ ℓ < n, µG satisfies the ℓ block factorisation of
entropy with parameter C = ( en

ℓ )1+1/α, where

α = min
{

1
2η

,
log(1 + ξ)

log(1 + ξ) + log 2ζ

}
.

Proof of Theorem 6. From Theorem 19 we have the following: with probability 1 − o(1)
over the instances of G we have that µG is (η, s)-completely spectrally independent where
s = s(d, λ) is constant, while

η = B · (log n)1/r = o

(
log n

log log n

)
,

where B = B(d, λ) and r = r(d, λ) ∈ (1, 2) are constants specified in the statement of
Theorem 19. The second equality above follows by noting that 1/r < 1, bounded away from
1.

Furthermore, from Theorem 15 we have the following: With probability 1 − o(1) over the
instances of G, the distribution µG is ζ-marginally stable, where

ζ ≤ 2(1 + λ)2 log n
log log n .

In light of all the above, the theorem follows by plugging the above values into Theorem 20.
◀

5 Approximate Tensorisation of Entropy

In this section we prove our results related to the approximate tensorisation of the entropy.
These are Theorem 4 and Lemma 8.

5.1 Proof of Theorem 4
In this section we give the full proof of Theorem 4. Recall the high level description of the
steps we follow towards this endeavour in Section 3.1.

Proof of Theorem 4. From Theorem 6 we have the following: For d > 1 and λ < λc(d),
consider G ∼ G(n, d/n), while let µ = µG be the Hard-Core model on G with fugacity λ.
Let the number θ = θ(d, λ) in the interval (0, 1) be a parameter whose value is going to be
specified later. Then, with probability 1 − o(1) over the instances of G, for ℓ = ⌈θn⌉ and for
any f : Ω → R>0 we have that

Entµ(f) ≤
( e

θ

)1+1/α 1(
n
ℓ

) ∑
S∈(V

ℓ )
µ (EntS(f)) . (17)

Recall that C(S) denotes the set of connected components in G[S], the subgraph that is
induced by vertices in S. With a slight abuse of notation, we use U ∈ C(S) to denote the
set of vertices in the component U . By the conditional independence property of the Gibbs
distribution and Lemma 7, we have
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Entµ(f) ≤
( e

θ

)1+1/α 1(
n
ℓ

) ∑
S∈(V

ℓ )

∑
U∈C(S)

µ (EntU (f))

(by Lemma 8 ) ≤
( e

θ

)1+1/α 1(
n
ℓ

) ∑
S∈(V

ℓ )

∑
U∈C(S)

AT(|U |)
∑
v∈U

µ[Entv(f)]

≤
( e

θ

)1+1/α ∑
v∈V

µ[Entv(f)]
∑
k≥1

AT(k) Pr[|Cv| = k] , (18)

where Cv is the connected component in G[S], where S is sampled from
(

V
ℓ

)
uniformly at

random. In order to bound the innermost summation on the R.H.S. of (18) we distinguish
two cases for k. For 1 ≤ k ≤ log n, we use the trivial bound Pr[|Cv| = k] ≤ 1, while Lemma 8
implies that

log n∑
k=1

AT(k) Pr[|Cv| = k] ≤
log n∑
k=1

AT(k) =
log n∑
k=1

3 log
(
1 + λ + λ−1)

· ((1 + λ)k)2+2η

≤ 3 log
(
1 + λ + λ−1)

· log n · ((1 + λ) log n)2+2η

≤ 3 log
(
1 + λ + λ−1)

· ((1 + λ) log n)3+2η ,

where η = B(log n)1/r, for constants B = B(d, λ) and r = r(d) ∈ (1, 2). Elementary
calculations imply that

log n∑
k=1

AT(k) Pr[|Cv| = k] ≤ 3 log
(
1 + λ + λ−1)

· ((1 + λ) log n)3+2η ≤ nx , (19)

for x = o
(

1
log log n

)
.

For k ≥ log n, we use the bound in Lemma 9 for Pr[|Cv| = k], while from Lemma 8 we
have ∑

k≥log n

AT(k) Pr[|Cv| = k] ≤ 2k2 (
1 + λ + λ−1)2k+2 (2e)eLk(2θ)k ,

where L = L(d) is the parameter in Lemma 9. We choose sufficiently small θ = θ(d, λ) such
that

∀k ≥ 1, 2k2 (
1 + λ + λ−1)2k+2 (2e)eLk(2θ)k ≤ (1/2)k

.

This implies that

∑
k≥log n

AT(k) Pr[|Cv| = k] ≤
∑

k≥log n

(
1
2

)k

≤ 1 . (20)

Plugging (19), (20) into (18), we get the following: With probability 1 − o(1) over the
instances of G we have that

Entµ(f) ≤
( e

θ

)1+1/α (
n( 1

log log n ) + 1
) ∑

v∈V

µ[Entv(f)] .
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Since, by Theorem 6 we have that 1
α = K( log n

log log n ), for a constant K = K(d, λ), and
θ = θ(d, λ) is also a constant, the above inequality can be written as follows: there is a
constant A = A(d, λ) such that

Entµ(f) ≤ n( A
log log n ) ∑

v∈V

µ[Entv(f)] .

The above concludes the proof of Theorem 4. ◀
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