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Abstract
We prove that the well-studied triangulation flip walk on a convex point set mixes in time O(n3 log3 n),
the first progress since McShine and Tetali’s O(n5 log n) bound in 1997. In the process we give
lower and upper bounds of respectively Ω(1/(

√
n log n)) and O(1/

√
n) – asymptotically tight up to

an O(log n) factor – for the expansion of the associahedron graph Kn. The upper bound recovers
Molloy, Reed, and Steiger’s Ω(n3/2) bound on the mixing time of the walk. To obtain these results,
we introduce a framework consisting of a set of sufficient conditions under which a given Markov
chain mixes rapidly. This framework is a purely combinatorial analogue that in some circumstances
gives better results than the projection-restriction technique of Jerrum, Son, Tetali, and Vigoda.
In particular, in addition to the result for triangulations, we show quasipolynomial mixing for the
k-angulation flip walk on a convex point set, for fixed k ≥ 4.
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1 Introduction and background

The study of mixing times – the art and science of proving upper and lower bounds on the
efficiency of Markov chain Monte Carlo sampling methods – is a well-established area of
research, of interest for combinatorial sampling problems, spin systems in statistical physics,
probability, and the study of subset systems. Work in this area brings together techniques
from spectral graph theory, combinatorics, and probability, and dates back decades; for
a comprehensive survey of classic methods, results, and open questions see the canonical
text by Levin, Wilmer, and Peres [27]. Recent breakthroughs [1, 2, 3, 8, 9, 10, 24, 26] –
incorporating techniques from the theory of abstract simplicial complexes – have led to a
recent slew of results for the mixing times of combinatorial chains for sampling independent
sets, matchings, Ising model configurations, and a number of other structures in graphs,
injecting renewed energy into an already active area.

We focus on a class of geometric sampling problems that has received considerable
attention from the counting and sampling [4, 22] and mixing time [29, 31, 35, 6] research
communities over the last few decades, but for which tight bounds have been elusive: sampling
triangulations. A triangulation is a maximal set of non-crossing edges connecting pairs of
points (see Figure 1) in a given n-point set. Every pair of triangles sharing an edge forms a
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56:2 Improved Mixing for the Convex Polygon Triangulation Flip Walk

quadrilateral. A triangulation flip consists of removing such an edge, and replacing it with
the only other possible diagonal within the same quadrilateral. Flips give a natural Markov
chain (the flip walk): one selects a uniformly random diagonal from a given triangulation
and (if possible) flips the diagonal.

McShine and Tetali gave a classic result in a 1997 paper [29], showing that in the special
case of a convex two-dimensional point set (a convex n-gon), the flip walk mixes (converges
to approximately uniform) in time O(n5 log n), improving on the best-known prior (and first
polynomial) upper bound, O(n25), by Molloy, Reed, and Steiger [31]. McShine and Tetali
applied a Markov chain comparison technique due to Diaconis and Saloff-Coste [12] and to
Randall and Tetali [32] to obtain their bound, using a bijection between triangulations and a
structure known as Dyck paths. They noted that they could not improve on this bound using
this bijection. Furthermore, they believed that an earlier lower bound of Ω(n3/2), also by
Molloy, Reed, and Steiger [31], should be tight. We show the following result (see Section 3
for the precise definition of mixing time):

▶ Theorem 1. The triangulation flip walk on the convex n + 2-point set mixes in time
O(n3 log3 n).

Prior to the present paper, no progress had been made either on upper or lower bounds
for this chain in 25 years – even as new polynomial upper bounds and exponential lower
bounds were given for other geometric chains, from lattice point set triangulations [35, 6]
to quadrangulations of planar maps [7], and despite many breakthroughs using the newer
techniques for other problems.

In addition to this specific result, we give a general decomposition theorem – which we
will state as Theorem 13 once we have built up enough preliminaries, for bounding mixing
times by recursively decomposing the state space of a Markov chain. This theorem is a purely
combinatorial alternative to the spectral result of Jerrum, Son, Tetali, and Vigoda [21].

1.1 Decomposition framework
To prove our result, we develop a general decomposition framework that applies to a
broad class of Markov chains, as an alternative to prior work by Jerrum, Son, Tetali, and
Vigoda [21] that used spectral methods. We obtain our new mixing result for triangulations,
then generalize our technique to obtain the first nontrivial mixing result for k-angulations.
In a companion paper [15] we further generalize this work to obtain the first rapid mixing
bounds for Markov chains for sampling independent sets, dominating sets, and b-edge covers
(generalizing edge covers) in graphs of bounded treewidth, and for maximal independent sets,
b-matchings, and maximal b-matchings in graphs of bounded treewidth and degree. In that
work we also strengthen existing results [18, 14] for proper q-colorings in graphs of bounded
treewidth and degree.

The key observation that unifies these chains is that, when viewing their state spaces
as graphs (exponentially large graphs relative to the input), they all admit a recursive
decomposition satisfying key properties. First, each such graph, called a “flip graph,” can be
partitioned into a small number of induced subgraphs, where each subgraph is a Cartesian
product of smaller graphs that are structurally similar to the original graph – and thus can
be partitioned again into even smaller product graphs. Second, at each level of recursion,
pairs of subgraphs are connected by large matchings. Intuitively, we can “slice” a flip graph
into subgraphs that are well connected to each other, then “peel” apart the subgraphs
using their Cartesian product structure, and repeat the process recursively. Each recursive
level of slicing cuts through many edges (the large matchings), and indeed the peeling also
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disconnects many mutually well-connected subgraphs from one another. Prior work exists
applying this “slicing” and “peeling” paradigm – albeit with spectral methods instead of
purely combinatorial methods – using Jerrum, Son, Tetali, and Vigoda’s decomposition
theorem (Theorem 14) for combinatorial chains [21, 18, 14]. One of our contributions is to
unify these applications, along with the geometric chains, into a sufficient set of conditions
under which one can apply the existing decomposition theorem: Lemma 15.

A more substantial technical contribution is our Theorem 13, a combinatorial analogue to
Jerrum, Son, Tetali, and Vigoda’s Theorem 14. One can use our theorem in place of theirs
and, in some cases, obtain better mixing bounds. In particular, in the case of triangulations,
we obtain polynomial mixing via an adaptation of our (combinatorial) technique (Lemma 19)
– and it is not clear how to adapt the existing spectral methods to get even a polynomial
bound. In the case of k-angulations, our theorem gives a bound that has better dependence
on the parameter k.

1.2 Paper organization
In the remainder of this section we will define the Markov chains we are analyzing and
summarize our main results. Then, in Section 2, we will give intuition for the decomposition
by describing its application to triangulations. In Section 4 we will present our general
decomposition meta-theorems, and compare our contribution to prior work by Jerrum, Son,
Tetali, and Vigoda [21]. In particular, we will discuss why our purely combinatorial machinery
is needed for obtaining new bounds in the case of triangulations. In the full version of our
paper [16] we will prove a general result that gives a coarse bound on triangulation mixing; we
will then improve this bound to near tightness in the full paper version, and give a matching
upper bound (up to logarithmic factors) in the full version. Also in the full version, we show
that general k-angulations admit a decomposition satisfying a relaxation (Lemma 18) of
our general theorem that implies quasipolynomial-time mixing. We analyze the particular
quasipolynomial bound we obtain, and show that our combinatorial technique (Theorem 13)
gives a better dependence on k than one would obtain with the prior decomposition theorem.
In the full version of the paper we prove our general combinatorial decomposition theorem,
Theorem 13. In the full version we prove a theorem about lattice triangulations, and fill in a
few remaining proof details.

1.3 Triangulations of convex point sets and lattice point sets
Let Pn be the regular polygon with n vertices. Every triangulation t of Pn+2 has n − 1
diagonals, and every diagonal can be flipped: every diagonal D belongs to two triangles
forming a convex quadrilateral, so D can be removed and replaced with the diagonal D′ lying
in the same quadrilateral and crossing D. The set of all triangulations of Pn+2, for n ≥ 1, is
the vertex set of a graph that we denote Kn (this notation is standard), whose edges are
the flips between adjacent triangulations. The graph Kn is known to be realizable as the
1-skeleton of an n − 1-dimensional polytope [28] called the associahedron (we also use this
name for the graph itself). It is also known to be isomorphic to the rotation graph on the set
of all binary plane trees with n+1 leaves [34], and equivalently the set of all parenthesizations
of an algebraic expression with n + 1 terms, with “flips” defined as applications of the
associative property of multiplication.

The structure of this graph depends only on the convexity and the number of vertices of
the polygon, and not on its precise geometry. That is, Pn+2 need not be regular for Kn to
be well defined.

ICALP 2023
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McShine and Tetali [29] showed that the mixing time (see Section 3) of the uniform
random walk on K3,n+2 is O(n5 log n), following Molloy, Reed, and Steiger’s [31] lower
bound of Ω(n3/2). These bounds together can be shown, using standard inequalities [33], to
imply that the expansion of K3,n+2 is Ω(1/(n4 log n)) and O(n1/4). It is easy to generalize
triangulations to k-angulations of a convex polygon P(k−2)n+2, and to generalize the definition
of a flip between triangulations to a flip between k-angulations: a k-angulation is a maximal
division of the polygon into k-gons, and a flip consists of taking a pair of k-gons that share a
diagonal, removing that diagonal, and replacing it with one of the other diagonals in the
resulting 2k − 2-gon. One can then define the k-angulation flip walk on the k-angulations of
P(k−2)n+2. An analogous graph to the associahedron is defined over the triangulations of the
integer lattice (grid) point set with n rows of points and n columns. Substantial prior work
has been done on bounds for the number of triangulations in this graph ([4, 22]), as well as
characterizing the mixing time of random walks on the graph, when the walks are weighted
by a function of the lengths of the edges in a triangulation ([6, 5]).

1.4 Convex triangulation flip walk and mixing time
Consider the following random walk on the triangulations of the convex n + 2-gon:

for t = 1, 2, . . . do
Begin with an arbitrary triangulation t.
Flip a fair coin.
If the result is tails, do nothing.
Else, select a diagonal in t uniformly at random, and flip the diagonal.

end for
(The “do nothing” step is a standard MCMC step that enforces a technical condition

known as laziness, required for the arguments that bound mixing time.) At any given time
step, this walk induces a probability distribution π over the triangulations of the n + 2-gon.
Standard spectral graph theory shows that π converges to the uniform distribution in the
limit. Formally, what McShine and Tetali showed [29] is that the number of steps before π is
within total variation distance 1/4 of the uniform distribution is bounded by O(n5 log n) –
in other words, that the mixing time is O(n5 log n). Any polynomial bound means the walk
mixes rapidly. We formally define total variation distance:

The total variation distance between two probability distributions µ and ν over the same
set Ω is defined as

d(µ, ν) = 1
2

∑
S∈Ω

|π(S) − π∗(S)|.

Consider a Markov chain with state space Ω. Given a starting state S ∈ Ω, the chain
induces a probability distribution πt at each time step t. Under certain mild conditions, all
of which are satisfied by the k-angulation flip walk, this distribution is known to converge in
the limit to a stationary distribution π∗, which for the k-angulation flip walk is the uniform
distribution on the k-angulations of the convex polygon. The mixing time is defined as
follows: Given an arbitrary ε > 0, the mixing time, τ(ε), of a Markov chain with state
space Ω and stationary distribution π∗ is the minimum time t such that, regardless of starting
state, we always have

d(πt, π∗) < ε.

Suppose that the chain belongs to a family of chains, whose size is parameterized by a value
n. (It may be that Ω is exponential in n.) If τ(ε) is upper bounded by a function that is
polynomial in log(1/ε) and in n, say that the chain is rapidly mixing. It is common to omit
the parameter ε, assuming its value to be the arbitrary constant 1/4.
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1.5 Main results
We show the following result for the expansion of the associahedron:

▶ Theorem 2. The expansion of the associahedron K3,n+2 is Ω(1/(
√

n log n)) and O(1/
√

n).

We will prove the lower bound in the full paper version [16] using the multicommodity flow-
based machinery we introduce in Section 4, after giving intuition in Section 2. Combining
this result with the connection between flows and mixing [33] – with some additional effort
in the full version – gives our new O(n3 log3 n) bound (Theorem 1) for triangulation mixing.

Although the expansion lower bound is more interesting for the sake of rapid mixing, the
upper bound in Theorem 2 – which we prove in the full version – recovers Molloy, Reed,
and Steiger’s Ω(n3/2) mixing lower bound [31]. It is also the first result showing that the
associahedron has combinatorial expansion o(1). By contrast, Anari, Liu, Oveis Gharan, and
Vinzant recently proved [3, 2], settling a conjecture of Mihail and Vazirani [30], that matroids
have expansion one. (Mihail and Vazirani in fact conjectured that all graphs realizable as
the 1-skeleton of a 0-1 polytope have expansion one.) Although the set of convex n-gon
triangulations is not a matroid, it is an important subset system – and this work shows that
it does not have expansion one. More generally, we give the following quasipolynomial bound
for k-angulations:

▶ Theorem 3. For every fixed k ≥ 3, the k-angulation flip walk on the convex (k−2)n+2-point
set mixes in time nO(k log n).

In the full version of the paper [16], we give a lower bound on the treewidth of the n × n

integer lattice point set triangulation flip graph:

▶ Theorem 4. The treewidth of the triangulation flip graph Fn on the n × n integer lattice
point set is Ω(N1−o(1)), where N = |V (Fn)|.

2 Decomposing the convex point set triangulation flip graph

2.1 Bounding mixing via expansion
We have a Markov chain that is in fact a random walk on the associahedron Kn. We wish to
bound the mixing time of this walk. It turns out that one way to do this is by lower-bounding
the expansion of the same graph Kn. Intuitively, expansion concerns the extent to which
“bottlenecks” exist in a graph. More precisely, it measures the “sparsest” cut – the minimum
ratio of the number of edges in a cut divided by the number of vertices on the smaller side of
the cut:

The edge expansion (or simply expansion), h(G), of a graph G = (V, E) is the quantity

min
S⊆V :|S|≤|V |/2

|∂S|/|S|,

where ∂S = {(s, t)|s ∈ S, t /∈ S} is the set of edges across the (S, V \ S) cut. It is
known [20, 33] that a lower bound on edge expansion leads to an upper bound on mixing:

▶ Lemma 5. The mixing time of the Markov chain whose transition matrix is the normalized
adjacency matrix of a ∆-regular graph G is

O

(
∆2 log(|V (G)|)

(h(G))2

)
.

One can do better [13, 33] if the paths in a multicommodity flow are not too long (Section 3).

ICALP 2023
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2.2 “Slicing and peeling”
We would like to show that there are many edges in every cut, relative to the number of
vertices on one side of the cut. We partition the triangulations V (Kn) into n equivalence
classes, each inducing a subgraph of Kn. We show that many edges exist between each pair
of the subgraphs. Thus the partitioning “slices” through many edges. After the partitioning,
we show that each of the induced subgraphs has large expansion. To do so, we show that
each such subgraph decomposes into many copies of a smaller flip graph Ki, i < n. This
inductive structure lets us assume that Ki has large expansion – then show that the copies of
the smaller flip graph are all well connected to one another. We call this “peeling,” because
one must peel the many Ki copies from one another – removing many edges – to isolate
each copy. Molloy, Reed, and Steiger [31] obtained their O(n25) mixing upper bound via a
different decomposition, namely using the central triangle, via a non-flow-based method. That
decomposition is the one we use for our quasipolynomial bound for general k-angulations in
the full paper version. However, we use a different decomposition here, one with a structure
that lets us obtain a nearly tight bound, via a multicommodity flow construction. We
formalize the slicing step now:

Fix a “special” edge e∗ of the convex n + 2-gon Pn+2. For each triangle T having e∗ as
one of its edges, define the oriented class C∗(T ) to be the set of triangulations of Pn+2 that
include T as one of their triangles. Let Tn be the set of all such triangles; let Sn be the set
of all classes {C∗(T )|T ∈ Tn}.

Orient Pn+2 so that e∗ is on the bottom. Then say that T (respectively C∗(T )) is to the
left of T ′ (respectively C∗(T ′)) if the topmost vertex of T lies counterclockwise around Pn+2
from the topmost vertex of T ′. Say that T ′ lies to the right of T . Write T < T ′ and T ′ > T .

See Figure 1.

l r j

i

k

Figure 1 Left: A triangulation of the regular octagon. Center: a class C∗(T ) ∈ Sn, represented
schematically by the triangle T that induces it. We depict the regular n + 2-gon as a circle (which it
approximates as n → ∞), for ease of illustration. Each triangulation t ∈ C∗(T ) consists of T (the
triangle shown), and an arbitrary triangulation of the two polygons on either side of T . Notice
that C∗(T ) ∼= Kl□Kr, where T partitions the n + 2-gon into an l-gon and an r-gon. Right: the
matching E∗(T, T ′) between classes C∗(T ) ∼= Ki□Kj+k and C∗(T ′) ∼= Ki+j□Kk, is in bijection with
the triangulations in Ki□Kj□Kk (induced by the quadrilateral containing T and T ′). Therefore,
|E∗(T, T ′)| = CiCjCk.

We make observations about the structure of each class as an induced subgraph of Kn.
The Cartesian product graph G□H of graphs G and H has vertices V (G) × V (H) and

edges

{((u, v), (u′, v))|(u, u′) ∈ E(G), v ∈ V (H)}

∪{((u, v), (u, v′))|(v, v′) ∈ E(H), u ∈ V (G)}.

Given a vertex w = (u, v) ∈ V (G)×V (H), call u the projection of w onto G, and similarly
call v the projection of w onto H. (Applying the obvious associativity of the Cartesian
product operator, one can naturally define the product G1□G2□ · · ·□Gk = □k

i=1Gi.)
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We can now characterize the structure of each class as an induced subgraph of Kn:

▶ Lemma 6. Each class C∗(T ) is isomorphic to a Cartesian product of two associahedron
graphs Kl and Kr, with l + r = n − 1.

Proof. Each triangle T partitions the n + 2-gon into two smaller convex polygons with side
lengths l + 1 and r + 1, such that l + r = n − 1. Thus each triangulation in C∗(T ) can be
identified with a tuple of triangulations of these smaller polygons. The Cartesian product
structure then follows from the fact that every flip between two triangulations in C∗(T ) can
be identified with a flip in one of the smaller polygons. ◀

Lemma 6 will be central to the peeling step. For the slicing step, building on the idea in
Lemma 6 will help us characterize the edge sets between classes:

Given classes C∗(T ), C∗(T ′) ∈ Sn, denote by E∗(T, T ′) the set of edges (flips) between C∗(T )
and C∗(T ′). Let B∗

n,T ′(T ) and B∗
n,T (T ′) be the boundary sets – the sets of endpoints of edges

in E∗(T, T ′) – that lie respectively in C∗(T ) and C∗(T ′).

▶ Lemma 7. For each pair of classes C∗(T ) and C∗(T ′), the boundary set B∗
n,T ′(T ) induces

a subgraph of C∗(T ) isomorphic to a Cartesian product of the form Ki□Kj□Kk, for some i +
j + k = n − 2.

Proof. Each flip between triangulations in adjacent classes C∗(T ) involves flipping a diagonal
of T to transform the triangulation t ∈ C∗(T ) into triangulation t′ ∈ C∗(T ′). Whenever this
is possible, there must exist a quadrilateral Q, sharing two sides with T (the sides that are
not flipped), such that both t and t′ contain Q. Furthermore, every t ∈ C∗(T ) containing
Q has a flip to a distinct t′ ∈ C∗(T ′). The set of all such boundary vertices t ∈ C∗(T ) can
be identified with the Cartesian product described because Q partitions Pn+2 into three
smaller polygons, so that each triangulation in B∗

n,T ′(T ) consists of a tuple of triangulations
in each of these smaller polygons, and such that every flip between triangulations in B∗

n,T ′(T )
consists of a flip in one of these smaller polygons. ◀

▶ Lemma 8. The set E∗(T, T ′) of edges between each pair of classes C∗(T ) and C∗(T ′) is a
nonempty matching. Furthermore, this edge set is in bijection with the vertices of a Cartesian
product Ki□Kj□Kk, i + j + k = n − 2.

Proof. The claim follows from the reasoning in Lemma 7 and from the observation that each
triangulation in B∗

n,T ′(T ) has exactly one flip (namely, flipping a side of the triangle T ) to a
neighbor in B∗

n,T (T ′). ◀

Lemma 8 characterizes the structure of the edge sets (namely matchings) between classes;
we would also like to know the sizes of the matchings. We will use the following formula:

Let Cn be the nth Catalan number, defined as Cn = 1
n+1

(2n
n

)
.

▶ Lemma 9 ([25, 19]). The number of vertices in the associahedron Kn is Cn, and this
number grows as 1√

π·n3/2 · 22n.

We will prove the following in the full version of our paper [16]:

▶ Lemma 10. For every T, T ′ ∈ Tn,

|E∗(T, T ′)| ≥ |C∗(T )||C∗(T ′)|
Cn

.

ICALP 2023
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Lemma 10 – which states that the number of edges between a pair of classes is at least
equal to the product of the cardinalities of the classes, divided by the total number of vertices
in the graph |V (Kn)| = Cn – is crucial to this paper. To explain why this is, we will need to
present our multicommodity flow construction (in the full version of the paper [16]). We will
give intuition in Section 4. For now, it suffices to say that Lemma 10 implies that there are
many edges between a given pair of classes, justifying (intuitively) the slicing step. For the
peeling step, we need the fact that Cartesian graph products preserve the well-connectedness
of the graphs in the product [17]:

▶ Lemma 11. Given graphs G1, G2, . . . , Gk, Cartesian product G1□G2□ · · ·□Gk satisfies

h(G1□G2□ · · ·□Gk) ≥ 1
2 min

i
h(Gi).

Lemma 6 says that each of the classes C∗(T ) ∈ Sn is a Cartesian graph product of
associahedron graphs Kl, Kr, l < n, r < n, allowing us to “peel” (decompose) C∗(T ) into
graphs that can then be recursively sliced into classes and peeled. Lemma 11 implies that
the peeling must disconnect many edges, as it involves splitting a Cartesian product graph
into many subgraphs (copies of Kl).

We will make all of this intuition rigorous in the full paper version by constructing our
flow. The choice of paths through which to route flow will closely trace the edges in this
recursive “slicing and peeling” decomposition. We will then show that, with this choice of
paths, the resulting congestion – the maximum amount of flow carried along an edge – is
bounded by a suitable polynomial factor. This will provide a lower bound on the expansion.

Figure 2 Left: The associahedron graph K5, with each vertex representing a triangulation of the
regular heptagon. Flips are shown with edges (in blue and red). The vertex set V (Kn) is partitioned
into a set Sn of five equivalence classes (of varying sizes). Within each class, all triangulations
share the same triangle containing the bottom edge e∗. Flips (edges) between triangulations in the
same class are shown in blue. Flips between triangulations in different classes are shown in red.
To “slice” K5 into its subgraphs, one must cut through these red matchings. Right: A class C∗(T )
from the graph K5 on the left-hand side, viewed as an induced subgraph of K5. The identifying
triangle T is marked with a blue dot. This subgraph is isomorphic to a Cartesian product of two K2

graphs; each copy of K2 induced by fixing the rightmost diagonal is outlined in green. “Peeling”
apart this product requires disconnecting the two red edges connecting the K2 copies.

3 Bounding expansion via multicommodity flows

The way we will lower-bound expansion is by using multicommodity flows [33, 23]. A
multicommodity flow ϕ in a graph G = (V, E) is a collection of functions {fst : A → R | s, t ∈
V }, where A =

⋃
{u,v}∈E{(u, v), (v, u)}, combined with a demand function D : V × V → R.
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Each fst is a flow sending D(s, t) units of a commodity from vertex s to vertex t through
the edges of G. We consider the capacities of all edges to be infinite. Let fst(u, v) be the
amount of flow sent by fst across the arc (u, v). (It may be that fst(u, v) ̸= fst(v, u).) Let

f(u, v) = 1
|V |

∑
s,t∈V ×V

fst(u, v),

and let ρ = max(u,v)∈A f(u, v). Call ρ the congestion. Unless we specify otherwise, we will
mean by “multicommodity flow” a uniform multicommodity flow, i.e. one in which D(s, t) = 1
for all s, t. The following is well established and enables the use of multicommodity flows as
a powerful lower-bounding technique for expansion:

▶ Lemma 12. Given a uniform multicommodity flow f in a graph G = (V, E) with conges-
tion ρ, the expansion h(G) is at least 1/(2ρ).

Lemma 12, combined with Lemma 5, gives an automatic upper bound on mixing time
given a multicommodity flow with an upper bound on congestion – but with a quadratic loss.
As we will discuss in the full paper version, one can do better if the paths used in the flow
are short [13, 33].

4 Our framework

In addition to the new mixing bounds for triangulations and for general k-angulations, we
make general technical contributions, in the form of three meta-theorems, which we present
in this section. Our first general technical contribution, Theorem 13, provides a recursive
mechanism for analyzing the expansion of a flip graph in terms of the expansion of its
subgraphs. Equivalently, viewing the random walk on such a flip graph as a Markov chain,
this theorem provides a mechanism for analyzing the mixing time of a chain, in terms of the
mixing times of smaller restriction chains into which one decomposes the original chain – and
analyzing a projection chain over these smaller chains. We obtain, in certain circumstances
such as the k-angulation walk, better mixing time bounds than one obtains applying similar
prior decomposition theorems – which used a different underlying machinery.

The second theorem, Lemma 15, observes and formalizes a set of conditions satisfied
by a number of chains (equivalently, flip graphs) under which one can apply either our
Theorem 13, or prior decomposition techniques, to obtain rapid mixing reuslts. Depending
on the chain, one may then obtain better results either by applying Theorem 13, or by
applying the prior techniques. Lemma 15 does not require using our Theorem 13; instead,
one can use the spectral gap or log-Sobolev constant as the underlying techincal machinery
using Jerrum, Son, Tetali, and Vigoda’s Theorem 14. Prior work exists applying these
techniques (using Theorem 14) to sampling q-colorings [18] in bounded-treewidth graphs and
independent sets in regular trees [21], as well as probabilistic graphical models in machine
learning [11] satisfying certain conditions. Lemma 15 amounts to an observation unifying
these applications. We apply this observation to general k-angulations, noting that they
satisfy a relaxation of this theorem (Lemma 18), giving a quasipolynomial bound. This
bound will come from incurring a polynomial loss over logarithmic recursion depth.

The third theorem, Lemma 19, adapts the machinery in Theorem 13 to eliminate this
multiplicative loss altogether, assuming that a chain satisfies certain properties. One such key
property is the existence large matchings in Lemma 10 in Section 2. Another property, which
we will discuss further after presenting Lemma 19, is that the boundary sets – the vertices
in one class (equivalently, states in a restriction chain) having neighbors in another class –

ICALP 2023



56:10 Improved Mixing for the Convex Polygon Triangulation Flip Walk

are well connected to the rest of the first class. When these properties are satisfied, one can
apply our flow machinery to overcome the multiplicative loss and obtain a polynomial bound.
However, the improvement relies on observations about congestion that do not obviously
translate to the spectral setting.

4.1 Markov chain decomposition via multicommodity flow
In this section we state our first general theorem. To place our contribution in context with
prior work, we cast our flip graphs in the language of Markov chains. As we discussed in
Section 1.4, any Markov chain satisfying certain mild conditions has a stationary distribu-
tion π∗ (which in the case of our triangulation walks is uniform). We can view such a chain
as a random walk on a graph M (an unweighted graph in the case of the chains we consider,
which have uniform distributions and regular transition probabilities). In the case of convex
polygon triangulations, we have M = Kn.

The flip graph M has vertex set Ω and (up to normalization by degree) adjacency matrix P

– and we abuse notation, identifying the Markov chain M with this graph. When π∗ is
not uniform, it is easy to generalize the flip graph to a weighted graph, with each vertex
(state) t assigned weight π(t), and each transition (edge) (t, t′) assigned weight π(t)P (t, t′) =
π(t′)P (t′, t). We assume here that this latter equality holds, a condition on the chain M known
as reversibility. We then replace a uniform multicommodity flow with one where D(t, t′) =
π(t)π(t′) (up to normalization factors).

Consider a Markov chain M with finite state space Ω and probability transition
matrix P , and stationary distribution π. Consider a partition of the states of Ω into
classes Ω1, Ω2, . . . , Ωk. Let the restriction chain, for i = 1, . . . , k, be the chain with state
space Ωi, probability distribution πi, with πi(x) = π(x)/(

∑
y∈Ωi

π(y)), for x ∈ Ωi, and
transition probabilities Pi(x, y) = P (x, y)/(

∑
z∈Ωi

P (x, z)). Let the projection chain be the
chain with state space Ω̄ = {1, 2, . . . , k}, stationary distribution π̄, with π̄(i) =

∑
x∈Ωi

π(i),
and transition probabilities P̄ (i, j) =

∑
x∈Ωi,y∈Ωj

P (x, y).

▶ Theorem 13. Let M be a reversible Markov chain with finite state space Ω prob-
ability transition matrix P , and stationary distribution π∗. Suppose M is connec-
ted (irreducible). Suppose M can be decomposed into a collection of restriction
chains (Ω1, P1), (Ω2, P2), . . . , (Ωk, Pk), and a projection chain (Ω̄, P̄ ). Suppose each restric-
tion chain admits a multicommodity flow (or canonical paths) construction with congestion at
most ρmax. Suppose also that there exists a multicommodity flow construction in the projection
chain with congestion at most ρ̄. Then there exists a multicommodity flow construction in M
(viewed as a weighted graph in the natural way) with congestion

(1 + 2ρ̄γ∆)ρmax,

where γ = maxi∈[k] maxx∈Ωi

∑
y /∈Ωi

P (x, y), and ∆ is the degree of M.

We give a full proof in the full version of the paper. Jerrum, Son, Tetali, and Vigoda [21]
presented an analogous (and classic) decomposition theorem, which we restate below as
Theorem 14, and which has become a standard tool in mixing time analysis. The key
difference between our theorem and theirs is that our theorem uses multicommodity flows,
while their theorem uses the so-called spectral gap – another parameter that can use to
bound the mixing time of a chain. Often, the spectral gap gives tighter mixing bounds
than combinatorial methods. Their Theorem 14 gave bounds analogous to our Theorem 13,
but with the multicommodity flow congestion replaced with the spectral gap of a chain
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– and with a 3γ term in place of our 2γ. (They also gave an analogous version for the
log-Sobolev constant – yet another parameter for bounding mixing times.) The spectral gap of
a chain M = (Ω, P ), which we denote λ, is the difference between the two largest eigenvalues
of the transition matrix P (which we can view as the normalized adjacency matrix of the
corresponding weighted graph). The key point is that while on the one hand the mixing
time τ satisfies τ ≤ λ−1 log |Ω|, the bound on mixing using expansion in Lemma 5 comes
from passing through the spectral gap: λ ≥ (h(M))2

2∆2 , where ∆ is the degree of the flip graph
and h(M) is the expansion of M. The quadratic loss in passing from expansion to mixing is
not incurred when bounding the spectral gap directly, so one can obtain better bounds via
the spectral gap. Jerrum, Son, Tetali, and Vigoda gave a mechanism for doing precisely this:

▶ Theorem 14 ([21]). Let M be a reversible Markov chain with finite state space Ω
probability transition matrix P , and stationary distribution π∗. Suppose M is con-
nected (irreducible). Suppose M can be decomposed into a collection of restriction
chains (Ω1, P1), (Ω2, P2), . . . , (Ωk, Pk), and a projection chain (Ω̄, P̄ ). Suppose each re-
striction chain has spectral gap at least λmin. Suppose also that the projection chain has
spectral gap at least λ̄. Then M has gap at least

min
{

λmin

3 ,
λ̄λmin

3γ + λ̄

}
,

where γ is as in Theorem 13.

Our Theorem 13 has a simple, purely combinatorial proof (in the full paper version), and
fills a gap in the literature by showing that such a construction can be used in place of the
spectral machinery from the earlier technique. We also obtain a tighter bound on expansion
than would result from a black-box application of Theorem 14. The cost to our improvement
is in passing from expansion to mixing via the spectral gap. Nonetheless, we will show
that in the case of triangulations, our Theorem 13 can be adapted to give a new mixing
bound whereas, by contrast, it is not clear how to obtain even a polynomial bound adapting
Jerrum, Son, Tetali, and Vigoda’s spectral machinery. We will also show that for general
k-angulations, one can, with our technique, use a combinatorial insight to eliminate the γ

factor in our decomposition in favor of a ∆−1 factor (for k-angulations we have γ = k/∆) –
whereas it is not clear how to do so with the spectral decomposition.

4.2 General pattern for bounding projection chain congestion
Our second decomposition theorem, which we will apply to general k-angulations, states that
if one can recursively decompose a chain into restriction chains in a particular fashion, and if
the projection chain is well connected, then Theorem 13 gives an expansion bound:

▶ Lemma 15. Let F = {M1, M2, . . . } be a family of connected graphs, parameterized by a
value n. Suppose that every graph Mn = (Vn, En) ∈ F , for n ≥ 2, can be partitioned into a
set Sn of classes satisfying the following conditions:
1. Each class in Sn is isomorphic to a Cartesian product of one or more graphs C(T ) ∼=

Mi1□ · · · Mik
, where for each such graph Mij

∈ F , ij ≤ n/2.
2. The number of classes is O(1).
3. For every pair of classes C(T ), C(T ′) ∈ Sn that share an edge, the number of edges between

the two classes is Ω(1) times the size of each of the two classes.
4. The ratio of the sizes of any two classes is Θ(1).
Suppose further that |V1| = 1. Then the expansion of Mn is Ω(n−O(1)).
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Lemma 15 is easy to prove given Theorem 13. An analogue in terms of spectral gap is
easy to prove given Theorem 14. Furthermore, as we will prove in the full paper version, a
precise statement of the bounds given by Lemma 15 is as follows:

▶ Lemma 16. Suppose a flip graph Mn = (Vn, En) belongs to a family F of graphs satisfying
the conditions of Lemma 15. Suppose further that every graph Mk = (Vk, Ek) ∈ F , k < n,
satisfies

|Vk|/|Ek,min| ≤ f(k),

for some function f(k), where Ek,min is the smallest edge set between adjacent classes
C(T ), C(T ′) ∈ Sk, where Sk is as in Lemma 15. Then the expansion of Mn is

Ω(1/(2f(n))log n)),

where γ is as in Theorem 13, and ∆ is the degree of Mn.

Proof. Constructing an arbitrary multicommodity flow (or set of canonical paths) in the
projection graph at each inductive step gives the result claimed. The term |Vk|/|Ek,min|
bounds the (normalized) congestion in any such flow because the total amount of flow
exchanged by all pairs of vertices (states) combined is |Vk|2, and the minimum weight of an
edge in the projection graph is |Ek,min|.

Notice that we do not incur a γ∆ term here, because even if a state (vertex) in Ωi ⊆ Vk

has neighbors x ∈ Ωj , y ∈ Ωl, z still only receives no more than |Vk|2/Ek,min} flow across the
edges (z, x) and (z, y) combined. ◀

▶ Remark 17. The γ∆ factor in Theorem 13, which does not appear in Lemma 16, does
appear in a straightforward appliation of Jerrum, Son, Tetali, and Vigoda’s Theorem 14.

We will show that k-angulations (with fixed k ≥ 4) satisfy a relaxation of Lemma 15:

▶ Lemma 18. Suppose a family F of graphs satisfies the conditions of Lemma 15, with
the Ω(1), O(1), and Θ(1) factors in Conditions 3, 2, and 4 respectively replaced by Ω(n−O(1)),
O(nO(1)), and Θ(nO(1)). Then for every Mn ∈ F , the expansion of Mn is Ω(n−O(log n)).

Lemma 15 enables us to relate a number of chains admitting a certain decomposition
process in a black-box fashion, unifying prior work applying Theorem 14 separately to
individual chains. Marc Heinrich [18] presented a similar but less general construction
for the Glauber dynamics on q-colorings in bounded-treewidth graphs; other precursors
exist, including for the hardcore model on certain trees [21] and a general argument for a
class of graphical models [11]. In the companion paper [15] we mentioned in Section 1, we
apply Lemma 15 to chains for sampling independent sets and dominating sets in bounded-
treewidth graphs, as well as chains on q-colorings, maximal independent sets, and several
other structures, in graphs whose treewidth and degree are bounded.

4.3 Eliminating inductive loss: nearly tight conductance for
triangulations

We now give the meta-theorem that we will apply to triangulations. Lemma 15 – using
either Theorem 13 or Theorem 14 – gives a merely quasipolynomial bound when applied
straightforwardly to k-angulations, including the case of triangulations – simply because the
f(n) term in Lemma 16 is ω(1) and thus the overall congestion is ω(1)log n (not polynomial).
However, it turns out that the large matchings given by Lemma 10 between pairs of classes
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in the case of triangulations (but not general k-angulations), combined with some additional
structure in the triangulation flip walk, satisfy an alternative set of conditions that suffice
for rapid mixing. The conditions are:

▶ Lemma 19. Let F = {M1, M2, . . . } be an infinite family of connected graphs, parameter-
ized by a value n. Suppose that for every graph Mn = (Vn, En) ∈ F , for n ≥ 2, the vertex
set Vn can be partitioned into a set Sn of classes inducing subgraphs of Mn that satisfy the
following conditions:
1. Each subgraph is isomorphic to a Cartesian product of one or more graphs C(T ) ∼=

Mi1□ · · · Mik
, where for each such graph Mij ∈ F , ij < n.

2. The number of classes is nO(1).
3. For every pair of classes C(T ), C(T ′) ∈ Sn, the set of edges between the subgraphs induced

by the two classes is a matching of size at least |C(T )||C(T ′)|
|Vn| .

4. Given a pair of classes C(T ), C(T ′) ∈ Sn, there exists a graph Mi in the Cartesian
product C(T ), and a class C(U) ∈ Si within the graph Mi, such that the set of vertices
in C(T ) having a neighbor in C(T ′) is precisely the set of vertices in C(T ) whose projection
onto Mi lies in C(U). Furthermore, no class C(U) within Mi is the projection of more
than one such boundary.

Suppose further that |V1| = 1. Then the expansion of Mn is Ω(1/(κ(n)n)), where κ(n) =
max1≤i≤n |C(Si)| is the maximum number of classes in any Mi, i ≤ n.

Unlike Lemma 15, this lemma requires a purely combinatorial construction; it is not clear
how to apply spectral methods to obtain even a polynomial bound. Condition 4 is crucial.
To give more intuition for this condition, we state and prove the following fact about the
triangulation flip graph (visualized in Figure 3):

T T
′

Tk

C(T ) C(T ′)

BT ′(T )

BT (T
′)

E(T, T ′)

C(T ) ∼= Mj1� · · ·�Mi� · · ·�Mjk

Mi

BT ′(T ) ∼= Mj1� · · ·�C(U)� · · ·�Mjk

Mi

C(U)

Mi

Mi Mi Mi

C(U) C(U)

C(U)C(U)C(U)

Figure 3 Left: (Lemma 20) The set of edges E∗(T, T ′) has Ki□C∗(Tk) as its set of boundary
vertices in C∗(T ). Center: An illustration of Condition 3 in Lemma 19, showing a large match-
ing E(T, T ′) between two classes (subgraphs) C(T ) and C(T ′). Right: An illustration of Conditions 1
and 4 in Lemma 19: C(T ) as a Cartesian product of smaller graphs Mj1 , . . . , Mi, . . . , Mjk in the
family F . The schematic view shows this Cartesian product as a collection of copies of Mi, connected
via perfect matchings between pairs of the copies – with the pairs to connect determined by the
structure of the Cartesian product. The boundary BT ′ (T ) (center) is isomorphic to a class C(U)
(right) within Mi, a graph in the product. Within each copy of Mi, many edges connect C(U) to
the rest of Mi.

▶ Lemma 20. Given T, T ′ ∈ Tn, suppose T ′ lies to the right of T . Then the subgraph of C∗(T )
induced by B∗

n,T ′(T ) is isomorphic to a Cartesian product Kl□C∗(Tk), where l + r = n − 1,
and where Tk has as an edge the right diagonal of T , and as the vertex opposite this edge the
topmost vertex of T ′. A symmetric fact holds for B∗

n,T (T ′).

Proof. Every triangulation in B∗
n,T ′(T ) (i) includes the triangle T and (ii) is a single flip

away from including the triangle T ′. As we observed in the proof of Lemma 7, this implies
that B∗

n,T ′(T ) consists of the set of triangulations in C∗(T ) containing a quadrilateral Q.
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Specifically, Q shares two sides with T : one of these is e∗, and the other is the left side of T .
One of the other two sides of Q is the right side of C∗(T ′). Combining this side with the “top”
side of Q and with the right side of T , one obtains the triangle Tk, proving the claim. ◀

Lemma 20 implies that there are many edges between the boundary set B∗
n,T ′(T ) and the

rest of C∗(T ): C∗(T ) ∼= Kl□Kr, where Kl and Kr are smaller associahedron graphs, so C∗(T )
is a collection of copies of Kr, with pairs of copies connected by perfect matchings. Each Kr

copy can itself be decomposed into a set Sr of classes, one of which, namely C∗(Tk), is the
intersection of B∗

n,T ′(T ) with the Kr copy. Applying Condition 3 to the Kr copy implies that
there are many edges between boundary vertices in C∗(Tk) to other subgraphs (classes) in
the Kr copy. That is, the boundary set B∗

n,T ′(T ) is well connected to the rest of C∗(T ).
Figure 3 visualizes this situation in general terms for the framework. We have now proven:

▶ Lemma 21. The associahedron graph Kn, along with the oriented partition we have defined,
satisfies the conditions of Lemma 19.

Proof. The connectedness of Kn is known [29]. Conditions 1 and 3 follow from Lemma 6,
Lemma 8, and Lemma 10. Concerning the boundary sets, Condition 4 follows from Lemma 20
and from the discussion leading to this lemma. ◀

Together with Lemma 5 and the easy fact that Kn is a Θ(n)-regular graph, Lemma 21
implies rapid mixing, pending the proof of Lemma 19 – which we prove in the full paper
version [16].

4.4 Intuition for the flow construction for triangulations
We will prove Lemma 19 in the full paper version, from which a coarse expansion lower bound
for triangulations – and a corresponding coarse (but polynomial) upper bound for mixing –
will be immediate by Lemma 21. We give some intuition now for the flow construction we
will give in the proof of Lemma 19, and in particular for the centrality of Condition 3 and
Condition 4 (corresponding respectively to Lemma 10 and Lemma 20 for triangulations).
Consider the case of triangulations, for concreteness. Every t ∈ C∗(T ), t′ ∈ C∗(T ′) must
exchange a unit of flow. This means that a total of |C∗(T )||C∗(T ′)| flow must be sent across
the matching E∗(T, T ′). To minimize congestion, it will be optimal to equally distribute this
flow across all of the boundary matching edges. We can decompose the overall problem of
routing flow from each t ∈ C∗(T ) to each t′ ∈ C∗(T ′) into three subproblems: (i) concentrating
flow from every triangulation in C∗(T ) within the boundary set B∗

n,T ′(T ), (ii) routing flow
across the matching edges E∗(T, T ′), i.e. from B∗

n,T ′(T ) ⊆ C∗(T ) to B∗
n,T (T ′) ⊆ C∗(T ′), and

(iii) distributing flow from the boundary B∗
n,T (T ′) to each t′ ∈ C∗(T ′). Now, the amount of

flow that must be concentrated from C∗(T ) at each boundary triangulation u ∈ B∗
n,T ′(T )

(and symmetrically distributed from each v ∈ B∗
n,T (T ′) throughout C∗(T ′)) is equal to

|C∗(T )||C∗(T ′)|
|B∗

n,T ′(T )| = |C∗(T )||C∗(T ′)|
|B∗

n,T (T ′)| = |C∗(T )||C∗(T ′)|
|E∗(T, T ′)| ≤ Cn,

where we have used the equality |B∗
n,T ′(T )| = |B∗

n,T (T ′)| = |E∗(T, T ′)| by Lemma 7 and
Lemma 8, and where the inequality follows from Lemma 10. As a result, in the “concen-
tration” and “distribution” subproblems (i) and (iii), at most Cn flow is concentrated at or
distributed from any given triangulation (Figure 4). This bound yields a recursive structure:
the concentration (respectively distribution) subproblem decomposes into a flow problem
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C(T ) C(T ′)

BT ′(T )

BT (T
′)

E(T, T ′)

Mi

C(U)

C(U) C(U ′)

BU ′(U)

BU (U
′)

E(U,U ′)

Figure 4 Left: The problem of sending flow from each t ∈ C∗(T ) to each t′ ∈ C∗(T ′), decomposed
into subproblems: (i) concentrating flow within B∗

n,T ′ (T ), (ii) transmitting the flow across the bound-
ary matching E∗(T, T ′), and (iii) distributing the flow from B∗

n,T (T ′) throughout C∗(T ′). Center:
Within each copy of Mi in the product C∗(T ′) ∼= Mj1□ · · ·□Mi□ · · ·□Mjk , the distribution prob-
lem in Figure 4 induces the problem of distributing flow from a class C∗(U) – namely the projection
of B∗

n,T (T ′) onto Mi – throughout the rest of Mi. Right: The problem in the center figure induces
subproblems in which C∗(U) ⊆ Mi must send flow to each C∗(U ′) ⊆ Mi. These subproblems are of
the same form as the original C∗(T ), C∗(T ′) problem (left), and can be solved recursively. The large
matchings E∗(T, T ′), E∗(U, U ′) guaranteed by Condition 3 prevent any recursive congestion increase.

within C∗(T ) (respectively C∗(T ′)), in which, by the inequality, each triangulation has Cn

total units of flow it must receive (or send). We will then apply Condition 4, observing
(see Figure 4) that the concentration (symmetrically) distribution of this flow can be done
entirely between pairs of classes C∗(U), C∗(U ′) within copies of a smaller flip graph Mi in
the Cartesian product C∗(T ′) ∼= Mj1□ · · ·□Mi□ · · ·□Mjk

.

The C∗(U), C∗(U ′) subproblem is of the same form as the original C∗(T ), C∗(T ′) problem
(Figure 4), and we will show that the Cn bound on the flow (normalizing to congestion one)
across the E∗(T, T ′) edges will induce the same Cn bound across the E∗(U, U ′) edges in the
induced subproblem. We further decompose the C∗(U), C∗(U ′) problem into concentration,
transmission, and distribution subproblems without any gain in overall congestion. To see
this, view the initial flow problem in Kn as though every triangulation t ∈ V (Kn) is initially
“charged” with |V (Kn)| = Cn total units of flow to distribute throughout Kn. Similarly, in
the induced distribution subproblem within each copy of Mi = Ki in the product C∗(T ′),
each vertex on the boundary B∗

n,T ′(T ) is initially “charged” with Cn total units to distribute
throughout Ki. Just as the original problem in Kn results in each E∗(T, T ′) carrying at
most Cn flow across each edge, similarly (we will show in the full paper version) the induced
problem in Ki results in each E∗(U, U ′) carrying at most Cn flow across each edge. This
preservation of the bound Cn under the recursion avoids any congestion increase.

One must be cautious, due to the linear recursion depth, not to accrue even a constant-
factor loss in the recursive step (the coefficient 2 in Theorem 13). In Theorem 13, it turns
out that this loss comes from routing outbound flow within a class C∗(T ) – flow that must be
sent to other classes – and then also routing inbound flow. The combination of these steps
involves two “recursive invocations” of a uniform multicommodity flow that is inductively
assumed to exist within C∗(T ). We will show in the full paper version that one can avoid the
second “invocation” with an initial “shuffling” step: a uniform flow within C∗(T ) in which
each triangulation t ∈ C∗(T ) distributes all of its outbound flow evenly throughout C∗(T ).

It is here that Jerrum, Son, Tetali, and Vigoda’s spectral Theorem 14 breaks down, giving
a 3-factor loss at each recursion level, due to applying the Cauchy-Schwarz inequality to a
Dirichlet form that is decomposed into expressions over the restriction chains. Although
Jerrum, Son, Tetali, and Vigoda gave circumstances for mitigating or eliminating their
multiplicative loss, this chain does not satisfy those conditions in an obvious way.
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