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Abstract
We present a dynamic algorithm for maintaining the connected and 2-edge-connected components
in an undirected graph subject to edge deletions. The algorithm is Monte-Carlo randomized and
processes any sequence of edge deletions in O(m + n poly log n) total time. Interspersed with the
deletions, it can answer queries whether any two given vertices currently belong to the same (2-edge-
)connected component in constant time. Our result is based on a general Monte-Carlo randomized
reduction from decremental c-edge-connectivity to a variant of fully-dynamic c-edge-connectivity on
a sparse graph.

For non-sparse graphs with Ω(n poly log n) edges, our connectivity and 2-edge-connectivity
algorithms handle all deletions in optimal linear total time, using existing algorithms for the
respective fully-dynamic problems. This improves upon an O(m log(n2/m) + n poly log n)-time
algorithm of Thorup [J.Alg. 1999], which runs in linear time only for graphs with Ω(n2) edges.

Our constant amortized cost for edge deletions in decremental connectivity in non-sparse graphs
should be contrasted with an Ω(log n/ log log n) worst-case time lower bound in the decremental
setting [Alstrup, Husfeldt, and Rauhe FOCS’98] as well as an Ω(log n) amortized time lower-bound
in the fully-dynamic setting [Patrascu and Demaine STOC’04].
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6:2 Optimal Decremental Connectivity in Non-Sparse Graphs

1 Introduction

In this paper, we present Monte Carlo randomized decremental dynamic algorithms for
maintaining the connected and 2-edge-connected components in an undirected graph subject
to edge deletions. Starting from a graph with n vertices and m edges, the algorithm can
process any sequence of edge deletions in O(m + n polylog n) total time while answering
queries whether a pair of vertices is currently in the same (2-edge-)connected component.
Each query is answered in constant time. The algorithm for decremental 2-edge-connectivity
additionally reports all bridges as they appear.

Putting our results in perspective, we say a graph is non-sparse if it has n logω(1) n edges.
Large areas of algorithmic research are devoted to non-sparse graphs, e.g., the generic goal
of sparsifying graphs to O(n polylog n) edges [6], or semi-streaming algorithms that aim to
sketch graphs using O(n polylog n) space [11]. Our result states that for dynamic connectivity
and 2-edge-connectivity, we can get down to amortized constant time per edge deletion if the
initial input graph is non-sparse. Prior to this work, such a result was only known in the
case where the initial input graph is very dense with Ω(n2) edges, and in the case of some
special classes of sparse graphs.

Achieving constant update and query time is generally the ideal target in data structures.
What makes amortized constant time for decremental connectivity particularly interesting
is that the most closely related problems have near-logarithmic cell-probe lower bounds.
This concerns the problem of getting worst-case time bounds or getting a fully-dynamic
algorithm (supporting both insertions and deletions of edges). The decremental setting and
the fact that we allow for amortization is therefore just enough assumptions to barely push
us into the world of constant update and query time (removing any of these assumptions, the
polylogarithmic lower bounds would kick in) and as such, our result draws a fine line between
the possible and the impossible. We shall discuss this further with precise references in
Section 1.1. It is worth noting that for some dynamic graph problems related to maintaining
(approximate) maximum matchings and colorings, constant amortized update bounds have
been shown, see, e.g., [7, 20, 21, 37].

Our algorithms are Monte Carlo randomized and answer all queries correctly with high
probability1. We note that since the correct answer to each query is uniquely determined from
the input, the algorithms work against adaptive adversaries, that is, each deleted edge may
depend on previous answers to queries and (in the case of decremental 2-edge-connectivity)
on the alleged bridges reported by the algorithm2

Furthermore, our algorithms offer a self-check capability. At the end, after all updates and
queries have been processed online, each algorithm can deterministically check if it might have
made a mistake. If the self-check passes, it is guaranteed that no incorrect answer was given.
Otherwise, the algorithm may have made a mistake. Given the self-check is deterministic,
the probability that the self-check passes following the execution of the algorithm only

1 We define high probability as probability 1 − O(n−γ) for any given γ.
2 To be precise, with unique correct answers, for any adaptive adversary Aad, there is a non-adaptive

adversary Anon-ad which provides the same sequence of edge deletions up to the first point in time
where the algorithm potentially reports an incorrect answer. Anon-ad is simply defined to provide the
same edge-deletions as Aad would conditioned on it receiving the unique correct answers to every query.
Intuitively, the adaptivity of the adversary only becomes relevant once the algorithm has already made
a mistake. Illustrating the issue of non-uniqueness in the case of decremental connectivity, suppose
we augmented our algorithm to report a (non-unique) path between queried pairs of vertices in the
same component. The choice of path could reveal information about the random bits employed by our
algorithm and this could be very problematic if Aad decided to delete the reported path edges.
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depends on the correctness of the algorithm execution. However, as we show in the following,
the self-check passes with high probability. This feature implies that we can obtain Las
Vegas algorithms for certain non-dynamic problems whose solutions employ decremental
(2-edge-)connectivity algorithms as subroutines: we simply repeat trying to solve the static
problem from scratch, each time with new random bits, until the final self-check is passed.
With high probability, we are done already after the first round. A nice concrete example
is the algorithm of Gabow, Kaplan, and Tarjan [15] for the static problem of deciding if a
graph has a unique perfect matching. The algorithm uses a decremental 2-edge-connectivity
algorithm as a subroutine. With our decremental 2-edge-connectivity algorithm, repeating
until the self-check is passed, we obtain a Las Vegas algorithm for the unique perfect matching
problem that is always correct, and which terminates in O(m + n polylog n) time with high
probability.

The tradition of looking for linear time algorithms for non-sparse graphs goes back at
least to Fibonacci heaps, which can be used for solving single source shortest paths in
O(m + n log n) time [14]. Our results show that another fundamental graph problem can be
solved in linear time in the non-sparse case.

The previous best time bounds for the decremental connectivity and 2-edge-connectivity
problems were provided by Thorup [39]. His algorithms run in O(m log(n2/m) + n polylog n)
total time. This is amortized constant time per edge deletion only for very dense graphs
starting with Ω(n2) edges. For graphs with O(n1.99) edges, this is O(log n) amortized time
per edge deletion.

Both our algorithm and the previous one by Thorup are based on a general reduction from
decremental c-edge-connectivity to fully-dynamic c-edge-connectivity on a sparse c-certificate
graph with Õ(cn) updates.

The contribution of this paper is a new type of sparse c-certificate that is much more
efficient to maintain during edge deletions, reducing amortized time per deletion from
O(log(n2/m)) to the optimal O(1). We hope that this new sparse c-certificate will inspire
other applications. We shall discuss it further in Section 2.

It should be noted that [39] used Las Vegas randomization, that is, correctness was
guaranteed, but the running time bound only held with high probability. Our algorithms are
Monte Carlo randomized, but offer the final self-check. Another difference is that our new
algorithms need only a polylogarithmic number of random bits, whereas the ones from [39]
used Θ(m) random bits.

We will now give a more detailed discussion of our results in the context of related work.

1.1 Connectivity

Dynamic connectivity is the most fundamental dynamic graph problem. The fully dynamic
version has been extensively studied [8, 9, 12, 22, 23, 26, 28, 31, 34, 35, 36, 40, 42, 43] from
both the lower and upper bound perspective, even though close to optimal amortized update
bounds have been known since the 90s [22, 23, 40]. Currently, the best known amortized
update time bounds are O(log2 n/ log log n) deterministic [43] and O(log n · (log log n)2)
expected time [26].

Note that Thorup’s O(log(n2/m)) bound for decremental connectivity is essentially only
a (log log n)2 factor better than the latter of these bounds for fully-dynamic connectivity,
while our new bound brings the decremental cost down to a constant (for non-sparse graphs).
Getting down to a constant is particularly interesting when we compare with related lower
bounds as discussed below.

ICALP 2023



6:4 Optimal Decremental Connectivity in Non-Sparse Graphs

Connectivity Lower Bounds. Our result implies that decremental connectivity is provably
easier than fully-dynamic connectivity for a wide range of graph densities. Specifically, let
tu be the update time of a fully dynamic connectivity algorithm and let tq be its query
time. Pǎtraşcu and Demaine [35] showed a lower bound of Ω(log n) on max(tu, tq) in
the cell-probe model. Pǎtraşcu and Thorup [36] also showed that tu = o(log n) implies
tq = Ω(n1−o(1)). These lower bounds hold for all graph densities and allow for both
amortization and randomization. As a result, no fully-dynamic connectivity algorithm can
answer connectivity queries in constant time and have an amortized update time of o(log n).

In sharp contrast, assuming that m = Ω(n poly log n) edges are deleted, our algorithm
shows that one can solve decremental connectivity handling both queries and updates in
constant amortized time.

We note that such a result is possible only because we allow for amortization, as any
decremental connectivity algorithm with worst-case update time O(polylog n) must have
worst-case query time Ω

(
log n

log log n

)
[3]. This lower bound holds even for trees supporting

restricted connectivity queries of the form “are u and v connected?” for a fixed “root” u.
This lower bound also holds for dense graphs, as we can always add a large static clique to
the problem.

An optimal incremental connectivity algorithm has been known for over 40 years. Namely,
to handle m ≥ n edge insertion and q connectivity queries, one can use the union-find
data structure [38] with n − 1 unions and 2(m + q) finds. The total running time is
Θ((m+q)α((m+q), n)), which is linear for all but very sparse graphs (since α(Ω(n log n), n) =
O(1)). It was later shown that this running time is optimal for incremental connectivity [13].
Interestingly, incremental connectivity can be solved in optimal linear time in the case of
forests provided that the final shape of the forest is known in advance [16].

Similarly to the decremental case, one cannot hope to obtain an analogous result with a
worst-case update time in the incremental setting: Pǎtraşcu and Thorup [36] showed that
any incremental connectivity data structure with o

(
log n

log log n

)
worst-case update time must

have worst-case Ω(n1−o(1)) query time in the cell-probe model.

Other cases of optimal decremental connectivity. There is much previous work on cases
where decremental connectivity can be supported in O(m) total time. Alstrup, Secher,
and Spork [5] showed that decremental connectivity can be solved in optimal O(m) total
time on forests, answering queries in O(1) time.3 This was later extended to other classes of
sparse graphs: planar graphs [32], and minor-free graphs [24]. All these special graph classes
are sparse with m = O(n) edges.

For general graphs, we only have the previously mentioned work by Thorup [39], yielding
a total running time of O(m) for very dense graphs with m = Ω(n2) edges. We now obtain
the same linear time bound for all non-sparse graphs with m = Ω(n poly log n) edges.

1.2 General reduction for c-edge-connectivity
Our algorithm for decremental connectivity is based on a general randomized reduction from
decremental c-edge-connectivity (assuming all m edges are deleted) to fully-dynamic c-edge-
connectivity on a sparse graph with Õ(cn) updates. The reduction has a polylogarithmic
cost per vertex as well as a constant cost per edge. The previous decremental connectivity

3 The general word encoding trick behind [5, 16] that brings the update time to amortized constant has
been even shown to have practical relevance [4].
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algorithm of Thorup [39] was also based on such a general reduction, but the cost per edge
was O(log(n2/m)) which is O(1) only for very dense graphs with m = Ω(n2). Below we will
describe the format of the reductions in more detail.

Because there are different notions of c-edge-connectivity, we first need to clarify our
definitions. We say that two vertices u, v are c-edge-connected iff there exist c edge-disjoint
paths between u and v in G. It is known that c-edge-connectivity is an equivalence relation;
we call its classes the c-edge-connected classes. However, for c ≥ 3, a c-edge-connected class
may induce a subgraph of G which is not connected, so it also makes sense to consider
c-edge-connected components, i.e., the maximal c-edge-connected induced subgraphs of G.4 It
is important to note that the c-edge-connected components and the c-edge-connected classes
are uniquely defined and both induce a natural partition of the vertices of the underlying
graph. Moreover, each c-edge-connected component of G is a subset of some c-edge-connected
class of G. For c = 1, 2, the c-edge-connected classes are c-edge-connected, so the two notions
coincide. To illustrate the difference, let us fix c ≥ 3 and consider a graph with c + 2 vertices
vs, vt, v1, . . . , vc and edges {vs, vt} × {v1, . . . , vc}; while all c-edge-connected components in
this graph are singletons, there is one c-edge-connected class, which is not a singleton, namely
{vs, vt}.

We define a c-certificate of G to be a subgraph H of G that contains all edges not
in c-edge-connected components, and also contains a c-edge-connected subgraph of each
c-edge-connected component. Both Thorup’s and our reduction maintains a c-certificate H

of G. Then, for any c′ ≤ c, we have that the c′-edge-connected equivalence classes and the
c′-edge-connected components are the same in G and H. As the edges from G are deleted,
we maintain a c-certificate with Õ(cn) edges undergoing only Õ(cn) edge insertions and
deletions in total.

The (uniquely defined) c-edge-connected components of a graph can be found using the
following algorithm: while the graph contains a cut of size at most c− 1, remove all edges
of this cut. For the reductions, we need algorithms that can help us in this process. We
therefore define the fully dynamic c-edge-cut problem as follows. Suppose a graph G is subject
to edge insertions and/or deletions. Then, a fully dynamic c-edge-cut data structure should
report, after each update, some edge e that belongs to some cut of size less than c. A typical
application of such a data structure is to repeatedly remove such edges e belonging to cuts
of size less than c, which splits G into its c-edge-connected components. For each c ≥ 1,
denote by Tc(n) the amortized time needed by the data structure to find an edge belonging
to a cut of size less than c. For example, for c = 1 we have T1(n) = O(1) since we do not
have to maintain anything. For c = 2, the data structure is required to maintain some bridge
of G and it is known that T2(n) = O((log n · log log n)2) [25]. For c ≥ 3, in turn, we have
Tc(n) = O(n1/2 poly (c)) [41].

Given a fully dynamic c-edge-cut data structure, whose update time for a graph on n

vertices is Tc(n), Thorup’s [39] reduction maintains, in O(m log(n2/m)) + Õ(c · n · Tc(n))
total time, a c-certificate H of the decremental graph G starting with n vertices and m edges.
The certificate undergoes only Õ(cn) edge insertions and deletions throughout any sequence
of deletions issued to G. We reduce here the total time to O(m) + Õ(c · n · Tc(n)).

Combining our reduction with the polylogarithmic fully-dynamic connectivity and
2-edge-connectivity algorithm of Holm, de Lichtenberg, and Thorup [23], we can now solve
decremental connectivity and 2-edge-connectivity in O(m) + Õ(n) time.

4 There is no consensus in the literature on the terminology relating to c-edge-connected components and
classes. Some authors (e.g., [17, 18]) reserve the term c-edge-connected components for what we in this
paper call c-edge-connected classes.

ICALP 2023



6:6 Optimal Decremental Connectivity in Non-Sparse Graphs

We can also apply the fully dynamic min-cut algorithm of Thorup [41] which identifies
cuts of size no(1) in n1/2+o(1) worst-case time. For c = no(1), we then maintain a c-certificate
H in O(m + n3/2+o(1)) total time. This includes telling which vertices are in the same
c-edge-connected component. If we further want to answer queries about c-edge-connectivity
between pairs of vertices, we can apply the fully-dynamic data structure of Jin and Sun [27]
to the c-certificate H. By definition, the answers to these queries are the same in H and G,
and the algorithm takes no(1) time per update or query. Hence the total time for the updates
remains O(m + n3/2+o(1)), and we can tell if two vertices are c-edge-connected in no(1) time.

1.3 Results
We will now give a more precise description of our reduction, including the log-factors hidden
in the Õ(cn) bound. Let the decremental c-certificate problem be that of maintaining a
c-certificate of G when G is subject to edge deletions. Recall that Tc(n) denotes the amortized
update time of a fully-dynamic c-edge-cut data structure. Thorup [39] showed the following.

▶ Theorem 1 (Thorup [39]). There exists a Las Vegas randomized algorithm for the decre-
mental c-certificate problem with expected total update time O(m log (n2/m) + n(c + log n) ·
Tc(n) log2 n). The maintained certificate undergoes O(n · (c + log n)) expected edge insertions
and deletions throughout, assuming Θ(m) random bits are provided. These bounds similarly
hold with high probability.

In particular the total update time is O(m) for very dense graphs with Ω(n2) edges.
Our main result, which we state below, shows that amortized constant update time can be
obtained as long as the initial graph has Ω(n polylog(n)) edges.

▶ Theorem 2. There exists a Monte Carlo randomized algorithm for the decremental c-
certificate problem with total update time O(m + n(c + log n) · Tc(n) log3 n + nc log7 n). The
maintained certificate undergoes O(nc log4 n) edge insertions and deletions throughout. The
algorithm is correct with high probability. Within this time bound, the algorithm offers a final
self-check after processing all updates.

In fact, our algorithm is itself a reduction to O(log n) instances of the decremental
c-certificate problem on a subgraph of G with m′ = O(m/ log2 n) edges. To handle each
of these instances, we use the state-of-the-art data structure (Theorem 1) which costs only
O(m′ log m′) = O(m/ log n) (for non-sparse graphs), yielding a combined cost of O(m). As a
result, our improved reduction (Theorem 2) requires Θ(m/ log n) random bits to hold.

We can reduce the need for random bits dramatically paying a little extra cost per vertex.
Our new randomized c-certificate that is the key to obtaining the new reduction requires
only pairwise independent sampling to work. This is in sharp contrast with the certificate
of Karger [30], used in the construction of Thorup’s data structure (Theorem 1), which
requires full independence, i.e., Θ(m) random bits. We show that we may instead plug our
new certificate into Thorup’s data structure at the cost of a single additional logarithmic
factor in the running time. Since Karger’s certificate constitutes the only use of randomness
in Thorup’s data structure, and full independence in our construction is required only for
invoking Theorem 1, we obtain the below low-randomness version of our main result.

▶ Theorem 3. There exists a Monte Carlo randomized algorithm for the decremental c-
certificate problem with total update time O(m+nc ·Tc(n) log4 n+nc log7 n). The maintained
certificate undergoes O(nc log4 n) edge insertions and deletions throughout. The algorithm
is correct with high probability if O(polylog n) random bits are provided. Within this time
bound, the algorithm offers the final self-check after processing all updates.
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By using Theorem 3 with best known fully dynamic algorithms for different values of
c [23, 27, 41], we obtain:

▶ Theorem 4. There exists Monte Carlo randomized decremental connectivity and decre-
mental 2-edge-connectivity algorithms with O(m + n log7 n) total update time and O(1) query
time.

▶ Theorem 5. Let c = (log n)o(1). There exists a Monte Carlo randomized decremental
c-edge-connectivity data structure which can answer queries to whether two vertices are in
the same c-edge connected class in O(no(1)) time, and which has O(m) + Õ(n3/2) total update
time.

▶ Theorem 6. Let c = O(no(1)). There exists a Monte Carlo randomized decremental
c-edge-connected components data structure with O(m + n3/2+o(1)) total update time and
O(1) query time.

While Theorems 5 and 6 are only optimal for graphs with m = Ω(n3/2+o(1)) edges, we
do note that the improvement in runtime from O(mTc(n)) to O(m + nTc(n) polylog n) is
in general more impressive when Tc(n) is large. E.g., if Tc(n) =

√
n, for dense graphs with

Ω(n2) edges, the former bound is O(m5/4) while the later is O(m) which is a polynomial
improvement.

All the above applications of our main result work using only O(polylog n) random bits.
They moreover each have the self-check property as well. As discussed before, our new
2-edge-connectivity data structure implies an optimal O(m)-time unique perfect matching
algorithm for m = Ω(n polylog n).

1.3.1 Adaptive updates and unique perfect matching
All our time bounds are amortized. Amortized time bounds are particularly relevant for
dynamic data structures used inside algorithms solving problems for static graphs. In such
contexts, future updates often depend on answers to previous queries, and therefore we need
algorithms that work with adaptive updates.

Our reduction works against adaptive updates as long as all the information it provides
is uniquely defined from the input graph and the update sequence, hence not revealing
any information about the random choices in our c-certificate H. We assume some linear
orderings of the vertices and the edges, and define the representative (or ID) of a c-edge
connected component to be the smallest vertex in it. The reduction will safely maintain
the following public information about the c-edge-connected components of G: between
deletions, each vertex stores a pointer to the representative of its c-edge connected component,
so two vertices are in the same c-edge-connected component if and only if they have they
point to the same representative. With the representative, we store the size of the c-edge
connected component, and list its vertices in sorted order. Finally, we have a sorted list of all
edges that go between c-edge-connected components. After each update, we can also reveal
the representatives of the new c-edge-connected components, and the edges between these
components. For the case of 2-edge-connectivity, the above means that we can maintain the
bridges of a decremental graph and we can also maintain the connected components and
their sizes without revealing what the current randomized certificate looks like. All this is
needed for the unique perfect matching algorithm of Gabow, Kaplan, and Tarjan [15]. The
algorithm is an extremely simple recursion based on the fact that a graph with a unique

ICALP 2023



6:8 Optimal Decremental Connectivity in Non-Sparse Graphs

Algorithm 1 Algorithm computing Thorup’s certificate in the static setting.

Input : A graph G = (V, E), where n = |V |, sampling probability P , parameter c

Returns : A set of Õ(c · n/P ) edges giving a c-certificate of G

1 Function ThorupCertificate(V, E, P, c):
2 if |E| ≤ c · n then
3 return E

4 S ← subset of E, in which each edge is included independently with prob. P ;
5 D ← edges of E connecting distinct c-edge-connected components of (V, S);
6 return D ∪ ThorupCertificate(V, S, P, c)

perfect matching has a bridge and all components have even sizes. The algorithm first
asks for a bridge (u, v) of some component. If there is none, there is no unique matching.
Otherwise we remove (u, v) and check the sizes of the components of u and v. If they are
odd, (u, v) is in the unique matching, and we remove all other incident edges. Otherwise
(u, v) is not in the unique matching. The important thing here is that the bridges do not tell
us anything about our random 2-certificate of the 2-edge-connected components.

Thus we solve the static problem of deciding if a graph has a unique perfect matching
in O(m) + Õ(n) time. If the self-verification reports a possible mistake, we simply rerun.
Consequently we get a Las Vegas algorithm that terminates in O(m) + Õ(n) time with high
probability.

Outline. Due to space constraints, in the remaining part of this extended abstract we give
a rather extensive technical overview of our data structure. All the details and proofs can be
found in the full version of this paper.

2 Technical overview

Our main technical contribution is a new construction of a sparse randomized c-certificate
that witnesses the c-edge-connected components of G and can be maintained in constant
time per edge deletion in G (assuming that the initial graph is not too sparse). In the static
case, deterministic certificates of this kind have been known for decades [33]. However, they
are not very robust in the decremental setting, where an adversary can constantly remove
its edges forcing it to update frequently. Consequently, Thorup [39] used a randomized
sample-based certificate to obtain his reduction. The general idea behind this approach is to
ensure that the certificate is sparse and undergoes few updates. Ideally, the sparse certificate
will only have to be updated whenever an edge from the certificate is deleted. Using a fully
dynamic data structure on the certificate, we may obtain efficient algorithms provided that
we don’t spend too much time on maintaining the certificate. Thorup’s reduction had an
additive overhead O(m log(n2/m)) for maintaining the certificate, which we will reduce to
the optimal O(m). We shall, in fact, use Thorup’s reduction as a subroutine, called on
O(log n) decremental subproblems each starting with O(m/ log2 n) edges.

2.1 Thorup’s construction [39]
Let us first briefly describe how Thorup’s algorithm operates on certificates and highlight
difficulties in improving his reduction to linear time. First of all, the c-certificate is constructed
as follows (see Algorithm 1 for pseudocode). Initially, sample edges of G uniformly with
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probability P ≤ 1/2, thus obtaining a subgraph S. Then, compute the c-edge-connected
components of S and form a certificate H out of two parts: (1) A recursive certificate of
S, and (2) the subgraph D consisting of edges of G connecting distinct c-edge-connected
components of S.

As proved by Karger [30], D has size Õ(cn/P ) with high probability. Thorup [39]
generalizes this by proving that D undergoes only Õ(cn/P ) insertions throughout any
sequence of edge deletions to S. Since D depends only on the c-edge-connected components
of S, it is enough to have a c-certificate of S in order to define D. Hence, a c-certificate
of S (which is a graph a size O(mP ), i.e., a constant factor smaller) is maintained under
edge deletions recursively. The recursion stops when the size of the input graph is O(cn).
To maintain D at each recursive level, we first need to maintain the c-edge-connected
components of the (recursive) certificate of S under edge deletions. The certificate of S can
be (inductively) seen to have Õ(cn/P ) edges and undergo Õ(cn/P ) updates. As a result, for
P = 1/2 maintaining its c-edge-connected components costs Õ(cn · Tc(n)) total time using
the fully-dynamic c-edge-cut data structure. Since at each recursion level the certificate size
decreases geometrically, the expected cost of all the dynamic c-edge-cut data structures is
Õ(cn · Tc(n)). For c = 1, 2, Õ(cn · Tc(n)) = Õ(n).

The bottle-neck in Thorup’s reduction. For non-sparse graphs, the bottleneck in Thorup’s
reduction is the additional cost of O(m log(n2/m)) which comes from the fact that, at each
level of the recursion, when a c-edge-connected component in S splits into two components
as a result of an edge deletion, we need to find edges of G between these two components
in order to update D. This takes O(m log (n2/m)) total time throughout using a standard
technique of iterating through the edges incident to the vertices in the smaller component
every time a split happens [10]. The O(log (n2/m)) (instead of O(log (n))) cost comes
by noticing that a vertex can at most have q neighbors in a component of order q, and
that after we go through the edges of a vertex i times it is in a component of order
≤ n/2i; hence it is only the first O(log(n/ deg(v))) times that all neighbors of v have to
be considered, so, by applying Jensen’s inequality, the total time spent on this becomes
O

(∑
v∈V deg(v) log(n/ deg(v))

)
= O(m log (n2/m)).

It turns out very challenging to get rid of the O(m log(n2/m)) term associated with
finding cuts when components split in Thorup’s reduction. If we knew that all of these cuts
were small, say of size at most δ, then we could apply a whole bag of tricks for efficiently
finding them in a total time of Õ(nδ), e.g., using invertible Bloom lookup tables [19], or the
XOR-trick [1, 2, 29]. Unfortunately, the bound of Õ(cn/P ) only gives an average bound
on the number of edges between pairs of components, and in fact there can be pairs of
components having as many as Ω(n1/3) edges between them, as we will later show. In
order to resolve this, we have to introduce a new type of sample based c-edge certificate
obtained by only removing cuts of size at most δ = O(c polylog n) from G. In the following
three subsections, we describe the ideas behind this new certificate, the technical challenges
encountered in efficiently maintaining it, and why such a certificate is relevant for decremental
connectivity algorithms.

2.2 Our c-certificate based on small cut samples
In this section we describe the construction of our c-certificate. For simplicity, we assume
c = 1 for now.

The (simplified) algorithm for computing the certificate in the static setting is given as
Algorithm 2. In order to obtain a conceptually simpler picture of the certificate, Algorithm 2
is described recursively where each recursive call takes as input a minor G′ of G, namely
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6:10 Optimal Decremental Connectivity in Non-Sparse Graphs

Algorithm 2 Algorithm computing our new certificate in the static setting.

Input : A graph G = (V, E) where n = |V | and m = |E|, sampling probability P ,
parameter δ

Returns : A set of O(mP log n + nδ log n) edges giving a 1-certificate of G

1 Function NewCertificate(V, E, P, δ):
2 if E = ∅ then
3 return ∅
4 D = ∅;
5 while G has a non-isolated vertex v of degree ≤ δ do
6 Remove from E all edges incident to v and add them to D

7 S ← subset of E, in which each edge is included independently with prob. P ;
8 H ← (V, S);
9 G′ ← graph obtained from G by contracting connected components of H;

10 return S ∪D ∪ NewCertificate(V (G′), E(G′), P, δ)

the graph obtained by contracting the connected components of H = (V, S), where S is a
subset of edges of G (after pruning G of small cuts in lines 5-6) sampled with probability
P . Adding an edge e of G′ to the certificate, simply means that we add the corresponding
edge of G. While Algorithm 2 gives a precise description of the static certificate at any given
point, maintaining these minors in the dynamic setting is too costly. Because of that, in the
dynamic algorithm, instead of using minors we work with a sequence of subgraphs of the
initial graph that are easier to maintain dynamically.

Denote by ℓ the depth of the recursion in Algorithm 2. For i = 1, . . . , ℓ, let Si be the
union of samples S on the recursive levels 1, . . . , i of Algorithm 2, so that Sℓ contains all
the edges sampled in the process. When an edge is deleted from G, it is removed from all
the sampled subsets S in the recursion, and thus also from all the relevant subsets Si. This
way, after any sequence of deletions the certificate that we maintain only depends on the
initial samples S1, S2 \ S1, . . . , Sℓ \ Sℓ−1 and the current graph G, not on the sequence of
edge updates made to G so far. We may therefore describe the certificate statically.

The critical idea behind our certificate is to introduce a small-cut-parameter δ. Our
certificate is obtained by iteratively removing certain cuts from G where each cut is allowed
to be of size at most δ. We denote by D ⊂ G the graph whose edge set consists of the edges
removed in this process. The overall goal is to define this cut removal process in a way so
that (1) each connected component of G \D is connected in Sl, and (2) it is easy to detect
new small cuts under edge deletions issued to G. We then use Sℓ ∪D as our connectivity
certificate of G. Importantly, we want δ to be as small as possible, ideally δ = O(polylog(n)).
This is because Õ(δn) will show up as an additive cost in our algorithm for maintaining the
certificate.

We will describe shortly how this type of certificate can be used in the design of efficient
decremental connectivity algorithms, but let us first demonstrate that the existence of such
a cut removal process (satisfying both (1) and (2)) for a small δ is non-trivial.

First of all, we could simply remove all cuts from G of size at most δ leaving us with the
(δ + 1)-connected components. Karger’s result [30] implies that with δ = O((c + log n)/P )
sufficiently large, these components will remain c-edge connected in S. However, in order to
maintain the small cuts, we would need a decremental δ-edge connectivity algorithm. As
δ > c, this approach simply reduces our problem to a much harder one.
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Suppose on the other hand that we attempted to use Thorup’s sampling certificate [39]
described above. To simplify the exposition, let’s assume that P = 1/2. If D is the set of
edges between connected components of S, D∪S is a certificate. Thorup’s algorithm recurses
on S to find a final certificate of G. At first sight it may seem like D can be constructed by
iteratively removing cuts of size at most δ = O(log n) between the connected components of
S. After all, isn’t it unlikely that a connected component of S has more than, say, 100 log n

unsampled outgoing edges when the sampling probability is P = 1/2? As alluring as this
logic may be, it is flawed. Indeed, there exist graphs of maximum degree O(log n) such that
after sampling with P = 1/2, some two connected components of the sampled subgraph, C1
and C2, will have Ω(n1/3) unsampled edges between them. At some point in the iterative
process, we are thus forced to remove a cut of size Ω(n1/3) splitting C1 and C2, and we would
have to choose δ of at least this size (but it is possible that other examples could show that δ

would have to be even larger). Our algorithms spend total time Õ(nδ) on finding these cuts,
and if δ = Ω(n1/3), this is not good enough for a linear time algorithm for non-sparse graphs.

We remark that in this example, each vertex of G has degree O(log n) with high probability.
Therefore, an alternative approach yielding cuts of size O(log n) would be to cut out one
vertex at a time moving all incident edges to D. In particular this would cut the large
sampled components C1 and C2 into singletons, one vertex at a time. We cannot proceed
like this for general graphs which may have many vertices of large degree. Nevertheless, this
simple idea will be critically used in our construction which we will now discuss.

Our actual certificate uses δ = Θ( log n
P ) and P = 1/ polylog n. To construct our certificate,

we start by iteratively pruning G of the edges incident to vertices of degree less than δ, moving
these edges to D. The graph left after the pruning G1 = G \D satisfies that each vertex of
positive degree has degree at least δ. Next, S1 defines a sample of G1, H1 = S1 ∩G1. The
expected degree of each vertex in H1 which is not isolated in G1 is at least δ · P = Θ(log n),
and thus we get that with constant probability a fraction of 3/4 of the vertices with positive
degree in the sampled subgraph H1 have degree ≥ 4.

Using this property we show that H1 can have at most 5n/6 connected components. As a
result, if we contract the connected components of H1 in the pruned graph G1, the resulting
graph G′

1 has at most 5n/6 vertices. Finally, we construct a certificate for G′
1 recursively

using the samples S2 \ S1, S3 \ S2, . . . , stopping when the contracted graph has no edges
between the contracted vertices (here G played the role of G′

0). The constant factor decay
in the number of components ensures that we are done after ℓ = O(log n) steps with high
probability. All edges of D are obtained as the removed edges of cuts of G of size less than δ,
so D will have size O(nδ). Our certificate will simply be Sℓ ∪D which we prove is in fact a
certificate.

With this, we have thus completed the goal of obtaining a small cut sample certificate
with δ as small as O( log n

P ). Abstractly, our certificate has a quite simple description: we
alternate between sampling, removing small cuts around connected components in the sample,
and finally contracting these components. However, in our implementation, we cannot afford
to perform the contractions as described above explicitly, as updating them dynamically
would be costly. As a result we end up solving a more challenging problem in the dynamic
setting. Given a graph G and its subgraph H undergoing edge deletions, determine if any
connected components of H is incident to at most δ edges of G \D, i.e., induces a cut of
at most δ edges. It turns out that since we are only concerned with cuts of size at most δ,
we can in fact identify these cuts in total time O(m) + Õ(δn). We will describe this in the
following section.
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A final property of our new randomized decremental certificate algorithm is that it
requires only O(log2 n) random bits to yield high-probability correctness bounds. This is in
sharp contrast with Thorup’s algorithm [39] which requires Ω(m) random bits. On a high
level, the reason we can do with few random bits is that in each step of the construction of
our certificate, we only need the bounds on the number of contracted components to hold
with constant probability. Indeed, we will still only have O(log n) recursive levels with high
probability. This means that for the probability bounds within a single recursive level, it
suffices to apply Chebyshev’s inequality. While the reduction of the number of required
random bits is nice, the main point, however, is that with our new certificate we can get down
to constant amortized update time per edge-deletion for decremental (2-edge)-connectivity
for all but the sparsest graphs.

2.3 Maintaining our certificate
As edges are deleted from G, the recursive structure of the c-certificate H changes. Indeed,
a deletion of an edge may cause the following changes in one of the recursive layers of H: (1)
introduce a cut of size less than δ surrounding a c-edge-connected component or (2) break
a c-edge-connected component in two. In the first case, the edges of the cut have to be
moved to D, and deleted from the current and later layers of H, causing further cascading.
When a c-edge-connected component (in a recursive layer) of H breaks in two, we need to
determine whether either of the new components has less than δ outgoing edges in G \D.
If we use the standard technique of iterating over all the edges incident to vertices of the
smaller component, this again incurs an O(log(n2/m)) cost per edge which is insufficient.
However, as we only care about components with at most δ outgoing edges, it turns out that
we can do better. We define the boundary ∂G(C) of a component C of some graph H ⊂ G

to be the set of edges of G with one endpoint in C, and another in V \ C. To overcome the
O(log (n2/m)) cost per edge, we prove that we can maintain boundaries of size at most δ

under splits using a Monte Carlo randomized algorithm in O(m + nδ polylog n) total time.
We achieve this by developing a fully dynamic data structure summarized as follows, that we
believe may be of independent interest.

▶ Theorem 7. Let G = (V, E) be an initially empty graph subject to edge insertions and
deletions and let s, 1 ≤ s ≤ n, be an integral parameter. There exists a data structure
that can process up to O(poly n) queries of the form “given some S ⊆ V , compute ∂G(S)”,
where ∂G(S) = E(S, V \ S), so that with high probability each query is answered correctly in
O

(
|S|s + |E(S, V )| · |∂G(S)|

s + log n
)

time. The data structure is initialized in O(ns) time
and can be updated in constant time.

We realize this result by deploying the so-called XOR-trick [29]5 for deciding if a boundary
of some subset of vertices is non-empty, albeit in a somewhat unusual manner. We now
briefly describe the method. Suppose each e ∈ E is assigned a random bit-string xe of length
Θ(log n), which fits in O(1) machine words. Let xv =

⊕
vw=e∈E xe denote the XOR of the

respective bit-strings of edges incident to v. Then, one can prove that, given S ⊆ V , with
high probability the XOR

⊕
u∈S xu is non-zero if and only if ∂G(S) ̸= ∅. The underlying

idea is that if an edge e incident to v ∈ S has its other endpoint also contained in S, its
corresponding bit string xe appears exactly twice in

⊕
u∈S xu, and thus cancels out. So,

emptiness of ∂G(S) can be tested in O(|S|) time.

5 See also [1, 2] for uses of the same idea in other contexts.
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The XOR trick can also be used with no change to retrieve a non-empty boundary
∂G(S), but only when that boundary has precisely one element. In order to retrieve some
element of ∂G(S), existing applications of the XOR-trick consider a polylogarithmic number
of independent edge set samples, chosen such that one of the samples intersects ∂G(S)
precisely on one edge (with high probability). This unavoidably introduces a polylogarithmic
dependence in the cost per edge of the graph, which is prohibitive in our scenario.

The main idea behind Theorem 7 which allows us to deal with this problem is as
follows. We partition the edge set E into E1, . . . , Es. Each e ∈ E is assigned to one of
these sets uniformly at random. We apply the XOR-trick for each of the edge-disjoint
subgraphs (V, Ei) separately. This takes O(s|S|) time and computes a set I of all i such
that ∂G(S) ∩ Ei ̸= ∅ (with high probability). Clearly, in order to find ∂G(S), we only
need to look for this boundary’s elements in

(⋃
i∈I Ei

)
∩EG(S, V ). Note that the expected

size of this set is (|I|/s) · |EG(S, V )| ≤ (|∂G(S)|/s) · |EG(S, V )|. If we set s to be larger
than the maximum size of a boundary that we would like to retrieve (in the algorithm
we ensure that the ratio is polylogarithmic), we significantly reduce the set of candidate
edges to consider and can search through them exhaustively. In total, as we show, only
O(|∂G(S)|+ |EG(S, V )| · |∂G(S)|/s + log n) edges are explored with high probability.

In our application, we end up using the data structure of Theorem 7 storing the (dynamic)
graph G \ D, and handling small boundary (of size no more than δ = polylog n) queries
for smaller sides C ⊆ V of decomposing components of ℓ = O(log n) dynamic subgraphs of
G \D. Throughout, the total size of the queried subsets C is O(n log2 n). Consequently,
the sum of |E(C, V )| over these sets is O(m log2 n). By setting s = δ log2 n in Theorem 7,
we obtain that the required queries for δ-bounded boundaries ∂G\D(C) can be processed in
O(n polylog n + m) total time.

2.4 Combining our certificate with Thorup’s algorithm
With the certificate as above, the overall idea for a decremental connectivity algorithm is
to maintain a c-certificate of (each recursive layer of) the decremental graph H = S \ D

using the algorithm by Thorup [39]. By choosing P = 1/ log2 n, S has m′ = O(m/ log2 n)
edges with high probability, so employing the algorithm of Theorem 1 on each recursive
layer takes total time O(m′ log2 n + ncTc(n) polylog n) = O(m + ncTc(n) polylog n) with
high probability. Let H∗ be the c-certificate thus obtained for H. Using a fully dynamic
c-edge-connectivity algorithm on H∗ ∪ D (which undergoes O(cn polylog n) updates), we
maintain a c-edge certificate of G. As H∗ ∪D undergoes O(cn polylog n) updates, running
the fully dynamic algorithm takes total time O(cnTc(n) polylog n).

We remark that for c = 1, 2 we could instead use a fully dynamic c-edge connectivity
algorithm on H with polylogaritmic update and query time at the price of a smaller P (which
would incur more log-factors in our final time bound). For c > 2, however, we only know that
Tc(n) = O(n1/2 poly(c)). Since running a fully dynamic algorithm on H takes total time
Ω(mTc(n)/ polylog n), this is insufficient to obtain linear time algorithms for dense graphs.

2.5 Final self-check
Let us finally describe the ideas behind the final self-checks claimed in Theorem 2 and 3 in a
more general context. In particular, we show that if a randomized Monte Carlo dynamic
algorithm satisfies some generic conditions then it can be augmented to detect, at the end
of its execution, whether there is any chance that it answered any query incorrectly. That
is, if the self-check passes then it is guaranteed that all queries were answered correctly
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throughout the execution of the algorithm. Otherwise, it indicates that some queries might
have been answered incorrectly. The self-check property is particularly useful in applications
of dynamic algorithms as subroutines in algorithms solving static problems, that is, it enables
static algorithms to exhibit Las Vegas guarantees instead of the Monte Carlo guarantees
provided by the dynamic algorithm, as they can simply re-run the static algorithm with fresh
randomness until the self-check passes.

The properties of a dynamic algorithm amenable to a self-check behavior are as follows:
Once an error is made by the dynamic algorithm it should be detectable and any
subsequent updates of the algorithm should not correct the error before it is detected.
If the dynamic algorithm is stopped at any point in time, it should be able to still perform
the self-check within the guaranteed running time of the algorithm.

In our algorithm, as long as the c-certificate maintained by our algorithm is correct, the
c-edge-connectivity queries answered by our algorithm exhibit the same guarantees as the
fully dynamic c-edge-connectivity algorithm running on the c-certificate H. Hence, we only
need to detect potential errors in the process of maintaining the c-certificate H. Such errors
only happen with probability n−Ω(1).

By definition, a c-certificate H ⊆ G of G is correct if for every “non-witness” edge (u, v)
from G \H, we have that u and v are c-edge-connected in H. We use H = Sℓ ∪D where Sℓ

is decremental, and we impose the stronger requirement that if (u, v) ∈ G \H, then u and v

are c-edge-connected in Sℓ. If this is not the case, we consider it an error.
Suppose we have an error with (u, v). Since Sℓ is decremental, u and v cannot later

become c-edge connected in Sℓ. Thus, the error can only disappear if (u, v) is deleted from
G or (u, v) is added to H. Therefore, all our self-checker needs to do is this: Whenever an
edge from G \H is about to be deleted from G or about to be added to H, we first check
that u and v are c-edge-connected in Sℓ; otherwise we found an error. Also, if the algorithm
is terminated before all edges are deleted, we perform that above check on all remaining
edges. If any check finds an error, we flag the execution as invalid.

If an execution of our algorithm has not been flagged, we know that all queries have been
answered correctly. Moreover, the execution is only flagged with probability n−Ω(1).

As a final note, every vertex will maintain an ID of its c-edge-connected component in Sℓ.
Then u and v are the c-edge-connected in Sℓ if and only if they have the same ID. This is
checked in constant time, so these extra checks do not affect our overall asymptotic time
bounds.
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