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Abstract
We introduce a novel model-theoretic framework inspired from graph modification and based on
the interplay between model theory and algorithmic graph minors. The core of our framework
is a new compound logic operating with two types of sentences, expressing graph modification:
the modulator sentence, defining some property of the modified part of the graph, and the target
sentence, defining some property of the resulting graph. In our framework, modulator sentences
are in counting monadic second-order logic (CMSOL) and have models of bounded treewidth, while
target sentences express first-order logic (FOL) properties along with minor-exclusion. Our logic
captures problems that are not definable in first-order logic and, moreover, may have instances
of unbounded treewidth. Also, it permits the modeling of wide families of problems involving
vertex/edge removals, alternative modulator measures (such as elimination distance or G-treewidth),
multistage modifications, and various cut problems. Our main result is that, for this compound logic,
model-checking can be done in quadratic time. All derived algorithms are constructive and this,
as a byproduct, extends the constructibility horizon of the algorithmic applications of the Graph
Minors theorem of Robertson and Seymour. The proposed logic can be seen as a general framework
to capitalize on the potential of the irrelevant vertex technique. It gives a way to deal with problem
instances of unbounded treewidth, for which Courcelle’s theorem does not apply.
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1 Introduction

Our work is kindled by the current algorithmic advances in graph modification. The core of
our approach is a novel model-theoretic framework that is based on the interplay between
model theory and algorithmic graph minors. Departing from this new perspective, we obtain
algorithmic meta-theorems that encompass, unify, and extend all known meta-algorithmic
results on minor-closed graph classes.

1.1 State of the art and our contribution
Modification problems. A graph modification problem asks whether it is possible to apply
a series of modifications to a graph in order to transform it to a graph with some desired
target property. Such problems have been the driving force of Parameterized Complexity
where parameterization quantifies the concept of “distance from triviality” [48] and measures
the amount of the applied modification. Classically, modification operations may be vertex
or edge deletions, edge additions/contractions, or combinations of them like taking a minor.
In their generality, such problems are NP-complete [60] and much research in Parameterized
Complexity is on the design of algorithms in time f(k) · nO(1), where the parameter k is
some measure of the modification operation [20]. The target property may express desired
structural properties that respond to certain algorithmic or combinatorial demands. A
widely studied family of target properties are minor-closed graph classes such as edgeless
graphs [14], forests [13], bounded treewidth graphs [35,54], planar graphs [50,62], bounded
genus graphs [55], or, most generally, minor-excluding graphs [72,73]. However, other families
of target properties have also been considered, such as those that exclude an odd cycle [29],
a topological minor [36], an (induced) subgraph [22,69], an immersion [40], or an induced
minor [41]. A broad class of graph modification problems concerns cuts. In a typical cut
problem, one wants to find a minimum-size set of edges or vertices X in a graph G such
that in the new graph G \X, obtained by deleting X from G, some terminal-connectivity
conditions are satisfied. For example, the condition can be that a set of specific terminals
becomes separated or that at least one connected component in the new graph is of a specific
size. The development of parameterized algorithms for cut problems is a popular trend
in parameterized algorithms [21, 61]. More involved modification measures of vertex set
removals, related to treewidth or treedepth, have been considered very recently [1, 12, 27, 49].

Algorithmic meta-theorems. A vibrant line of research in Logic and Algorithms is the
development of algorithmic meta-theorems. According to Grohe and Kreutzer [45], algorithmic
meta-theorems state that certain families of algorithmic problems, typically defined by some
logical and some combinatorial condition, can be solved “efficiently”, under some suitable
definition of this term. Algorithmic meta-theorems play an important role in the theory of
algorithms as they reveal deep interplays between Algorithms, Logic, and Combinatorics. One
of the most celebrated meta-theorems is Courcelle’s theorem asserting that graph properties
definable in CMSOL (counting monadic second-order logic) are decidable in linear time on
graphs of bounded treewidth [15]; see also [2, 10]. Another stream of research concerns
identifying wide combinatorial structures where model-checking for FOL (first-order logic)
can be done in polynomial time. This includes graph classes of bounded degree [76], graph
classes of bounded local treewidth [37], minor-closed graph classes [30], graph classes locally
excluding a minor [23], and more powerful concepts of sparsity, such as having bounded
expansion [26,63], nowhere denseness [46], or having bounded twin-width [9]. (See [44,58] for
surveys. Also for results on the combinatorial horizon of FOL and CMSOL (and its variants)
see [8, 9, 46] and [57] respectively.)
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Another line of research, already mentioned in [44], is to prove algorithmic meta-theorems
for extensions of FOL of greater expressibility. Two such extensions have been recently
presented. The first one consists in enhancing FOL with predicates that can express k-
connectivity for every k ≥ 1. This extension of FOL was introduced independently by
Schirrmacher, Siebertz, and Vigny in [75] (under the name FOL+conn) and by Bojańczyk
in [6] (under the name separator logic). The second and more expressive extension, also
introduced by Schirrmacher, Siebertz, and Vigny in [75], is FOL+DP, that enhances FOL with
predicates expressing the existence of disjoint paths between certain pairs of vertices. For
FOL+conn, an algorithmic meta-theorem for model-checking on graphs excluding a topological
minor has been very recently given by Pilipczuk, Schirrmacher, Siebertz, Torunczyk, and
Vigny [66]. For the more expressive FOL+DP, an algorithmic meta-theorem for model-
checking on graphs excluding a minor has been very recently given by Golovach, Stamoulis,
and Thilikos in [43] (see [42] for the full version).

Research on the meta-algorithmics of FOL is quite active and has moved to several
directions such as the study of FOL-interpretability [7, 39, 64, 65] or the enhancement of FOL
with counting/numerical predicates [25,47,59].

In this paper, we initiate an alternative approach consisting in combining the expressive
power of FOL and CMSOL. A typical family of problems where such an approach becomes
relevant is the one of modification problems. Courcelle’s theorem implies that if the target
property corresponds to a class of bounded treewidth and the modification conditions are
definable in CMSOL, then such modification problems are fixed-parameter tractable when
parameterized by the length of the sentence and the treewidth of the graph. However, when
the target class graph is of unbounded treewidth, none of the aforementioned algorithmic
meta-theorems encompasses broad families of modification problems. As an illustrative
example, consider the Planarization problem, which consists in deciding whether at
most k vertices can be removed from an input graph to make it planar (or equivalently,
minor-excluding K5 and K3,3). While this problem is definable in CMSOL, Courcelle’s
theorem cannot be applied as we cannot assume that yes-instances are of bounded treewidth.
On the other hand, we can easily assume that yes-instances minor-exclude Kk+6. However,
all known meta-theorems whose combinatorial condition encompasses the minor-exclusion
are about FOL, and FOL cannot express the Planarization problem. On the positive
side, an algorithm in time f(k) · n2 for Planarization is an algorithmic consequence of
Robertson-Seymour’s theorem [68] (combined with [51, 67]). This automatic implication
follows directly (albeit non-constructively) for a wide family of modification problems whose
yes-instances are minor-closed. There is a long line of research in parameterized algorithms
towards providing constructive and reasonable estimations of f(k) [50, 62, 72,73]. Note that
Robertson-Seymour’s theorem, besides not being constructive in general, automatically offers
results only for problems whose yes-instances are minor-closed.

Our contribution. We introduce a compound logic that models computational problems
through the lens of the “modulator vs target” duality of graph modification problems. Each
sentence of this logic is a composition of two types of sentences. The first one, called the
modulator sentence, models a modification operation, while the second one, called the target
sentence, models a target property. Informally, our result, in its simplest form, asserts that if
some appropriate version of the modulator sentence meets the meta-algorithmic assumptions
of Courcelle’s theorem [15] (i.e., CMSOL-definability and bounded treewidth) and the target
sentence meets the meta-algorithmic assumptions of the theorem of Flum and Grohe [30]
(i.e., FOL-definability and minor-exclusion), then model-checking for the composed compound
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sentence can be done, constructively, in quadratic time. Our main result (Theorem 5) can
be seen as a “two-dimensional product” of the two aforementioned meta-algorithmic results,
contains both of them as special cases, and automatically implies the tractability of wide
families of problems that neither are FOL-definable nor have instances of bounded treewidth.

1.2 Our results
In this subsection we give formal statements of our results. We need first some definitions.

Preliminaries on graphs. Given a graph G, we denote by cc(G) the set of all connected
components of G. For a graph G and a set X ⊆ V (G), the stellation of X in G is the graph
stell(G,X) obtained from G if, for every C ∈ cc(G \X), we contract all edges of C to a single
vertex vC . The torso of X in G is the graph torso(G,X) obtained from stell(G,X) if, for every
vC where C ∈ cc(G\X), we add all edges between neighbors of vC and finally remove all vC ’s
from the resulting graph. Given a family of graphs H, we define excl(H) as the class of all
graphs minor-excluding the graphs in H and note that excl(H) is minor-closed. The Hadwiger
number of a graph G, denoted by hw(G), is the minimum k where G ∈ excl({Kk}) and Kk

is the complete graph on k vertices. We also use the well-known parameter of treewidth of a
graph G, denoted by tw(G). Given a graph class G, we define tw(G) = max{tw(G) | G ∈ G}.
We define hw(G) analogously. We use Gall for the set of all graphs.

Preliminaries on logic. We use CMSOL (resp. FOL) for the set of sentences in counting
monadic second-order logic (resp. first-order logic). Given some vocabulary τ and a sentence
φ ∈ CMSOL[τ ], we denote by Mod(φ) the set of all finite models of φ, i.e., all structures that
are models of φ. In this introduction, in order to simplify our presentation, all structures
that we consider are either graphs or annotated graphs, i.e., pairs (G,X) where G is a graph
and X ⊆ V (G). In the first case τ = {E}, and in the second τ = {E,X}.

Given a φ ∈ CMSOL[{E}], we define the connectivity extension φ(c) of φ so that G |= φ(c) if
∀C ∈ cc(G), C |= φ. Similarly, for every L ⊆ CMSOL[{E}], we define L(c) = L∪{φ(c) | φ ∈ L}.
Notice that {φ}(c) = {φ,φ(c)}. Also by PB(L) we denote the set of all positive Boolean
combinations (i.e., using only the Boolean connectives ∨ and ∧) of sentences in L. We next
define the following sets of sentences:

The set CMSOLtw[{E,X}] contains every sentence β ∈ CMSOL[{E,X}] for which there
exists some cβ such that the torsos of all the models of β have treewidth at most cβ .

Formally,
CMSOLtw[{E,X}] = {β ∈ CMSOL[{E,X}] | ∃cβ : tw{torso(G,X) | (G,X) |= β} ≤ cβ}.
The set EM[{E}] is the set of all sentences in CMSOL[{E}] that express the minor-exclusion
of a non-empty set of graphs. Formally,
EM[{E}] = {µ ∈ CMSOL[{E}] | ∃H ⊆ Gall,H ̸= ∅ : Mod(µ) = excl(H)}.
Θ0[{E}] contains every sentence σ ∧ µ where σ ∈ FOL[{E}] and µ ∈ EM[{E}].

For simplicity, we use CMSOLtw, EM, and Θ0 as shortcuts for CMSOLtw[{E,X}], EM[{E}],
and Θ0[{E}], respectively. Note that both CMSOLtw and Θ0 are undecidable.

Algorithmic meta-theorems. We are now in position to restate three major meta-algorithmic
results that were mentioned in the previous subsection.

▶ Proposition 1 (Courcelle [15]). For every β ∈ CMSOLtw, there is an algorithm deciding
Mod(β) in linear time.
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▶ Proposition 2 (Robertson and Seymour [67,68] and Kawarabayashi, Kobayashi, and Reed [51]).
For every minor-closed graph class G, deciding membership in G can be done in quadratic
time.

▶ Proposition 3 (Flum and Grohe [30]). For every γ ∈ Θ0, there is an algorithm deciding
Mod(γ) in quadratic time.

Some comments are in order. The statements of Proposition 1 and Proposition 3 have
been adapted so to incorporate the combinatorial demands in the logical condition. While
they can both be stated for structures, we state Proposition 1 for annotated graphs and
Proposition 3 for graphs in order to facilitate our presentation. In the classic formulation
of Courcelle’s theorem, we are given a sentence β ∈ CMSOL and a tree decomposition of
bounded treewidth. As such a decomposition can be found in linear time, using e.g., [4, 56],
the linearity in the running time of Courcelle’s theorem is preserved when it is stated in
the form of Proposition 1. For the theorem of Flum and Grohe, the situation is different
as the combinatorial demand is minor-exclusion of a clique, which is not definable is FOL.
For this reason we state Proposition 3 using the logic Θ0 that contains compound sentences
of the form σ ∧ µ, where σ ∈ FOL and µ expresses minor-exclusion. For the running time
of the algorithm of Proposition 3, we also need to take into account Proposition 2. As we
already mentioned, Proposition 1 and Proposition 3 cannot deal, in general, with modification
problems to properties of unbounded treewidth. Moreover, recall that Proposition 2 applies
only to problems whose yes-instances are minor-closed.

We stress that Proposition 1, Proposition 2, and Proposition 3 are non-constructive.
In order to construct the algorithms promised by Proposition 1, one should also know the
bound cβ on the treewidth of the models of β ∈ CMSOLtw (note that bounded treewidth
is also CMSOL-definable since it is characterized by a finite set of forbidden minors) and
this appears in the hidden constants in the running time in Proposition 1. Similarly, for
Proposition 2 (resp. Proposition 3), one should have an upper bound on the Hadwiger
number of the graphs in G (resp. the models of γ).

A logic for modification problems. As a key ingredient of our result, we define the following
operation between sentences. Let β ∈ CMSOL[{E,X}] and γ ∈ CMSOL[{E}]. We refer to β
as the modulator sentence on annotated graphs and to γ as the target sentence on graphs.
We define β ▷ γ so that

G |= β ▷ γ if there is X ⊆ V (G) such that (stell(G,X), X) |= β and G \X |= γ. (1)

In other words, G |= β ▷ γ means that the stellation of X in G, along with X, is a model of
the modulator sentence β and the G \X is a model of the target sentence γ. That way, β
implies the modification operation and γ expresses the target graph property. It is easy to
see that β ▷ γ ∈ CMSOL[{E}]. This will allow us to apply the operation ▷ iteratively.

As an example, the problem of removing a set X of k vertices so that G \X is a triangle-
free planar graph can be expressed by β ▷ γ if β asks that X has k vertices and γ = σ ∧ µ,

where σ expresses triangle-freeness and µ expresses planarity by the exclusion of K3,3 and
K5.

Before we present our result in full generality, we give first the following indicative special
case, which already expresses the conditions of Proposition 1 and Proposition 3.

▶ Theorem 4. For every β ∈ CMSOLtw and every γ ∈ Θ0, there is an algorithm deciding
Mod(β ▷ γ) in quadratic time.
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Indeed, Proposition 1 follows if β expresses that X = V (G) and γ demands that G \X is
the empty graph (in particular, Theorem 4 contains Proposition 1 as a linear-time black-box
procedure for deciding models of bounded treewidth) and Proposition 3 follows if β demands
that X = ∅. In other words, Proposition 1 follows if the target sentence becomes void while
Proposition 3 follows if the modulator sentence is void.

As a first step towards a more general statement, Theorem 4 also holds if we replace
γ ∈ Θ0 by γ ∈ Θ(c)

0 or even by positive Boolean combinations of sentences in Θ(c)
0 , i.e.,

γ ∈ PB(Θ(c)
0 ). Moreover, in order to present our result in full generality, we recursively

define, for every i ≥ 1,

Θi = {β ▷ γ | β ∈ CMSOLtw and γ ∈ PB(Θ(c)
i−1)}. (2)

Notice that the sentences of Theorem 4 (hence also of Proposition 1 and Proposition 3)
are already contained in Θ1. We set Θ =

⋃
i≥1 Θi. The full strength of our results, stated in

the vocabulary of graphs, is given by our main theorem.

▶ Theorem 5. For every θ ∈ Θ, model-checking for θ can be done in quadratic time.

An alternative statement. Our results can also be seen under the typical meta-algorithmic
framework where a logical and a combinatorial condition are given. For this, consider an
alternative of Θ, called Θ̃, that is defined as in (2) by taking Θ̃0 = FOL as the base case, i.e.,
by discarding the minor-exclusion from the definition of Θ0. Notice that Θ̃ contains FOL and
can be seen as a natural extension of it. A direct consequence of Theorem 5 is the following.

▶ Theorem 6. For every θ̃ ∈ Θ̃, model-checking for θ̃ can be done in quadratic time on every
graph class of bounded Hadwiger number.

FOL Θ̃ CMSOL Logic

Grohe, Kreutzer, & Siebertz [46] /
Bonnet, Kim, Thomassé, & Watrigant [9]

Courcelle [15–17], Borie, Parker, & Tovey [10],
and Arnborg, Lagergren, & Seese [2]

Theorem 6bounded Hadwiger number

bounded treewidth

nowhere dense /
bounded twin-width

Structure

Figure 1 Theorem 6 in the current meta-algorithmic landscape. The vertical axis is the combin-
atorial one and is marked by four different types of (structural) sparsity, while the horizontal one is
the logical one and is marked with FOL, Θ̃, and CMSOL.

Theorem 6 is a corollary of Theorem 5 and provides an alternative meta-algorithmic set
up between the logical and the combinatorial condition (see Figure 1): for each sentence θ in
Θ, one may consider a sentence θ̃ in Θ̃ where we discard minor-exclusion from all its target
sentences and then consider the problem of deciding Mod(θ) on some minor-excluding graph
class. This correspondence is many-to-one, as many different θ ∈ Θ correspond to the same
θ̃ ∈ Θ̃. We opted for presenting and proving our results in the form of Theorem 5, as it is
more general and more versatile in expressing modification problems. In the full version of
the paper [31], we define we define Θ on general structures.
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Compound logics based on FOL+DP. In the full version of the paper [31], by combining our
proofs with the meta-algorithmic results of [42, 43], we extend Theorem 5 (resp. Theorem 6)
in the cases of the logic ΘDP (resp. Θ̃DP) that are obtained if in the definition of Θ (resp. Θ̃)
we now consider the (more expressive) logic FOL+DP instead of FOL in the target sentences.
That way, the derived extensions of Theorem 5 and Theorem 6 (that is, Theorem 8 and
Theorem 9) encompass, as special cases, all results and applications in [42, 43] (see Figure 3
for a visualization of the overall state-of-the-art on the related algorithmic meta-theorems on
subgraph-closed graph classes). While presenting our results and techniques, for the sake
of simplicity, we chose to focus on the statement and the proof of our meta-theorems for Θ
(Theorem 5) and Θ̃ (Theorem 6) and then, in the full version of the paper [31], present the
modifications that should be applied in order to extend them for ΘDP and Θ̃DP.

A parametric variant of our results. A graph parameter is a function p : Gall → N. We
say that p is treewidth-bounded if there is a function f : N → N such that for each G ∈ Gall,

p(G) ≤ f(tw(G)). We say that p is CMSOL-definable if for every k ∈ N there is a CMSOL-
sentence (on graphs) βk such that the set of all models of βk is Mod(βk) = {G | p(G) ≤ k}.
Clearly, if p is treewidth-bounded then we can also assume that each βk is a sentence in
CMSOLtw and in this case we say that p is CMSOLtw-definable. There are several known
graph parameters that are CMSOLtw-definable, such as treewidth, pathwidth, tree-depth,
bridge-depth, block tree-depth, vertex cover, feedback vertex set, branch-width, carving-width,
or cutwidth.

For a graph parameter p and a graph class G, we define the new graph parameter
pG : Gall → N such that

pG(G) = min{k | ∃X ⊆ V (G) | p(torso(G,X)) ≤ k ∧ G \X ∈ G}.

Thus pG measures by p the quality of a modulator X to property G. For example, when p
is the size of the modulator, then this is just the vertex deletion distance to G, that is, the
minimum number of vertices X such that G \X ∈ G. When p is the tree-depth of a graph,
then pG is the elimination distance to G. Or when p is the treewidth of a graph, then pG
corresponds to G-treewidth. We consider the general setting where p is a CMSOLtw-definable
graph parameter and G is a Θ-definable graph class, that is, Mod(θ) = G for some θ ∈ Θ.
By setting θk = βk ▷ θ ∈ Θ, we have that Mod(θk) = {G | pG(G) ≤ k}. Then the following
theorem is a direct consequence of Theorem 5 and Theorem 6.

▶ Theorem 7. Let p be a CMSOLtw-definable graph parameter and G = Mod(θ) for some
θ ∈ Θ. Then there is an algorithm that, with input a graph G and k ∈ N, checks whether
pG(G) ≤ k in time Ok,|θ|(n2). Moreover, if G = Mod(θ̃) for some θ̃ ∈ Θ̃, then there is an
algorithm that, with the same input, checks whether pG(G) ≤ k in time Ok,|θ|,hw(G)(n2).

All the results mentioned in this subsection, in what concerns minor-excluded graphs, are
subsumed by Theorem 7. Moreover, by allowing FOL-definability in the target sentence and
CMSOLtw-definability in the modulator sentence, we vastly extend Proposition 2 to graph
classes and parameters that are not necessarily minor-closed or hereditary. We stress that
none of the results in [43,66] is able to deal with the problems captured by Theorem 7 in
their full generality.

Constructibility. While Robertson-Seymour’s theorem (Proposition 2) implies the existence
of an algorithm, its proof is not constructive and cannot be used to construct such an
algorithm [28]. An extra feature of the proof of Theorem 5 (as well as of its corollary The-
orem 6) is that it is constructive, in the sense that the implied algorithms can be constructed
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if we are given some bound on the Hadwiger number of the models of θ. This considerably
extends the constructibility horizon of Proposition 2 for graph classes that are not necessarily
minor-closed or even hereditary. See the full version of the paper [31] for more details.

Techniques. The algorithm and the proofs of Theorem 5 use as departure point core
techniques from the proofs of Propositions 1, 3, and 2 such as Courcelle’s theorem for
dealing with CMSOL-sentences, the use of Gaifman’s theorem for dealing with FOL-sentences,
and an extended version of the irrelevant vertex technique, introduced by Robertson and
Seymour in [67], along with some suitable version of the Flat Wall theorem which appeared
recently in [53, 71] (see also [3, 70,72, 73]). The algorithm produces equivalent and gradually
“strictly simpler” instances of an annotated version of the problem. Each equivalent instance
is produced in linear time and this simplification is repeated until the graph has bounded
treewidth (here we may apply Courcelle’s theorem, that is Proposition 1). This yields a
(constructive) quadratic-time algorithm. We stress that our approach avoids techniques that
have been recently used for this type of problems such as recursive understanding (in [1]) or
the use of important separators (in [49]) that give worst running times in n.

Natural limitations. We wish to comment on why the three basic ingredients of the definition
of our logic Θ are necessary for the statement and the proof of our meta-algorithmic results.

The first ingredient of Θ is that the modulator sentences belong in CMSOLtw[{E,X}]
which is defined so that the treewidth of torso(G,X) is bounded. While it is known that
bounding the treewidth is necessary for CMSOL-model-checking [19,58], one may ask why it
is not enough to just bound the treewidth of G[X]. To see why this unavoidable, consider
a graph G and let G′ be the graph obtained from G by subdividing each edge once. Then,
asking whether G is Hamiltonian, which is a well-known NP-complete problem, is equivalent
to asking whether G′ has a vertex set S′ such that G′[S′] is a cycle and such that G′ \ S′

is an edgeless graph, that is, a K2-minor-free graph. Notice that, while tw(G′[S′]) = 2,
torso(G′, S′) = G has unbounded treewidth.

The second ingredient of Θ is minor-exclusion, that is materialized by the conjunction
with µ in the definition of Θ0. Notice first that expressing whether a graph G contains a clique
on k vertices can be done by a FOL-sentence, while the k-Clique problem is W[1]-hard [20].
Therefore, the minor-exclusion condition cannot be dropped. Moreover, even if we consider
a fixed target FOL-sentence, it was proved in [33] that there exists a FOL-sentence σ such
that checking whether a graph G has a set S ⊆ V (G) with |S| = k such that G \ S |= σ is
a W[1]-hard problem, when parameterized by k. This implies that, even for this restricted
problem where the FOL-sentence σ is fixed, an algorithm running in time f(k) · nO(1) cannot
be expected.

The third ingredient of Θ is the FOL demand, that is materialized by the conjunction with
σ in the definition of Θ0. This is also necessary, as otherwise we may choose some property σ
not definable in FOL, such as Hamiltonicity, which is CMSOL-definable and NP-complete on
planar graphs. Without the restriction that σ needs to be FOL-definable, a void modulator
and a sentence µ expressing planarity would be able to model this NP-complete problem.
Nevertheless, we may consider extensions of FOL in the target sentence, as done in Section 3.

2 Overview of the proof

In this section we summarize some of the main ideas involved in the proof of Theorem 5,
while keeping the description at an intuitive level. We would like to stress that some of
the informal definitions given in this section are deliberately imprecise, since providing the
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precise ones would result in a huge overload of technicalities that would hinder the flow of the
proof. Our algorithms consider as input a general structure A (not necessarily a graph), and
most of the arguments in the proofs concern its Gaifman graph GA. Dealing with general
structures, besides making our results more versatile, turns out to be useful in the proofs, in
particular for using tools such as the Backwards Translation Theorem [18, Theorem 1.40], or
for extending our results to other modification operations beyond vertex removal (see the
full version of the paper [31]). Since the Gaifman graph of a graph is the graph itself, in this
overview we will assume for simplicity that the input of our algorithms is a graph G, instead
of a general structure A. In Subsection 2.1 we present the general scheme of the algorithm.
In Subsection 2.2 we present a simplified and illustrative setting, where the input sentence θ
belongs to the fragment Θ̄1. This (very) particular case of Theorem 5 is helpful to illustrate
our main conceptual ideas. For a more detailed proof-overview and formal proofs (up to the
general compound logic Θ considered in Theorem 5), we refer the reader to the full version
of the paper [31].

2.1 General scheme of the algorithm
We use the irrelevant vertex technique introduced by Robertson and Seymour [67]. Our
overall strategy is the “typical” one when using this technique: if the treewidth of the input
graph G is bounded by an appropriately chosen function, depending only on the sentence
θ ∈ Θ, then we use Courcelle’s theorem [15] and solve the problem in linear time, using
the fact that our compound logic Θ is a fragment of counting monadic second-order logic.
Otherwise, we identify an irrelevant vertex in linear time, that is, a vertex whose removal
produces an equivalent instance. Naturally, the latter case concentrates all our efforts and,
in what follows, we sketch the main ingredients that we use in order to identify such an
irrelevant vertex. In a nutshell, our approach is based on introducing a robust combinatorial
framework for finding irrelevant vertices. In fact, what we find is annotation-irrelevant flat
territories, building on our previous recent work [3, 3, 32, 70–73], which is formulated with
enough generality so as to allow for the application of powerful tools such as Gaifman’s
locality theorem [38] or a variant of Courcelle’s theorem on boundaried graphs, intuitively
saying that the dynamic programming tables constructed by the proof of Courcelle’s theorem
are also definable in CMSOL (see [5, Lemma 3.2]).

Flat walls. An essential tool of our approach is the notion of flat wall, originating in the work
of Robertson and Seymour [67]. Informally speaking, a flat wall W is a structure made up of
(non-necessarily planar) pieces, called flaps, that are glued together in a bidimensional grid-
like way defining the so-called bricks of the wall. While such a structure may not be planar,
it enjoys topological properties similar to those of planar graphs, in the sense that two paths
that are not routed entirely inside a flap cannot “cross”, except at a constant-sized vertex set
A whose vertices are called apices. Hence, flat walls are only “locally non-planar”, and after
removing apices we can apply useful locality arguments, in the sense that two vertices that
are in “distant” flaps should also be “distant” in the whole graph without the apices. One of
the most celebrated results in the theory of Graph Minors by Robertson and Seymour [67,68],
known as the Flat Wall theorem (see also [53,71] for recently proved variants), informally
states that graphs of large treewidth contain either a large clique minor or a large flat wall.
In this article we use the framework recently introduced in [71] that provides a more accurate
view of some previously defined notions concerning flat walls, particularly in [53]. Precise
definitions of the concepts of flatness pair, homogeneity, regularity, tilt, and influence can be
found in the full version of this article [31] and we stress that they are not critical in order to
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understand the main technical contributions of the current article (however, they are critical
for their formal correctness). In what follows, when considering a flat wall W with an apex
set A in a graph G, for simplicity we refer to W by using indistinguishably the terms “wall”
and “compass of a wall”, which can be roughly described as the component containing W in
the graph obtained from G by removing A and the “boundary” of W .

Working with an annotated version of the problem. We start by defining a convenient
equivalent version of the problem, by replacing our sentence θ ∈ Θ with an equivalent enhanced
sentence θR,c. This is done in two steps, as we explain in the following two paragraphs.

Assuming the existence of a flat wall and an apex set in our input graph G, we first
transform the question θ on G to a question on a structure obtained from G by “neutralizing”
the apex set (see the full version of the paper [31]). The goal of this step is to ask the final
FOL-sentences σ of our sentence θ in a “flattened” structure, where apices can no longer
“bring close” any distant parts of the wall. This transformation of the problem, which we
call apex-projection, will allow for the application of the locality-based strategy discussed in
the definition of the in-signature of a wall in Subsection 2.2. To do this, we introduce some
additional constant symbols c to our vocabulary that will be interpreted as the apex vertices.

The second step consists in defining an equivalent annotated version of the problem in
order to deal with the FOL-sentences of θ, inspired by the approach of [32]. To do so, we
introduce a vertex set R ⊆ V (G), and require, for each FOL-sentence σ of θ, that the vertices
interpreting the variables of (the equivalent Gaifman sentence of) σ belong to the annotated
set R. We prove that the initial sentence θ and the obtained sentence, denoted by θR,c and
called an enhanced sentence, are equivalent for any choice of the apex set interpreting c and
when R is interpreted as the whole vertex set of the graph. This independence of the choice
of the apex set is strongly used in the proofs since, as discussed below, we will consider a
number of different flat walls, each of which associated with a different apex set.

Our algorithms will work with the enhanced sentence θR,c. Starting with the input graph
G with V (G) as the annotated set R, we will create successive equivalent annotated instances,
in which vertices from G are removed and such that the annotated set R is only reduced.

Zooming inside a flat wall. Our next step is to find, in G, a large flat wall W0 to work
with. The definition of our logic Θ implies that models of θ exclude a fixed complete graph
Kc as a minor, where c depends only on θ. Therefore, we can apply the algorithmic version
of the Flat Wall Theorem [72, Proposition 10] (see also [53, 67, 71]) to the input graph G

and, assuming that the treewidth of G is large enough, we can find in linear time a flat wall
W0 and an apex set A in G such that the height of W0 is a sufficiently large function of θ.
Moreover, another crucial property guaranteed by this algorithm is that the treewidth of W0
is bounded from above by a function of θ. This will be exploited in Subsection 2.2 in order
to compute the so-called θ-characteristic of a wall. We will now apply a series of “zooming”
arguments to the wall W0, which are illustrated in Figure 2.

Find_Equiv_FlatPairs

W1 W2 W3 W W ⋆

Figure 2 Sequence of walls in the general scheme of our algorithm. The first wall is obtained by
applying the algorithm of [72, Proposition 14] for the wall W0 in the input graph G.
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Starting from W0 and its associated apex set A, we apply the algorithm of [72, Pro-
position 14] and find, in linear time, a large (again, as a function of θ) subwall W1 that is
λ-homogeneous, where λ depends only on θ. The definition of a homogenous flat wall can
be found in the full version of the paper [31], and roughly means that each of its bricks can
route the same set of partial minors of the graphs corresponding to the minor-exclusion part
of the sentence θ. We now apply the algorithm of [73, Lemma 16] to W1, and obtain in linear
time a large subwall W2 that is irrelevant with respect to the minor-exclusion part of θ after
the removal of a vertex set X ⊆ V (G) of small enough bidimensionality (see Subsection 2.2).
Intuitively, working “inside” W2 allows us to “forget” the minor-exclusion part of θ in what
follows. As our next step, we obtain in linear time a still large subwall W3 of W2 such that
its associated apex set A3 is “tightly tied” to W3, in the sense that the neighbors in W3 of
every vertex in A3 are spread in a “bidimensional” way.

Finding an irrelevant subwall. So far, we have found a large wall W3 that satisfies the
conditions of the above paragraph. Now, in order to identify an irrelevant vertex inside W3,

we find, inside the wall W3, a collection W of pairwise disjoint subwalls, and to associate each
of these subwalls with an appropriately defined θ-characteristic that captures its behavior
with respect to the partial satisfaction of the sentence θ. Then the idea is that, if there are
sufficiently many subwalls in W with the same θ-characteristic (called θ-equivalent), then
some subwall in the interior of one of them can be declared annotation-irrelevant and this
implies some progress in simplifying the current problem instance.

The above strategy allows to identify a subwall W ⋆ inside W such that its central part can
be removed from the annotated set R, and such that a smaller central part can be removed
from G (the blue and grey subwalls in the rightmost wall of Figure 2, respectively). This
is done by an algorithm, called Find_Equiv_FlatPairs, that is based on an appropriate
definition of the θ-characteristic of a wall. In what follows we sketch the main ingredients
and key ideas.

2.2 A simplified and illustrative setting
In order to provide some intuition, in this subsection we focus on formulas θ ∈ Θ of a
particular form, i.e., belonging to Θ̄1, a set of formulas which we proceed to define informally
in a semantical level: Given a general graph G as input, we seek for a vertex set X ⊆ V (G),
called modulator, such that, using the notation defined in the introduction, stell(G,X)
satisfies the so-called modulator sentence β, and either every connected component C of
G \X, or the whole graph G \X, satisfies the so-called target sentence γ, where γ = σ ∧ µ

with σ being an arbitrary FOL-sentence and µ expressing the property of belonging to a
proper minor-closed graph class.

Note that when θ ∈ Θ̄1, the target sentence γ needs to be satisfied either by each of
the resulting connected components separately, or jointly by their union. We deal with this
easily, by introducing a ◦/• -flag into the corresponding sentences that distinguishes both
cases. The latter case is simpler, but in this description, in order to better illustrate our
techniques, we assume the former.

Identifying the privileged component. A very useful tool in our algorithms is to identify,
for every given X, a unique connected component among those of G \X, which we call the
privileged component, that contains “most” of the wall W3. Let us formalize a bit this idea.
For a positive integer q, a pseudogrid Wq, is a collection of q “vertical” and q “horizontal”
paths that intersect in a “grid-like” way. Note that the considered wall W3 naturally defines
a (large, as a function of θ) pseudogrid. A connected component C of a graph G is privileged
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with respect to a set X ⊆ V (G) and a pseudogrid Wq if C is a connected component of
G \X that contains entirely at least one vertical and one horizontal path of Wq. It is easy
to see that such a privileged component, if it exists, is unique.

Moreover, when X is a modulator, the fact that torso(G,X) has bounded treewidth
implies that every connected component of G \X has a “small interface” to X and thus the
flat wall W0 (and any large subwall of it) is not significantly “damaged” by X, which we
formalize via the notion of having small bidimensionality. Intuitively for the definition), this
means that X intersects a small number of so-called “bags” of the wall. Informally, the bags
of a wall W in a graph G with apex set A define a partition of G \ A into connected sets,
such that each bag, except the external one, contains the part of the wall W between two
neighboring degree-3 vertices of the wall. This property is used extensively in the proofs and,
in particular, it defines, assuming the existence of a large flat wall W0 and a modulator X, a
unique privileged component C in G \X (regardless of the ◦/•-flag). In our sentences, in
order to identify such a component, we need to integrate the “recognition” of a pseudogrid
Wq and its associated privileged component with respect to a modulator X: it is easy to see
that these properties can be defined in CMSOL.

Splitting the sentence θR,c. The existence of a privileged component C allows us to see
the sentence θR,c as a conjunction of two subsentences: one that concerns the privileged
component C (where we will find the irrelevant vertex) and another one concerning the
modulator X and the other (non-privileged) components of G \ X. Namely, we define a
sentence θ̃q, called the split version of θR,c, that allows us to “break” θ into two questions:
one denoted by θout

q that is the conjunction of the modulator sentence β and the target
sentence γ in the non-privileged components of G \X and another one that concerns the
target sentence γ in the privileged component C. This latter question is composed of two
subsentences, namely one about the satisfaction of the FOL-sentence σ and another one
about the minor-exclusion given by µ. Given this decomposition of θ into three questions
(one “external” and two “internal” ones), our “irrelevancy” arguments also decompose into
three parts. Concerning the “irrelevancy” for minor-exclusion, as discussed above, the fact
that the whole wall W2 is irrelevant with respect to µ allows us to focus on the other two
questions. For this, we need to define the characteristic of a wall with respect to θ, denoted
by θ-char. This characteristic is composed of two parts: the out-signature corresponding to
the satisfiability of the sentence θout

q , and the in-signature corresponding to the FOL-sentence
σ. Let us now explain how we define the out-signature and the in-signature, and sketch why
we can eventually declare a subwall irrelevant.

Defining the out-signature of a wall. Dealing with the irrelevancy with respect to the
“external” sentence θout

q turns out to be the most interesting part of the proof and we introduce
several ideas which are, in our opinion, one of the main conceptual contributions of this article.
The goal is, for each wall W in the collection W, to encode all the necessary information
that concerns the satisfiability of θout

q in the “non-privileged” part of the graph and the
modulator X. To do this, for each W ∈ W with apex set A, we define a set of ℓ-boundaried
graphs (i.e., graphs in which ℓ “boundary” vertices are equipped with labels), constructed as
we describe below, and where ℓ depends only on θ. The boundary corresponds to where the
sentence has been “split” and we need to “guess” how to complement this boundary by the
part of the modulator that is not inside the wall. Note that, since θout

q is a CMSOL-sentence,
by a variant of Courcelle’s theorem for boundaried graphs [15], there exists a finite collection
rep(ℓ)(θout

q ) of sentences on ℓ-boundaried graphs that are “representatives” of the sentence
θout

q and that can be effectively constructed. We next described how these ℓ-boundaried
graphs are constructed.
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We observe that, using the bounded-treewidth property of the modulator sentence β,
there exists a “buffer” I in W, consisting of a set of consecutive layers of the wall, which is
disjoint from a hypothetical modulator X. We guess with an integer d where this “buffer” I
is placed in the wall and we denote its inner part by I(d). This naturally induces a partition
of X into Xin and Xout, with Xin being the part of X that is inside I(d). We also guess
which subset of the apex set A will belong to the modulator X and we denote it by VL(a),
where L is the set containing the indices of the corresponding apex vertices. Since parts of
the “non-privileged” vertex set of the graph may lie outside the considered wall, we need
to guess the part of the modulator (namely, its boundary towards the component) that lies
outside the wall. More precisely, we need to guess as well which subset F ′ of Xout, other
than VL(a), will belong to the neighborhood of the privileged component. This is achieved
by guessing all ways an (abstract) graph F ′ with a bounded number of vertices can extend
the boundary. We let F be the graph obtained from the union of VL(a) and F ′. Finally, we
also need to consider a set Z that corresponds to Xin together with the part inside I(d) that
has been “chopped off” by the modulator X, that is, the part of W inside I(d) that will not
belong to the privileged component after the removal of the modulator X. We denote by
∂(Z) the set of vertices in Z that have a neighbor in I(d). Altogether, these guesses result in
the ℓ-boundaried graph K(d,Z,L,F ) obtained from the graph induced by I(d) and the set F,
whose boundary is the set ∂(Z) ∪ F .

With each such a guess (R, d, L, Z) we associate the out-signature defined as follows and
denoted by out-sig. Its elements are pairs (H, θ̄), where H encodes how the set VL(a) in
the boundary has been extended by the “abstract” graph F ′, and θ̄ ∈ rep(ℓ)(θout

q ) prescribes
the equivalence class, within the set of Courcelle’s representatives mentioned above, of the
considered ℓ-boundaried graph. This concludes the description of the out-signature.

While this out-signature indeed encodes the behavior of the considered wall with respect
to the “external” sentence θout

q , a crucial issue has been overlooked so far: in order to be
able to identify an irrelevant subwall inside the collection W within the claimed running
time, we need to be able to compute the (in- and out-)signature of a wall in linear time. To
do this using Courcelle’s theorem, we need to consider a graph that has treewidth bounded
by a function of θ. Recall that θout

q is the conjunction of the modulator sentence β (which
is evaluated in the graph stell(G,X)) and the target sentence γ in the “non-privileged”
components of G \ X. It follows that the treewidth of W is bounded by a function of θ,
hence the treewidth of the ℓ-boundaried “subwall” K(d,Z,L,F ), for which we want to compute
the out-signature, is also bounded by a function of θ. However, the graph K(d,Z,L,F ) \ V (F )
“lives” inside the whole privileged component C, and we cannot guarantee that the treewidth
of C is bounded by a function of θ. We overcome this problem with the following trick. We
observe that the satisfaction of θout

q is preserved if, instead of the whole privileged component
C, we consider the graph K(d,Z,L,F ), which is obtained by “shrinking” C to the subwall I(d),

and which has bounded treewidth as we need. Indeed, this modification does not change any
of the non-privileged components in which the target sentence γ is evaluated and, by adding
edges from the “guessed extended boundary” F ′ to I(d) in order to preserve connectivity,
the resulting graph stell(G,X) remains unchanged with this transformation, and therefore
the satisfaction of the modulator sentence β is also preserved.

Defining the in-signature of a wall. To deal with the irrelevancy with respect to the
FOL-sentence σ, we use arguments strongly inspired by those of [32]. The core tool here is
Gaifman’s locality theorem, which states that every FOL-sentence σ is a Boolean combination
of basic local sentences σ1, . . . , σp, in the sense that the satisfaction of each σi depends only
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on the satisfaction of a set of sentences ψ1, . . . , ψℓi evaluated on single vertices that can be
assumed to be pairwise far apart. As discussed before, taking care of the domain of these
vertices is the main reason why we consider a annotated version of the problem, corresponding
to the enhanced sentence θR,c. Extending the approach of [32] (which does not deal with
apices), the in-signature of a wall, denoted by in-sig, encodes all (partial) sets of variables,
one set for each basic local sentence of the so-called Gaifman sentence σ̆, such that these
variables lie inside an “inner part” of the wall, they are scattered in the “apex-projection” of
this inner part, and they satisfy the local sentences ψi.

Declaring a subwall irrelevant. We now sketch the remaining of the proof for sentences in
Θ̄1. As mentioned above, suppose that we have already found, inside the collection W, a
large (as a function of θ) subcollection W ′ ⊆ W of walls all having the same θ-characteristic.
We pick one of these walls, say W ⋆ ∈ W ′, and we declare its central part irrelevant (see
Figure 2). We need to prove that, if the input graph G satisfies θ, then the graph G′ obtained
from G by removing the central part of W ⋆, also satisfies θ. That is, given a modulator X in
the original instance G, we need to construct another set X ′ ⊆ V (G) that is disjoint from
W ⋆ and that is a modulator in G′. For this, we proceed as follows.

The cardinality of W ′ and the fact that X intersects few bags of the wall W3 imply
that there is a large (again, as a function of θ) subcollection W ′′ ⊆ W ′ of walls that are
disjoint from X. We take such a wall Ŵ ∈ W ′′ and, using the fact that W ⋆ and Ŵ have
the same θ-characteristic, we show that we can “replace” the part of the modulator X that
intersects W ⋆ with another part in Ŵ , together with an alternative assignment of variables
that satisfies the corresponding sentences. This results in another set X ′ that is a modulator
in G′, hence yielding the annotation-irrelevancy of (the central part of) W ⋆.

Showing these facts is far from being easy and we need a number of technical details dealing
with the irrelevancy with respect to θout

q (which incorporates β), σ, and µ. In particular,
an important idea is that, changing from X to X ′, we obtain a new boundaried graph,
which is in fact the same graph but with a new boundary. The replacement arguments for
the in-signature work because of the aforementioned distance-preservation property of the
apex-projection. See the full version of the paper [31] for more details.

3 From FOL to FOL+DP: the compound logic ΘDP

In the definition of Θ0, the base case of Θ, we consider compound sentences σ ∧ µ, where
σ ∈ FOL and µ expresses minor-exclusion. However, one can consider extensions of FOL
in the compound sentences. A possible candidate is first-order logic with disjoint-paths
predicates defined in [75] (see the paragraph below for a formal definition). This way we can
define a more general logic ΘDP and prove an algorithmic meta-theorem that encompasses
also the results in [42, 43]. To ease reading, in this subsection we deal only with graphs and
not with general structures. However, our results can be straightforwardly be extended to
general structures. All proofs of the results of this section can be found in Section 3.

The disjoint-paths logic. We define the 2k-ary predicate dpk(x1, y1, . . . , xk, yk), which
evaluates true in a graph G if and only if there are paths P1, . . . , Pk of G of length at least
two between (the interpretations of) xi and yi for all i ∈ [k] such that for every i, j ∈ [k],
i ̸= j, V (Pi) ∩ V (Pj) = ∅. We let FOL+DP be the logic obtained from FOL after allowing
dpk(x1, y1, . . . , xk, yk), k ≥ 1 as atomic predicates.
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The compound logic ΘDP. We define an extension ΘDP of Θ by considering, as the base
case, instead of Θ0, the logic ΘDP

0 = {σ ∧ µ | σ ∈ FOL+DP and µ ∈ EM[{E}]}.

▶ Theorem 8. For every θ ∈ ΘDP, there exists an algorithm that, given a graph G, outputs
whether G |= θ in time O|θ|(n2).

As we define the alternative Θ̃ of Θ, we can also define Θ̃DP by taking Θ̃DP
0 = FOL+DP

as the base case, i.e., by discarding the minor-exclusion from the definition of ΘDP
0 . Notice

that Θ̃DP contains FOL+DP and can be seen as a natural extension of it. As a corollary
of Theorem 8, we get the following analogue of Theorem 6.

▶ Theorem 9. For every θ̃ ∈ Θ̃DP, there exists an algorithm that, given a graph G, outputs
whether G |= θ in time O|θ|,hw(G)(n2).

Theorem 9 contains all results and applications of [42,43] as a (very) special case. For
a visualization of the current meta-algorithmic landscape on subgraph-closed classes, see
Figure 3.

FOL,

Courcelle [15–17], Borie, Parker & Tovey [10]
and Arnborg, Lagergren & Seese [2]

Pilipczuk, Schirrmacher, Siebertz, Torunczyk, & Vigny [66]

FOL+conn, FOL+DP, Θ̃DP, CMSOL

Theorem 9

Golovach, Stamoulis, & Thilikos [43]

Grohe, Kreutzer & Siebertz [46]
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nowhere dense

bounded Hajós number1

Figure 3 The current meta-algorithmic landscape on subgraph-closed classes and the position of
Theorem 9 in it.

4 Further research

The minor-exclusion framework. The graph-structural horizon in both Theorem 5 and
Theorem 6 is delimited by minor-exclusion. In the case of Theorem 5, this restriction is
applied to the target property defined by µ in the logic Θ, while in Theorem 6 this is the
promise combinatorial restriction that yields efficient model-checking for Θ̃. This restriction
is hard-wired in our proof in the way it combines the Flat Wall theorem with Gaifman’s
theorem. Recently, several efficient algorithms appeared for modification problems targeting
or assuming topological minor-freeness (see [1, 36, 49] and the meta-algorithmic results
in [66,74]). For such classes, to achieve efficient model-checking for Θ, or some fragment of
it, is an interesting open challenge.

Quadratic time. The proof of Theorem 5 can be seen as a possible “meta-algorithmization”
of the irrelevant vertex technique introduced by Robertson and Seymour [67], going further
than the two known recent attempts in this direction [32, 43]. The main routine of the

1 The Hajós number of a graph G is the maximum k for which G contains Kk as a topological minor.
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algorithm transforms the input of the problem to a simpler graph by detecting territories
in it that can be safely discarded, therefore producing a simpler instance. This routine is
applied repetitively until the graph has “small” treewidth, so that the problem can be solved
in linear time by using Courcelle’s theorem. This approach gives an algorithm running in
quadratic time. Any improvement of this quadratic running time should rely on techniques
escaping the above scheme of gradual simplification. The only results in this direction are the
cases of making a graph planar by deleting at most k vertices (resp. edges) in [50] (resp. [52])
that run in time Ok(n).

Further than connectivity closure. One of the key operations defining Θ is the connectivity
extension operation, that is, given a sentence φ, to consider the (conjunctive) sentence
φ(c). We incorporated this operation to our logic in order to express elimination distance
modifications (such as those of tree-depth [12] and bridge-depth [11]) where, at each step,
we remove some tree-like structure and then we apply the current target sentence to the
connected components of the remaining graph. In [24], the notion of block elimination
distance has been introduced, where the target property is applied to the biconnected
components of the remaining graph (instead of the connected components). We are confident
that our results can be adapted so to include the biconnectivity extension – or even the
3-connectivity extension, as defined by Tutte’s decomposition. However, we prefer to avoid
this here as it would add undesirable burden to the statement of our results (and to the
proofs as well). Another direction is to consider different versions of φ(c). One of them might
be a disjunctive version, namely φ∨(c), where G |= φ∨(c) if at least one of the connected
components of G is a model of φ. Another one is a selective version, namely φ∃(c), where
G |= φ∧(c) if there is some subset of the connected components of G whose union is a model
of φ. Our proof fails if we wish to incorporate any of these two variants of φ(c) in Θ. However,
it can be easily adapted so to incorporate φ∨(c) in Θ̃.

Descriptive complexity and the Θ-hierarchy. Recall that Θ =
⋃

i∈N Θi, where each level
of the sentence set Θi is defined by adding an extra modulator sentence, followed by some
positive Boolean combination of the connectivity closure of the lower level. We extended our
result from Θ1 to every Θi because Θ is quite versatile and makes it easier to express more
complex hierarchical modification problems. However, it is an open problem whether this
hierarchy is proper with respect to the descriptive complexity of the problems that it defines
in each of its levels. In simple cases where the modulator sentence asks for a set of bounded
size, and under the absence of positive Boolean combinations, it is possible to express any
Θ-definable problem using Θ1. For instance, elimination ordering to some Θ0-definable class
can be straightforwardly expressed in Θ, however with a more technical proof one can also
express it in Θ1 (see [34]). Is this collapse maintained when we consider the full expressive
power of Θ? We conjecture a negative answer to this question for both Θ and ΘDP.
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