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Abstract
A recent trend in the context of graph theory is to bring theoretical analyses closer to empirical
observations, by focusing the studies on random graph models that are used to represent practical
instances. There, it was observed that geometric inhomogeneous random graphs (GIRGs) yield good
representations of complex real-world networks, by expressing edge probabilities as a function that
depends on (heterogeneous) vertex weights and distances in some underlying geometric space that
the vertices are distributed in. While most of the parameters of the model are understood well, it
was unclear how the dimensionality of the ground space affects the structure of the graphs.

In this paper, we complement existing research into the dimension of geometric random graph
models and the ongoing study of determining the dimensionality of real-world networks, by studying
how the structure of GIRGs changes as the number of dimensions increases. We prove that, in the
limit, GIRGs approach non-geometric inhomogeneous random graphs and present insights on how
quickly the decay of the geometry impacts important graph structures. In particular, we study
the expected number of cliques of a given size as well as the clique number and characterize phase
transitions at which their behavior changes fundamentally. Finally, our insights help in better
understanding previous results about the impact of the dimensionality on geometric random graphs.
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1 Introduction

Networks are a powerful tool to model all kinds of processes that we interact with in our
day-to-day lives. From connections between people in social networks, to the exchange of
information on the internet, and on to how our brains are wired, networks are everywhere.
Consequently, they have been in the focus of computer science for decades. There, one of the
most fundamental techniques used to model and study networks are random graph models.
Such a model defines a probability distribution over graphs, which is typically done by
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specifying a random experiment on how to construct the graph. By analyzing the rules of the
experiment, we can then derive structural and algorithmic properties of the resulting graphs.
If the results match what we observe on real-world networks, i.e., if the model represents the
graphs we encounter in practice well, then we can use it to make further predictions that
help us understand real graphs and utilize them more efficiently.

The quest of finding a good model starts several decades ago, with the famous Erdős-Rényi
(ER) random graphs [19, 24]. There, all edges in the graph exist independently with the
same probability. Due to its simplicity, this model has been studied extensively. However,
because the degree distribution of the resulting graphs is rather homogeneous and they lack
clustering (due to the independence of the edges), the model is not considered to yield good
representations of real graphs. In fact, many networks we encounter in practice feature a
degree distribution that resembles a power-law [3, 38, 39] and the clustering coefficient (the
probability for two neighbors of a vertex to be adjacent) is rather high [35, 40]. To overcome
these drawbacks, the initial random graph model has been adjusted in several ways.

In inhomogeneous random graphs (IRGs), often referred to as Chung-Lu random graphs,
each vertex is assigned a weight and the probability for two vertices to be connected by
an edge is proportional to the product of the weights [1, 11, 12]. As a result, the expected
degrees of the vertices in the resulting graphs match their weight. While assigning weights
that follow a power-law distribution yields graphs that are closer to the complex real-world
networks, the edges are still drawn independently, leading to vanishing clustering coefficients.

A very natural approach to facilitate clustering in a graph model is to introduce an
underlying geometry. This was done first in random geometric graphs (RGGs), where vertices
are distributed uniformly at random in the Euclidean unit square and any two are connected
by an edge if their distance lies below a certain threshold, i.e., the neighborhood of a vertex
lives in a disk centered at that vertex [36]. Intuitively, two vertices that connect to a common
neighbor cannot be too far away from each other, increasing the probability that they are
connected by an edge themselves. In fact, random geometric graphs feature a non-vanishing
clustering coefficient [13]. However, since all neighborhood disks have the same size, they all
have roughly the same expected degree, again, leading to a homogeneous degree distribution.

To get a random graph model that features a heterogeneous degree distribution and
clustering, the two mentioned adjustments were recently combined to obtain geometric
inhomogeneous random graphs (GIRGs) [28]. There, vertices are assigned a weight and a
position in some underlying geometric space and the probability for two vertices to connected
increases with the product of the weights but decreases with increasing geometric distance
between them. As a result, the generated graphs have a non-vanishing clustering coefficient
and, with the appropriate choice of the weight sequence, they feature a power-law degree
distribution. Additionally, recent empirical observations indicate that GIRGs represent
real-world networks well with respect to certain structural and algorithmic properties [5].

We note that GIRGs are not the first model that exhibits a heterogeneous degree
distribution and clustering. In fact, hyperbolic random graphs (HRGs) [30] feature these
properties as well and have been studied extensively before (see, e.g., [7, 20, 21, 23, 26]).
However, in the pursuit of finding good models to represent real-world networks, GIRGs
introduce a parameter that sets them apart from prior models: the choice of the underlying
geometric space and, more importantly, the dimensionality of that space.

Unfortunately, this additional parameter that sets GIRGs apart from previous models,
has not gained much attention at all. In fact, it comes as a surprise that, while the underlying
dimensionality of real-world networks is actively researched [2, 8, 15, 25, 31] and there is a large
body of research examining the impact of the dimensionality on different homogeneous graph



T. Friedrich, A. Göbel, M. Katzmann, and L. Schiller 62:3

models [13, 17, 18] with some advancements being made on hyperbolic random graphs [41],
the effects of the dimension on the structure of GIRGs have only been studied sparsely. For
example, while it is known that GIRGs exhibit a clustering coefficient of Θ(1) for any fixed
dimension [28], it is not known how the hidden constants scale with the dimension.

In this paper, we initiate the study of the impact of the dimensionality on GIRGs. In
particular, we investigate the influence of the underlying geometry as the dimensionality
increases, proving that GIRGs converge to their non-geometric counterpart (IRGs) in the
limit. With our results we are able to explain seemingly disagreeing insights from prior
research on the impact of dimensionality on geometric graph models. Moreover, by studying
the clique structure of GIRGs and its dependence on the dimension d, we are able to quantify
how quickly the underlying geometry vanishes. In the following, we discuss our results in
greater detail. We note that, while we give general proof sketches for our results, the complete
proofs are deferred to the full version [22].

2 (Geometric) Inhomogeneous Random Graphs

Before stating our results in greater detail, let us recall the definitions of the two graph
models we mainly work with throughout the paper.

Inhomogeneous Random Graphs (IRGs). The model of inhomogeneous random graphs was
introduced by Chung and Lu [1, 11, 12] and is a natural generalization of the Erdős-Rényi
model. Starting with a vertex set V of n vertices, each v ∈ V is assigned a weight wv. Each
edge {u, v} ∈

(
V
2
)

is then independently present with probability

Pr [u ∼ v] = min
{

1,
λwuwv

n

}
,

for some constant λ > 0 controlling the average degree of the resulting graph. Note that
assigning the same weight to all vertices yields the same connection probability as in Erdős-
Rényi random graphs. For the sake of simplicity, we define κuv = min{λwuwv, n} such
that Pr [u ∼ v] = κuv/n. Additionally, for a set of vertices Uk = {v1, . . . , vk} with weights
w1, . . . , wk, we introduce the shorthand notation κij = κvivj

and write {κ}(k) = {κij | 1 ≤
i < j ≤ k}.

Throughout the paper, we mainly focus on inhomogeneous random graphs that feature
a power-law degree distribution in expectation, which is obtained by sampling the weights
accordingly. More precisely, for each v ∈ V , we sample a weight wv from the Pareto
distribution P with parameters 1 − β, w0 and distribution function

Pr [wv ≤ x] = 1 −
(

x

w0

)1−β

.

Then the density of wv is ρwv (x) = β−1
w1−β

0
x−β . Here, w0 > 0 is a constant that represents a

lower bound on the weights in the graph and β denotes the power-law exponent of the resulting
degree distribution. Throughout the paper, we assume β > 2 such that a single weight
has finite expectation (and thus the average degree in the graph is constant), but possibly
infinite variance. We denote a graph obtained by utilizing the above weight distribution and
connection probabilities with IRG(n, β, w0). For a fixed weight sequence {w}n

1 , we denote
the corresponding graph by IRG({w}n

1 ).

ICALP 2023
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Geometric Inhomogeneous Random Graphs (GIRGs). Geometric inhomogeneous random
graphs are an extension of IRGs, where in addition to the weight, each vertex v is also
equipped with a position xv in some geometric space and the probability for edges to form
depends on their weights and the distance in the underlying space [28]. While, in its raw
form, the GIRG framework is rather general, we align our paper with existing analysis
on GIRGs [6, 29, 34] and consider the d-dimensional torus Td equipped with L∞-norm as
the geometric ground space. More precisely, in what we call the standard GIRG model,
the positions x of the vertices are drawn independently and uniformly at random from Td,
according to the standard Lebesgue measure. We denote the i-th component of xv by xvi.
Additionally, the geometric distance between two points xu and xv, is given by

d(xu, xv) = ∥xu − xv∥∞ = max
1≤i≤d

{|xui − xvi|C},

where | · |C denotes the distance on the circle, i.e,

|xui − xvi|C = min{|xui − xvi|, 1 − |xui − xvi|}.

In a standard GIRG, two vertices u ̸= v are adjacent if and only if their distance d(xu, xv)
in the torus is less than or equal to a connection threshold tuv, which is given by

tuv = 1
2

(
λwuwv

n

)1/d

=
(wuwv

τn

)1/d

,

where τ = 2d/λ. Using L∞ is motivated by the fact that it is the most widely used metric in
the literature because it is arguably the most natural metric on the torus. In particular, it
has the “nice” property that the ball of radius r is a cube and “fits” entirely into Td for all
0 ≤ r ≤ 1.

Note that, as a consequence of the above choice, the marginal connection probability
Pr [u ∼ v] is the same as in the IRG model, i.e., Pr [u ∼ v] = κuv/n. However, while the
probability that any given edge is present is the same as in the IRG model, the edges
in the GIRG model are not drawn independently. We denote a graph obtained by the
procedure described above with GIRG(n, β, w0, d). As for IRGs, we write GIRG({w}n

1 , d)
when considering standard GIRGs with a fixed weight sequence {w}n

1 .

As mentioned above, the standard GIRG model is a commonly used instance of the more
general GIRG framework [28]. There, different geometries and distance functions may be
used. For example, instead of L∞-norm, any Lp-norm for 1 ≤ p < ∞ may be used. Then,
the distance between two vertices u, v is measured as

∥xu − xv∥p :=


(∑d

i=1 |xui − xvi|p
)1/p

if p < ∞

max1≤i≤d{|xui − xvi|} otherwise.

With this choice, the volume (Lebesgue measure) of the ball Bp(r) of radius r under Lp-norm
is equal to the probability that a vertex u falls within distance at most r of v (if r = o(1)).
We denote this volume by ν(r). We call the corresponding graphs standard GIRGs with
any Lp-norm and note that some of our results extend to this more general model. Finally,
whenever our insights consider an even broader variant of the model (e.g., variable ground
spaces, distances functions, weight distributions), we say that they hold for any GIRG and
mention the constraints explicitly.
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3 Asymptotic Equivalence

Our first main observations is that large values of d diminish the influence of the underlying
geometry until, at some point, our model becomes strongly equivalent to its non-geometric
counterpart, where edges are sampled independently of each other. We prove that the total
variation distance between the distribution over all graphs of the two models tends to zero
as n is kept fixed and d → ∞. We define the total variation distance of two probability
measures P and Q on the measurable space (Ω, F) as

∥P, Q∥TV = sup
A∈F

|P (A) − P (B)| = 1
2

∑
ω∈Ω

|P (ω) − Q(ω)|,

where the second equality holds if Ω is countable. In our case, Ω is the set G(n) of all possible
graphs on n vertices, and P, Q are distributions over these graphs. If G1, G2 are two random
variables mapping to Ω, we refer to ∥G1, G2∥TV as the total variation distance of the induced
probability measures by G1 and G2, respectively. Informally, this measures the maximum
difference in the probability that any graph G is sampled by G1 and G2.

▶ Theorem 1. Let G(n) be the set of all graphs with n vertices, let {w}n
1 be a weight sequence,

and consider GIRG = IRG({w}n
1 ) ∈ G(n) and a standard GIRG GGIRG = GIRG({w}n

1 , d) ∈
G(n) with any Lp-norm. Then,

lim
d→∞

∥GGIRG, GIRG∥TV = 0.

We note that this theorem holds for arbitrary weight sequences that do not necessarily
follow a power law and for arbitrary Lp-norms used to define distances in the ground
space. For p ∈ [1, ∞), the proof is based on the application of a multivariate central limit
theorem [37], in a similar way as used to prove a related statement for spherical random
geometric graphs (SRGGs), i.e., random geometric graphs with a hypersphere as ground
space [17]. Our proof generalizes this argument to arbitrary Lp-norms and arbitrary weight
sequences. For the case of L∞-norm, we present a proof based on the inclusion-exclusion
principle and the bounds we develop in the full version [22, Section 4].

Remarkably, while a similar behavior was previously established for SRGGs, there exist
works indicating that RGGs on the hypercube do not converge to their non-geometric
counterpart [13, 18] as d → ∞. We show that this apparent disagreement is due to the fact
that the torus is a homogeneous space while the hypercube is not. In fact, our proof shows
that GIRGs on the hypercube do converge to a non-geometric model in which edges are,
however, not sampled independently. This lack of independence is because, on the hypercube,
there is a positive correlation between the distances from two vertices to a given vertex,
leading to a higher tendency to form clusters, as was observed experimentally [18]. Due
to the homogeneous nature of the torus, the same is not true for GIRGs and the model
converges to the plain IRG model with independent edges.

4 Clique Structure

To quantify for which dimensions d the graphs in the GIRG model start to behave similar to
IRGs, we investigate the number and size of cliques. Previous results on SRGGs indicate
that the dimension of the underlying space heavily influences the clique structure of the
model [4, 17]. However, it was not known how the size and the number of cliques depends
on d if we use the torus as our ground space, and how the clique structure in high-dimensions
behaves for inhomogeneous weights.

ICALP 2023
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Table 1 Asymptotic behavior of the expected number of k-cliques. The behavior in the first
column is the same as in hyperbolic random graphs [7], and the behavior in the third column is the
same as in the IRG model [14]. Results marked with * were previously known for constant k [34].

E [Kk] for k ≥ 4

d = Θ(1) d = o(log(n)) d = ω(log(n))

2 < β < 3, k > 2
3−β

n
k
2 (3−β)Θ(k)−k* n

k
2 (3−β)Θ(k)−k n

k
2 (3−β)Θ(k)−k

2 < β < 3, k < 2
3−β

nΘ(k)−k* ne−Θ(1)dkΘ(k)−k n
k
2 (3−β)Θ(k)−k

β > 3 nΘ(k)−k ne−Θ(1)dkΘ(k)−k o(1)

We give explicit bounds on the expected number of cliques of a given size k, which we
afterwards turn into bounds on the clique number ω(G), i.e., the size of the largest clique in
the graph G. While the expected number of cliques in the GIRG model was previously studied
by Michielan and Stegehuis [34] when the power-law exponent of the degree distribution
satisfies β ∈ (2, 3), to the best of our knowledge, the clique number of GIRGs remains
unstudied even in the case of constant (but arbitrary) dimensionality. We close this gap,
reproduce the existing results, and extend them to the case β ≥ 3 and the case where d can
grow as a function of the number of vertices n in the graph. Furthermore, our bounds for the
case β ∈ (2, 3) are more explicit and complement the work of Michielan and Stegehuis, who
expressed the (rescaled) asymptotic number of cliques as converging to a non-analytically
solvable integral. Furthermore, we show that the clique structure in our model eventually
behaves asymptotically like that of an IRG if the dimension is sufficiently large. In summary,
our main contributions are outlined in Tables 1, 2, and Table 3.

We observe that the structure of the cliques undergoes three phase transitions in the size
of the cliques k, the dimension d, and the power-law exponent β.

Transition in k. When β ∈ (2, 3) and d ∈ o(log(n)), the first transition is at k = 2
3−β ,

as was previously observed for hyperbolic random graphs [7] and for GIRGs of constant
dimensionality [34]. The latter work explains this behavior by showing that for k < 2

3−β ,
the number of cliques is strongly dominated by “geometric” cliques forming among vertices
whose distance is of order n−1/d regardless of their weight. For k > 2

3−β , on the other hand,
the number of cliques is dominated by “non-geometric” cliques forming among vertices with
weights in the order of

√
n. This behavior is in contrast to the behavior of cliques in the

IRG model, where this phase transition does not exist and where the expected number of k

cliques is Θ
(

n
k
2 (3−β)

)
for all k ≥ 3 (if β ∈ (2, 3)) [14].

Transition in d. Still assuming β ∈ (2, 3), the second phase transition occurs as d becomes
superlogarithmic. More precisely, we show that in the high-dimensional regime, where
d = ω(log(n)), the phase transition in k vanishes, as the expected number of cliques of size
k ≥ 4 behaves asymptotically like its counterpart in the IRG model. Nevertheless, we can
still differentiate the two models as long as d = o(log3/2(n)), by counting triangles among
low degree vertices as can be seen in Table 2.

The reason for this behavior is that the expected number of cliques in the case d =
ω(log(n)) is already dominated by cliques forming among vertices of weight close to

√
n. For

those, the probability that a clique is formed already behaves like in an IRG although, for
vertices of small weight, said probability it is still larger.



T. Friedrich, A. Göbel, M. Katzmann, and L. Schiller 62:7

Table 2 Asymptotic behavior of the expected number of triangles. The case β = ∞ refers to the
case of constant weights. While in the case β < 3, the number of triangles already behaves like that
of the IRG model if d = ω(log(n)), in the case β > 3, the number of triangles remains superconstant
as long as d = o

(
log3/2(n)

)
.

Expected number of triangles E [K3]

d = o(log(n)) d = ω(log(n)) d = ω(log2(n))

2 < β < 7
3 n

3
2 (3−β)Θ (1) n

3
2 (3−β)Θ (1) n

3
2 (3−β)Θ (1)

7
3 < β < 3 ne−Θ(1)dΘ (1) n

3
2 (3−β)Θ (1) n

3
2 (3−β)Θ (1)

β > 3 ne−Θ(1)dΘ (1) Ω
(

exp
(

ln3(n)
d2

))
Θ(1)

β = ∞ ne−Θ(1)dΘ (1) Θ
(

exp
(

ln3(n)
d2

))
Θ(1)

Regarding the clique number, in the case β > 3, we observe a similar phase transition
in d. For constant d, the clique number of a GIRG is Θ(log(n)/ log log(n)) = ω(1). We
find that this asymptotic behavior remains unchanged if d = O(log log(n)). However, if
d = ω(log log(n)) but d = o(log(n)), the clique number scales as Θ(log(n)/d), which is still
superconstant. Additionally if d = ω(log(n)), we see that, again, GIRGs show the same
behavior as IRGs. That is, there are asymptotically no cliques of size larger than 3.

Transition in β. The third phase transition occurs at β = 3 in the high-dimensional case,
which is in line with the fact that networks with a power-law exponent β ∈ (2, 3) contain with
high probability (w.h.p., meaning with probability 1 − O(1/n)) a densely connected “heavy
core” of Θ

(
n

1
2 (3−β)

)
vertices with weight

√
n or above, which vanishes if β is larger than

3. This heavy core strongly dominates the number of cliques of sufficient size and explains
why the clique number is Θ

(
n

1
2 (3−β)

)
regardless of d if β ∈ (2, 3). As β grows beyond 3,

the core disappears and leaves only very small cliques. Accordingly for β > 3 IRGs contain
asymptotically almost surely (a.a.s., meaning with probability 1 − o(1)) no cliques of size
greater than 3. In contrast to that, for GIRGs of dimension d = o(log(n)) (and HRGs), the
clique number remains superconstant and so does the number of k-cliques for any constant
k ≥ 3. If d = ω(log(n)), there are no cliques of size greater than 3 like in an IRG. However,
as noted before, GIRGs feature many more triangles than IRGs as long as d = o(log3/2(n)).

Beyond the three mentioned phase transitions, we conclude that, for constant d, the
main difference between GIRGs and IRGs is that the former contain a significant number of
cliques that form among vertices of low weight, whereas, in the latter model only high-weight
vertices contribute significantly to the total number of cliques. In fact, here, the expected
number of k cliques in the heavy core is already of the same order as the total expectation
of Kk in the whole graph. Similarly, in the GIRG model, the expected number of cliques
forming in the low-weight subgraph G≤w for some constant w, is already of the same order as
the total number of cliques if k < 2

3−β or β ≥ 3 (otherwise, this number is, again, dominated
by cliques from the heavy core).

The proofs of our results (i.e., the ones in the above tables) are mainly based on bounds
on the probability that a set of k randomly chosen vertices forms a clique. To obtain
concentration bounds on the number of cliques as needed for deriving bounds on the clique
number, we use the second moment method and Chernoff bounds.

ICALP 2023
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For the case of d = ω(log(n)), many of our results are derived from the following general
insight. We show that for and all β > 2, the probability that a set of vertices forms a
clique already behaves similar as in the IRG model if the weights of the involved nodes are
sufficiently large. For d = ω(log(n)2), this holds in the entire graph, that is, regardless of the
weights of the involved vertices. In fact our statement holds even more generally. That is,
the described behavior not only applies to the probability that a clique is formed but also to
the probability that any set of edges (or a superset thereof) is created.

▶ Theorem 2. Let G be a standard GIRG and let k ≥ 3 be a constant. Furthermore, let
Uk = {v1, . . . , vk} be a set of vertices chosen uniformly at random and let {κ}(k) = {κij |
1 ≤ i, j ≤ k} describe the pairwise product of weights of the vertices in Uk. Let E(Uk) denote
the (random) set of edges formed among the vertices in Uk. Then, for d = ω

(
log2(n)

)
and

any set of edges A ⊆
(

Uk

2
)
,

Pr
[
E(Uk) ⊇ A | {κ}(k)

]
= (1 ± o(1))

∏
{i,j}∈A

κij

n
.

If d = ω (log(n)),

Pr
[
E(Uk) ⊇ A | {κ}(k)

]
= (1 ± o(1))

∏
{i,j}∈A

(κij

n

)1∓O
(

log(n)
d

)
.

For the proof we derive elementary bounds on the probability of the described events
and use series expansions to investigate their asymptotic behavior. Remarkably, in contrast
to our bounds for the case d = o(log(n)), the high-dimensional case requires us to pay closer
attention to the topology of the torus.

We leverage the above theorem to prove that GIRGs eventually become equivalent to
IRGs with respect to the total variation distance. Theorem 2 already implies that the
expected number of cliques in a GIRG is asymptotically the same as in an IRG for all k ≥ 3
and all β > 2 if d = ω(log2(n)). However, we are able to show that the expected number
of cliques for β ∈ (2, 3) actually already behaves like that of an IRG if d = ω(log(n)). The
reason for this is that the clique probability among high-weight vertices starts to behave like
that of an IRG earlier than it is the case for low-weight vertices and cliques forming among
these high-weight vertices already dominate the number of cliques. Moreover, the clique
number behaves like that of an IRG if d = ω(log(n)) for all β > 2. However, the number of
triangles among vertices of constant weight asymptotically exceeds that of an IRG as long as
d = o(log3/2(n)), which we prove by deriving even sharper bounds on the expected number
of triangles. Accordingly, convergence with respect to the total variation distance cannot
occur before this point (this holds for all β > 2).

In contrast to this, for the low-dimensional case (where d = o(log(n))), the underlying
geometry still induces strongly notable effects regarding the number of sufficiently small
cliques for all β > 2. However, even here, the expected number of such cliques decays
exponentially in dk. The main difficulty in showing this is that we have to handle the case of
inhomogeneous weights, which significantly influence the probability that a set of k vertices
chosen uniformly at random forms a clique. To this end, we prove the following theorem that
bounds the probability that a clique among k vertices is formed if the ratio of the maximal
and minimal weight is at most cd. Note that the vertices forming a star is necessary for a
clique to form. For this reason we consider the event Ec

star of the vertices forming a star
centered at the lowest weight vertex. The theorem generalizes a result of Decreusefond et
al. [16].
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Table 3 Asymptotic behavior of the clique number of G for different values of d in the GIRG
model. The behavior of the first column is the same as in hyperbolic random graphs established in
[7], and the behavior in the third column is the same as that of IRG graphs established in [27]. All
results hold a.a.s. and under L∞-norm.

ω(G)

d = O(log log(n)) d = o(log(n)) d = ω(log(n))

β < 3 Θ
(
n(3−β)/2)

Θ
(
n(3−β)/2)

Θ
(
n(3−β)/2)

β = 3 Θ
(

log(n)
log log(n)

)
Ω

( log(n)
d

)
O (1)

β > 3 Θ
(

log(n)
log log(n)

)
Θ

( log(n)
d

)
≤ 3

equivalent to HRGs [7] equivalent to IRGs [27]

▶ Theorem 3. Let G be a standard GIRG and consider k ≥ 3. Furthermore, let Uk =
{v1, v2, . . . , vk} be a set of vertices chosen uniformly at random and assume without loss
of generality that w1 ≤ . . . ≤ wk. Let Ec

star be the event that v1 connects to all vertices in
Uk \ {v1} and that wk ≤ cdw1 for some constant c ≥ 1 with c2 (

w2
1/(τn)

)1/d ≤ 1/4. Then,
the probability that Uk is a clique conditioned on Ec

star fulfills(
1
2

)d(k−1)
kd ≤ Pr [Uk is clique | Ec

star] ≤ cd(k−2)
(

1
2

)d(k−1)
kd.

Building on the variant by Decreusefond et al. [16], we provide an alternative proof of
the original statement, showing that the clique probability conditioned on the event Ec

star is
monotonous in the weight of all other vertices. Remarkably, this only holds if we condition
on the event that the center of our star is of minimal weight among the vertices in Uk.

We apply Theorem 3 to bound the clique probability in the whole graph (where the
ratio of the maximum and minimum weight of vertices in Uk is not necessarily bounded).
Afterwards, we additionally use Chernoff bounds and the second moment method to bound
the clique number.

5 Relation to Previous Analyses

In the following, we discuss how our results compare to insights obtained on similar graph
models that (apart from not considering weighted vertices) mainly differ in the considered
ground space. We not that, in the following, we consider GIRGs with uniform weights in
order to obtain a valid comparison.

Random Geometric Graphs on the Sphere. Our results indicate that the GIRG model on
the torus behaves similarly to the model of Spherical Random Geometric Graphs (SRGGs)
in the high-dimensional case. In this model, vertices are distributed on the surface of a d − 1
dimensional sphere and an edge is present whenever the Euclidean distance between two
points (measured by their inner product) falls below a given threshold. Analogous to the
behavior of GIRGs, when keeping n fixed and considering increasing d → ∞, this model
converges to its non-geometric counterpart, which in their case is the Erdős–Rényi model [17].
It is further shown that the clique number converges to that of an Erdős–Rényi graph (up to
a factor of 1 + o(1)) if d = ω(log3(n)).

ICALP 2023
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Although the overall behavior of SRGGs is similar to that of GIRGs, the magnitude of d

in comparison to n at which non-geometric features become dominant seems to differ. In
fact, it is shown in [10, proof of Theorem 3] that the expected number of triangles in sparse
SRGGs still grows with n as long as d = o(log3(n)), whereas its expectation is constant in
the non-geometric, sparse case (as for Erdős–Rényi graphs). On the other hand, in the GIRG
model, we show that the expected number of triangles in the sparse case converges to the
same (constant) value as that of the non-geometric model if only d = ω(log3/2(n)). This
indicates that, in the high-dimensional regime, differences in the nature of the underlying
geometry result in notably different behavior, whereas in the case of constant dimensionality,
the models are often assumed to behave very similarly.

Random Geometric Graphs on the Hypercube. The work of Dall and Christensen [13]
and the recent work of Erba et al. [18] show that RGGs on the hypercube do not converge
to Erdős–Rényi graphs as n is fixed and d → ∞. However, our results imply that this is the
case for RGGs on the torus. These apparent disagreements are despite the fact that Erba et
al. use a similar central limit theorem for conducting their calculations and simulations [18].

The tools established in our paper yield an explanation for this behavior. Our proof
of Theorem 1 relies on the fact that, for independent zero-mean variables Z1, . . . , Zd, the
covariance matrix of the random vector Z =

∑d
i=1 Zi is the identity matrix. This, in turn, is

based on the fact that the torus is a homogeneous space, which implies that the probability
measure of a ball of radius r (proportional to its Lebesgue measure or volume, respectively)
is the same, regardless of where this ball is centered. It follows that the random variables
Z(u,v) and Z(u,s), denoting the normalized distances from u to s and v, respectively, are
independent. As a result their covariance is 0 although both “depend” on the position of u.

For the hypercube, this is not the case. Although one may analogously define the distance
of two vertices as a sum of independent, zero-mean random vectors over all dimensions just
like we do in this paper, the random variables Z(u,v) and Z(u,s) do not have a covariance of 0.

6 Conjectures & Future Work

While making the first steps towards understanding GIRGs and sparse RGGs on the torus in
high dimensions, we encountered several questions whose investigation does not fit into the
scope of this paper. In the following, we give a brief overview of our conjectures and possible
starting points for future work.

In addition to investigating how the number and size of cliques depends on d, it remains
to analyze among which vertices k-cliques form dominantly. For constant d and β ∈ (2, 3)
this was previously done by Michielan and Stegehuis who noted that cliques of size k > 2

3−β

are dominantly formed among vertices of weight in the order of
√

n like in the IRG model,
whereas cliques of size k < 2

3−β dominantly appear among vertices within distance in the
order of n−1/d [34]. This characterizes the geometric and non-geometric nature of cliques
of size larger and smaller than 2

3−β , respectively. As our work indicates that this phase
transition vanishes as d = ω(log(n))), we conjecture that in this regime cliques of all sizes are
dominantly found among vertices of weight in the order

√
n. For the case β ≥ 3 it remains to

analyze the position of cliques of all sizes. It would further be interesting to find out where
cliques of superconstant size are dominantly formed as previous work in this regard only
holds for constant k.

Additionally, it would be interesting to extend our results to a noisy variant of GIRGs.
While the focus in this paper lies on the standard GIRGs, where vertices are connected
by an edge if their distance is below a given threshold, there is a temperate version of the
model, where the threshold is softened using a temperature parameter. That is, while the
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probability for an edge to exist still decreases with increasing distance, we can now have
longer edges and shorter non-edges with certain probabilities. The motivation of this variant
of GIRGs is based on the fact that real data is often noisy as well, leading to an even better
representation of real-world graphs.

We note that we expect our insights to carry over to the temperate model, as long as we
have constant temperature. Beyond that, we note that both temperature and dimensionality
affect the influence of the underlying geometry. Therefore, it would be interesting to see
whether a sufficiently high temperature has an impact on how quickly GIRGs converge to
the IRGs.

Furthermore, it remains to investigate the dense case of our model, where the marginal
connection probability of any pair of vertices is constant and does not decrease with n.
For dense SRGGs, an analysis of the high-dimensional case has shown that the underlying
geometry remains detectable as long as d = o(n3). As mentioned above, GIRGs and their
non-geometric counterpart can be distinguished as long as d = o(log3/2(n)), by considering
triangles among low-weight vertices. For dense SRGGs the geometry can be detected by
counting so-called signed triangles [10]. Although for the sparse case, signed triangles have
no advantage over ordinary triangles, they are much more powerful in the dense case and
might hence prove useful for our model in the dense case as well.

Another crucial question is under which circumstances the underlying geometry of our
model remains detectable by means of statistical testing, and when (i.e. for which values of d)
our model converges in total variation distance to its non-geometric counterpart. A large body
of work has already been devoted to this question for RGGs on the sphere [17, 10, 9, 33, 32]
and recently also for random intersection graphs [9]. While the question when these models
lose their geometry in the dense case is already largely answered, it remains open for the sparse
case (where the marginal connection probability is proportional to 1/n) and progress has only
been made recently [9, 32]. It would be interesting to tightly characterize when our model
loses its geometry both for the case of constant and for the case of inhomogeneous weights.
Our bounds show that the number of triangles in our model for the sparse case (constant
weights) is in expectation already the same as in a Erdős-Rényi graph if d = ω(log3/2(n)),
while on the sphere this only happens if d = ω(log3(n)) [10]. Accordingly, we expect that
our model loses its geometry earlier than the spherical model.
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