
An O(log k)-Approximation for Directed Steiner
Tree in Planar Graphs
Zachary Friggstad #

Department of Computing Science, University of Alberta, Canada

Ramin Mousavi #

Department of Computing Science, University of Alberta, Canada

Abstract
We present an O(log k)-approximation for both the edge-weighted and node-weighted versions
of Directed Steiner Tree in planar graphs where k is the number of terminals. We extend
our approach to Multi-Rooted Directed Steiner Tree1, in which we get a O(R + log k)-
approximation for planar graphs for where R is the number of roots.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases Directed Steiner tree, Combinatorial optimization, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.63

Category Track A: Algorithms, Complexity and Games

1 Introduction

In the Directed Steiner Tree (DST) problem, we are given a directed graph G = (V, E)
with edge costs ce ≥ 0, e ∈ E, a root node r ∈ V , and a collection of terminals X ⊆ V \ {r}.
The nodes in V \ (X ∪ {r}) are called Steiner nodes. The goal is to find a minimum cost
subset F ⊆ E such that there is an r − t directed path (dipath for short) using only edges in
F for every terminal t ∈ X. Note any feasible solution that is inclusion-wise minimal must
be an arborescence rooted at r, hence the term “tree”. Throughout, we let n := |V | and
k := |X|.

One key aspect of DST lies in the fact that it generalizes many other important problems,
e.g. Set Cover, (non-metric, multilevel) Facility Location, and Group Steiner Tree.
Halperin and Krauthgamer [13] show Group Steiner Tree cannot be approximated within
O(log2−ϵ n) for any ϵ > 0 unless NP ⊆ DTIME (npolylog (n)) and therefore the same result
holds for DST.

Building on a height-reduction technique of Calinescu and Zelikovsky [6, 21], Charikar et
al. give the best approximation for DST which is an O(kϵ)-approximation for any constant
ϵ > 0 [7] and also an O(log3 k)-approximation in O(npolylog(k)) time (quasi-polynomial
time). This was recently improved by Grandoni, Laekhanukit, and Li [12], who give a quasi-
polynomial time O(log2 k

log log k)-approximation factor for DST. They also provide a matching
lower bound in that no asymptotically-better approximation is possible even for quasi-
polynomial time algorithms, unless either the Projection Games Conjecture fails to
hold or NP ⊆ ZPTIME(2nδ) for some 0 < δ < 1.

The undirected variant of DST (i.e., Undirected Steiner Tree) is better understood.A
series of papers steadily improved over the simple 2-approximation [22, 14, 17, 19] culminating
in a ln 4 + ϵ for any constant ϵ > 0 [5]. Bern and Plassmann [3] showed that unless P = NP
there is no approximation factor better than 96

95 for Undirected Steiner Tree.

1 In general graphs Multi-Rooted Directed Steiner Tree and Directed Steiner Tree are easily
seen to be equivalent but in planar graphs this is not the case necessarily.

EA
T
C
S

© Zachary Friggstad and Ramin Mousavi;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 63; pp. 63:1–63:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zacharyf@ualberta.ca
mailto:mousavih@ualberta.ca
https://doi.org/10.4230/LIPIcs.ICALP.2023.63
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2 Directed Steiner Tree in Planar Graphs

Studying the complexity of network design problems on restricted metrics such as planar
graphs and more generally, graphs that exclude a fixed minor has been a fruitful research
direction. For example, [4] gives the first polynomial time approximation scheme (PTAS) for
Undirected Steiner Tree on planar graphs and more generally [2] obtains a PTAS for
Steiner Forest on graphs of bounded-genus. Very recently, Cohen-Addad [8] presented a
quasi-polynomial time approximation scheme (QPTAS) for Steiner tree on minor-free graphs.

A clear distinction in the complexity of Undirected Steiner Tree on planar graphs
and general graphs have been established; however, prior to our work we did not know if DST
on planar graphs is “easier” to approximate than in general graphs. Demaine, Hajiaghayi,
and Klein [9] show that if one takes a standard flow-based relaxation for DST in planar graphs
and further constraints the flows to be “non-crossing”, then the solution can be rounded
to a feasible DST solution while losing only a constant factor in the cost. However, the
resulting relaxation is non-convex and, to date, we do not know how to compute a low-cost,
non-crossing flow in polynomial time for DST instances on planar graphs. Recently, in [10] a
constant factor approximation for planar DST was given for quasi-bipartite instances (i.e. no
two Steiner nodes are connected by an edge). Though, we remark that the techniques in that
paper are quite different than the techniques we use in this paper; [10] uses a primal-dual
algorithm based on a standard LP relaxation whereas the techniques we use in this paper
rely on planar separators.

In this paper, we show DST on planar graphs admits a O(log k)-approximation, while
DST on general graphs does not have an approximation factor better than O(log2−ϵ n) for
any ϵ > 0 unless NP ⊆ DTIME (npolylog (n)).

Our approach is based on planar separators presented by Thorup [20]2 which states
given an undirected graph G with n vertices, one could find a “well-structured” subgraph
F such that each connected component of G \ F has at most n

2 vertices. We show using
this separator and an aggressive guessing of optimal value of each subproblems lead to an
O(log k)-approximation algorithm in quasi-polynomial time. Then, we show how to modify
the guessing part to make the algorithm run in polynomial time. Well-structured separators
are useful in enabling divide-and-conquer approach for some problems, such as Maximum
Independent Set and Pebbling [16]. Also very recently, Cohen-Addad [8] uses the same
separator we consider to design QPTASes for k-MST and Undirected Steiner Tree on
planar graphs. He also develops a new separator to deal with these problems in minor-free
graphs.

We show the separator theorem of Thorup can be used to obtain a simple logarithmic
approximation algorithm for planar DST.

▶ Theorem 1. There is a O(log k)-approximation for planar Directed Steiner Tree,
where k is the number of terminals.

We remark that it is trivial to generalize our algorithm to the node-weighted setting
of DST in planar graphs. That is, to instances where Steiner nodes v ∈ V \ (X ∪ {r})
have costs cv ≥ 0 and the goal is to find the cheapest S of Steiner Nodes such that the
graph G[{r} ∪X ∪ S] contains an r − t dipath for each t ∈ X. Clearly node-weighted DST
generalizes edge-weighted DST even in planar graphs settings since we can subdivide an
edge with cost ce and include this cost on the new node. In general graphs, edge-weighted
DST generalizes node-weighted DST because a node v with cost cv can be turned into two
nodes v+, v− connected by an edge (v+, v−) with cost cv; edges entering v now enter v+ and
edges exiting v now exit v−. But this operation does not preserve planarity, it is easy to find
examples where this results in a non-planar graph.

2 As stated in [20] this separator theorem was implicitly proved in [15].

Z. Friggstad and R. Mousavi 63:3

We also extend our result to multi-rooted case. In Multi-Rooted Directed Steiner
Tree (MR-DST), instead of one root, we are given multiple roots r1, . . . , rR and the set of
terminals X ⊆ V \ {r1, . . . , rR}. The goal here is to find a minimum cost subgraph such that
every terminal is reachable from one of the roots.

Note that MR-DST on general graphs is equivalent to DST by adding an auxiliary root
node r and adding edges (r, ri) for 1 ≤ i ≤ R with zero cost. However, this reduction also does
not preserve planarity. We prove our result for MR-DST by constructing a “well-structured”
separator for the multi-rooted case.

▶ Theorem 2. There is a O(R+log k)-approximation for planar Multi-Rooted Directed
Steiner Tree, where R is the number of roots and k is the number of terminals.

2 Preliminaries

For convenience, we allow our input graphs to contain multiple directed edges between
two nodes. All directed paths (dipath for short) in this paper are simple. Fix a digraph
G = (V, E) with edge costs ce ≥ 0 for all e ∈ E. We identify a dipath P by its corresponding
sequence vertices, i.e., P = v1, . . . , va and we say P is a v1 − va-dipath. The start and end
vertices of P are v1 and va, respectively. For a subgraph H of G, we define the cost of a
subgraph H by costc(H) :=

∑
e∈E(H)

ce

We say a vertex v is reachable from u if there is a dipath from u to v. We denote by
dc(u, v) the cost of a shortest dipath from u to v, in particular, dc(u, u) = 0. The diameter
of a digraph is defined as the maximum dc(u, v) for all u ≠ v where v is reachable from
u. For both dc(.) and costc(.) we drop the subscript c if the edge costs is clear from the
context. For a subset S ⊆ V and a vertex u, we define d(S, v) := min

u∈S
{d(u, v)}. Denote by

G[S] the induced subgraph of G on the subset of vertices S, i.e., G[S] = (S, E[S]) where E[S]
is the set of edges of G with both endpoints in S. A weakly connected component of G is a
connected component of the undirected graph obtained from G by ignoring the orientation
of the edges. The indegree of a vertex v with respect to F ⊆ E is the number of edges in F

oriented towards v.
A partial arborescence T = (VT , ET) rooted at r in G, is a (not necessarily spanning)

subgraph of G such that r ∈ VT and T is a directed tree oriented away from r. An
arborescence is a partial arborescence that spans all the vertices. A breadth first search (BFS)
arborescence BG rooted at r is a (perhaps partial) arborescence including all nodes reachable
from r where the dipath from r to any vertex v on BG is a shortest dipath from r to v.

For two disjoint subsets of vertices S, T ⊆ V denote by δ(S, T) the set of edges with one
endpoint in S and the other endpoint in T (regardless of the orientation).

Given a subgraph H of G, for notational simplicity we write G/H the resulting graph
from contracting all the edges in H. Also we denote by G\H the resulting graph by removing
H from G, i.e., removing all the vertices of H and the edges incident to these vertices.

Our algorithm is based on planar separators described by Thorup [20].

▶ Theorem 3 (Lemma 2.3 in [20]). Let G = (V, E) be a connected and undirected planar
graph with non-negative vertex weights, and let T be a spanning tree rooted at a vertex r ∈ V .
In linear time, one can find three vertices v1, v2, and v3 such that the union of vertices on
paths Pi between r and vi in V (T) for i = 1, 2, 3 forms a separator of G, i.e., every connected
component of G \ (P1 ∪ P2 ∪ P3) has at most half the weight of G.

ICALP 2023

63:4 Directed Steiner Tree in Planar Graphs

An immediate consequence of the above result is that given a directed graph and a BFS
arborescence rooted at r instead of a spanning tree, one can obtain a separator consisting
three shortest dipaths each starting at r.

▶ Corollary 4 (Directed separator). Let G = (V, E) be a planar digraph with edge costs ce ≥ 0
for all e ∈ E, and non-negative vertex weights such that every vertex v ∈ V is reachable from
r. Given a vertex r ∈ V , in polynomial time, we can find three shortest dipaths P1, P2, and
P3 each starting at r such that every weakly connected component of G \ (P1 ∪ P2 ∪ P3) has
at most half the weight of G.

Throughout this paper, we create subinstances from I by contracting a subset of edges F

in G. Whenever, we create a subinstance I ′ we let the edge cost for the subinstance to be
the natural restriction of c to G/F , i.e., if e is in both E(G) and E(G/F) then e has cost ce

in I ′ and if e is in E(G/F) but not in E(G), then its cost in I ′ is set to be the cost of the
corresponding edge in E(G).

Let I =
(
G = (V, E), c, {r1, . . . , rR}, X

)
be an instance of MR-DST on planar graphs

where G is a planar digraph, ce ≥ 0 for all e ∈ E is the edge costs, {r1, . . . , rR} are the
roots, and X ⊆ V \ {r1, . . . , rR} is the set of terminals. By losing a small factor in the
approximation guarantee, one can assume in an instance of MR-DST that all the costs are
positive integers and d

(
{r1, . . . , rR}, v

)
is polynomially bounded by n for all v ∈ V . The

very standard proof appears in Appendix 6.

▶ Lemma 5 (Polynomial bounded distances). For any constant ϵ > 0, if there is an α-
approximation for MR-DST instances in planar graphs where all edges e have positive integer
costs ce ≥ 1 and dc(r, v) ≤ |X|·|V |

ϵ + |V | for each v ∈ V , then there is an (α · (1 + ϵ))-
approximation for general instances of MR-DST in planar graphs.

3 Planar DST

In this section we prove Theorem 1. Fix an instance I =
(
G = (V, E), c, r, X

)
of DST on

planar graphs that satisfies the assumptions in Lemma 5 for, say, ϵ = 1/2. Let n := |V | and
k := |X|. Furthermore, fix an optimal solution OPT for this instance and let opt denote its
cost. So the distance of every vertex from r is at most O(n · k).

Our algorithm recursively constructs smaller subinstances based on a partial arborescence
(as a separator) and disjoint subsets of vertices (as the weakly connected components after
removing the separator). The following is a more formal definition of these subinstances.

▶ Definition 6 (Induced subinstances). Let I = (G = (V, E), c, r, X) be an instance of DST
on planar graphs. Let T be a partial arborescence rooted at r, and let C1, . . . , Ch be the weakly
connected components of G \ T . The subinstances of DST induced by tuple (G, T, C1, . . . , Ch)
are defined as follows: let Gcontract be the graph obtained from G by contracting T into
r. For each Ci where 1 ≤ i ≤ h we construct instance ICi

:=
(
GCi

, c, r, Ci ∩ X
)

where
GCi := Gcontract[Ci ∪ {r}]. See Figure 1.

Given solutions F1,F2, . . . ,Fh for the subinstances induced by (G, T, C1, . . . , Ch), one
can naturally consider the corresponding subset of edges of E(T) ∪ F1 ∪ F2 ∪ . . . ∪ Fh in G

and it is easy to see this forms a feasible solution for instance I. We formalize this in the
next lemma.

▶ Lemma 7 (Merged solution). Consider the subinstances ICi
for 1 ≤ i ≤ h as defined in

Definition 6. Let FCi
be a solution for ICi

. Let F ⊆ E(G) be the corresponding edges of
E(T) ∪ (

⋃h
i=1 FCi) in G. Then, F is a feasible solution for instance I and furthermore

cost(F) = cost(T) +
h∑

i=1
cost(FCi). See Figure 1.

Z. Friggstad and R. Mousavi 63:5

<latexit sha1_base64="RFhIse+geX5fEOT0XBVaFnnjMlE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBw0mM5A==</latexit>a
<latexit sha1_base64="WbjOqWGUu6YMogqMdBIn23mRkDg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTfW6eV2p1/I4inAG53AJHtxCHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDxM2M5Q==</latexit>

b
<latexit sha1_base64="/z6pg4UKRgIP4DXO/+3T2pokOgM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBxlGM5g==</latexit>c

<latexit sha1_base64="b6Gm6+maAvyxQ3K5INYxbZr1faQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lspu3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5EPOqLFSMxyUK27VXYCsEy8nFcjRGJS/+mHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVVCMoyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNcOan3GZpAYlWy4apoKYmMy/JiFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9m+p187pSr+VxFOEMzuESPLiFOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MHx9WM5w==</latexit>

d <latexit sha1_base64="OG91mP62lW4yCydMtsRVHNhzecM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipiYNyxa26C5B14uWkAjkag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRD8FZfXiftq6p3U71uXlfqtTyOIpzBOVyCB7dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyVmM6A==</latexit>e

<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r

<latexit sha1_base64="lOW4B7OynRqK5A1HY5HygBgOnW4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMdCLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53nlBpHstHM03Qj+hI8pAzaqz00Bh4g3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNWPMzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqndTvb6/rtRreRxFOINzuAQPbqEOd9CEFjAYwTO8wpsjnBfn3flYthacfOYU/sD5/AG6z41q</latexit>

C1

<latexit sha1_base64="C4ZFy+kIuSw3Yds5nqVH40Q8O48=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY4kXDxilEcCGzI7NDBhdnYzM2tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2AmmjYXfeUKleSQfzSxGP6RjyUecUWOlh8agMiiW3LK7BNkkXkZKkKE5KH71hxFLQpSGCap1z3Nj46dUGc4Ezgv9RGNM2ZSOsWeppCFqP12eOidXVhmSUaRsSUOW6u+JlIZaz8LAdobUTPS6txD/83qJGdX8lMs4MSjZatEoEcREZPE3GXKFzIiZJZQpbm8lbEIVZcamU7AheOsvb5J2pezdlKv31VK9lsWRhwu4hGvw4BbqcAdNaAGDMTzDK7w5wnlx3p2PVWvOyWbO4Q+czx+8U41r</latexit>

C2

<latexit sha1_base64="lOW4B7OynRqK5A1HY5HygBgOnW4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMdCLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53nlBpHstHM03Qj+hI8pAzaqz00Bh4g3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNWPMzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqndTvb6/rtRreRxFOINzuAQPbqEOd9CEFjAYwTO8wpsjnBfn3flYthacfOYU/sD5/AG6z41q</latexit>

C1
<latexit sha1_base64="C4ZFy+kIuSw3Yds5nqVH40Q8O48=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY4kXDxilEcCGzI7NDBhdnYzM2tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2AmmjYXfeUKleSQfzSxGP6RjyUecUWOlh8agMiiW3LK7BNkkXkZKkKE5KH71hxFLQpSGCap1z3Nj46dUGc4Ezgv9RGNM2ZSOsWeppCFqP12eOidXVhmSUaRsSUOW6u+JlIZaz8LAdobUTPS6txD/83qJGdX8lMs4MSjZatEoEcREZPE3GXKFzIiZJZQpbm8lbEIVZcamU7AheOsvb5J2pezdlKv31VK9lsWRhwu4hGvw4BbqcAdNaAGDMTzDK7w5wnlx3p2PVWvOyWbO4Q+czx+8U41r</latexit>

C2

<latexit sha1_base64="RFhIse+geX5fEOT0XBVaFnnjMlE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBw0mM5A==</latexit>a
<latexit sha1_base64="WbjOqWGUu6YMogqMdBIn23mRkDg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTfW6eV2p1/I4inAG53AJHtxCHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDxM2M5Q==</latexit>

b <latexit sha1_base64="/z6pg4UKRgIP4DXO/+3T2pokOgM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBxlGM5g==</latexit>c
<latexit sha1_base64="b6Gm6+maAvyxQ3K5INYxbZr1faQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lspu3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5EPOqLFSMxyUK27VXYCsEy8nFcjRGJS/+mHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVVCMoyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNcOan3GZpAYlWy4apoKYmMy/JiFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9m+p187pSr+VxFOEMzuESPLiFOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MHx9WM5w==</latexit>

d
<latexit sha1_base64="OG91mP62lW4yCydMtsRVHNhzecM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipiYNyxa26C5B14uWkAjkag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRD8FZfXiftq6p3U71uXlfqtTyOIpzBOVyCB7dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyVmM6A==</latexit>e

<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r
<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r

<latexit sha1_base64="lOW4B7OynRqK5A1HY5HygBgOnW4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMdCLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53nlBpHstHM03Qj+hI8pAzaqz00Bh4g3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNWPMzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqndTvb6/rtRreRxFOINzuAQPbqEOd9CEFjAYwTO8wpsjnBfn3flYthacfOYU/sD5/AG6z41q</latexit>

C1
<latexit sha1_base64="C4ZFy+kIuSw3Yds5nqVH40Q8O48=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY4kXDxilEcCGzI7NDBhdnYzM2tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2AmmjYXfeUKleSQfzSxGP6RjyUecUWOlh8agMiiW3LK7BNkkXkZKkKE5KH71hxFLQpSGCap1z3Nj46dUGc4Ezgv9RGNM2ZSOsWeppCFqP12eOidXVhmSUaRsSUOW6u+JlIZaz8LAdobUTPS6txD/83qJGdX8lMs4MSjZatEoEcREZPE3GXKFzIiZJZQpbm8lbEIVZcamU7AheOsvb5J2pezdlKv31VK9lsWRhwu4hGvw4BbqcAdNaAGDMTzDK7w5wnlx3p2PVWvOyWbO4Q+czx+8U41r</latexit>

C2

<latexit sha1_base64="WbjOqWGUu6YMogqMdBIn23mRkDg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTfW6eV2p1/I4inAG53AJHtxCHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDxM2M5Q==</latexit>

b
<latexit sha1_base64="/z6pg4UKRgIP4DXO/+3T2pokOgM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBxlGM5g==</latexit>c

<latexit sha1_base64="OG91mP62lW4yCydMtsRVHNhzecM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipiYNyxa26C5B14uWkAjkag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRD8FZfXiftq6p3U71uXlfqtTyOIpzBOVyCB7dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyVmM6A==</latexit>e

<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r
<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r

<latexit sha1_base64="WbjOqWGUu6YMogqMdBIn23mRkDg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTfW6eV2p1/I4inAG53AJHtxCHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDxM2M5Q==</latexit>

b
<latexit sha1_base64="/z6pg4UKRgIP4DXO/+3T2pokOgM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBxlGM5g==</latexit>c

<latexit sha1_base64="OG91mP62lW4yCydMtsRVHNhzecM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipiYNyxa26C5B14uWkAjkag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRD8FZfXiftq6p3U71uXlfqtTyOIpzBOVyCB7dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyVmM6A==</latexit>e

<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r

<latexit sha1_base64="lOW4B7OynRqK5A1HY5HygBgOnW4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMdCLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53nlBpHstHM03Qj+hI8pAzaqz00Bh4g3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNWPMzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqndTvb6/rtRreRxFOINzuAQPbqEOd9CEFjAYwTO8wpsjnBfn3flYthacfOYU/sD5/AG6z41q</latexit>

C1 <latexit sha1_base64="C4ZFy+kIuSw3Yds5nqVH40Q8O48=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY4kXDxilEcCGzI7NDBhdnYzM2tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2AmmjYXfeUKleSQfzSxGP6RjyUecUWOlh8agMiiW3LK7BNkkXkZKkKE5KH71hxFLQpSGCap1z3Nj46dUGc4Ezgv9RGNM2ZSOsWeppCFqP12eOidXVhmSUaRsSUOW6u+JlIZaz8LAdobUTPS6txD/83qJGdX8lMs4MSjZatEoEcREZPE3GXKFzIiZJZQpbm8lbEIVZcamU7AheOsvb5J2pezdlKv31VK9lsWRhwu4hGvw4BbqcAdNaAGDMTzDK7w5wnlx3p2PVWvOyWbO4Q+czx+8U41r</latexit>

C2

(a) (b)

(c) (d)

Figure 1 Throughout, squares are terminals and circles are Steiner nodes or the root node r. In
(a) the separator is shown with dashed edges and solid vertices. The weakly connected components
of G \ T are shown as circles denoted by C1 and C2. Note that we did not show any edge directed
from C1 or C2 into the separator because we can safely remove these edges. In (b) the subinstances
IC1 and IC2 induced by (G, T, C1, C2) are depicted. In (c), the solutions for each subinstances are
shown. Finally, (d) shows how to merge the solutions in (c) to get a solution for the original instance.
Note that leaf nodes are not necessarily terminals. One could prune them as a post-processing step,
but that is not required by our algorithm.

Proof. The furthermore part is obvious so we prove that F is feasible for I. Consider a
terminal node t ∈ Ci. Since Fi is feasible for ICi

, then there is a dipath P from r to t. Let
(r, v) be the first edge on P and let (u, v) be the corresponding edge to (r, v) in E(G). Then,
we must have u ∈ V (T) as δ(Ci, Cj) = ∅ for all 1 ≤ i ≠ j ≤ h. So we can go from r to u in
T , then take the edge (u, v) and then go from v to t in FCi

. Since all these edges are present
in F and t is an arbitrary terminal, F is a feasible solution for I. ◀

We first present a high-level idea of a simple O(log k)-approximation that runs in quasi-
polynomial time and then with a little extra work, we can make it run in polynomial time
with small loss in the approximation guarantee.

3.1 Warm-up: An overview of a quasi-polynomial time approximation
The algorithm is simple. Fix an optimal solution OPT with cost opt. First we guess opt.
Note by Lemma 5, opt is polynomial in n and integral so there are polynomial guesses. Then,
we remove all vertices such that their distance from r is more than our guessed value (this is

ICALP 2023

63:6 Directed Steiner Tree in Planar Graphs

the preprocessing step). For the purpose of separating into subinstances with balanced weight,
we let the weight of each terminal to be 1 and the rest of vertices have zero weight. Apply
Corollary 4 and let P1, P2, and P3 be the resulting shortest dipaths each starting at r. Note
that cost(Pi) ≤ opt for i = 1, 2, 3 because of the preprocessing step. Let T := P1 ∪ P2 ∪ P3,
then T is a branching rooted at r. Let Ci for 1 ≤ i ≤ h be the weakly connected components
of G \ T . Then, we recursively solve the subinstances induced by (G, T, C1, . . . , Ch) (see
Definition 6), and finally return the corresponding solution of E(T) ∪

⋃h
i=1 FCi

in G. When
the number of terminals in a subinstance becomes one, we can solve the problem exactly by
finding the shortest dipath between the root and the only terminal.

Note that each recursive call reduces the number of terminals by half. The guess work
for each instance is polynomial in n. So it is easy to see the total number of recursive calls is
bounded by nO(log k). Since each time we apply the separator result on an instance I, we
buy a branching (union of up to three dipaths) of cost at most 3 · opt, and since the total
cost of optimal solutions across all of the resulting subinstances ICi

is at most opt, a simple
induction on the number of terminals shows the final cost is within (3 · log k +1) ·opt. A slight
improvement to the running time could be made by guessing OPT within a constant factor
(thus only making O(log n) guesses since all distances are integers bounded by a polynomial
in n), but the size of the recursion tree would still be O(log n)O(log k) which is still not quite
polynomial.

In the next section, we show how to avoid the above aggressive guessing which gives us
the polynomial running time. We remark there are some similarities between our algorithm
with the one presented in [11] for quasi-polynomial time algorithm for Submodular Tree
Orienteering in the sense that both need to guess some value (in our case opt and in their
case the budget) for the subproblems and performing this guess naively is too slow. However,
the approaches to overcoming this barrier are different.

3.2 The polynomial-time algorithm
The idea here is similar to the quasi-polynomial time algorithm; however, instead of guessing
the diameter of an optimal arborescence for each instance, we keep an estimate of it. Our
recursive algorithm tries two different recursive calls: (1) divide the current estimate by half
and recurse, or (2) buy a separator and divide the instance into smaller instances and recurs
on these instances using the current estimate as the current estimate passed to each smaller
instance.

The rationale behind this idea is that if the estimate is close to the optimal value, then
our separator is “cheap” compared to optimal value so (2) is a “good progress” otherwise
we make the estimate smaller so (1) is a “good progress”. The key idea here that leads to
polynomial time is that we do not “reset” our guess for the optimal solution cost in each
recursive call since we know that if our guess is correct for the current instance, then it is an
upper bound for the optimal solution cost in each subinstance.

As we mentioned at the beginning, the algorithm is recursive. The input to the algorithm
is a tuple (I, õpt) where õpt is an estimate of opt. The algorithm computes two solutions and
take the better of the two. One solution is by a recursive call to (I, õpt

2) and the other one
is obtained by applying Corollary 4 to get smaller subinstances and solve each subinstance
recursively and merge the solutions as described in Lemma 7. See Algorithm 1 for the
pseudocode.

By Lemma 5, we can assume the edge costs are positive integers and hence opt ≥ 1. So if
õpt < 1, then the output of DST(I, õpt) is infeasible. The algorithm will terminate since
each recursive call either halves õpt or halves the number of terminals.

Z. Friggstad and R. Mousavi 63:7

Algorithm 1 DST(I, õpt).

Input: I :=
(
G = (V, E), c, r, X

)
and an estimate õpt.

Output: A feasible solution for instance I or output infeasible.

if õpt < 1 or d(r, t) > õpt for some terminal t ∈ X then
return infeasible

else if |XI | = 1 then
Let F be the shortest dipath from r to the only terminal in XI .

else
F1 ← DST(I, õpt

2), if F1 is infeasible solution then set cost(F1)←∞.
Remove all vertices v with d(r, v) > õpt. {This is the preprocessing step.}
Apply Corollary 4 to obtain a partial arborescence T consists of up to 3 shortest dipaths
starting at r. Let C1, . . . , Ch be the weakly connected components of G \ T . Let ICi

be
the i-th subinstance induced by (G, T, C1, . . . , Ch) for i = 1, . . . , h.
for i = 1, . . . , h do
F ′

i ← DST(ICi , õpt)

F2 ← E(T) ∪ (
h⋃

i=1
F ′

i), if any F ′
i is infeasible then set cost(F2)←∞.

if both cost(F1) and cost(F2) are ∞ then
return infeasible

F ← arg min{cost(F1), cost(F2)}
return F .

3.3 Analysis
In this section, we analyze the cost and the running time of Algorithm 1.

▶ Lemma 8 (Cost and running time). Consider an instance I =
(
G = (V, E), c, r, X

)
and

a pair (I, õpt). Let ℓ and O be non-negative integers such that |X| ≤ 2ℓ and õpt ≤ 2O. If
õpt ≥ opt where opt is the optimal value of I, then DST(I, õpt) returns a solution with cost
at most (6 · ℓ + 1) · opt. Furthermore, the total number of recursive calls made by DST(I, õpt)
and its subsequent recursive calls is at most |X| · 22·ℓ+O.

Proof. First we analyze the cost of the output solution. If ℓ = 0 then we solve I exactly so
the statement holds. So for the rest of the proof we assume ℓ ≥ 1. We proceed by induction
on ℓ + O ≥ 1.

We assume õpt ≤ 2 · opt, otherwise we have DST(I, õpt) ≤ DST(I, õpt
2) ≤ (6 · ℓ + 1) · opt

by induction where the last inequality holds because log õpt
2 ≤ log(õpt)− 1.

Let F be the solution returned by DST(I, õpt). Since cost(F) ≤ cost(F2), it suffices to
prove cost(F2) ≤ (6 · ℓ + 1) · opt. Let F ′

i = DST(ICi , õpt) for i = 1, . . . , h be the solutions
constructed recursively for the subinstances. Note that each ICi

for i = 1 . . . , h has at most
2ℓ−1 terminals and õpt ≥ optICi

where optICi
is the optimal value of ICi . By the induction

hypothesis, we conclude

cost(F ′
i) ≤ (6 · (ℓ− 1) + 1) · optICi

≤ 6 · ℓ · optICi
, for i = 1, . . . , h (1)

Note that T is the union of up to three shortest dipaths and because of the preprocessing
step, each shortest dipath starting at r has cost at most õpt ≤ 2 · opt. So the following holds:

cost(T) ≤ 3 · õpt ≤ 6 · opt . (2)

ICALP 2023

63:8 Directed Steiner Tree in Planar Graphs

Combining (1) and (2) we get:

cost(F) = cost(T) +
h∑

i=1
cost(F ′

i)

≤ cost(T) +
h∑

i=1
6 · ℓ · optICi

≤ 6 · opt +6 · ℓ ·
h∑

i=1
optICi

≤ 6 · opt +6 · ℓ · opt
= (6 · ℓ + 1) · opt,

where the first equality follows from Lemma 7, the first and the second inequalities follow
from (1) and (2), respectively, and finally the last inequality follows from the fact that

h∑
i=1

optICi
≤ opt as the restriction of OPT on each GCi

is a feasible solution for ICi
and

GCi
’s are edge-disjoint.
Next, we analyze the number of recursive calls R(ℓ, O) in DST(I, õpt). We prove by

induction on ℓ + O that R(ℓ, O) ≤ |X| · 22·ℓ+O. If ℓ = 0, then there is no recursive call. So
suppose ℓ ≥ 1. Let Xi := |X ∩ Ci| ≤ |X|

2 be the number of terminals in subinstance ICi

and let ℓi be the smallest integer where |Xi| ≤ 2ℓi . Since the number of terminals in the
subinstances are halved, we have ℓi ≤ ℓ− 1 for all 1 ≤ i ≤ h. So we can write

R(ℓ, O) = 1 + R(ℓ, O − 1) +
h∑

i=1
R(ℓi, O)

≤ 1 + |X| · 22·ℓ+O−1 +
h∑

i=1
|Xi| · 22·ℓi+O

≤ 1 + |X| · 22·ℓ+O−1 + 22(ℓ−1)+O ·
h∑

i=1
|Xi|

≤ 1 + |X| · 22·ℓ+O−1 + 22·ℓ+O−2 · |X|
= 1 + |X| · 22·ℓ+O−1 + (22·ℓ+O−1 − 22·ℓ+O−2) · |X|
= 1 + |X| · 22·ℓ+O − |X| · 22·ℓ+O−2

≤ |X| · 22·ℓ+O,

where the first inequality follows from the induction hypothesis, the second inequality comes

from the fact that ℓi ≤ ℓ− 1, the third inequality holds because
h∑

i=1
|Xi| ≤ |X|, and the last

inequality follows from the fact that |X| ≥ 1 and ℓ ≥ 1. ◀

Proof of Theorem 1. For any ϵ > 0, we can assume all the shortest dipaths starting at the
root are bounded by poly(n, ϵ) by losing a (1 + ϵ) multiplicative factor in the approximation
guarantee, see Lemma 5. So we assume properties of Lemma 5 holds for the rest of the proof.

Let ∆ be the maximum distance from the root to any terminal. Let õpt := k ·∆ ≤ poly(n).
We find a solution by calling DST(I, õpt). Applying Lemma 8 with õpt := k ·∆, ℓ := ⌈log k⌉ ≤
log k + 1 and O := ⌈log õpt⌉ guarantees the solution has cost at most (6 · (log k + 1) + 1) · opt.

For running time of Algorithm 1, we have by Lemma 8 that the number of recursive calls
is at most k · 22·ℓ+O = O(k4 ·∆). So the total number of recursive calls is poly(n) (recall
k ·∆ = poly(n)). The running time within each recursive call is also bounded by poly(n) so
the algorithm runs in polynomial time. ◀

Z. Friggstad and R. Mousavi 63:9

4 Multi-rooted planar DST

The algorithm for the multi-rooted case is similar to Algorithm 1. We need analogous versions
of the separator, how we define the subinstances, and how we merge the solutions of smaller
subinstances to get a solution for the original instance for the multi-rooted case.

We start by a generalization of partial arborescence in the single rooted case to multiple
roots.

▶ Definition 9 (Multi-rooted partial arborescence). Given a digraph G = (V, E), R vertices
r1, . . . , rR designated as roots. We say a subgraph T of G is a multi-rooted partial arborescence
if it satisfies the following properties:
1. There are vertex-disjoint partial arborescences Ti1 , . . . , Tiq rooted at ri1 , . . . , riq , respect-

ively, and a subset of edges F ⊆ E \
(⋃q

j=1 E(Tij
)
)
, where the endpoints of each edge in

F belong to
⋃q

j=1 V (Tij
), such that T = F ∪ (

⋃q
j=1 Tiq

).
2. T is weakly connected and has no cycle (in the undirected sense).

If a multi-rooted partial arborescence T covers all the vertices in G, then we say T is a
multi-rooted arborescence for G. See Figure 2 for an example.

Fix an instance I = (G, c, {r1, . . . , rR}, X) of R-rooted DST on planar graphs. Next, we
present subinstnaces induced by a partial multi-rooted arborescence and bunch of disjoint
subsets analogous to Definition 6.

▶ Definition 10 (Induced subinstances, multi-rooted). Let I = (G, c, {r1, . . . , rR}, X) of R-
rooted DST on planar graphs. Let T = F ∪ (

⋃q
j=1 Tpj

) be a multi-rooted partial arborescence
where Tpj is a partial arborescence rooted at rpj for 1 ≤ j ≤ q. In addition, let C1, . . . , Ch be
the weakly connected components of G \ T . The subinstances of multi-rooted DST induced
by tuple (G, T, C1, . . . , Ch) are defined as follows: let Gcontract be the graph obtained from
G by contracting T into a singleton vertex called rT . For each Ci where 1 ≤ i ≤ h we

construct instance ICi
:=
(

GCi
, c, {rT } ∪

(
Ci ∩

(
{r1, . . . , rR} \ {rp1 , . . . , rpq

}
))

, Ci ∩X

)
where GCi

:= Gcontract[Ci ∪ {rT }].

The following is analogous to Lemma 7 for merging solution in the multi-rooted case.

▶ Lemma 11 (Merged solutions, multi-rooted). Let T = F ∪ (
⋃q

j=1 Tpj) be a partial multi-
rooted arborescence in G. Consider the subinstances ICi

for 1 ≤ i ≤ h as defined in
Definition 10 and let FCi be a solution for ICi . Let F ⊆ E(G) be the corresponding edges
in (E(T) \ F) ∪ (

⋃h
i=1 FCi

). Then, F is a feasible solution for instance I and furthermore

cost(F) = cost(T \ F) +
h∑

i=1
cost(FCi

).

Proof. The furthermore part follows directly from the definition of F . We prove F is feasible
for I.

Consider a terminal t. If t ∈ V (T), then t ∈ V (Tpj) for some 1 ≤ j ≤ q (recall the vertices
in T is the union of the vertices in all the partial arborescences Tpj

’s) so t is reachable from
rpj

, the root of Tpj
, in F . Suppose t ∈ Ci for some 1 ≤ i ≤ h. If t is reachable from a

root other than rT in FCi
then we are done because the same dipath exists in F . So we

suppose not and let P be the dipath in FCi
from rT to t. Let (u, v) be the corresponding

edge to (rT , v) in G. Note that u ∈ V (Tpj) for some 1 ≤ j ≤ q because δ(Cs, Cs′) = ∅ for
1 ≤ s ̸= s′ ≤ h. Hence, t is reachable from rpj

, the root of Tpj
, in F as E(Tpj

) ⊆ F . ◀

ICALP 2023

63:10 Directed Steiner Tree in Planar Graphs

Given an instance I with roots r1, . . . , rR, temporarily add an auxiliary node r and add
edges (r, ri) for all 1 ≤ i ≤ R with zero cost (it might destroy the planarity). Run the BFS
algorithm as usual rooted at r. Then, remove r and all the edges incident to r. The result
is a vertex-disjoint BFS arborescences A1, A2, . . . , AR rooted at r1, . . . , rR. Note that for
every v ∈ V (Ai), v is closest to ri than any other roots, i.e., the dipath from ri to v has cost
d
(
{r1, . . . , rR}, v

)
.

Finally, we present the separator result for the multi-rooted case.

▶ Lemma 12 (A structured separator, multi-rooted). Let I = (G = (V, E), c, {r1, . . . , rR}, X)
be an instance of multi-rooted DST on planar graphs, and let A1, . . . , AR be the vertex-
disjoint BFS arborescence rooted at r1, . . . , rR. There is a multi-rooted partial arborescence

T = F ∪ (
R⋃

j=1
Tij

), where Tij
could possibly be empty (i.e., with no vertices) such that the

following hold:
(a) Tj is either empty or is a subtree of Aj rooted at rj that consists of the union of up to

four shortest dipaths each starting at rj.
(b) Let C1, · · · , Ch be the weakly connected components of G \ T . Then, each subinstance

ICi
induced by (G, T, C1, . . . , Ch) has at most |X|

2 terminals for 1 ≤ i ≤ h.
(c) Let Fi be a solution to subinstance ICi

for 1 ≤ i ≤ h. Then, the corresponding solution

(E(T) \ F) ∪ (
h⋃

i=1
Fi) in G is feasible for I with cost exactly cost(T \ F) +

h∑
i=1

cost(Fi).

Proof. Figure 2 helps to visualize this proof.
Since G is weakly connected, there is a subset of edges F ′ in G such that T ′ := F ′ ∪

(
⋃R

i=1 Ai) is a multi-rooted arborescence of G (spanning all the vertices) and the endpoints

of edges in F are in
R⋃

i=1
V (Ai). Make T ′ rooted at an arbitrarily chosen root, say r1. Apply

Theorem 3 with terminal vertices having weight 1 and the rest of vertices having weight 0,
and T ′ as the spanning tree (in the undirected sense). This gives three paths P1, P2, and
P3 in T ′ each with starting vertex r1 such that every weakly connected component Ci of
G \ (P1 ∪ P2 ∪ P3) has at most |X|

2 terminals for 1 ≤ i ≤ h. Note, these three paths do not
necessarily follow the directions of the edges.

Fix Ai for some 1 ≤ i ≤ R and a path Pj := (r1 = v1), v2, . . . , vN for 1 ≤ j ≤ 3. Let a

and b (possibly a = b) be the smallest and the largest indices, respectively, such that va

and vb are in V (Ai). We claim the subpath P[a,b] := va, va+1, . . . , vb is a subgraph of Ai.
Suppose not, so there must be two indices a ≤ a′ < b′ ≤ b such that va′ , vb′ ∈ V (Ai) and
va′+1, va′+2, . . . , vb′−1 /∈ V (Ai). Let P a′

Ai
and P b′

Ai
be the paths from ri to a′ and b′ in V (Ai),

respectively. So P a′

Ai
∪ P b′

Ai
∪ P[a′,b′] forms a cycle in T ′, a contradiction. Furthermore, for

j = 1, 2, 3 let vj be the closest vertex to r1 on Pj (in terms of edge hops) that is in Ai as well
(if exists). Then, v1 = v2 = v3 as otherwise we have a cycle in T ′ because all Pj ’s start at r1.

For each 1 ≤ i ≤ R and 1 ≤ j ≤ 3, we mark the nodes with smallest and largest indices
in Pj that are in Ai. We proved above, that the number of these marked vertices in each Ai

is at most 4. Furthermore, (P1 ∪ P2 ∪ P3) ∩Ai is a subgraph of the union of dipaths from ri

to each marked vertices in Ai for all 1 ≤ i ≤ h.
We construct our partial multi-rooted arborescence T as follows: let Ti be the union of

(up to four) shortest dipaths from ri to the marked vertices in Ai. Let F := E
(
P1 ∪ P2 ∪

P3
)
\ (
⋃R

i=1 E(Ti)) which is the subset of edges whose endpoints are in different V (Ai)’s, i.e.,
F ⊆ F ′. Let T := F ∪ (

⋃R
i=1 Ti). Note that for Ai’s with no marked vertices, Ti is empty

Z. Friggstad and R. Mousavi 63:11

<latexit sha1_base64="vKwz7DbnlHWxCVKEJIGlKWng4/g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD3pQG5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68Ttq1qndVrd/XK41aHkcRzuAcLsGDa2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwACLo2U</latexit>r2

<latexit sha1_base64="ixnTP8mUDOcvFSeF/yQrFZ6phJg=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6rHgxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6UP3LfqnsVtw5yCrxclKGHI1+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2naEPwll9eJa1qxbuq1O5r5Xo1j6MAp3AGF+DBNdThDhrQBAZDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwADso2V</latexit>r3

<latexit sha1_base64="qlcDVt79K6bwBmd46VW3sD5f5zc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD3pQH5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68Ttq1qndVrd/XK41aHkcRzuAcLsGDa2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAFNo2W</latexit>r4

<latexit sha1_base64="99u3wad1MunDPdXNhRUyB7SNdyo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lK/TgWvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7lX/ol+uuFV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/9jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0m7VvUuq/W7eqVRy+Mowgmcwjl4cAUNuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w8Guo2X</latexit>r5
<latexit sha1_base64="TOakcU0S+nmLsBJqNb/8T9MDpAw=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUTAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxXvulJr1sr1ah5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4A38uM8g==</latexit>u <latexit sha1_base64="gMqDM02K31sN9iRxh23E7TRnJDg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY8kXjxCIo8ENmR2aGBkdnYzM0tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzlo4SxbDJIhGpTkA1Ci6xabgR2IkV0jAQ2A4m9wu/PUWleSQfzSxGP6QjyYecUWOlxrRfLLlldwmySbyMlCBDvV/86g0iloQoDRNU667nxsZPqTKcCZwXeonGmLIJHWHXUklD1H66PHROrqwyIMNI2ZKGLNXfEykNtZ6Fge0MqRnrdW8h/ud1EzO881Mu48SgZKtFw0QQE5HF12TAFTIjZpZQpri9lbAxVZQZm03BhuCtv7xJWpWyd1OuNqqlWiWLIw8XcAnX4MEt1OAB6tAEBgjP8ApvzpPz4rw7H6vWnJPNnMMfOJ8/4U+M8w==</latexit>v

<latexit sha1_base64="beMwGDWsaodeuvKWTwaa/Ro2Ojk=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY8kXjxCIo8ENmR2aGBkdnYzM6shG77AiweN8eonefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS0eJYthkkYhUJ6AaBZfYNNwI7MQKaRgIbAeT27nffkSleSTvzTRGP6QjyYecUWOlxlO/WHLL7gJknXgZKUGGer/41RtELAlRGiao1l3PjY2fUmU4Ezgr9BKNMWUTOsKupZKGqP10ceiMXFhlQIaRsiUNWai/J1Iaaj0NA9sZUjPWq95c/M/rJmZ446dcxolByZaLhokgJiLzr8mAK2RGTC2hTHF7K2FjqigzNpuCDcFbfXmdtCpl76pcbVRLtUoWRx7O4BwuwYNrqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/AOLTjPQ=</latexit>w

<latexit sha1_base64="IhCunT2xzWQPSfkaGxQnwyLKW1o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD3rgDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwCqjZM=</latexit>r1

Figure 2 A depiction of the multirooted separator in an instance with R = 5 roots. The solid
edges (thick and thin) are the shortest-path arborescences Ai for i = 1, . . . , R. The dashed edges are
F ′, they exist solely to allow us to apply Theorem 3 starting from a spanning tree of the underlying
undirected graph and to witness the contraction of all vertices on the thick edges results in a planar
graph. After applying Theorem 3, we get three vertices depicted as u, v, w. The vertices touching
the thick and solid edges then form the multirooted separator: these include all vertices lying on
paths from r to u, v, or w (as in Theorem 3). Additionally, for each i = 1, . . . , R that includes at
least one node from some r1 − a path for some a ∈ {u, v, w}, the multirooted separator includes
vertices on the unique path connecting ri to the r − a path (eg. the path from r2 to the r1 − u path).
In the algorithm, the solution will purchase the thick solid edges, but not the thick dashed edges.
However, we do contract all thick edges (dashed and solid) to generate the subproblems: the number
of roots also drops by 2 since the separator touches 3 shortest-path arborescences. Any solution
that is connected from the new contracted root will be connected from either r1, r2 or r4 using the
thick and solid edges after uncontracting.

(with no vertices not even ri). Since T is a partial multi-rooted arborescence that contains
P1 ∪ P2 ∪ P3 as a subgraph, every weakly connected components of G \ T has at most |X|

2
terminals. This finishes the proof of parts (a) and (b).

Property (c) follows from Lemma 11 and the fact that the conditions in Lemma 11 are
satisfied. ◀

The algorithm for the multi-rooted version is the same as Algorithm 1 with the following
two tweaks: (1) in the preprocessing step we remove vertices v where d

(
{r1, . . . , rR}, v

)
> õpt,

and (2) instead of Corollary 4 we apply Lemma 12 to obtain the subinstances.
Next, we analyze the cost and the running time of this algorithm.

▶ Lemma 13 (Cost and running time, multi-rooted). Consider an instance I =
(
G =

(V, E), w, {r1, . . . , rR}, X
)

and a pair (I, õpt). Let ℓ and O be non-negative integers such
that |X| ≤ 2ℓ and õpt ≤ 2O. If õpt ≥ opt where opt is the optimal value of I, then
DST(I, õpt) ≤

(
8 · (R + ℓ) + 1

)
· opt and the number of recursive calls is at most |X| · 22·ℓ+O.

Proof. The proof of the number of recursive calls is exactly the same as in the proof of
Lemma 8. So we turn to proving the bound on the returned solution’s cost.

The proof is by induction on R + ℓ + O. As in the proof of Lemma 8, we only need to
focus on the case that õpt ≤ 2 · opt and show that cost(F2) ≤

(
8 · (R + ℓ) + 1

)
· opt.

ICALP 2023

63:12 Directed Steiner Tree in Planar Graphs

Let T = F ∪ (
R⋃

i=1
Ti) be the partial multi-rooted arborescence obtained from Lemma 12.

Suppose T contains R′ many of the roots. Then, exactly R′ many of Ti’s are non-empty. By
Lemma 12 (a) we have that each non-empty Ti is consists of up to four shortest dipaths rooted
at ri so cost(Ti) ≤ 4 · õpt because of the preprocessing step plus the fact that õpt ≤ 2 · opt,
we conclude

cost(T \ F) ≤ 8 ·R′ · opt . (3)

Since T contains R′ many roots, each subinstance ICi
induced by (G, T, C1, . . . , Ch) has

at most R−R′ + 1 many roots for 1 ≤ i ≤ h. Furthermore, by Lemma 12 (b) each ICi
’s has

at most |X|
2 ≤ 2ℓ−1 many terminals. So by induction hypothesis, for i = 1, . . . , h we have

cost(FCi
) ≤

(
8 ·
(
(R−R′ + 1) + ℓ− 1

)
+ 1
)
· optICi

≤
(
8 · (R−R′ + ℓ) + 1

)
· optICi

. (4)

Using Lemma 12 (c), the bounds in (3) and (4) we have

cost(F) ≤ cost(T \ F) +
h∑

i=1
cost(FICi

)

≤ 8 ·R′ · opt +
(
8 · (R−R′ + ℓ) + 1

)
·

h∑
i=1

optICi

≤ 8 ·R′ · opt +
(
8 · (R−R′ + ℓ) + 1

)
· opt

=
(
8 · (R + ℓ) + 1

)
· opt,

where the third inequality follows from the fact that
h∑

i=1
optICi

≤ opt as the restriction of

OPT on each GCi
is a feasible solution for ICi

and GCi
’s are edge-disjoint.. ◀

Proof of Theorem 2. Note both of the tweaks in Algorithm 1 are implementable in polyno-
mial time. The proof has exactly the same structure as in the proof of Theorem 1 with the
difference that we use Lemma 13 here instead of Lemma 8. ◀

5 Concluding Remarks

One possible direction is to extend our result to minor-free families of graphs. However, as
pointed out in [1, 8], minor-free (undirected) graphs do not have shortest-path separators.
In [8], Cohen-Addad bypassed this difficulty by designing a new separator called a mixed
separator for undirected minor-free graphs. It is not clear that analogous separators exist
in directed graphs. For example, the mixed separators in [8] are obtained, in part, by
contracting certain paths. These paths are obtained using structural results in minor-free
graphs [18] and it is not clear how to find analogous paths in the directed case. Obtaining an
O(log k)-approximation for DST in minor-free graphs remains an interesting open problem.

References
1 Ittai Abraham and Cyril Gavoille. Object location using path separators. In Proceedings of

the twenty-fifth annual ACM symposium on Principles of distributed computing, pages 188–197,
2006.

2 MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Dániel Marx. Approximation
schemes for steiner forest on planar graphs and graphs of bounded treewidth. Journal of the
ACM (JACM), 58(5):1–37, 2011.

Z. Friggstad and R. Mousavi 63:13

3 Marshall Bern and Paul Plassmann. The steiner problem with edge lengths 1 and 2. Information
Processing Letters, 32(4):171–176, 1989.

4 Glencora Borradaile, Philip Klein, and Claire Mathieu. An O(n log n) approximation scheme
for steiner tree in planar graphs. ACM Transactions on Algorithms (TALG), 5(3):1–31, 2009.

5 Jarosław Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner tree ap-
proximation via iterative randomized rounding. Journal of the ACM (JACM), 60(1):1–33,
2013.

6 Gruia Calinescu and Alexander Zelikovsky. The polymatroid steiner problems. J. Combonat-
orial Optimization, 33(3):281–294, 2005.

7 Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha,
and Ming Li. Approximation algorithms for directed steiner problems. Journal of Algorithms,
33(1):73–91, 1999.

8 Vincent Cohen-Addad. Bypassing the surface embedding: approximation schemes for network
design in minor-free graphs. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, pages 343–356, 2022.

9 Erik D Demaine, MohammadTaghi Hajiaghayi, and Philip N Klein. Node-weighted steiner
tree and group steiner tree in planar graphs. ACM Transactions on Algorithms (TALG),
10(3):1–20, 2014.

10 Zachary Friggstad and Ramin Mousavi. A constant-factor approximation for quasi-bipartite
directed steiner tree on minor-free graphs. arXiv preprint, 2021. arXiv:2111.02572.

11 Rohan Ghuge and Viswanath Nagarajan. Quasi-polynomial algorithms for submodular tree
orienteering and other directed network design problems. In Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1039–1048. SIAM, 2020.

12 Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li. O(log 2k/ log log k)-approximation al-
gorithm for directed steiner tree: a tight quasi-polynomial-time algorithm. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 253–264, 2019.

13 Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In Proceedings
of the thirty-fifth annual ACM symposium on Theory of computing, pages 585–594, 2003.

14 Marek Karpinski and Alexander Zelikovsky. New approximation algorithms for the steiner
tree problems. Journal of Combinatorial Optimization, 1(1):47–65, 1997.

15 Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

16 Richard J Lipton and Robert Endre Tarjan. Applications of a planar separator theorem. SIAM
journal on computing, 9(3):615–627, 1980.

17 Hans Jürgen Prömel and Angelika Steger. A new approximation algorithm for the steiner tree
problem with performance ratio 5/3. Journal of Algorithms, 36(1):89–101, 2000.

18 Neil Robertson and Paul D Seymour. Graph minors. xvi. excluding a non-planar graph.
Journal of Combinatorial Theory, Series B, 89(1):43–76, 2003.

19 Gabriel Robins and Alexander Zelikovsky. Tighter bounds for graph steiner tree approximation.
SIAM Journal on Discrete Mathematics, 19(1):122–134, 2005.

20 Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs.
Journal of the ACM (JACM), 51(6):993–1024, 2004.

21 Alexander Zelikovsky. A series of approximation algorithms for the acyclic directed steiner
tree problem. Algorithmica, 18(1):99–110, 1997.

22 Alexander Z Zelikovsky. An 11/6-approximation algorithm for the network steiner problem.
Algorithmica, 9(5):463–470, 1993.

ICALP 2023

https://arxiv.org/abs/2111.02572

63:14 Directed Steiner Tree in Planar Graphs

6 Proof of Lemma 5

Proof. Let ∆ := maxt∈X

{
d
(
{r1, . . . , rR}, t

)}
, i.e., ∆ is the maximum distance from any

root to a terminal. Let optI be the optimal value of instance I. Then, ∆ ≤ optI ≤ k ·∆.
If ∆ = 0, then optI = 0 and the collection of all shortest dipaths from the roots to the

terminals is a solution of cost 0. So we assume ∆ > 0.
We can safely remove any edge e having ce > k ·∆ and any Steiner node v (along with

its incident edges) having d({r1, . . . , rR}, v) > k ·∆ since no optimal solution of I uses e or
v. Since we have only deleted elements of G, it remains planar.

Define a new edge costs c′
e := ⌈ce · n

ϵ·∆⌉ and form the instance I ′ = (G, c′, {r1, . . . , rR}, X).
Note for any shortest dipath P starting at root ri, we have

costc′(P) ≤
∑
e∈P

c′
e ≤

∑
e∈P

(ce ·
n

ϵ ·∆ + 1) ≤ costc(P) · n

ϵ ·∆ + n ≤ n · k
ϵ

+ n,

where the last inequality follows because all the distances from the root has length at most
k ·∆. So all the shortest dipaths starting at r in I ′ are bounded by O(n2

ϵ).
Let optI′ be the optimal value of instance I ′. Similar calculation as before shows

optI′ ≤ n
ϵ·∆ · optI +n.

Let F be an α-approximate solution for I ′. Then, we have

costc(F) ≤ ϵ ·∆
n
· costc′(F)

≤ ϵ ·∆
n
· α · optI′

≤ ϵ ·∆
n
· α · (n

ϵ ·∆ · optI +n)

≤ α · optI +α · ϵ ·∆
≤ α · (1 + ϵ) · optI ,

where the first inequality follows because c′
e ≥ ce · n

ϵ·∆ and the last because optI ≥ ∆. ◀

	1 Introduction
	2 Preliminaries
	3 Planar DST
	3.1 Warm-up: An overview of a quasi-polynomial time approximation
	3.2 The polynomial-time algorithm
	3.3 Analysis

	4 Multi-rooted planar DST
	5 Concluding Remarks
	6 Proof of Lemma 5

