
Matching Augmentation via Simultaneous
Contractions
Mohit Garg1 #

Department of Computer Science and Automation, Indian Institute of Science, Bengaluru, India

Felix Hommelsheim #

Faculty of Mathematics and Computer Science, Universität Bremen, Germany

Nicole Megow #

Faculty of Mathematics and Computer Science, Universität Bremen, Germany

Abstract
We consider the matching augmentation problem (MAP), where a matching of a graph needs to be
extended into a 2-edge-connected spanning subgraph by adding the minimum number of edges to it.
We present a polynomial-time algorithm with an approximation ratio of 13/8 = 1.625 improving
upon an earlier 5/3-approximation. The improvement builds on a new α-approximation preserving
reduction for any α ≥ 3/2 from arbitrary MAP instances to well-structured instances that do not
contain certain forbidden structures like parallel edges, small separators, and contractible subgraphs.
We further introduce, as key ingredients, the technique of repeated simultaneous contractions and
provide improved lower bounds for instances that cannot be contracted.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases matching augmentation, approximation algorithms, 2-edge-connectivity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.65

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2211.01912 [14]

Funding Mohit Garg: Supported by SERB Core Research Grant (CRG/2022/001176) on “Optimiz-
ation under Intractability and Uncertainty”.

1 Introduction

In the Matching Augmentation Problem (MAP), we are given an undirected graph G, where
each edge e ∈ E(G) has a weight in {0, 1}, and all the zero-weight edges form a matching.
The task is to compute a minimum weight 2-edge-connected spanning subgraph (2-ECSS) of
G, which is a connected graph (V (G), F) with F ⊆ E(G) that remains connected on deleting
an arbitrary edge.

MAP is a fundamental problem in the field of survivable network design and is known to be
MAX-SNP-hard with several better-than-2 approximation algorithms [3,5,6]. Prior to this
work, the best-known approximation ratio for MAP was 5

3 , achieved by Cheriyan et al. [6].
Both [5, 6] provide combinatorial algorithms for MAP, where the approximation ratios

are achieved by comparing the outputs against the minimum-cardinality 2-edge-cover (D2).
A 2-edge-cover of an undirected graph is a spanning subgraph in which each node has a
degree of at least 2, but it may not be connected. Thus, computing a D2 is a relaxation

1 A part of this work was done while the author was affiliated with the University of Bremen and the
University of Hamburg.

EA
T

C
S

© Mohit Garg, Felix Hommelsheim, and Nicole Megow;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 65; pp. 65:1–65:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohitgarg@iisc.ac.in
mailto:fhommels@uni-bremen.de
mailto:nicole.megow@uni-bremen.de
https://doi.org/10.4230/LIPIcs.ICALP.2023.65
https://arxiv.org/abs/2211.01912
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

65:2 Matching Augmentation via Simultaneous Contractions

of MAP. In contrast to solving MAP, a D2 can be computed exactly in polynomial time by
extending Edmonds’ matching algorithm [10]. A weaker approximation result for MAP by
Bamas et al. [3] follows a very different approach: the output is compared against another
lower bound on an optimal MAP solution, obtained by solving a linear programming relaxation,
the so-called Cut LP. The integrality gap of the Cut LP is at least 4

3 [3].

Our result. We present a polynomial-time algorithm for MAP with an approximation ratio
of 13

8 = 1.625, improving the previous best ratio of 5/3.

▶ Theorem 1. There is a polynomial-time 13
8 -approximation algorithm for MAP.

This improvement builds on a new α-approximation preserving reduction for any α ≥ 3/2
from arbitrary MAP instances to well-structured instances that do not contain certain forbidden
structures like parallel edges, small separators, and contractible subgraphs. We further
introduce, as key ingredients, the technique of repeated simultaneous contractions and
provide improved lower bounds for instances that cannot be contracted.

Further related work. MAP sits between the minimum unweighted 2-ECSS and the minimum
weighted 2-ECSS problems. For the minimum weighted 2-ECSS problem, improving known
2-approximations [2, 18,19,27] is a major open problem. Whereas for the unweighted case,
in a recent breakthrough, Garg et al. [13] provided a 1.326-approximation, improving the
earlier 4

3 -approximations [17,24].
Research on the minimum weighted 2-ECSS problem assuming that the set of zero-weight

edges in the input graph has a certain structure such as forest, spanning tree, matching,
or disjoint paths has received a lot of attention recently. A general variant is the Forest
Augmentation Problem (FAP), where the edges in the input graph have 0/1 edge weights.
For FAP, only recently, Grandoni et al. [15] obtained a 1.9973-approximation, breaking
the approximation barrier of 2. A famous special case of FAP is the unweighted Tree
Augmentation Problem (TAP) where the zero-weight edges in the input graph form a single
connected component. In a long line of research, several better-than-2 approximations have
been achieved for TAP [1,4,7–9,11,12,16,20–23,25,26], culminating in a 1.393-approximation
by Cecchetto et al. [4].

Notice that MAP is somewhat orthogonal to TAP in terms of connectivity as it has many
small connected components as input instead of a single big one. Understanding both the
extreme cases well, TAP and MAP, seems promising for making further progress for FAP.

Organization of the rest of the paper. Section 2 contains preliminaries and a high-level
overview of our work along with some important definitions. Section 3 and Section 4 consist
of the description of our reduction and algorithm, respectively, along with the corresponding
theorem and lemma statements which we prove in the appendix of the full version of this
paper [14]. Using these theorems and lemmas, in Section 5 we prove Theorem 1. In Section 6,
we conclude with final remarks, pointing out the bottleneck for improving our algorithm.

In the full version [14] we have included detailed proofs of various lemmas in Appendices A–
F, which makes our write-up lengthy. A lot of material, especially in Appendices A, C,
and F are standard, but formally necessary; the new innovations are mainly contained in
Appendices B, D, and E. While some proofs admit a case analysis, no single proof has too
many cases. We have tried to keep the exposition reader-friendly and make the proofs easily
verifiable at the expense of making the write-up a bit lengthy; a terser style might have saved
some pages.

M. Garg, F. Hommelsheim, and N. Megow 65:3

2 Technical overview

2.1 Preliminaries
We use standard notation for graphs. We consider weighted undirected graphs where each
edge has a weight of either 0 or 1. A MAP instance consists of a graph G such that the
zero-weight edges of G form a matching, and the task is to compute a minimum weight
2-edge-connected spanning subgraph (2-ECSS) of G, which is a connected subgraph (V (G), F)
which remains connected on deletion of an arbitrary edge. Without loss of generality, we
may assume that the input graph G is 2-edge-connected; this can be checked in polynomial
time by testing for each edge whether its deletion results in a disconnected graph.

Given a set of edges F ⊆ E(G), ||F || denotes the weight of F , i.e., the number of unit
edges in F . With slight abuse of notation, we denote the weight of a subgraph H of G by ||H||.
Thus, ||H|| = ||E(H)||. Given a MAP instance G, let OPT(G) represent a 2-edge-connected
spanning subgraph of G of minimum total weight opt(G) := ||OPT(G)||. When G is clear
from the context we sometimes omit G.

Whenever we speak of components of a graph we refer to its connected components.

2.2 Algorithmic template and the previous 5
3-approximation

The algorithm and analysis of Cheriyan et al. [6], for obtaining a 5
3 -approximate solution for

MAP, exemplifies the general template for obtaining combinatorial algorithms for 2-edge-
connected spanning subgraphs used in several works [5, 11, 17, 20]. We first explain this
template, by giving an overview of the algorithm of Cheriyan et al. [6], and then in the next
subsection highlight our approach where we alter this template to achieve our improvement.

The algorithm consists of two parts. The first part is a preprocessing step which constitutes
a 5

3 -approximation preserving reduction from arbitrary MAP instances to well-structured
instances that do not contain certain forbidden structures. This is a key element of their
work, which helps them to improve upon an earlier 7

4 -approximation by getting rid of certain
hard instances.

In the second part, they handle instances that do not contain any of the forbidden
structures through a discharging scheme. Their algorithm starts by computing a minimum
2-edge-cover, D2 (in polynomial time). Additionally, all the zero-edges are added to the D2,
so that the edges not in the D2 are all unit-edges. Now, since a 2-ECSS is a 2-edge-cover,
||D2|| lower bounds opt, the weight of the minimum weight 2-ECSS. To output a (1 + c)-
approximate solution (for c = 2

3), one has (1 + c)||D2|| charge to work with. This charge is
used to buy the edges of the D2 and a charge of c is distributed to each of the unit edges
of the D2. Now, they incrementally transform this D2 into a 2-ECSS by adding edges to
it. For each edge that is added, a charge of 1 is used up from the available charge (which is
taken from nearby edges), i.e., their D2 incrementally evolves into a 2-ECSS at the expense
of discharging. This is an oversimplified view of their actual algorithm. In reality, sometimes
they even delete edges in the process which results in gaining charge.

We briefly describe the two steps involved in transforming the D2 into a 2-ECSS, namely
bridge covering and gluing. Note that a D2 can have several connected components. Some of
these components can be 2-edge-connected, whereas some might have bridges (i.e., deleting
those edges will result in increasing the number of components). The first step is to cover
all the bridges one by one. Given a bridge, they add edges so that the bridge becomes part
of a cycle; as a side effect, multiple components might merge into one. At the end of the
bridge-covering step, their graph has only 2-edge-connected components. They ensure that

ICALP 2023

65:4 Matching Augmentation via Simultaneous Contractions

after using up the charge for buying the edges in the process, each component with at least 3
unit-edges has at least a charge of 2 leftover. Components with exactly 2 unit-edges (cycles
of lengths 3 and 4) keep the initial charge of 2c = 4

3 .
Next, in the gluing step, the components are merged into a single component using the

leftover charge in the components resulting in a feasible solution. To see how this might
be done, momentarily assume that all components have at least 3 unit-edges, i.e., having a
leftover charge of at least 2. Here, one can simply contract each component into a single
node, find a cycle in the contracted graph, and buy all the edges in that cycle. This will
result in merging all the components corresponding to the nodes in the cycle into a single
component. To be able to repeat such merges, we need to ensure that we have a leftover
charge of at least 2 in this newly formed component. For a cycle of length k ≥ 2, initially
there was a charge of at least 2k in the corresponding components, and we need to buy
exactly k edges. Thus, after the merge, the leftover charge in the new component is at least
2k − k = k ≥ 2, maintaining the charge invariant. Repeating this process eventually leads to
a feasible solution. Unfortunately, this idea is not guaranteed to work if there are components
with 2 unit-edges; a cycle with 2 nodes corresponding to such components will have a total
charge of 2 × 4

3 = 8
3 , and after buying the 2 edges in the cycle, we will be left with a charge

of only 2
3 . On repeating such merges, the graph will run out of charge before the gluing

finishes. To handle such small components one needs to delete edges to gain charge.

2.3 Highlights of our approach and innovations for the 13
8 -approximation

Our approach follows the same broad framework explained above with some key innovations.
Formal definitions will be given in later sections.

Preprocessing

For all α ≥ 3
2 , we provide an α-approximation preserving reduction from arbitrary MAP

instances to structured graphs. Our list of forbidden structures subsumes the one by Cheriyan
et al. [6] and consists of parallel edges, cut vertices, small separators, and contractible
subgraphs.

Contractible subgraphs are a general form of contractible cycles as considered in [17]. A
2-edge-connected subgraph H of a graph G is contractible if each 2-ECSS(G) includes at
least 1

α ||H|| unit-edges from G[V (H)]. Since we are interested in only an α-approximate
solution, we may contract V (H) into a single node, solve the problem on the contracted
graph, and add the edges of H to the solution without any loss in the approximation ratio.
As an example, suppose a 6-cycle in G of weight 6 has 2 antipodal vertices that have degree
2 in G. Then, OPT(G) must include the 4 edges incident on these two vertices. As the cycle
costs 6, and OPT(G) is guaranteed to pick at least weight 4 from the subgraph induced on the
vertices of the cycle, for a 3

2 -approximation, it suffices to buy all edges of this cycle, contract
it and solve the reduced problem. We can detect all contractible subgraphs with constant-size
vertex sets in polynomial time and remove them during preprocessing. Interestingly, some
intricate structures considered in [6] are simply contractible subgraphs.

We further exclude several small separators, which is crucial for our bridge covering and
gluing steps as we have less charge at our disposal. Given a separator, we split the graph
into two or three parts, recursively solve the problem on the smaller parts, and then combine
the solutions arguing that the approximation ratio is preserved. If each of these parts has at
least 5 vertices, this step is relatively straightforward. But for parts containing at most 4
vertices, the argument becomes significantly more challenging, in particular, since we are

M. Garg, F. Hommelsheim, and N. Megow 65:5

aiming for a better guarantee than previous work. Handling the small separators forms a
substantial part of our work consisting of several innovations. In particular, given a separator
that splits the graph into two parts, the structure of the interaction of the separator with the
parts is exploited in carefully constructing the subproblems. Here, we sometimes introduce
pseudo-edges, representing possible connections via the other part, and suitably remove them
during the combining step. Our reduction, which works for any α ≥ 3

2 , might be useful for
future works. We only need α = 13

8 for our main result.

Bridge covering

Empowered by a stronger preprocessing, we can rule out more structures in the input graph,
which enables us to obtain a bridgeless 2-edge-cover of G, even for an approximation ratio
of (1 + c), for c = 5

8 . In fact, our bridge-covering works even for c = 3
5 , so it might also

be useful for future works. At the end of the bridge-covering step, we have the following
charges left in the 2-edge-connected components: 2 in the large components (containing 4
or more unit-edges), 3c = 15

8 < 2 in the medium components (containing 3 unit-edges) and
2c = 5

4 ≪ 2 in the small components (containing 2 unit-edges).

Gluing

In the gluing step, we are able to merge all the medium components into large components
even though medium components have strictly less than 2 charge. We are also able to handle
some small components that have a particular configuration by deleting edges and gaining
charge. Unfortunately, we were unable to handle all the small components as they have a
minuscule charge. In the end, we are left with a special configuration that has only large
(with charge ≥ 2) and small components (with charge 5

4) which cannot be merged.

Two-edge-connecting special configurations

The small components of the special configuration originate in the initial D2 and could not
be merged. So we ask the following question. How close are these small components to OPT
restricted to the vertices of the small components? Intuitively, if they are close, we should
be able to do something algorithmically as we are roughly doing what OPT is doing on this
part of the graph. Otherwise, if they are not close, we should be able to argue that OPT
does much worse than what the D2 does on this part of the graph, giving us an improved
lower bound. Our main conceptual innovation is in articulating a notion of closeness and
making this intuition work.

Method of simultaneous contractions

We now describe our measure of closeness. Let G be our input structured graph and let
H1, · · · , Hs be the small components of the special configuration obtained. We count the total
number of unit-edges bought by OPT from the following subgraphs G[V (H1)], · · · , G[V (Hs)].
If this number is more than 8

13 times the number of unit-edges in the small components of
our special configuration, which is precisely 2s, we say that the small components are close
to OPT. Otherwise, they are not close.

Observe when the small components are indeed close, on average, each Hi is contractible,
preserving an approximation ratio of 13

8 . Thus, algorithmically, we can simultaneously
contract each V (Hi) into a distinct single node, solve the problem on the reduced instance
(which can be done recursively, as contracting vertices into nodes decreases the size of the
graph), and add the edges of the small components to the solution, without incurring a loss
in approximation.

ICALP 2023

65:6 Matching Augmentation via Simultaneous Contractions

When the small components are not close to OPT, i.e., the Hi’s are not simultaneously
contractible, we rely on the gluing step of Cheriyan et al. [6] using a charge of 4

3 per small
component instead of our original charge of 5

4 , increasing our cost. Our improvement, in this
case, comes from improving the lower bound.

Note that it is not possible for us to check in polynomial time whether the small
components are simultaneously contractible or not; so what should we do – contract, or
use the gluing algorithm of Cheriyan et al. [6]? We do both and return the solution with a
smaller weight and argue that in either scenario the algorithm performs well.

Improved lower bound

In the case when the small components are not simultaneously contractible, OPT picks at
most 8

13 · 2s unit-edges from the G[V (Hi)]’s put together. Thus, at least 2s − 16
13 s = 10

13 s

unit-edges are not picked from within the small components. We show that for each unit-edge
not picked by OPT from this part, OPT buys on average at least 1 + 1

12 edges that go
between different small components. To argue this, we crucially use the fact that the special
configurations have a restricted structure, as certain merges are not possible in it. Thus,
we show that in total the number of unit-edges used by OPT on the vertices of the small
components is at least 8

13 · 2s + (1 + 1
12) 10

13 s = 161
78 s, which is strictly more than 2s, which is

the number of unit-edges used by the D2 on this part. Finally, through an elegant argument,
we are able to use this improved lower bound on OPT restricted only to the vertices of the
small components to show that it compensates for the increased cost incurred during gluing
the small components.

2.4 Important definitions
We give some definitions that we need for the presentation of our algorithm.

▶ Definition 2 (f(·)). Given a MAP instance G, let

f(G) = max{13
8 · opt(G) − 2, opt(G)}.

For a MAP instance G, we will compute a 2-ECSS of G with weight at most f(G). Observe
that the “−2” term gives us a slightly better bound than claimed, which we crucially exploit
in our preprocessing.

▶ Definition 3 (size of a graph s(·)). Given a graph G, its size is s(G) = 10·|V (G)|2 +|E(G)|.

We will show that the running time of our algorithm is upper bounded by a polynomial in
the size of the input graph.

▶ Definition 4 (notation graph contraction). Given a graph G and a set of vertices T ⊆ V (G),
G/T denotes the graph obtained from G after contracting all the vertices in T into a single
vertex. More generally, given disjoint vertex sets T1, · · · Tk ⊆ V (G), G/{T1, · · · , Tk} denotes
the graph obtained from G after contracting vertices of each Ti into single vertices.

Note that edges in G and G/{T1, · · · , Tk} are in one-to-one correspondence. Given a
subgraph H of the contracted graph, we use Ĥ to refer to the subgraph of G containing
precisely those edges that correspond to the edges of H.

▶ Definition 5 (contractible subgraphs). Let α ≥ 1 and t ≥ 2 be fixed constants. Given a 2-
edge-connected graph G, a collection of vertex-disjoint 2-edge-connected subgraphs H1, H2, ...,

Hk of G is called (α, t, k)-contractible if 2 ≤ |V (Hi)| ≤ t for every i ∈ [k] and every 2-ECSS
of G contains at least 1

α ||
⋃

i∈[k] E(Hi)|| unit-edges from
⋃

i∈[k] E(G[V (Hi)]).

M. Garg, F. Hommelsheim, and N. Megow 65:7

In our preprocessing, we will remove all (13
8 , 12, 1)-contractible subgraphs, which we simply

refer to as contractible subgraphs. Later, when considering a special configuration with ns

small components, we will work with a (13
8 , 4, ns)-contractible collection of small components;

we will refer to the special configuration simply as 13
8 -simultaneously contractible.

2.5 Algorithm overview
Here, we give a brief overview of our main algorithm.
Step 1: Preprocessing: We apply our reduction to obtain a collection of subproblems of MAP

on structured graphs (Section 3). We then assume that we are given some structured
graph G.

Step 2: Bridge covering: We compute a D2 in polynomial-time and apply bridge covering
to obtain an economical bridgeless 2-edge-cover H – a bridgeless 2-edge-cover of low cost
(Section 4.1).

Step 3: Special configuration: Given H, we compute a special configuration S of G (Sec-
tion 4.2).

Step 4: Contract vs. glue: We compute two feasible solutions S1 and S2: S2 is obtained by
applying the algorithm of [6] to G and S (Section 4.3); S1 is obtained by calling Step 1
for GS , which arises from G by contracting each small component of S to a single vertex.
Finally, we output arg min{||S1||, ||S2||}.

3 Preprocessing

We show that, for purposes of approximating MAP with any approximation ratio at least 3
2 ,

it suffices to consider MAP instances that do not contain certain forbidden configurations.
These configurations are cut vertex, parallel edge, contractible subgraph, S0, S1, S2, S{3,4},
S3, S4, S5, S6, S′

3, S′
4, S′

5, and S′
6. The formal definitions of these structures are provided in

Appendix B of the full version [14]. Each of these configurations is referred to as a type and
is of constant size. A MAP instance with at least 20 vertices that does not contain any of
these forbidden configurations is termed as structured.

We briefly describe some of the types that we forbid in a structured graph. Apart
from cut vertex, parallel edge, and contractible subgraph, the other forbidden structures
we consider can be broadly divided into two categories: (a) “Path-like”-separators and (b)
“Component-like”-separators. Path-like separators are certain paths which when removed
from the input graph disconnects it. Forbidding these structures in the structured graph is
mostly used in the bridge-covering step. Roughly speaking, the absence of these structures
helps us in finding sufficient credit while covering some path (consisting of bridges) between
2-edge connected blocks of the 2-edge-cover. Component-like structures, on the other hand,
are certain 2-edge-connected subgraphs that when removed from the input graph disconnects
it. Their absence from structured graphs is mainly exploited in the gluing step; it allows
us to find certain cycles through some small components which help us gain credit that is
needed for the gluing.

The reduction from MAP instances to structured graphs is given by the following algorithm
where we assume ALG is an algorithm that works on structured graphs. Our reduction is
essentially a divide-and-conquer algorithm. It searches for a forbidden configuration and if it
detects one, it divides the problem into a few subproblems (at most 3) of smaller sizes, solves
them recursively, and then combines the returned solutions into a solution for the original
instance. In case there are no forbidden configurations in the input (the input is structured),
it calls ALG to solve the problem.

ICALP 2023

65:8 Matching Augmentation via Simultaneous Contractions

Algorithm 1 Preprocessing.

function Reduce(G)
if G is simple and |V (G)| ≤ 20 then return opt(G). ▷ by brute force

Look for a forbidden configuration in G in the following type order:
cut vertex, parallel edge, contractible subgraph, S0, S1, S2, S{3,4}, Sk, S′

k for k ∈
{3, 4, 5, 6}.

Stop immediately on detecting a forbidden configuration.

if a forbidden configuration is detected then
Call it F and let T be the type of F .
(H1, H2, H3) = DivideT (G, F). ▷ H2 and/or H3 are always empty for certain types
H∗

i = Reduce(Hi) for all i ∈ {1, 2, 3}.
return CombineT (G, H∗

1 , H∗
2 , H∗

3).
▷ G is now structured

return ALG(G).

In the above algorithm, DivideT and CombineT are subroutines that are defined in
Appendix B of the full version [14], which also contains proofs of the following lemmas.

▶ Lemma 6. For all types T , DivideT and CombineT are polynomial time algorithms. Fur-
thermore, given a MAP instance G and a type T , one can check in polynomial time whether
G contains a forbidden configuration of type T .

▶ Lemma 7. Given a MAP instance G and a forbidden configuration F that appears in G

of type T from the list L =(cut vertex, parallel edge, contractible subgraph, S0, S1, S2, Sk,
S′

k, k ∈ {3, 4, 5, 6}) such that G does not contain any forbidden configuration of a type that
precedes T in the list L and DivideT (G, F) = (H1, H2, H3), then the following statements
hold:

(i) for each i ∈ {1, 2, 3} Hi is a MAP instance,
(ii) s(H1) + s(H2) + s(H3) < s(G), and
(iii) if for each i ∈ {1, 2, 3}, H∗

i is a 2-ECSS of Hi such that ||H∗
i || ≤ f(Hi), then

CombineT (G, H∗
1 , H∗

2 , H∗
3) is a 2-ECSS of G such that ||CombineT (G, H∗

1 , H∗
2 , H∗

3)|| ≤
f(G).

Using the above lemma, we can establish the following result: If for all structured graphs
G, ALG(G) is a 2-ECSS of G such that ||ALG(G)|| ≤ f(G), then for all MAP instances G,
Reduce(G) is a 2-ECSS of G such that ||Reduce(G)|| ≤ f(G).

We will produce an admissible ALG that calls Reduce on a smaller instance. Since Reduce
and ALG call each other, we need a slightly stronger result, which is obtained using an
induction argument. We first define an admissible algorithm.

▶ Definition 8 (admissible). An algorithm ALG is admissible if the following holds. If for all
MAP instances G with s(G) ≤ t, Reduce(G) is a 2-ECSS of G such that ||Reduce(G)|| ≤ f(G),
then for all structured graphs G such that s(G) = t + 1, ALG(G) is a 2-ECSS of G such that
||ALG(G)|| ≤ f(G). Furthermore, if T (s) denotes the running time of ALG for structured
graphs of size s, and T ′(s) denotes the running time of Reduce on MAP instances of size s′,
then T (s) ≤ T ′(s − 1) + poly(s).

Our main results in this section are the following.

M. Garg, F. Hommelsheim, and N. Megow 65:9

▶ Theorem 9. If ALG is an admissible algorithm, then for all MAP instances G, Reduce(G)
is a 2-ECSS of G such that ||Reduce(G)|| ≤ f(G).

▶ Theorem 10. If ALG is an admissible algorithm, then Reduce runs in polynomial time.

The proofs of the above two results follow from a straightforward application of Lemmas 6
and 7 and are included in Appendix A of the full version [14]. Now, if we can find an
admissible ALG, Theorem 9 and Theorem 10 immediately imply Theorem 1. In the next
subsections, we exhibit an admissible ALG.

4 Algorithm for structured graphs

We exhibit an admissible algorithm ALG that takes as input a structured graph G and
outputs a 2-ECSS of G with weight at most f(G). Our algorithm has three main steps.
First, we compute an “economical” bridgeless 2-edge-cover of G. Then, with the aid of this
2-edge-cover, we compute a “special” configuration of G. We two-edge-connect the special
configuration in two ways and return the solution with minimum weight. We define the
relevant terms and explain these steps below.

Algorithm 2 Main algorithm for structured graphs.

function ALG(G) ▷ G is structured
H = economical bridgeless 2-edge-cover(G)
S = special configuration(G, H)
R = Contract-vs-Glue(G, S)
return R

4.1 Computing an economical bridgeless 2-edge-cover
Given a structured graph G, we first compute an economical bridgeless 2-edge-cover of
it. Before we define an economical bridgeless 2-edge-cover, we need to first define small,
medium, and large, which is used to categorize a 2-edge-connected subgraph of G based on
its weight.

▶ Definition 11 (small, medium, large). For a weighted graph G, we call a 2-edge-connected
subgraph H of G small if ||H|| ≤ 2, medium if ||H|| = 3, and large if ||H|| ≥ 4.

Note that for structured graphs, the only possible small components are cycles of length 3 or
4 with exactly 2 unit-edges, and medium components are cycles of length 3, 4, 5, or 6 with
exactly 3 unit-edges.

▶ Definition 12. A bridgeless 2-edge-cover H of a graph G is economical if all the zero-edges
of G are in H, ||H|| ≤ 13

8 · ||D2(G)|| − 2nℓ − 15
8 nm − 5

4 ns, where nℓ, nm, and ns are the
number of large, medium, and small components of H, respectively. Furthermore, there exists
a D2 of G such that each small component of H is a small component of the D2.

Our main result for this subsection is as follows.

▶ Theorem 13. Given a structured graph G, we can compute an economical bridgeless
2-edge-cover of G in polynomial time.

ICALP 2023

65:10 Matching Augmentation via Simultaneous Contractions

To compute an economical bridgeless 2-edge-cover of G, we first find a D2 of G and
include all the zero-edges in it. Next, we transform this D2 into a “canonical” D2, which is
defined in Appendix C of the full version [14]. Then, we cover the bridges of the canonical
D2 to get an “economical” bridgeless 2-edge-cover. All of this can be done in polynomial
time. The details with the proof of Theorem 13 are in Appendix C of the full version [14].

4.2 Computing a special configuration
Next, given an economical bridgeless 2-edge cover H of a structured graph G, we compute a
“special” configuration of G. A special configuration is a bridgeless 2-edge-cover that satisfies
certain additional properties. In particular, it does not contain any medium components.

▶ Definition 14 (Special configuration). Given a structured graph G, we say H is a special
configuration of G if

(i) H is an economical bridgeless 2-edge-cover of G,
(ii) H does not contain medium-size components,
(iii) G/H does not contain good cycles
(iv) G/H does not contain open 3-augmenting paths, and
(v) H does not contain a small to medium merge or small to large merge.

The terms and notation used in conditions (iii)-(v) are formally defined in Appendix D
of the full version [14]. Without going into details, we briefly describe the structures defined
in (iii)-(v). A good cycle is a simple cycle C in G/H that contains either a) two large
components, b) one large component and one small component containing a shortcut, or
c) two small components each containing a shortcut. Here, we say a small component S

is shortcut w.r.t. C if in G[V (S)] there exists a Hamiltonian path from u to v of weight 1,
where u and v are the vertices incident to C when S is expanded. Hence, there is a unit-edge
in the small component S that is redundant for the 2-edge-connectivity of H after we add
the edges of C to it. An open 3-augmenting path is a simple path P in G/H through 4 small
components such that for each of the two interior small components there is a shortcut w.r.t.
P . Finally, a small to medium merge (or small to large merge) is a set of 3 small components
S1, S2, S3 ∈ H such that in G′ = G[V (S1 ∪ S2 ∪ S3)] there exists a set of edges that form
two medium components (or one large component) of weight precisely 6 spanning V (G′).

Essentially, these conditions restrict the structure of special configurations. For example,
in the graph G/H (the graph obtained by contracting the various components of H into
single nodes), there is no cycle that has 2 or more nodes corresponding to large components.
In particular, a special configuration contains at least one small component or is already
feasible. The restricted structure of special configurations will be crucially exploited while
proving an improved lower bound on OPT(G).

From an economical bridgeless 2-edge-cover H, we obtain a special configuration by
repeatedly searching for the four forbidden structures (properties (ii)-(v) above) and buying
and selling certain edges such that we turn H into an economical bridgeless 2-edge cover
H ′ with fewer components. One can show that searching for such structures can be done in
polynomial time.

We briefly explain this process by an example: Figure 1a. The black edges correspond to
the economical bridgeless 2-edge-cover H, where the dotted edges are of weight 0. The (bold
and faint) blue edges are edges of G that are not in H. The 3 blue edges e1, e2, and e3 form
an open 3-augmenting path in G/H (as it can “shortcut” the two black unit edges adjacent
to e2). By the properties of structured graphs, one can show that the blue edges f1 and f2
must exist, and hence four components of H can be merged into one large component by

M. Garg, F. Hommelsheim, and N. Megow 65:11

Rest

e1

e2

e3

f1 f1
g1 g2

(a) open 3-augmenting path.

L

Rest

g1
g2

(b) good cycle.

L

Rest

(c) after merges.

Figure 1 An example of obtaining a special configuration.

buying all the 5 bold blue edges and selling the 2 black unit edges adjacent to e2, which are
“shortcut” by the open 3-augmenting path, to obtain Figure 1b; as initially the 4 components
incident to the blue edges have a credit of 9 × 5

8 ≥ 5, we buy 5 blue and sell 2 black edges to
have a final credit of at least 2. One can show that this step is tight for our analysis with an
approximation ratio of 13/8. Now, in Figure 1b the blue edges g1 and g2 form a good cycle
in G/H (as it can be merged into a single large component). Initially, the credits in the large
and small components that are part of this good cycle have a credit of 2 + 2 × 5

8 ≥ 3. We
buy the edges g1 and g2 and sell the unit edge adjacent to both g1 and g2 to form a single
2-edge-connected component having a credit of at least 3 − 2 + 1 = 2, and thus the good
cycle merges into a large component as shown in Figure 1c. In general, we show the following
theorem, which is proved in Appendix D of the full version [14].

▶ Theorem 15. Given a structured graph G and an economical bridgeless 2-edge-cover of it,
we can compute a special configuration of G in polynomial time.

4.3 Two-edge-connecting special configurations
Finally, we present the last part of our algorithm, which we call “Contract-vs-Glue”, that
converts a special configuration into a 2-edge-connected graph. Recall, a special configuration
is an economical bridgeless 2-edge-cover of a structured graph that contains only small
and large components and satisfies certain additional properties. Our algorithm computes
two solutions and returns the one with a lower weight. The first solution is obtained by
contracting the small components into single nodes and recursively computing the solution
on the contracted graph (this is done by calling Reduce on the contracted graph) and then
adding the edges in the small components to the solution after expanding it back. The second
solution is obtained by following the “Gluing Algorithm” of Cheriyan et al. [6], which we call
“Glue”, and reproduce it below for completeness’ sake.

Algorithm 3 Contract-vs-Glue.

function Contract-vs-glue(G, S) ▷ G is structured, S is a special configuration of G

if S is a 2-ECSS of G then return S

Let H1, · · · , Hk be the small components of S. ▷ now S must have small components
G∗

1 = Reduce(G/{H1, · · · , Hk})
S1 = (V (G), E(Ĝ∗

1) ∪
⋃

i∈[k] E(Hi))
S2 = Glue(G, S)
return arg min{||S1||, ||S2||}

We will be using the following lemmas to prove our main result.

ICALP 2023

65:12 Matching Augmentation via Simultaneous Contractions

▶ Lemma 16. Let G be a structured graph, S be a special configuration of G with small
components H1, · · · , Hk, and let G∗

1 = Reduce(G/{H1, · · · , Hk}). If G∗
1 is a 2-edge-connected

spanning subgraph of G/{H1, · · · , Hk}, then (V (G), E(Ĝ∗
1) ∪

⋃
i∈[k] E(Hi)) is a 2-edge-

connected spanning subgraph of G. Furthermore, if H1, · · · , Hk is (13
8 , 4, k)-contractible

in G and ||G∗
1|| ≤ f(G/{H1, · · · , Hk}), then ||(V (G), E(Ĝ∗

1) ∪
⋃

i∈[k] E(Hi))|| ≤ f(G).

The first statement in the above lemma is straightforward to see. The second part is obtained
by specializing Lemma 33 of Appendix B of the full version [14] to our parameters.

The following lemma is proved implicitly in [6]. For completeness, we give a full proof in
Appendix F of the full version [14].

▶ Lemma 17. Let G be a structured graph and S be a special configuration of G with nℓ

large and ns small components. Then, Glue(G, S) is a 2-edge-connected spanning subgraph
of G with ||Glue(G, S)|| ≤ ||S|| + 2nℓ + 4

3 ns − 2.

Also, we prove the following lower bound result. Informally, if a 2-ECSS includes t fewer
edges from within the small components of a special configuration, it must include t(1 + 1

12)
edges going between different small components. The proof is given in Appendix E of the
full version [14]..

▶ Lemma 18. Let G be a structured graph and S be a special configuration of G with k small
components: H1, · · · , Hk. Let R be any 2-edge-connected spanning subgraph of G such that
2k −

∑
i∈[k] ||R[V (Hi)]|| = t, then

∑
i<j≤k eR(V (Hi), V (Hj)) ≥ (1 + 1

12)t, where eR(A, B)
represents the number of unit-edges going between vertex sets A and B in R.

Here, we give an intuition on how to prove Lemma 18. Fix a structured graph G together
with a special configuration S and a 2-edge-connected spanning subgraph R as specified in
Lemma 18. In order to simplify things, here we assume that each small component Hi of S

is a cycle of length 4 such that G does not contain any of the diagonals of Hi. Furthermore,
let H1, H2, . . . , Hℓ be the set of small components in S.

An edge between two small components is called crossing, whereas an edge inside a
small component is called inside. Informally speaking, Lemma 18 states that, on average,
for each inside edge e ∈ E(S) of some small component of S that is not present in R, E(R)
has to contain at least 1 + 1

12 crossing edges. First, one can show that the vertices incident
to an inside edge e that is not present in E(R) cannot be adjacent to vertices of a large
component of S, as otherwise this implies that S contains a good cycle, contradicting that S

is special. Hence, each vertex incident to an inside edge e that is not present in E(R) must
be incident to at least one crossing edge in R.

In order to show that R contains sufficiently many crossing edges, we define an assignment
ξ that distributes for each inside or crossing edge of R a total charge of one to the small
components H1, . . . , Hℓ. The sum over all charges of edges incident to some component Hi

then defines the load of the component Hi. Note that, by construction, the total load over
all small components is equal to the number of inside and crossing edges in R.

Each inside edge contributes one to the charge of its component, while each crossing edge
distributes a charge of one to the components incident to it: if only one of the two unit
edges of E(S) adjacent to a crossing edge is shortcut (absent) in R, then the component
with the shortcut edge receives a charge of one from that crossing edge. Otherwise, both
incident components receive a charge of 1

2 . Consider for example Figure 2b, where the bold
edges represent R. By the above assignment, the components incident to f3 receive a charge
of 1

2 each from f3, while only the component containing e3 receives a charge of 1 from f4.
The total load of the components (from left to right, top to bottom) then is 3, 5

2 , 2, 2, and 7
2 ,

respectively.

M. Garg, F. Hommelsheim, and N. Megow 65:13

L

(a) Special Configuration.

L

e1 e2

e3

f2

f1

f4

f3

(b) Optimal Solution.

Figure 2 Example: special configuration, optimal solution, and lower bound.

From our assignment, one can easily argue that the load of each small component is ≥ 2.
Furthermore, if there are no two shortcut edges that are adjacent to a crossing edge, then it
clearly follows that Lemma 18 holds. In fact, in this case, we could replace the 1 + 1

12 by 2
in the lemma – a much stronger result.

Hence, we may assume that there are some shortcuts that share crossing edges, e.g. edges
e1, e2, and e3 in Figure 2b. However, in this case, the edges f2 and f3 (which form an open
2-augmenting path) cannot be extended to an open 3-augmenting path (since S is special);
the edges f1 and f4 have to go back to the component containing e2. One can show that
in this case (since there are also no good cycles or local merges), the average load of the
components containing e1, e2, and e3 is at least 5

2 . In the remaining case when there are no
open 2-augmenting paths in R, using a similar argument we can also show that the average
load of a component is at least 2 + 1

6 . This load assignment then implies the statement of
Lemma 18.

5 ALG is admissible

As noted earlier, from Theorems 9 and 10, it follows that if we can show ALG is admissible,
Theorem 1 follows. Thus, we will now focus on proving that ALG is admissible.

▶ Lemma 19. ALG is admissible.

Before we proceed with the proof, we develop some key definitions and propositions that
will be used in the proof. Throughout this subsection, G is a structured graph and S is a
special configuration of G with small components H1, · · · , Hns .

▶ Definition 20 (simultaneously-contractible). We say S is 13
8 -simultaneously contractible if

the small components of S are (13
8 , 4, ns)-contractible in G.

▶ Definition 21 (OPTL, OPTR, DL
2 , DR

2). We partition the vertex set of G in two sets:
V (G) = L ∪ R, where L consists of the vertices in the large components of the special
configuration S and R is the set of remaining vertices, i.e., the set of vertices in the small
components of S. Let OPTL be the edges of OPT(G) that have at least one endpoint incident
on a vertex in L, and OPTR be the remaining edges of OPT(G), i.e., the edges whose both
endpoints are in R. DL

2 and DR
2 are defined analogously: DL

2 is the set of edges of D2(G)
that are incident on at least one vertex of L and DR

2 = E(D2(G)) \ DL
2 . optL, optR, dL

2 , and
dR

2 are defined to be ||OPTL||, ||OPTR||, ||DL
2 ||, and ||DR

2 ||, respectively.

The following relationships are immediate.

ICALP 2023

65:14 Matching Augmentation via Simultaneous Contractions

▶ Proposition 22.

||OPT(G)|| := opt = optL + optR.

||D2(G)|| := d2 = dL
2 + dR

2 .

The following proposition is key to proving our bound.

▶ Proposition 23.

optL ≥ dL
2

Proof. Assume for contradiction optL < dL
2 . Observe OPTL ∪ DR

2 forms a 2-edge-cover of
G, since each vertex of L has at least 2 edges incident on it from OPTL (as OPT is a feasible
2-ECSS of G) and each vertex of DR

2 has 2 edges incident on it from DR
2 (as DR

2 are the
edges of D2 restricted to the small components of S, which were originally small in D2). But

||OPTL ∪ DR
2 || = optL + dR

2 < dL
2 + dR

2 = d2,

which contradicts the fact that D2 is a minimum 2-edge-cover of G. ◀

Now, we are ready to prove that ALG is admissible.

Proof of Lemma 19. Fix a structured graph G. To show ALG is admissible, we need
to show two properties: (i) ALG(G) is a 2-edge-connected spanning subgraph of G with
||ALG(G)|| ≤ f(G) under the assumption that Reduce(G′) is a 2-edge-connected spanning
subgraph of G′ with ||Reduce(G′)|| ≤ f(G′) for all MAP instances G′ of size strictly smaller
than the size of G, and (ii) T (s(G)) ≤ T ′(s(G) − 1) + poly(s), where T is the running time of
ALG and T ′ is the running time of Reduce. Note that (ii) follows from the fact that each of
the three steps in ALG takes polynomial time and in the final step, namely Contract-vs-Glue,
ALG calls the subroutine Reduce only once on a smaller graph. Thus, we will focus on proving
(i) below.

Note that ALG on input G first computes a special configuration S and then applies
the algorithm Contract-vs-Glue on (G, S). If S is 2-ECSS, Contract-vs-Glue returns S, and
||S|| ≤ 13

8 d2 − 2nℓ − 5
4 ns, where nℓ = 1 is the number of large components and ns = 0 is the

number of small components in S (since S is an economical bridgeless 2-edge-cover of G).
Thus, ||ALG|| ≤ f(G). Otherwise, S must contain at least one small component as observed
in Section 4.2.

Let H1, . . . , Hns be the small components of S. Contract-vs-Glue on (G, S) computes
two solutions S1 and S2 and returns the one with lower weight. Recall S1 is obtained
by contracting the small components of S, calling Reduce on it, and then expanding the
contracted nodes and adding back the edges of the small components. S2 is computed
by calling the Glue(G, S) subroutine. In either case, the output is guaranteed to be a
2-edge-connected spanning subgraph of G from Lemmas 16 and 17.

Now, to show ||ALG(G)|| ≤ f(G), we have two cases based on whether the special
configuration S is 13

8 -simultaneously contractible in G. If S is a 13
8 -simultaneously contractible

in G, then by invoking Lemma 16 (whose precondition holds since the contracted graph has
size strictly smaller than G and then we have the guarantee that ||Reduce(G′)|| ≤ f(G′) for
all MAP instances G′), we have ||ALG(G)|| ≤ ||S1|| ≤ f(G) and we are done.

In the case S is not 13
8 -simultaneously contractible in G, we will first lower bound opt

and then upper bound ||S2|| to show ||ALG(G)|| ≤ f(G).

M. Garg, F. Hommelsheim, and N. Megow 65:15

Lower bound on opt

From Propositions 22 and 23 we have

opt = optL + optR ≥ dL
2 + optR.

We now focus on lower bounding optR. Recall OPTR consists of edges whose both endpoints
are contained in

⋃
i∈[ns] V (Hi). We categorize the edges of OPTR into two types.

An edge of OPTR is inside if both its endpoints belong to the same V (Hi) for some i.
An edge of OPTR is crossing if its endpoints lie in distinct V (Hi) and V (Hj) for some
i ̸= j.

Since S is not 13
8 -simultaneously contractible in G, the number of unit-edges that are inside

is at most 8
13 · 2ns. Let us say the number of inside edges is exactly t less than the number

of unit-edges in the small components of S, i.e., 2ns − t, and this number is at most 8
13 · 2ns.

Now, to lower bound the number of unit-edges that are crossing, we invoke Lemma 18,
which states that the number of unit-edges going between V (Hi) and V (Hj) for all i ̸= j is
at least (1 + 1

12)t.
Thus, we have the following lower bound for opt.

opt = optL + optR ≥ dL
2 + optR = dL

2 + ||inside|| + ||crossing||

≥ dL
2 + (2ns − t) +

(
1 + 1

12

)
t,

where 2ns − t ≤ 8
13 · 2ns. The lower bound is minimized when t is kept as small as

possible, i.e., when 2ns − t = 8
13 · 2ns, i.e., for t = 5

13 · 2ns. Thus,

opt ≥ dL
2 + 8

13 · 2ns +
(

1 + 1
12

)
5
13 · 2ns = dL

2 +
(

16
13 + 10

12

)
ns = dL

2 + 161
78 · ns.

Upper bound on ||ALG(G)||

Since S is an economical bridgeless 2-edge-cover of G, we have

||S|| ≤ 13
8 · d2 − 2nℓ − 5

4 · ns,

where nℓ and ns denote the number of large and small components of S, respectively. Also,
from Lemma 17, we have

||S2|| = ||Glue(G, S)|| ≤ ||S|| + 2nℓ + 4
3 · ns − 2.

Combing the two bounds we obtain

||S2|| ≤ 13
8 · d2 + 1

12 · ns − 2.

Now we can split d2 as dL
2 + dR

2 , and use the fact that dR
2 = 2ns to obtain our bound.

||ALG(G)|| ≤ ||S2|| ≤ 13
8 · d2 + 1

12 · ns − 2 =
(

13
8 · dL

2 + 13
8 · 2ns

)
+ 1

12 · ns − 2

= 13
8 · dL

2 + 10
3 · ns − 2 ≤ 13

8

(
dL

2 + 160
78 · ns

)
− 2 ≤ 13

8 · opt − 2 ≤ f(G),

where the second last inequality follows from the lower bound on opt obtained above. ◀

ICALP 2023

65:16 Matching Augmentation via Simultaneous Contractions

6 Conclusion

In this work, we presented a 13
8 -approximation for MAP, which is a fundamental problem in

network design. While several of our steps also work for smaller approximation ratios, two
of our steps are tight for 13

8 : First, constructing a special configuration is tight for 13
8 . In

particular, the merge involving 3-augmenting paths, in the worst case, uses all the available
credits. On the other hand, such a merge could not be avoided, as their absence from special
configurations helps us improve the lower bound later. Furthermore, the lower bound is tight.
Hence, simply obtaining a better construction of a special configuration is not enough as
one has to improve upon the lower bound as well. Finally, even if one can resolve these two
issues, our approximation ratio would still be tight for 1.6 at two places: First, constructing
a bridgeless 2-edge-cover is tight for 1.6, even though we believe that this result can be
strengthened. Second, in the construction of special configuration, handling the medium
components is also tight for precisely 1.6. Hence, also here new ideas are needed in order to
obtain an approximation ratio below 1.6.

Our result builds on a new 3
2 -approximation preserving reduction to instances not contain-

ing certain structures including small separators and contractible subgraphs. Furthermore,
we introduced the method of simultaneous contractions and improved lower bounds to achieve
our main result. These techniques seem general and applicable to other problems in network
design.

References
1 David Adjiashvili. Beating approximation factor two for weighted tree augmentation with

bounded costs. ACM Trans. Algorithms, 15(2):19:1–19:26, 2019.
2 Ajit Agrawal, Philip N. Klein, and R. Ravi. When trees collide: An approximation algorithm

for the generalized steiner problem on networks. SIAM J. Comput., 24(3):440–456, 1995.
3 Étienne Bamas, Marina Drygala, and Ola Svensson. A simple lp-based approximation algorithm

for the matching augmentation problem. In IPCO, volume 13265 of Lecture Notes in Computer
Science, pages 57–69. Springer, 2022.

4 Federica Cecchetto, Vera Traub, and Rico Zenklusen. Bridging the gap between tree and
connectivity augmentation: unified and stronger approaches. In STOC, pages 370–383. ACM,
2021.

5 Joe Cheriyan, Jack Dippel, Fabrizio Grandoni, Arindam Khan, and Vishnu V. Narayan. The
matching augmentation problem: a 7

4 -approximation algorithm. Math. Program., 182(1):315–
354, 2020.

6 Joseph Cheriyan, Robert Cummings, Jack Dippel, and Jasper Zhu. An improved approximation
algorithm for the matching augmentation problem. In ISAAC, volume 212 of LIPIcs, pages
38:1–38:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

7 Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via lift-
and-project, part I: stemless TAP. Algorithmica, 80(2):530–559, 2018.

8 Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via lift-
and-project, part II. Algorithmica, 80(2):608–651, 2018.

9 Nachshon Cohen and Zeev Nutov. A (1+ln2)(1+ln2)-approximation algorithm for minimum-
cost 2-edge-connectivity augmentation of trees with constant radius. Theor. Comput. Sci.,
489-490:67–74, 2013.

10 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965.
11 Guy Even, Jon Feldman, Guy Kortsarz, and Zeev Nutov. A 1.8 approximation algorithm for

augmenting edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms, 5(2):21:1–21:17,
2009.

M. Garg, F. Hommelsheim, and N. Megow 65:17

12 Samuel Fiorini, Martin Groß, Jochen Könemann, and Laura Sanità. Approximating weighted
tree augmentation via chvátal-gomory cuts. In SODA, pages 817–831. SIAM, 2018.

13 Mohit Garg, Fabrizio Grandoni, and Afrouz Jabal Ameli. Improved approximation for two-
edge-connectivity. In SODA (to appear), 2023. arXiv:2209.10265.

14 Mohit Garg, Felix Hommelsheim, and Nicole Megow. Matching augmentation via simultaneous
contractions. arXiv preprint, 2022. arXiv:2211.01912.

15 Fabrizio Grandoni, Afrouz Jabal Ameli, and Vera Traub. Breaching the 2-approximation
barrier for the forest augmentation problem. In STOC, pages 1598–1611. ACM, 2022.

16 Fabrizio Grandoni, Christos Kalaitzis, and Rico Zenklusen. Improved approximation for tree
augmentation: saving by rewiring. In STOC, pages 632–645. ACM, 2018.

17 Christoph Hunkenschröder, Santosh S. Vempala, and Adrian Vetta. A 4/3-approximation
algorithm for the minimum 2-edge connected subgraph problem. ACM Trans. Algorithms,
15(4):55:1–55:28, 2019.

18 Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Comb., 21(1):39–60, 2001.

19 Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings. J. ACM,
41(2):214–235, 1994.

20 Guy Kortsarz and Zeev Nutov. A simplified 1.5-approximation algorithm for augmenting
edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms, 12(2):23:1–23:20, 2016.

21 Guy Kortsarz and Zeev Nutov. Lp-relaxations for tree augmentation. Discret. Appl. Math.,
239:94–105, 2018.

22 Hiroshi Nagamochi. An approximation for finding a smallest 2-edge-connected subgraph
containing a specified spanning tree. Discret. Appl. Math., 126(1):83–113, 2003.

23 Zeev Nutov. On the tree augmentation problem. Algorithmica, 83(2):553–575, 2021.
24 András Sebő and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-tsp,

3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Comb., 34(5):597–629,
2014.

25 Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree augmentation.
In FOCS, pages 1–12. IEEE, 2021.

26 Vera Traub and Rico Zenklusen. Local search for weighted tree augmentation and steiner tree.
In SODA, pages 3253–3272. SIAM, 2022.

27 David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazirani. A primal-dual
approximation algorithm for generalized steiner network problems. Comb., 15(3):435–454,
1995.

ICALP 2023

https://arxiv.org/abs/2209.10265
https://arxiv.org/abs/2211.01912

	1 Introduction
	2 Technical overview
	2.1 Preliminaries
	2.2 Algorithmic template and the previous frac 5 3-approximation
	2.3 Highlights of our approach and innovations for the 13/8-approximation
	2.4 Important definitions
	2.5 Algorithm overview

	3 Preprocessing
	4 Algorithm for structured graphs
	4.1 Computing an economical bridgeless 2-edge-cover
	4.2 Computing a special configuration
	4.3 Two-edge-connecting special configurations

	5 ALG is admissible
	6 Conclusion

