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Abstract
Quantum mechanical effects have enabled the construction of cryptographic primitives that are
impossible classically. For example, quantum copy-protection allows for a program to be encoded
in a quantum state in such a way that the program can be evaluated, but not copied. Many of
these cryptographic primitives are two-party protocols, where one party, Bob, has full quantum
computational capabilities, and the other party, Alice, is only required to send random BB84 states
to Bob. In this work, we show how such protocols can generically be converted to ones where
Alice is fully classical, assuming that Bob cannot efficiently solve the LWE problem. In particular,
this means that all communication between (classical) Alice and (quantum) Bob is classical, yet
they can still make use of cryptographic primitives that would be impossible if both parties were
classical. We apply this conversion procedure to obtain quantum cryptographic protocols with
classical communication for unclonable encryption, copy-protection, computing on encrypted data,
and verifiable blind delegated computation.

The key technical ingredient for our result is a protocol for classically-instructed parallel remote
state preparation of BB84 states. This is a multi-round protocol between (classical) Alice and
(quantum polynomial-time) Bob that allows Alice to certify that Bob must have prepared n

uniformly random BB84 states (up to a change of basis on his space). While previous approaches
could only certify one- or two-qubit states, our protocol allows for the certification of an n-fold tensor
product of BB84 states. Furthermore, Alice knows which specific BB84 states Bob has prepared,
while Bob himself does not. Hence, the situation at the end of this protocol is (almost) equivalent to
one where Alice sent n random BB84 states to Bob. This allows us to replace the step of preparing
and sending BB84 states in existing protocols by our remote-state preparation protocol in a generic
and modular way.
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1 Introduction

A central distinction between classical and quantum information is that a classical string
can always be copied, but a quantum state cannot: the no-cloning theorem states that there
cannot exist a procedure that produces the state 𝜌 ⊗ 𝜌 when given as input an arbitrary
quantum state 𝜌 [51]. The first cryptographic protocols that made use of the no-cloning
theorem were Wiesner’s proposal to use quantum states as unforgeable banknotes [50] and
Bennett and Brassard’s protocol for information-theoretically secure quantum key-distribution
(the BB84 QKD protocol) [6]. These protocols rely on the idea of a conjugate coding scheme:
classical information can be encoded into a quantum state in (at least) two incompatible
bases, most commonly the standard basis {|0⟩, |1⟩} and the Hadamard basis {|+⟩, |−⟩},
where |±⟩ = 1√

2 (|0⟩ ± |1⟩). These four states are commonly referred to as BB84 states. If we
encode a bit b ∈ {0, 1} as either |b⟩ or |(−)b⟩ = 1√

2 (|0⟩+ (−1)b|1⟩), then an adversary who
does not know which basis we chose for the encoding cannot create a copy of this quantum
state. Furthermore, if the adversary tries to measure the state, with probability 1/2 they
will choose the “wrong” measurement basis, which disturbs the state and means that the
adversary’s tampering can be detected.

There is an important conceptual difference between the BB84 protocol and Wiesner’s
quantum money scheme. The former addresses the problem of key-distribution, which is a
task that can also be achieved classically under computational assumptions using public-key
cryptography [18]. In contrast, Wiesner’s quantum money scheme achieves a functionality
which is entirely impossible classically, even under computational assumptions. Recently
there has been renewed interest in this latter kind of application, i.e. to use BB84 states to
construct quantum cryptographic primitives that have no classical analogue. Perhaps the
most striking example of this is the idea of quantum copy-protection [1]. Suppose that a
vendor has created a piece of software (viewed as a function that maps some input to some
output) and wants to allow a user to run it (i.e. to evaluate the function), while preventing
the user from producing additional “pirated” copies of the original software. Clearly, this is
impossible classically: any piece of software is specified by a string of symbols, which can
easily be copied. Surprisingly, it has been shown that it is possible to encode certain narrow
classes of functions in the form of a quantum state in such a way that a user can evaluate
the function without being able to copy it [16].

Copy-protection and many related protocols require only limited quantum capabilities
from one party, e.g. the vendor in the case of copy-protection: they only need to prepare
random BB84 states and send them to the other party (e.g. the user in copy-protection), who
has full quantum computational capabilities. In particular, this requires a quantum channel
between the two parties to send the BB84 states. The purpose of this paper is to show that
such protocols, where one party’s quantum operations are limited to preparing and sending
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random BB84 states, can be converted into protocols where that party is fully classical. This
dequantises such protocols in the sense that all communication becomes classical. To achieve
this, we need to construct a protocol between a classical verifier and a computationally
bounded quantum prover that achieves the same outcome as if the verifier had prepared
and sent random BB84 states to the prover. We call this task classically-instructed parallel
remote state preparation of BB84 states, or parallel RSP for short. Our protocol builds on
techniques introduced in [33, 7, 24] that allow the verifier to use post-quantum cryptography
to constrain the actions of an untrusted (but computationally bounded) prover and certify
the result of a certain computation or the preparation of certain states. In contrast to earlier
works on remote state preparation (or self-testing) in this setting, which could only certify
states comprised of a constant number of qubits, our protocol allows for the certification of an
n-fold tensor product of states. We discuss the difference between our approach and previous
approaches to RSP (in particular the protocol of [24]) in Section 4. Proving soundness for
this parallel RSP protocol is the main technical result of our work. We then use this result
to dequantise a number of cryptographic protocols, namely unclonable quantum encryption,
quantum copy-protection, quantum computing on encrypted data and blind verification of
quantum computation.

2 Main results

We start by first describing the soundness guarantee achieved by our parallel RSP protocol.
Intuitively, the goal of our protocol is to guarantee that the prover has prepared a quantum
state of the form H 𝜃1 |v1⟩⟨v1|H 𝜃1 ⊗ . . .⊗H 𝜃n |vn⟩⟨vn|H 𝜃n , where v⃗, 𝜃 ∈ {0, 1}n. Additionally,
the prover should not have any information about v⃗ and 𝜃 beyond what is contained in its
BB84 states, while the verifier should know both v⃗ and 𝜃. Our protocol achieves a guarantee
of this kind assuming the quantum-intractability of the Learning with Errors (LWE) problem
introduced by Regev [43]. Our main result is the following (see the full manuscript for the
corresponding formal statement):

▶ Theorem 1 (Informal). There exists an interactive protocol between a classical verifier
and a computationally bounded quantum prover such that the following holds assuming the
quantum-intractability of LWE (with quantum advice). Fix a number n of BB84 states.
Consider any efficient prover strategy and let W and P be the verifier’s and prover’s systems
at the end of the protocol, respectively. Then there exists an isometry V : P → QP ′ (for
HQ
∼= (C2)⊗n and P ′ arbitrary) and an additional (subnormalised) state 𝛼P ′ such that for

any basis choice 𝜃 ∈ {0, 1}n, the protocol’s final state 𝜎W P conditioned on the prover being
accepted satisfies

psuccessV 𝜎W P V † c
≈1/ poly(n)

1
2n

∑
v⃗∈{0,1}n

|v⟩⟨v|W ⊗
(
H 𝜃1 |v1⟩⟨v1|H 𝜃1 ⊗ . . .⊗H 𝜃n |vn⟩⟨vn|H 𝜃n

)
⊗ 𝛼P ′ .

Here, psuccess is the prover’s success probability in the protocol and c
≈1/ poly(n) denotes com-

putational indistinguishability up to inverse polynomial error.

We make two remarks regarding this security guarantee. Firstly, the theorem makes a
statement about the joint state of the verifier’s system W and the prover’s system P after
applying an isometry V that only acts on the prover’s space. This additional isometry is
unavoidable: it represents the prover’s freedom to use any basis of its choice on its space.

ICALP 2023
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Hence, we cannot guarantee that the prover prepares BB84 states (in the standard basis),
only that it prepares BB84 states up to a change of basis. However, crucially this change of
basis is independent of which BB84 state was supposed to be prepared, i.e., V is independent
of v⃗ and 𝜃 (but it can of course depend on the prover’s strategy). Put differently, the theorem
guarantees that the prover prepares one of 4n possible states whose relation to each other is
the same as the relation between the 4n BB84 states. This does not affect the utility of the
prover’s state for applications. In fact, this freedom also exists if the verifier sent n BB84
states to the prover via a quantum channel: the prover could apply an isometry V to these
states immediately upon receipt, but the security of any application using the BB84 states is
not impacted by this.

Secondly, the theorem holds for any basis choice 𝜃, but on average over the values v⃗. In
other words, in the protocol, the verifier gets to choose the bases at will, but the values will
be uniformly random and cannot be chosen by the verifier. Furthermore, the only dependence
on v⃗ and 𝜃 in the prover’s state is via the BB84 states. This means that the protocol forces
the prover to prepare these states “blindly”, i.e., the prover does not know which BB84
states were actually prepared. In contrast, the verifier does know, because they chose 𝜃 and
are in possession of the system W , which contains information about v⃗. This asymmetry of
knowledge about the prover’s state is the same as what is achieved by preparing and sending
BB84 states through a quantum channel and is crucial for applications.

We also note that a consequence of Theorem 1 is the certification of an n-fold tensor
product structure within the prover’s system. This can be interpreted as saying that any
successful prover must have a quantum memory capable of storing n-qubits. Being able to
certify an n-qubit state in the prover’s system is the main technical challenge towards proving
soundness, as we outline in the next subsection. This notion of a computational proof of
quantum space has been formalised in [21], who prove a similar parallel rigidity result to
ours, but for a different class of states that does not immediately allow for cryptographic
applications.

2.1 Soundness proof for parallel RSP protocol
The full RSP protocol is described as Protocol 3 (though our discussion here is restricted
to Protocol 1). Its soundness proof can be found in the full version of the manuscript.

We briefly explain the difference between Protocol 1 and Protocol 3: Protocol 1 is a
protocol to test the prover, i.e. in this protocol the prover is asked to prepare and measure a
quantum state, and the verifier runs checks on the prover’s answer. The soundness statement
for this protocol is a self-testing statement in the sense of [36], which characterises which
states and measurements the prover used in the protocol. Although we do not spell this out,
it is easy to obtain an explicit self-testing statement from our proof. In contrast, Protocol 3
is a protocol for remote state preparation, so the prover is supposed to prepare, but not yet
measure, a particular quantum state. Instead, this quantum state will be used for other
applications. This means that we do not want to make a statement about how the prover
measured its state, but rather what state remains in its quantum memory. The soundness
of Protocol 3 follows from that of Protocol 1 via a statistical argument. In the following,
we focus on Protocol 1. We do not explain the protocol and the cryptographic primitives
underlying it in detail; instead, we give a very high-level description of the relevant part of
the soundness proof of the RSP protocol from [24] and then explain our method for proving
a parallel rigidity statement based on that result.

The main cryptographic primitive underlying the RSP protocol is a so-called extended
noisy trapdoor claw-free function (ENTCF) family, which can be constructed assuming the
quantum hardness of LWE [43, 33]. An ENTCF family is a family of functions indexed by
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▶ Protocol 1. Test round protocol.

Let 𝜆 ∈ N be the security parameter, (F ,G) an ENTCF family, and n = poly(𝜆) the
number of BB84 states that the verifier wishes to prepare.
1. The verifier selects a uniformly random basis 𝜃 $←−{0, 1}, where 0 corresponds to

the computational and 1 to the Hadamard basis.
2. The verifier samples keys and trapdoors (k1, tk1 ; . . . kn, tkn) by computing

(ki, tki
) ← GenK𝜃

(1𝜆). The verifier then sends (k1, . . . kn) to the prover (but
keeps the trapdoors tki private).

3. The verifier receives (y1, . . . , yn) ∈ Y×n from the prover.
4. The verifier selects a round type ∈ {preimage round, Hadamard round} uniformly

at random and sends the round type to the prover.
a. For a preimage round: The verifier receives (b1, x1; . . . bn, xn) from the

prover, with bi ∈ {0, 1} and xi ∈ X . The verifier sets flag ← failPre if
Chk(ki, yi, bi, xi) = 0.

b. For a Hadamard round: The verifier receives d1, . . . dn ∈ {0, 1}w from the prover
(for some w depending on the security parameter). The verifier sends q = 𝜃 to
the prover, and receives answers v1, . . . vn ∈ {0, 1}. The verifier performs the
following checks:

Case Verifier’s check
q = 𝜃 = 0 Set flag← failHad if b̂(ki, yi) ̸= vi for some i.
q = 𝜃 = 1 Set flag← failHad if û(ki, yi, di) ̸= vi.

Note. We denote the “question” separately by q (even though here we always have
q = 𝜃) because when the variant of this protocol in Protocol 2 is used in the context of
another cyrptographic task, the verifier can also send questions q which are different
from 𝜃.

▶ Protocol 2. Preparation round protocol.

Let 𝜆 ∈ N be the security parameter, (F ,G) an ENTCF family, and n = poly(𝜆) the
number of BB84 states that the verifier wishes to prepare.
1. The verifier selects bases 𝜃 $←−{0, 1}n, where 0 corresponds to the computational

and 1 to the Hadamard basis.
2. The verifier samples keys and trapdoors (k1, tk1 ; . . . kn, tkn

) by computing
(ki, tki

) ← GenK𝜃i
(1𝜆). The verifier then sends (k1, . . . kn) to the prover (but

keeps the trapdoors tki private).
3. The verifier receives y1, . . . yn ∈ Y from the prover.
4. The verifier sends “Hadamard round” to the prover as the round type.
5. The verifier receives d1, . . . dn ∈ {0, 1}w from the prover (for some w depending on

the security parameter). The verifier computes a string v⃗ according to

vi =
{

b̂(ki, yi) if 𝜃i = 0 ,

û(ki, yi, di) if 𝜃i = 1 .

ICALP 2023
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▶ Protocol 3. Multi-round protocol for preparation of BB84 states.

Let 𝜆 ∈ N be the security parameter, (F ,G) an ENTCF family, n = poly(𝜆) the
number of BB84 states that the verifier wishes to prepare, N = M2 the maximum
number of test rounds (for M ∈ N), and 𝛿 an error tolerance parameter. For j ∈ [M ]
we denote by Bj = {(j − 1)M + 1, . . . , jM} the j-th “block” of M rounds.
1. The verifier (privately) samples S $←−{0, . . . , M−1} (the number of M -round blocks

of test rounds that will be performed).
2. The verifier performs SM executions of Protocol 1 with the prover. The verifier

aborts if for any j ∈ [S], the fraction of rounds in Bj for which flag = failPre or
flag = failHad exceeds 𝛿.

3. The verifier (privately) samples R $←− [M ] and executes Protocol 1 with the prover
R− 1 times. Then, the verifier executes Protocol 2 with the prover and records
the basis choice 𝜃 and the string v⃗ from that execution.

a set of keys K0 ∪ K1. K0 and K1 are disjoint sets of keys with the property that given a
k ∈ K0 ∪ K1, it is computationally intractable to determine which set this key belongs to.
See [33, Section 4] for further details on ENTCF families.

In the RSP protocol from [24], for a given basis choice 𝜃 ∈ {0, 1} (where “0” corresponds
to the computational and “1” to the Hadamard basis), the verifier samples a key k ∈ K𝜃 ,
alongside some trapdoor information t. The verifier sends k to the prover and keeps t private.
The verifier and prover then interact classically; for us, the main point of interest is the
last round of the protocol, i.e. the last message from the verifier to the prover and back.
Let us denote the protocol’s transcript up to the last round by ts. Before the last round,
the remaining quantum state of an honest prover is the single-qubit state H 𝜃 |v⟩⟨v|H 𝜃 for
v ∈ {0, 1}. From the transcript and the trapdoor information, the verifier can compute v; in
contrast, the prover, who does not know the trapdoor, cannot efficiently compute 𝜃 or v. In
the last round, the verifier sends 𝜃 to the prover, who returns v′ ∈ {0, 1}; the verifier then
checks whether v′ = v. The honest prover would generate v′ by measuring its remaining
qubit H 𝜃 |v⟩⟨v|H 𝜃 in the basis 𝜃 and therefore always pass the verifier’s check.

We can model this last round of the protocol (with a potentially dishonest prover) as
follows: at the start, the prover has a state 𝜎(𝜃,v), which it produced as a result of the
previous rounds of the protocol. For an honest prover, 𝜎(𝜃,v) = H 𝜃 |v⟩⟨v|H 𝜃 . Of course, this
state can depend on all of ts, but we only make the dependence on 𝜃 and v explicit. Upon
receiving 𝜃 ∈ {0, 1} the prover measures a binary observable Z (if 𝜃 = 0) or X (if 𝜃 = 1) and
returns the outcome v′. An honest prover would simply use the Pauli observables Z = 𝜎Z

and X = 𝜎X . The key step in the proof of [24] is to show that, due to the properties of
ENTCF families, for any (potentially dishonest) prover that is accepted with high probability,
the observables X and Z must anti-commute when acting on the prover’s state. Then,
Theorem 1 (for n = 1) follows from known results [34, 39, 26].

For our parallel RSP protocol we run n independent copies of the protocol from [24] in
parallel, except that the basis choice 𝜃i is the same for each copy.1 The prover’s state before
the last round of each copy of the RSP protocol is now denoted by 𝜎(𝜃,v⃗), where v⃗ ∈ {0, 1}n

1 The advantage of this is that a prover that succeeds with high probability on average over 𝜃 must also
succeed with high probability for each 𝜃 individually. If we were to sample 𝜃 independently for each of
the parallel copies we could not conclude that a prover succeeds with high probability for any particular
choice of 𝜃1, . . . , 𝜃n as there are exponentially many such choices.
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can be calculated by the verifier from the transcript ts by repeating the same calculation as
above for each parallel copy. Generalising from the single-qubit case, given 𝜃 ∈ {0, 1} the
prover performs a measurement to generate v⃗ ∈ {0, 1}n, which we can describe by binary
observables Zi, Xi (for 𝜃 = 0, 1 respectively) that correspond to the observable used to produce
the i-th entry of v⃗. (For an honest prover, 𝜎(𝜃,v⃗) = H 𝜃 |v1⟩⟨v1|H 𝜃 ⊗ . . .⊗H 𝜃 |vn⟩⟨vn|H 𝜃 and
Zi is a Pauli-Z measurement on the i-th qubit.)

The main challenge in the proof is to establish that the prover must treat all of the parallel
copies of the RSP protocol independently, i.e. to show that its (a priori uncharacterised)
Hilbert space can be partitioned into n identical subspaces, one for each copy of the protocol.
At first sight, it might look as though for this it suffices to show that Xi and Zj (approximately)
commute for all i ̸= j. However, this is not the case because any such commutation statement
can only be shown in a special state-dependent distance [47], which does not allow us to
combine individual commutation statements into the global statement that the Hilbert space
factorises into n subspaces. Instead, we need to consider the family {Z (⃗a)X (⃗b)}a⃗,⃗b∈{0,1}n of
4n binary observables, where Z (⃗a) = Za1

1 · · ·Zan
n . We then have to show that {Z (⃗a)X (⃗b)}

form an approximate representation of the Pauli group [26, 48].2 This means that when
acting on the prover’s (unknown) state 𝜎(𝜃) (where 𝜎(𝜃) is like 𝜎(𝜃,v⃗), but averaged over all
v⃗), the operators {Z (⃗a)X (⃗b)} behave essentially like Pauli operators. Formally, this means
showing that on average over a⃗, b⃗ ∈ {0, 1}n,

Tr
[
Z (⃗a)X (⃗b)Z (⃗a)X (⃗b)𝜎(𝜃)

]
≈ (−1)a⃗·⃗b . (2.1)

This is the appropriate generalisation of the statement that Z and X anti-commute in the
single-qubit case. It is easy to check that Equation (2.1) holds when Zi and Xi are the Pauli
observables.

Our proof of Equation (2.1) has five main steps, which we briefly sketch here with
references to the corresponding parts of the formal proof.
(1) Instead of working with the observables Xi, we define “inefficient observables” X̃i =

(−1)viXi, where vi is the i-th bit of the verifier’s string v⃗. X̃i is not an observable that
an efficient prover can implement because it depends on vi, which requires the trapdoor
information to be computed efficiently. Intuitively, while Xi describes the prover’s answer,
X̃i describes whether that answer is accepted by the verifier. This has the advantage that
the state 𝜎(𝜃=1) (averaged over v⃗) of a successful prover is an approximate +1-eigenstate
of X̃i, but not of Xi.

(2) We extend the family of states {𝜎(𝜃)}𝜃∈{0,1} to a larger family of “counterfactual states”
{𝜎(𝜃)}

𝜃∈{0,1}n , which are defined as the states the prover would have prepared if the
verifier had sent keys ki ∈ K𝜃i . In Protocol 1 the basis choice is the same for all i,
i.e. 𝜃 = 0⃗ or 𝜃 = 1⃗, so for other choices of 𝜃 these states are never actually prepared.
However, they are still well-defined because for any prover in the actual protocol, we
can fix that prover’s operations (as a quantum circuit acting on a given input) and then
consider what state those operations would produce if given keys with an arbitrary basis
choice 𝜃. The reason these counterfactual states are useful is that we can show that, as a
consequence of the properties of ENTCF families, the states {𝜎(𝜃)}

𝜃
are computationally

indistinguishable.

2 When we say “Pauli group” we always mean the Pauli group modulo complex conjugation, which is also
sometimes called the Heisenberg-Weyl group.

ICALP 2023
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(3) We now want to show various commutation and anti-commutation relations for the
observables Z (⃗a) and X̃ (⃗b). For example, we want to show that Zi and X̃i anti-commute,
but Zi and X̃j commute (for i ̸= j). To show these relations, we make use of the
counterfactual states 𝜎(𝜃) in the following way: for any particular relation, we can pick a
𝜃 that makes showing this relation especially convenient. For example, to show that Zi

and X̃j commute, we would choose a 𝜃 with 𝜃i = 0 and 𝜃j = 1 since the verifier can check
the outcomes of “Z-type observables” for 𝜃 = 0 and “X-type observables” for 𝜃 = 1.
Using the properties of ENTCF families, we can argue that the prover’s measurements
on these counterfactual states still yield outcomes that would pass the verifier’s checks
for each choice of 𝜃i. Based on this, we can show the desired relations for a “convenient”
choice of counterfactual state 𝜎(𝜃). Then, we can relate these statements back to the
prover’s actual states 𝜎(𝜃) using the computational indistinguishability of {𝜎(𝜃)}. This
is somewhat delicate because X̃i are inefficient.

(4) We can combine the various commutation and anti-commutation statements from the
previous step to show that the observables {Z (⃗a)X̃ (⃗b)} behave like Pauli observables on
𝜎(𝜃=1), i.e. we show Equation (2.1) but with X̃ instead of X. This step relies on the
fact that 𝜎(𝜃=1) is an approximate +1-eigenstate of X̃ (⃗b) for all b⃗.

(5) Since we now know that {Z (⃗a)X̃ (⃗b)} behave essentially like Pauli observables, we can
define an explicit isometry Ṽ which can be shown to map {Z (⃗a)X̃ (⃗b)} to the corresponding
Pauli observables. This means that we have good control over these inefficient observables,
and we know how the inefficient and efficient observables are related. We can use this
to define a modified isometry V that maps the efficient observables {Z (⃗a)X (⃗b)} to
the corresponding Pauli observables. This is a stronger version of Equation (2.1) and,
combined again with the verifier’s checks in the protocol and properties of ENTCF
families, can be used to show that the prover must have prepared BB84 states.

We briefly comment on the relation between our soundness proof and that in [36]. At a
high level, the soundness proof in [36] also shows a kind of “parallel rigidity” of two executions
of a remote state preparation protocol. However, their proof proceeds quite differently from
ours: they first show that observables “on the first qubit” anti-commute, which allows them
to make a partial statement about the prover’s state. This in turn can be used to extend
the statement about the prover’s observables to two-qubit observables, which is finally used
to prove a statement about the prover’s two-qubit state. This qubit-by-qubit approach is
extremely costly in terms of parameters due to switching back and forth between making
partial statements about the observables and state, and cannot reasonably be extended
to n qubits. In contrast, we can make a global statement about the prover’s 4n possible
observables without first characterising parts of the prover’s state. This allows us to prove a
parallel rigidity statement for n qubits without an exponential degradation of parameters.

3 Applications

Having introduced our parallel RSP theorem, we can turn to its cryptographic applications.
We consider various cryptographic primitives that have previously been defined and construc-
ted in a setting where one party sends random BB84 states to the other. For each primitive,
we give a formal definition of the “classical-client version” and show that this definition can be
satisfied using our parallel RSP protocol as a building block. Since our parallel RSP protocols
relies on the LWE assumption, so do the dequantised protocols we present here. Furthermore,
Theorem 1 only guarantees the preparation of BB84 states up to an inverse polynomial error,
so as a result, the dequantised protocols only have inverse polynomial security (see Section 5
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for a discussion of this point). Some of these primitives have previously been dequantised
using an application-specific approach (and similarly relying on computational assumptions)
[24, 13, 42, 28, 32]; in contrast, our approach is generic and simply uses RSP to replace the
sending of BB84 states. We give a short overview of the different applications and refer to
the full manuscript for details.

Unclonable quantum encryption. As a first application of our parallel RSP protocol, we
consider the notion of unclonable quantum encryption. This cryptographic functionality was
coined by Gottesman [25] and then formalised by Broadbent and Lord [11]. In a private-key
unclonable quantum encryption scheme, a classical message is encrypted into a quantum state
(the quantum ciphertext) with the following property: given only a single quantum ciphertext,
it is impossible to create two states that can later both be decrypted with access to the
private key. We consider an unclonable conjugate coding hybrid encryption scheme which is
inspired by the work of Broadbent and Lord: a plaintext m⃗ ∈ {0, 1}n is encrypted with a
randomly chosen secret key k = (s⃗, 𝜃) $←−{0, 1}n × {0, 1}n and randomness v⃗ $←−{0, 1}n into
the quantum ciphertext given by Enck(m⃗) =

⊗n
i=1 H 𝜃i |vi⟩⟨vi|H 𝜃i ⊗ |v⃗ ⊕ s⃗⊕ m⃗⟩⟨v⃗ ⊕ s⃗⊕ m⃗| .

To decrypt using the secret key k = (s⃗, 𝜃), one applies H 𝜃1 ⊗ · · · ⊗H 𝜃n to the first half of
the ciphertext, measures in the computational basis with outcome x⃗, and then uncomputes
the one-time pad in the second half using x⃗ and s⃗. The fact that this scheme is unclonable is
a consequence of the monogamy of entanglement [11, 46].

To dequantise this protocol, we consider a scenario in which a classical client C wishes
to delegate an unclonable ciphertext to a quantum receiver R. As a first step, C and R
run our parallel RSP protocol to delegate a collection of random BB84 states of the form
H 𝜃1 |v1⟩ ⊗ · · · ⊗H 𝜃n |vn⟩, where v⃗, 𝜃 ∈ {0, 1}n are random strings known only to C. Then,
C can choose s⃗ ∈ {0, 1}n and output the string v⃗ ⊕ s⃗ ⊕ m⃗ and set k⃗ = (s⃗, 𝜃) as the secret
key. With this choice of key, the delegated parallel BB84 states are exactly the ciphertext
Enck(m⃗). Because the final output state of the protocol is computationally indistinguishable
from a tensor product of BB84 states (known to the client), we can follow a similar proof
as in [11] to obtain a classical-client unclonable encryption scheme with inverse-polynomial
security.

Quantum copy-protection. In quantum copy-protection (QCP), a vendor wishes to encode
a program into a quantum state in a way that enables a recipient to run the program, but
not to create functionally equivalent “pirated” copies. The notion of QCP was introduced
by Aaronson [1], who gave the first construction for unlearnable and efficiently computable
functions in a strong quantum oracle model, which has since been improved to only requiring
classical oracles [2]. Recent work [16] has also provided the first construction of QCP for
compute-and-compare programs in the quantum random oracle model (QROM) as well
as a scheme for multi-bit point functions in the QROM based on unclonable encryption
with wrong-key detection (WKD) – a property which enables the decryption procedure to
recognise incorrect keys.

Our QCP scheme for multi-bit point functions combines our unclonable hybrid encryption
scheme with the generic WKD transformation in the QROM proposed by Coladangelo et
al. [16]. The basic idea behind our QCP scheme is as follows. To encode a point function
Py⃗,m⃗ (which is defined as returning m⃗ on input y⃗ and 0n, otherwise) we simply output
Ency⃗(m⃗) together with h(y⃗), where h is a suitable hash function which we model as a truly
random function (in the QROM). To evaluate the program on an input x⃗ ∈ {0, 1}2n, we first
check whether x⃗ hashes to h(y⃗) under h. If true, we decrypt as in the aforementioned hybrid
encryption scheme and recover m⃗. Otherwise, we output 0n.
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We then show how to obtain a QCP scheme with a classical client through the use of
our parallel RSP protocol for preparing random BB84 states, similar to our aforementioned
classical-client unclonable encryption scheme. Our scheme enables a classical client to delegate
a correct copy-protected program from the class of multi-bit point functions consisting of
uniformly random marked inputs y⃗ and output strings m⃗ with inverse-polynomial security.

Quantum computing on encrypted data. Suppose a client wishes to perform some quantum
computation, represented as the action of a quantum circuit C on an input state |x⟩, with
x ∈ {0, 1}n. For simplicity, we will assume the desired output is classical and corresponds to
a computational basis measurement of C|x⟩. The client only has limited quantum capability
and therefore wishes to delegate the computation to a quantum server while ensuring the
privacy of the input |x⟩ and the output resulting from the measurement of C|x⟩. Essentially,
the client would like to send the server an encryption of the input and, after performing an
interactive protocol, obtain an encryption of the output (which the client can decrypt, but
the server cannot)3. This primitive is called quantum computing on encrypted data (QCED).

Many protocols for QCED with differing quantum requirements on the client have been
developed (see [20] for a survey). Here we will focus on the protocol of Broadbent [8] which
achieves QCED with a client that is only required to prepare BB84 states and send them
to the server. This makes the protocol well-suited for dequantisation via our parallel RSP
protocol. Before explaining this dequantisation, we (informally) define what a QCED protocol
with a classical client should achieve. As before, the client’s input is the string x ∈ {0, 1}n

and the goal is to obtain the outcome of measuring C|x⟩ in the computational basis. In
contrast to before, this must be achieved using only classical interaction with the quantum
server. The requirement that the client’s input must stay private is captured by the condition
that after interacting with the client, it must be computationally intractable for the server
to decide which one of two distinct inputs the client used.

Our QCED protocol with a classical client works as follows. The client first performs the
parallel RSP protocol with the server, resulting in the preparation of BB84 states (or the
client aborting). Provided the protocol succeeded, the client proceeds to run Broadbent’s
protocol [8] as if the server had received those BB84 states via a quantum channel. The
security proof is straightforward. First, we know that after performing RSP the server’s state
is computationally indistinguishable from a tensor product of BB84 states (known to the
client). Furthermore, the interaction in [8] preserves this computational indistinguishability.
Hence, the server’s state at the end of the protocol is indistinguishable from the state the
server would have obtained by executing the protocol with random BB84 states and the
security of our protocol follows from [8].

Verifiable delegated blind quantum computation. The final application we consider is
verifiable delegated blind quantum computation (VDBQC). VDBQC is an interactive protocol
between two parties, in this case denoted as the verifier and the prover. The verifier delegates
a computation to the prover and, in addition to ensuring input-output privacy as in QCED,
the protocol also ensures that the probability for the verifier to accept an incorrect output is
small. In other words, if the prover deviates from the protocol and does not perform the
verifier’s instructed computation, the verifier should be able to detect this and abort with
high probability. As with QCED, a number of such protocols have been developed and we
refer the reader to [23] for a survey.

3 This also allows the client to hide the computation itself from the server by suitably encoding it as part
of the input x and taking C to be a universal circuit. When the primary goal of the protocol is to hide
the computation, it is referred to as a blind quantum computing protocol [3, 9].
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Here we focus on a protocol by Morimae [38]. This protocol achieves verifiability by
combining a protocol for blind quantum computation (or QCED) with the history state
construction, which is a special encoding of a quantum circuit into a quantum state [31, 30].
In Morimae’s protocol, for a given circuit C the verifier uses a QCED protocol to delegate to
the prover the preparation of two such history states (one for C and one for the complement
of C, where the output qubit is negated). The verifier then requests these states from the
prover and proceeds to measure them in the computational or Hadamard basis. This allows
the verifier to determine the output of the computation. The history state construction
guarantees that malicious behavior on the prover’s part would be detected by the verifier’s
measurement. Additionally, the use of a QCED protocol ensures that the prover is “blind”,
i.e. does not know which computation the verifier delegated.

To dequantise this protocol, we use our QCED protocol with a classical client to delegate
the preparation of the two history states to the quantum prover. We then replace the verifier’s
measurements on this state by a measurement protocol due to Mahadev [33], which allows
the classical verifier to delegate these measurements to the prover in a way that forces the
prover to report the correct outcomes. We thus obtain a VDBQC protocol with a classical
verifier. Crucially, through the use of the classical client QCED protocol and Mahadev’s
measurement protocol, the prover is “computationally blind”, i.e. unable to distinguish which
computation the verifier has performed. In contrast, Mahadev’s verification protocol [33]
does not have this property.4

4 Related work

A number recent of works starting with [7, 33] have developed techniques that allow a
classical verifier to use post-quantum cryptography to force an untrusted (but computationally
bounded) quantum prover to behave in a certain way. Here, we briefly describe these works
and explain their relation to our parallel RSP protocol.

In a breakthrough result [33], Mahadev introduced a protocol that allows a classical
verifier to delegate a quantum computation to a quantum computer and be able to verify
the correctness of the result. The key ingredient for this protocol is a measurement protocol,
which allows the verifier to securely delegate single-qubit measurements in the standard or
Hadamard basis to a quantum prover, assuming that the prover cannot break the LWE
assumption. This can then be applied to so-called prepare-and-measure protocols: if one
has a protocol that involves a quantum prover preparing and sending a quantum state to
the verifier and the verifier performing single-qubit measurements on this state, one can use
Mahadev’s measurement protocol to delegate these quantum measurements to the prover
itself. This yields a protocol in which the prover only sends classical measurement outcomes
to the verifier, hence making the verifier classical.

This measurement protocol is in many ways similar to what we seek to do in this paper: it
removes the need for quantum communication between a fully quantum prover and a verifier
with very limited quantum capabilities (only measuring single qubits in the computational or
Hadamard basis). The difference to our work is that we are concerned with prepare-and-send
protocols, in which the verifier sends random BB84 states to the prover instead of receiving
them.

4 In [24], the authors also construct a blind verification protocol based on RSP. However, they approach
the problem in a composable framework, which requires them to make an additional assumption on the
prover (called the measurement buffer in [24]). In contrast, our protocol requires no extra assumptions
on the prover. We describe the issue with the measurement buffer assumption in more detail in Section 4.
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It turns out that replacing the quantum communication of prepare-and-send protocols
requires significantly stronger control over the untrusted prover. At a high level, the reason
is the following: for Mahadev’s measurement protocol, it suffices to show that there exists a
quantum state that is consistent with the distribution of measurement outcomes reported
by the prover, in the sense that the measurement outcomes for different bases could have
been obtained by measurements on (copies of) the same state. In contrast, if we want to
replace the step of the verifier sending a physical quantum state to the prover, we need to
show that the prover has actually constructed a certain quantum state, not just that such a
quantum state exists mathematically.5 We give a more detailed description of what it means
to “actually construct” a quantum state in Section 2.1.

The first classical protocol that provably forced a quantum prover to prepare a certain
quantum state was the single-qubit RSP protocol of [24] (see also [13] for a related result).
This protocol essentially achieves our informal theorem as stated above for a single qubit,
i.e. n = 1.6 At first sight, it might seem as though a simple hybrid argument, which replaces
each BB84 qubit with a (sequential) instance of [24], suffices to achieve the multi-qubit task.
However, the single-qubit RSP protocol of [24] only ensures that each BB84 qubit can be
individually replaced by an RSP protocol up to a global isometry. Because the prover’s state
can be entangled in arbitrary ways between intermediate applications of the protocol, it is
difficult to justify that all of the individual replacements together form an actual n-qubit
BB84 state; as we explain below, the fact that the protocol from [24] is composable does not
remedy this situation, either. While some prior work [19] showed that composable single-qubit
RSP suffices in the context of quantum verification, one would have to show a similar result
for each application of interest. Our parallel RSP protocol, in contrast, can be used in a
plug-and-play manner for many cryptographic protocols and applications. In addition, our
protocol has fewer rounds than a sequential repetition of [24] and also immediately yields a
proof of quantum space (a certificate that the prover has a certain number of qubits). We
give a brief outline of [24] and its soundness proof in Section 2.1.

The main difficulty in going from [24] to our parallel RSP result is enforcing a tensor
product structure on the prover’s space: we would like to show that, if we execute multiple
instances of a single-qubit RSP protocol in parallel, a successful prover must treat each of
these copies independently. Mathematically, this means that we need to be able to split the
prover’s a priori uncharacterised Hilbert space into a tensor product, where each tensor factor
is supposed to correspond to one instance of the RSP protocol. This is a more demanding
version of the classic question of parallel repetition: there, one is interested in showing that
any prover’s winning probability in the protocol decays in essentially the same way as it
would for a prover who executes the instances independently. In contrast, we need to show
that the prover really does execute the different instances independently in a physically
meaningful sense. We call this stronger requirement parallel rigidity.

In [24], the authors show that their protocol has composable security. This may suggest
that one can obtain a parallel rigidity statement simply by composing the protocol with itself
in sequence or in parallel. However, this is not the case because the composable security

5 In fact, in [49] it was shown that Mahadev’s measurement protocol does ensure that the prover knows
(in the sense of a proof of knowledge) the state it is measuring, not just that it exists mathematically.
The notion of “knowing” a quantum state is quite subtle to define and we forego a detailed description
here, but point out that this is weaker than showing that the prover actually constructed the state
and (to the best of our knowledge) not sufficient to use Mahadev’s protocol for prepare-and-measure
scenarios.

6 The protocol in [24] allows for the qubit to be prepared in one of 10 possible states which includes the
4 BB84 states. Here, we only focus on the 4 BB84 states as this is the case we will deal with in our
parallel RSP protocol.
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statement in [24] requires an additional assumption called a measurement buffer, which
effectively acts as a trusted intermediary between the verifier and the prover. A sequential
or parallel composition of the protocol in [24] would utilise a different measurement buffer
for each instance, thereby forcing the prover to treat the different instances in a (largely)
independent way. In particular, this means that one already assumes a tensor product
structure with n separate qubits in the prover’s space, whereas in our work enforcing this
tensor product structure is the key technical challenge. For cryptographic applications, we
do not want to place any such assumption on the prover and instead allow the prover to
perform arbitrary global operations involving all instances. This is what our parallel RSP
protocol achieves. Furthermore, as shown in [4], achieving a composable single-qubit RSP
without the measurement buffer is impossible. This means that one cannot hope to achieve
parallel RSP by showing a stronger composable version of single-qubit RSP; instead, it is
necessary to directly analyse parallel executions of the protocol, as we do in this paper.

The question of parallel rigidity has been studied extensively in the literature on quantum
self-testing [17, 14, 39, 40], where one considers a setting of two non-communicating provers.
Unfortunately, those techniques are not immediately transferable to the setting we consider
here, namely a single computationally bounded prover.

Some progress towards the question of parallel rigidity for single computationally bounded
provers was made in [36], which gives a protocol that allows a classical verifier to certify
that a quantum prover must have prepared and measured a Bell state, i.e. an entangled
2-qubit quantum state. This has since been applied to device-independent quantum key
distribution [35] and oblivious transfer [12], and been extended to work for magic states [37].
The protocol from [36] uses a 2-fold parallel repetition of [24] (with additional steps to
allow for the certification of an entangled state, not just product states). As part of their
soundness proof, [36] do show a kind of parallel rigidity result for 2 instances of the RSP
protocol. However, their method does not generalise to an n-fold parallel repetition without
an exponential decay in parameters. Hence, for our n-fold parallel rigidity proof, new
techniques are needed. A more detailed comparison between our new parallel rigidity proof
and the method in [36] can be found at the end of Section 2.1. We note that in independent
concurrent work, [21] also gave an n-fold parallel rigidity proof in the computational setting,
but the class of states they deal with is different from random BB84 pairs and they do not
consider the dequantisation of cryptographic protocols.

In addition to this line of work focused on rigidity statements, application-specific
dequantisations were already considered for private-key quantum money [22, 42], certifiable
deletion of quantum encryption [28] and secure software leasing [32]. In all these cases the
authors derived the desired security statement from properties of trapdoor claw-free functions,
a cryptographic primitive which is also the basis of our RSP protocol. While this is less
generic and modular than our approach and requires a new analysis for each application, it
does have the advantage that one can obtain negligible security, whereas with RSP we obtain
inverse polynomial security. We comment more on the possibility of negligible security from
RSP-like primitives in Section 5.

5 Discussion

We have shown how a classical verifier can certify a tensor product of BB84 states in the
memory of a quantum prover, assuming the quantum-intractability of the LWE problem.
Importantly, the prover does not know which BB84 states it has prepared, whereas the
verifier does. Hence, the result at the end of the protocol is as if the verifier had sent random
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BB84 states to the prover. This allows us to dequantise a number of quantum cryptographic
primitives, yielding a generic and modular way of translating these protocols to a setting
where only classical communication is used. We have demonstrated the versatility of this
approach by applying it to unclonable encryption, quantum copy-protection, computing
on encrypted data, and blind verification. Naturally, we expect that other primitives that
rely on BB84 states can also be dequantised using our approach. Examples of this include
quantum encryption with certified deletion [10, 41] and private key quantum money [50, 42].
We leave these and other applications to future work.

Apart from applying our technique to dequantise additional cryptographic primitives,
our work raises a number of further open problems. Firstly, while our RSP primitive is
based on the hardness of LWE, we can ask whether it is possible to achieve this functionality
from weaker computational assumptions. For instance, would it be possible to perform an
RSP-like protocol assuming only the existence of quantum-secure one-way functions? This is
of particular interest because recent results have shown that secure two-party computation
can be achieved from one-way functions and quantum communication [5, 27]. These results
are based on the fact that an oblivious-transfer protocol can be implemented from one-way
functions and quantum communication that consists of BB84 states. However, an RSP
primitive like ours would allow one to generically dequantise that quantum communication.
Hence if RSP (with sufficiently strong parameters) can be obtained from quantum-secure one-
way functions, then secure two-party computation can also be obtained from those functions,
together with classical communication. In light of earlier work [29, 45] we conjecture that
this is impossible. Formalising this intuition could lead to a better understanding of the
minimum assumptions required for performing RSP-like protocols.

Secondly, a more technical open problem concerns the parameters of our rigidity the-
orem, Theorem 1. As stated above, provided the prover accepts, the state the verifier
certifies is 1/ poly(n)-close to a tensor product of n BB84 states (up to an isometry). The
1/ poly(n) closeness means that the soundness error of our dequantised protocols also scales
as 1/ poly(n). It would be desirable to achieve negligible soundness error, particularly when
considering composable instances of these protocols. This is not possible with the approach
taken in this paper as the statistical argument used in deriving our main theorem will
necessarily introduce 1/ poly(n) factors. However, it might be possible to circumvent an
explicit RSP statement: the advantage of the RSP statement in our paper is that one can use
it to dequantise existing protocols easily, but these existing protocols typically only use BB84
states because of their no-cloning properties. Therefore, instead of using an RSP protocol to
prepare those states, one could instead try to show a “post-quantum cryptographic no-cloning
property” directly that could plausibly be used to dequantise these protocols while preserving
negligible soundness.

Finally, we mention that our derivation of the parameters in the rigidity theorem is likely
not optimal and could be optimised to improve the efficiency of our protocol. The situation
here is similar to that of parallel self-testing in the multi-prover setting, with the first works
having round complexity that scaled as a high-degree polynomial [44] and more recent works
achieving quasilinear scaling [39, 15]. It would be interesting to see whether ideas from these
newer works are also applicable in the setting of parallel remote state preparation.
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