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Abstract
Given a class of graphs H, the problem ⊕Sub(H) is defined as follows. The input is a graph H ∈ H
together with an arbitrary graph G. The problem is to compute, modulo 2, the number of subgraphs
of G that are isomorphic to H. The goal of this research is to determine for which classes H the
problem ⊕Sub(H) is fixed-parameter tractable (FPT), i.e., solvable in time f(|H|) · |G|O(1).

Curticapean, Dell, and Husfeldt (ESA 2021) conjectured that ⊕Sub(H) is FPT if and only if the
class of allowed patterns H is matching splittable, which means that for some fixed B, every H ∈ H
can be turned into a matching (a graph in which every vertex has degree at most 1) by removing at
most B vertices.

Assuming the randomised Exponential Time Hypothesis, we prove their conjecture for (I) all
hereditary pattern classes H, and (II) all tree pattern classes, i.e., all classes H such that every
H ∈ H is a tree. We also establish almost tight fine-grained upper and lower bounds for the case of
hereditary patterns (I).
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1 Introduction

The last two decades have seen remarkable progress in the classification of subgraph counting
problems: Given a small pattern graph H and a large host graph G, how often does H occur
as a subgraph if G? Since it was discovered that subgraph counts from small patterns reveal
global properties of complex networks [26, 27], subgraph counting has also found several
applications in fields such as biology [2, 30] genetics [32], phylogeny [25], and data mining [33].
Moreover, the theoretical study of subgraph counting and related problems has led to many
deep structural insights, establishing both new algorithmic techniques and tight lower bounds
under the lenses of fine-grained and parameterised complexity theory [19, 16, 10, 14, 13, 6, 4].

∗ For the purpose of Open Access, the authors have applied a CC BY public copyright licence to any
Author Accepted Manuscript version arising from this submission. All data is provided in full in the
results section of this paper.
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68:2 Parameterised and Fine-Grained Subgraph Counting, Modulo 2

Without any additional restrictions, the subgraph counting problem is infeasible. The
complexity class #W[1] is the parameterised complexity class analogous to NP (see Section 2
for more detail). Under standard assumptions, problems that are #W[1]-hard are not
fixed-parameter tractable (FPT). The canonical complete problem for #W[1], the problem
of counting k-cliques, corresponds to the special case of the subgraph counting problem
where H is a clique of size k. This problem cannot be solved in time f(k) · no(k) for any
function f unless the Exponential Time Hypothesis (ETH) fails [8, 9]. Due to this hardness
result, the research focus in this area shifted to the question: Under which restrictions on the
patterns H and the hosts G is algorithmic progress possible? More precisely, under which
restrictions can the problem be solved in time f(|H|) · |G|O(1), for some computable function
f? Instances that can be solved within such a run time bound are called fixed-parameter
tractable (FPT); allowing a potential super-polynomial overhead in the size of the pattern
|H| formalises the assumption that H is assumed to be (significantly) smaller than G.

If only the patterns are restricted, then the situation is fully understood. Formally, given
a class H of patterns, the problem #Sub(H) asks, given as input a graph H ∈ H and an
arbitrary graph G, to compute the number of subgraphs of G that are isomorphic to H.
Following initial work by Flum and Grohe [19] and by Curticapean [11], Curticapean and
Marx [14] proved that, under standard assumptions, #Sub(H) is FPT if and only if H has
bounded matching number, that is, if there is a positive integer B such that the size of
any matching in any graph in H is at most B. They also proved that all FPT cases are
polynomial-time solvable.

In stark contrast, almost nothing is known for the decision version Sub(H). Here, the
task is to correctly decide whether there is a copy of H ∈ H in G, rather than to count
the copies. It is known that Sub(H) is FPT whenever H has bounded treewidth (see e.g.
[20, Chapter 13]), and it is conjectured that those are all FPT cases. However, resolving
this conjecture belongs to the “most infamous” open problems in parameterised complexity
theory [18, Chapter 33.1].

1.1 Counting Modulo 2
To interpolate between the fully understood realm of (exact) counting and the barely
understood realm of decision, Curticapean, Dell and Husfeldt proposed the study of counting
subgraphs, modulo 2 [12]. Formally, they introduced the problem ⊕Sub(H), which expects
as input a graph H ∈ H and an arbitrary graph G, and the goal is to compute modulo 2 the
number of subgraphs of G isomorphic to H.

The study of counting modulo 2 received significant attention from the viewpoint of
classical, structural, and fine-grained complexity theory. For example, one way to state
Toda’s Theorem [31] is PH ⊆ P⊕P, implying that counting satisfying assignments of a CNF,
modulo 2, is at least as hard as the polynomial hierarchy. Another example is the quest to
classify the complexity of counting modulo 2 the homomorphisms to a fixed graph, which was
very recently resolved by Bulatov and Kazeminia [7]. There has also been work by Abboud,
Feller, and Weimann [1] on the fine-grained complexity of counting modulo 2 the number of
triangles in a graph that satisfy certain weight constraints.

In their work [12], Curticapean, Dell and Husfeldt proved that the problem of counting
k-matchings modulo 2, that is, the problem ⊕Sub(H) where H is the class of all 1-regular
graphs, is fixed-parameter tractable, where the parameter k is |H|. Since the exact counting
version of this problem is #W[1]-hard [11], their result provides an example where counting
modulo 2 is strictly easier than exact counting (subject to complexity assumptions). The
complexity class ⊕W[1] can be defined via the complete problem of counting k-cliques
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modulo 2. Crucially, ⊕W[1]-hard problems are not fixed-parameter tractable, unless the
randomised ETH (rETH) fails. Curticapean et al. [12] proved that counting k-paths modulo
2 is ⊕W[1]-hard. Since finding a k-path in a graph G is fixed-parameter tractable via colour-
coding [3], this hardness result provides an example where counting modulo 2 is strictly
harder than decision (subject to complexity assumptions). Combining those observations,
it appears that counting subgraphs modulo 2 may lie strictly in between the complexity of
decision and the complexity of exact counting.

A matching is a graph whose maximum degree is at most 1. The matching-split number of
a graph H is the minimum size of a set S ⊆ V (H) such that H \ S is a matching. A class of
graphs H is called matching splittable if there is a positive integer B such that the matching-
split number of any H ∈ H is at most B. For example, the class of all matchings is matching
splittable while the class of all cycles is not. Curticapean, Dell and Husfeldt extended their
FTP algorithm for counting k-matchings modulo 2 to obtain an FPT algorithm for ⊕Sub(H)
for any matching-splittable class H. On this basis, they then made the following conjecture.

▶ Conjecture 1 ([12]). ⊕Sub(H) is FPT if and only if H is matching splittable.

A class H of graphs is called hereditary if it is closed under vertex removal. Intriguingly,
if Conjecture 1 is true, then the FPT criterion for counting subgraphs modulo 2 (⊕Sub(H))
would coincide with the polynomial-time criterion for finding subgraphs (Sub(H)) for hered-
itary pattern classes H as established by Jansen and Marx.

▶ Theorem 2 ([24]). Let H be a hereditary class of graphs and assume P ̸= NP. Then
Sub(H) is solvable in polynomial time if and only if H is matching splittable.

Jansen and Marx also conjecture that the condition of H being hereditary can be removed.

▶ Conjecture 3 ([24]). Sub(H) is solvable in polynomial time if and only if H is matching
splittable.

Conjectures 1 and 3 have the remarkable consequence that ⊕Sub(H) is FPT if and only
if Sub(H) is solvable in polynomial time. In the current work we establish this consequence
for all hereditary pattern classes.

1.2 Our Contributions
We resolve Conjecture 1 for all hereditary classes H, as well as for every class H consisting
only of trees; note that the upper bounds were shown in [12] and that the lower bounds are
the novel part.

▶ Theorem 4. Let H be a hereditary class of graphs. If H is matching splittable, then
⊕Sub(H) is fixed-parameter tractable. Otherwise, the problem is ⊕W[1]-complete and,
assuming rETH, cannot be solved in time f(|H|) · |G|o(|V (H)|/ log |V (H)|) for any function f .

▶ Theorem 5. Let T be a recursively enumerable class of trees. If T is matching splittable,
then ⊕Sub(T ) is fixed-parameter tractable. Otherwise ⊕Sub(T ) is ⊕W[1]-complete.

The requirement that the class of trees T needs to be recursively enumerable is a standard
technicality - the reason for it is that the function f in the running time in the standard
definition of an FPT algorithm is required to be computable. It turns out that having T
recursively enumerable is enough for this.

In order to prove our classifications, we adapt the by-now-standard technique for ana-
lysing subgraph counting problems established by Curticapean, Dell and Marx [13]. Let
#Sub(H → G) denote the number of subgraphs of a graph G that are isomorphic to a
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graph H and let #Hom(F → G) denotes the number of homomorphisms (edge-preserving
mappings) from a graph F to a graph G. Given a graph H, there is a function aH from
graphs to rationals with finite support such that the following holds for any graph G:

#Sub(H → G) =
∑

F

aH(F ) · #Hom(F → G) , (1)

where the sum is over all (isomorphism types of) graphs. Since aH has finite support,
aH(F ) = 0 for all but finitely-many graphs F . Thus, equation (1) allows us to express the
solution to the exact counting problem as a finite linear combination of homomorphism counts.
In a nutshell, the framework of [13] states that computing the function G 7→ #Sub(H → G)
is hard to compute if and only if there is a graph F of high treewidth with aH(F ) ̸= 0.
This translates the complexity of (exact) subgraph counting to the purely combinatorial
problem of understanding the coefficients aH . One might hope that this strategy transfers
to counting modulo 2 as well. Unfortunately, this is not possible as Equation (1) might
not be well-defined if arithmetic is done modulo 2. The reason for this is the fact that the
coefficients aH(F ) are of the form µ(F, H) × |Aut(H)|−1, where µ(F, H) is an integer, and
Aut(H) is the automorphism group of the graph H [13]. Thus there is, a priori, no hope
to extend the framework to counting modulo 2 for pattern graphs with an even number of
automorphisms. In fact, according to Curticapean, Dell and Husfeldt [12], the absence of a
comparable framework for counting modulo 2 is one of the main challenges for establishing
the hardness part of Conjecture 1, and it is the main reason why the reductions in [12] use
more classical, gadget-based reductions.

In this work, we solve the problem of patterns with an even number of automorphisms
by considering a colourful intermediate problem. More concretely, we will equip each edge
of the pattern H with a distinct colour and show that it will be sufficient to consider only
automorphisms that preserve the colours. If H has no isolated vertices, then this is only
the trivial automorphism. Formally, the coloured approach will be based on the notion of
so-called fractured graphs introduced by Peyerimhoff et al. [29].

In what follows (Section 2), we will first introduced all required notions and previous
results. In Section 3, we will prove the classification for hereditary pattern classes (Theorem 4).
On a technical level, this proof can be considered a warm-up for the significantly harder
challenge of establishing the classification for trees (Theorem 5), which we defer to the full
version due to the space constraints.

2 Preliminaries

Let f : A1 × A2 → B be a function. For each a1 ∈ A1 we write f(a1, ⋆) : A2 → B for the
function that maps a2 ∈ A2 to f(a1, a2).

Graphs in this work are undirected and without self loops. A homomorphism from a
graph H to a graph G is a mapping φ from the vertices V (H) of H to the vertices V (G)
of G such that for each edge e = {u, v} ∈ E(H) of H, the image φ(e) = {φ(u), φ(v)} is an
edge of G. A homomorphism is called an embedding if it is injective. We write Hom(H → G)
and Emb(H → G) for the sets of homomorphisms and embeddings, respectively, from H

to G. An embedding φ ∈ Emb(H → G) is called an isomorphism if it is bijective and
{u, v} ∈ E(H) ⇔ {φ(u), φ(v)} ∈ E(G). We say that H and G are isomorphic, denoted by
H ∼= G, if an isomorphism from H to G exists. A graph invariant ι is a function from graphs
to rationals such that ι(H) = ι(G) for each pair of isomorphic graphs H and G.
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A subgraph of G is a graph G′ with V (G′) ⊆ V (G) and E(G′) ⊆ E(G). We write
Sub(H → G) for the set of all subgraphs of G that are isomorphic to H. Given a subset of
vertices S ⊆ V (G) of a graph G, we write G[S] for the graph induced by S, that is, G[S] has
vertices S and edges {{u, v} ⊆ S | {u, v} ∈ E(G)}.

We denote by tw(G) the treewidth of the graph G. Since we will rely on treewidth
purely in a black-box manner, we omit the technical definition and refer the reader to [15,
Chapter 7].

Given any graph invariant ι (such as treewidth) and a class of graphs G, we say that
ι is bounded in G if there is a non-negative integer B such that, for all G ∈ G, ι(G) ≤ B.
Otherwise we say that ι is unbounded in G.

Given a graph H = (V, E), a splitting set of H is a subset of vertices S such that every
vertex in H[V \S] has degree at most 1. The matching-split number of H is the minimum size
of a splitting set of H. A class of graphs H is called matching splittable if the matching-split
number of H is bounded.

2.1 Colour-Preserving Homomorphisms and Embeddings
A homomorphism c from a graph G to a graph Q is sometimes called a “Q-colouring” of G.
A Q-coloured graph is a pair consisting of a graph G and a homomorphism c from G to Q.
Note that the identity function idQ on V (Q) is a Q-colouring of Q. If a homomorphism c

from G to Q is vertex surjective, then we call (G, c) a surjectively Q-coloured graph.

▶ Definition 6 (cE). A Q-colouring c of a graph G induces a (not necessarily proper)
edge-colouring cE : E(G) → E(Q) given by cE({u, v}) = {c(u), c(v)}.

Notation. Given a Q-coloured graph (G, c) and a vertex u ∈ V (Q), we will use the
capitalised letter U to denote the subset of vertices of G that are coloured by c with u, that
is, U := c−1(u) ⊆ V (G).

Given two Q-coloured graphs (H, cH) and (G, cG), we call a homomorphism φ from H

to G colour-preserving if for each v ∈ V (H) we have cG(φ(v)) = cH(v). We note the
special case in which Q = H and cH is the identity idQ; then the condition simplifies to
cG(φ(v)) = v. A colour-preserving embedding of (H, cH) in (G, cG) is a vertex injective colour-
preserving homomorphism from (H, cH) to (G, cG). We write Hom((H, cH) → (G, cG)) and
Emb((H, cH) → (G, cG)) for the sets of all colour-preserving homomorphisms and embeddings,
respectively, from (H, cH) to (G, cG).

Let k be a positive integer, let H be a graph with k edges, and let (G, γ) be a pair
consisting of a graph G and a function that maps each edge of G to one of k distinct colours.
We refer to γ as a “k-edge colouring” of G. For example, in most of our applications we will fix
a graph Q with k edges and a Q-colouring c of G and we will take γ to be the edge-colouring
cE from Definition 6. We write ColSub(H → (G, γ)) for the set of all subgraphs of G that
are isomorphic to H and that contain each of the k edge colours precisely once.

2.2 Fractures and Fractured Graphs
In this work, we will crucially rely on and extend the framework of fractured graphs as
introduced in [29].

▶ Definition 7 (Fractures). Let Q be a graph. For each vertex v of Q, let EQ(v) be the set
of edges of Q that are incident to v. A fracture of Q is a tuple ρ = (ρv)v∈V (Q), where for
each vertex v of Q, ρv is a partition of EQ(v).

ICALP 2023
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v
vB1 vB2

Figure 1 Illustration of the construction of a fractured graph from [29]. The left picture shows
a vertex v of a graph Q with incident edges EQ(v) = { , , , , , }. The right picture shows the
splitting of v in the construction of the fractured graph Q♯ σ for a fracture σ satisfying that the
partition σv contains two blocks B1 = { , , }, and B2 = { , , }.

Note that a fracture describes how to split (or how to fracture) each vertex of a given
graph: for each vertex v, create a vertex vB for each block B in the partition ρv; edges
originally incident to v are made incident to vB if and only if they are contained in B. We
call the resulting graph the fractured graph H♯ ρ; a formal definition is given in Definition 8,
a visualisation is given in Figure 1.

▶ Definition 8 (Fractured Graph Q♯ ρ). Given a graph Q, we consider the matching MQ

containing one edge for each edge of Q; formally,

V (MQ) :=
⋃

e={u,v}∈E(Q)

{ue, ve} and E(MQ) := {{ue, ve} | e = {u, v} ∈ E(Q)}.

For a fracture ρ of Q, we define the graph Q♯ ρ to be the quotient graph of MQ under
the equivalence relation on V (MQ) which identifies two vertices ve, wf of MQ if and only if
v = w and e, f are in the same block B of the partition ρv of EQ(v). We write vB for the
vertex of Q♯ ρ given by the equivalence class of the vertices ve (for which e ∈ B) of MQ.

▶ Definition 9 (Canonical Q-colouring cρ). Let Q be a graph and let ρ be a fracture of Q.
The canonical Q-colouring of the fractured graph Q♯ ρ maps vB to v for each v ∈ V (Q) and
block B ∈ ρv, and is denoted by cρ.

Observe that cρ is the identity in V (Q) if ρ is the coarsest fracture (that is, each partition
ρv only contains one block, in which case Q♯ ρ = Q).

2.3 Parameterised and Fine-grained Computation

A parameterised computational problem is a pair consisting of a function P : Σ∗ → {0, 1} and
a computable parameterisation κ : Σ∗ → N. A fixed-parameter tractable (FPT) algorithm for
(P, κ) is an algorithm that computes P and runs, on input x ∈ Σ∗, in time f(κ(x)) · |x|O(1)

for some computable function f . We call (P, κ) fixed-parameter tractable (FPT) if an FPT
algorithm for (P, κ) exists.

A parameterised Turing-reduction from (P, κ) to (P ′, κ′) is an FPT algorithm for (P, κ)
that is equipped with oracle access to P ′ and for which there is a computable function g such
that, on input x, each oracle query y satisfies κ′(y) ≤ g(κ(x)). We write (P, κ) ≤fpt

T (P ′, κ′)
if a parameterised Turing-reduction from (P, κ) to (P ′, κ′) exists. This guarantees that
fixed-parameter tractability of (P ′, κ′) implies fixed-parameter tractability of (P, κ). For a
more comprehensive introduction, we refer the reader the standard textbooks [15] and [20].
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Counting modulo 2 and the rETH

The lower bounds in this work will rely on the hardness of the parameterised complexity
class ⊕W[1], which can be considered a parameterised equivalent of ⊕P. Following [12], we
define ⊕W[1] via the complete problem ⊕Clique: Given as input a graph G and a positive
integer k, the goal is to compute the number of k-cliques in G modulo 2, i.e., to compute
⊕Sub(Kk → G). The problem is parameterised by k. A parameterised problem (P, κ) is
called ⊕W[1]-hard if ⊕Clique ≤fpt

T (P, κ), and it is called ⊕W[1]-complete if, additionally,
(P, κ) ≤fpt

T ⊕Clique.
Modifications of the classical Isolation Lemma (see e.g. [5] and [34]) yield a randomised

parameterised Turing reduction from finding a k-clique to computing the parity of the
number of k-cliques. In combination with existing fine-grained lower bounds for finding a
k-clique [8, 9], it can then be shown that ⊕Clique cannot be solved in time f(k) · |G|o(k)

for any function f , unless the randomised Exponential Time Hypothesis fails:

▶ Definition 10 (rETH, [23]). The randomised Exponential Time Hypothesis (rETH) asserts
that 3-SAT cannot be solved by a randomised algorithm in time exp o(n), where n is the
number of variables of the input formula.

As an immediate consequence, the rETH implies that ⊕W[1]-hard problems are not fixed-
parameter tractable.

For the lower bounds in this work, we won’t reduce from ⊕Clique directly, but instead
from the following, more general problem:

▶ Definition 11 (⊕cp-Hom). Let H be a class of graphs. The problem ⊕cp-Hom(H) has
as input a graph H ∈ H and a surjectively H-coloured graph (G, c). The goal is to compute
⊕Hom((H, idH) → (G, c)). The problem is parameterised by |H|.

The following lower bound was proved independently in [28, 29] and [12].

▶ Theorem 12. Let H be a recursively enumerable class of graphs. If the treewidth of H is
unbounded then ⊕cp-Hom(H) is ⊕W[1]-hard and, assuming the rETH, it cannot be solved
in time f(|H|) · |G|o(tw(H)/ log tw(H)) for any function f .

Next is the central problem in this work.

▶ Definition 13 (⊕Sub). Let H be a class of graphs. The problem ⊕Sub(H) has as input
a graph H ∈ H and a graph G. The goal is to compute ⊕Sub(H → G). The problem is
parameterised by |H|.

For example, writing K for the set of all complete graphs, the problem ⊕Sub(K) is
equivalent to ⊕Clique.

Complexity Monotonicity and Inclusion-Exclusion

Throughout this work, we will rely on two important tools introduced in [29]. For the sake
of being self-contained, we encapsulate them below in individual lemmas.

The first tool is an adaptation of the so-called Complexity Monotonicity principle to
the realm of fractured graphs and modular counting (see [29, Sections 4.1 and 6.3] for a
detailed treatment and for a proof). Intuitively, the subsequent lemma states that evaluating,
modulo 2, a linear combination of colour-prescribed homomorphism counts from fractured
graphs, is as hard as evaluating its hardest term with an odd coefficient.

ICALP 2023
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▶ Lemma 14 ([29]). There is a deterministic algorithm A and a computable function f such
that the following conditions are satisfied:
1. A expects as input a graph Q and a Q-coloured graph (G, c).
2. A is equipped with oracle access to a function

(G′, c′) 7→
∑

ρ

a(ρ) · ⊕Hom((Q♯ ρ, cρ) → (G′, c′)) mod 2 ,

where the sum is over all fractures of Q and a is a function from fractures of Q to integers.
3. Each oracle query (G′, c′) is of size at most f(|Q|) · |G|.
4. A computes ⊕Hom((Q♯ ρ, cρ) → (G, c)) for each fracture ρ with a(ρ) ̸= 0 mod 2.
5. The running time of A is bounded by f(|Q|) · |G|O(1).

The second tool is a standard application of the inclusion-exclusion principle (see e.g. [29,
Sections 4.2 and 6.3]). It will be used in the final steps of our reductions to remove the
colourings.

▶ Lemma 15 ([29]). There is a deterministic algorithm A that satisfies the following
conditions:
1. A expects as input a graph H with k edges, a graph G and a k-edge colouring γ of G.
2. A is equipped with oracle access to the function ⊕Sub(H → ⋆), and each oracle query G′

satisfies |G′| ≤ |G|.
3. A computes ⊕ColSub(H → (G, γ)).
4. The running time of A is bounded by 2|H| · |G|O(1).

3 Classification for Hereditary Graph Classes

In this section, we will completely classify the complexity of ⊕Sub(H) for hereditary classes.
Let us start by restating the classification theorem.

▶ Theorem 4. Let H be a hereditary class of graphs. If H is matching splittable, then
⊕Sub(H) is fixed-parameter tractable. Otherwise, the problem is ⊕W[1]-complete and,
assuming rETH, cannot be solved in time f(|H|) · |G|o(|V (H)|/ log |V (H)|) for any function f .

The proof of Theorem 4 is split in four cases, which stem from a structural property of
non matching splittable hereditary graph classes H due to Jansen and Marx [24]. For the
statement, we need to consider the following classes:

Fω is the class of all complete graphs.
Fβ is the class of all complete bipartite graphs.
FP2 is the class of all P2-packings, that is, disjoint unions of paths with two edges.1

FK3 is the class of all triangle packings, that is, disjoint unions of the complete graph of
size 3.

▶ Theorem 16 (Theorem 3.5 in [24]). Let H be a hereditary class of graphs. If H is not
matching splittable then at least one of the following are true: (1.) Fω ⊆ H, (2.) Fβ ⊆ H,
(3.) FP2 ⊆ H, or (4.) FK3 ⊆ H.

1 To avoid confusion, we remark that [24] uses P3 to denote the path of two edges (and three vertices). In
the current work, it will be more convenient to use the number of edges of a path as index.
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Thus, it suffices to consider cases 1. – 4. to prove Theorem 4. We start with the easy cases
of cliques and bicliques; they follow implicitly from previous works [12, 17, 28] and we only
include a proof for completeness. Note that a tight bound under rETH is known for those
cases:

▶ Lemma 17. Let H be a hereditary class of graphs. If Fω ⊆ H or Fβ ⊆ H then ⊕Sub(H)
is ⊕W[1]-hard and, assuming rETH, cannot be solved in time f(|H|) · |G|o(|V (H)|) for any
function f .

Proof. If Fω ⊆ H then ⊕W[1]-hardness follows immediately from the fact that ⊕Clique
is the canonical ⊕W[1]-complete problem [12]. For the rETH lower bound, we can reduce
from the problem of deciding the existence of a k-clique via a (randomised) reduction using a
version of the Isolation Lemma due to Williams et al. [34, Lemma 2.1]. This reduction does
not increase k or the size of the host graph and is thus tight with respect to the well-known
lower bound for the clique problem due to Chen et al. [8, 9]: Deciding the existence of a
k-clique in an n-vertex graph cannot be done in time f(k) · no(k) for any function f , unless
ETH fails. Our lower bound under rETH follows since the reduction is randomised.

If Fβ ⊆ H, then the claim holds by [17, Theorem 5], which established the problem of
counting, modulo 2, the induced copies of a k-by-k-biclique in an n-vertex bipartite graph
to be ⊕W[1]-hard and not solvable in time f(k) · no(k) for any function f , unless rETH
fails. Since a copy of a biclique (with at least one edge) in a bipartite graph must always be
induced, the claim follows. This concludes the proof of Lemma 17. ◀

The more interesting cases are FP2 ⊆ H and FK3 ⊆ H. One reason for this is that, in
contrast to cliques and bicliques, the decision version of those instances are fixed-parameter
tractable. Hence a reduction from the decision version via e.g. an isolation lemma does not
help. In other words, establishing hardness for those cases requires us to rely on the full
power of counting modulo 2. More precisely, we will rely on the framework of fractures
graphs (see Section 2). Both cases can be considered simpler applications of the machinery
used in the later sections, so we will present all steps in great detail. While this might seem
unnecessary given the simplicity of the constructions, we hope that it enables the reader to
make themselves familiar with the general reduction strategies which will be used throughout
the later sections of this work.

3.1 Triangle Packings
The goal of this subsection is to establish hardness of ⊕Sub(FK3). To this end, let ∆ be an
infinite computable class of cubic bipartite expander graphs, and let Q = {L(H) | H ∈ ∆}
where L(H) is constructed as follows: Each v ∈ V (H) becomes a triangle with vertices vx,
vy, and vz corresponding to the three neighbours x, y, and z of v. Finally, for every edge
{u, v} ∈ E(H) we identify vu and uv. In fact, L(H) is just the line graph of H: Every edge of
H becomes a vertex in L(H), and two vertices of L(H) are made adjacent if and only if the
corresponding edges in H are incident. Since all H ∈ ∆ are bipartite (and thus triangle-free),
we can easily observe the following.2

▶ Observation 18. The mapping v 7→ (vx, vy, vz) is a bijection from vertices of H to triangles
in L(H).

2 Observation 18 is also an immediate consequence of Whitney’s Isomorphism Theorem implying that a
triangle of a line graph corresponds to either a claw or to a triangle in its primal graph.
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We also consider the fracture of L(H) that splits L(H) back into |V (H)| triangles; consider
Figure 2 for an illustration.

▶ Definition 19 (τ(H)). Let H ∈ ∆ and recall that each vertex w of L(H) is obtained by
identifying vu and uv for some edge {u, v} ∈ E(H). Moreover, w has four incident edges
ex, ey, ea, eb, to vx, vy, ua, ub, respectively, where x, y, u are the neighbours of v in H and
v, a, b are the neighbours of u in H. We define τ(H)w := {{ex, ey}, {ea, eb}}, and we proceed
similar for all vertices of L(H).

Next, we use that tw(L(H)) = Ω(tw(H)) (see e.g. [22]). Moreover, tw(L(H)) ≤ |V (L(H))|
since the treewidth of a graph is always bounded by the number of its vertices. Additionally,
|V (L(H))| = |E(H)| by construction. Since the graphs in ∆ are cubic, we further have that
|E(H)| = Θ(|V (H)|) for H ∈ ∆. We combine those bounds with the fact that expander
graphs have treewidth linear in the number of vertices (see e.g. [21]); therefore ∆ and thus
Q have unbounded treewidth. Putting these facts together, we obtain the following.

▶ Fact 20. Q has unbounded treewidth and tw(L(H)) = Θ(|V (L(H))|) = Θ(|V (H)|) for
H ∈ ∆.

We are now able to establish hardness of ⊕Sub(FK3). The proof will heavily rely on the
transformation from edge-coloured subgraphs to homomorphisms established in [29].

▶ Lemma 21. The problem ⊕Sub(FK3) is ⊕W[1]-hard. Furthermore, on input kK3 and G,
the problem cannot be solved in time f(k) · |G|o(k/ log k) for any function f , unless rETH fails.

Proof. We reduce from ⊕cp-Hom(Q), which, by Fact 20 and Theorem 12, is ⊕W[1]-hard
and for L(H) ∈ Q, it cannot be solved in time f(|L(H)|) · |G|o(|V (L(H))|/ log |V (L(H))|), unless
rETH fails.

Let L and (G, c) be an input instance to ⊕cp-Hom(Q). Recall that ∆ is computable –
that is, there is an algorithm that takes a graph H and determines whether it is in ∆. Thus,
there is an algorithm that takes input L ∈ Q and finds a graph H ∈ ∆ with L = L(H). The
run time of this algorithm depends on |L| but clearly not on (G, c). Let k = |V (H)| and
note that |E(L(H))| = 3k, since, by construction, each vertex v of H becomes a triangle of
L(H). We consider the graph G as a 3k-edge-coloured graph, coloured by cE . That is, each
edge e = {x, y} of G is assigned the colour cE(e) = {c(x), c(y)} which is an edge of L (see
Figure 2 for an illustration).

Now, for any L-coloured graph (G′, c′) recall that ColSub(kK3 → (G′, c′
E)) is the set of

subgraphs of G′ that are isomorphic to kK3 and that include each edge colour (each edge of
L) precisely once. We will see later that ⊕ColSub(kK3 → (G′, c′

E)) can be computed using
our oracle for ⊕Sub(FK3) using the principle of inclusion and exclusion.

It was shown in [29, Lemma 4.1] that there is a unique function a such that for every
L-coloured graph (G′, c′) we have3

#ColSub(kK3 → (G′, c′
E)) =

∑
ρ

a(ρ) · Hom(L♯ ρ → (G′, c′)) . (2)

where the sum is over all fractures of L. Additionally, it was shown in [29, Corollary 4.3]
that

a(⊤) =
∑

ρ∈F(kK3,L)

∏
w∈V (L)

(−1)|ρw|−1 · (|ρw| − 1)! , (3)

3 In the language of [29], Equation (2) is obtained by choosing Φ as the property of being isomorphic
to kK3.
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Figure 2 (Top:) A cubic bipartite graph H ∈ ∆, its line graph L(H), and the fractured graph
induced by τ(H). (Below:) An L(H)-coloured graph (G, c); emphasised in distinct colours is the
edge-colouring cE of G induced by the mapping {u, v} 7→ {c(u), c(v)}. Additionally we depict an
element S ∈ ColSub(kK3 → (G, cE)), that is, a subgraph of G isomorphic to kK3 that contains each
edge colour of G precisely once.

where ⊤ is the fracture in which each partition consists only of one block (that is, L♯ ⊤ = L),
and F(kK3, L) is the set of all fractures ρ of L such that L♯ ρ ∼= kK3. However, note that,
by Observation 18, there is only way to fracture L into k disjoint triangles, and this fracture
is given by τ(H). Thus, (3) simplifies to

a(⊤) =
∏

w∈V (L)

(−1)|τ(H)w|−1 · (|τ(H)w| − 1)! , (4)

which is odd since each partition of τ(H) consists of precisely two blocks (so in fact the
expression in (4) is (−1)|V (L)|).

Note that the algorithm for ⊕cp-Hom(Q) is supposed to compute ⊕Hom((L, idL) → (G, c))
which is equal to ⊕Hom(L♯ ⊤ → (G, c⊤)). Since a(⊤) is odd, we can invoke Lemma 14 to
recover this term by evaluating the entire linear combination (2), that is, by evaluating
the function ⊕ColSub(kK3 → ⋆). More concretely, this means that we need to compute
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⊕ColSub(kK3 → (G′, c′
E)) for some L-coloured graphs (G′, c′) of size at most f(|L|) · |G| for

some computable function f (see 3. in Lemma 14). This can easily be done using Lemma 15
since we have oracle access to the function ⊕Sub(kK3 → ⋆). We emphasise that, by condition
2. of Lemma 15, each oracle query Ĝ satisfies |Ĝ| ≤ |G′|, where (G′, c′) is the L-coloured
graph for which we wish to compute ⊕ColSub(kK3 → (G′, c′

E)). Since |(G′, c′)| ≤ f(|L|) · |G|,
we obtain that |Ĝ| ≤ f(|L|) · |G| as well.

Since, by Fact 20, k = Θ(|kK3|) = Θ(|V (L)|) = Θ(tw(L)), our reduction yields ⊕W[1]-
hardness and transfers the conditional lower bound under rETH as desired. ◀

3.2 P2-packings
Next we establish hardness for the case of P2-packings. The strategy will be similar in spirit
to the construction for triangle packings; however, rather then identifying a unique fracture
for which the technique applies, we will encounter an odd number of possible fractures in the
current section.

Let ∆ be a computable infinite class of 4-regular expander graphs, and let Q be the class
of all subdivisions of graphs in ∆, that is Q = {H2 | H ∈ ∆}, where H2 is obtained from H

by subdividing each edge once.
We start by establishing an easy but convenient fact on the treewidth of the graphs in Q.

▶ Lemma 22. Q has unbounded treewidth and tw(H2) = Θ(|V (H)|) for H ∈ ∆.

Proof. As in Section 3.1, tw(H) = Θ(|V (H)|) for H ∈ ∆, since expanders have treewidth
linear in the number of vertices. Since H is a minor of H2, and since taking minors cannot
increase treewidth (see [15, Exercise 7.7]), we thus have that tw(H2) = Ω(|V (H)|)). Finally,
we have tw(H2) ≤ |V (H2)| since the treewidth is at most the number of vertices, and
|V (H2)| = O(|V (H)|) since H is 4-regular. In combination, we obtain tw(H2) = Θ(|V (H)|)
for H ∈ ∆. Note that this also implies that Q has unbounded treewidth (as ∆ is infinite). ◀

For what follows, given a subdivision H2 of a graph H, it will be convenient to assume
that V (H2) = V (H) ∪ SE , where SE = {se | e ∈ E(H}) is the set of the subdivision vertices.

▶ Definition 23 (Odd Fractures). Let H ∈ ∆ and let τ be a fracture of H2. We say that τ is
odd if the following two conditions are satisfied:
1. For each s ∈ SE the partition τs consists of two singleton blocks.
2. For each v ∈ V (H) the partition τv consists of two blocks of size 2.
Consider Figure 3 for a depiction of an odd fracture.

The following two lemmas are crucial for our construction.

▶ Lemma 24. Let H ∈ ∆. The number of odd fractures of H2 is odd.

Proof. The first condition in Definition 23 leaves only one choice for subdivision vertices.
Let us thus consider a vertex v ∈ V (H) = V (H2) \ SE . Since H is 4-regular, there are 4
incident edges to v. Now note that there are precisely 3 partitions of a 4-element set with two
blocks of size 2. Thus the total number of odd fractures of H2 is 3|V (H)|, which is odd. ◀

▶ Lemma 25. Let H ∈ ∆, let k = 2|V (H)| and let τ be a fracture of H2 such that τv consists
of at most 2 blocks for each v ∈ V (H2). Then H2♯ τ ∼= kP2 if and only if τ is odd.
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Figure 3 (Top:) Subdividing a 4-regular expander in ∆ depicted by the neighbourhood of an
individual vertex. (Centre:) Illustrations of odd fractures (Definition 23). For each non-subdivision
vertex, there are only three ways to satisfy 2. in Definition 23. This observation is used in Lemma 24 to
show that the number of odd fractures is a power of 3. (Bottom:) Elements of ColSub(kP2 → (G, cE))
inducing fractures of H2 such that each partition has at most two blocks. Lemma 25 shows that
those are precisely the odd fractures of H2.

Proof. First observe that |E(H2)| = 2|E(H)| = 4|V (H)| = 2k. Thus the number of edges of
H2♯ τ is equal to 2k (for each fracture τ of H2), which is also equal to the number of edges
of kP2.

Thus, H2♯ τ is isomorphic to kP2 if and only if each connected component of H2♯ τ is
a path of length 2. It follows immediately by Definition 23 that τ being odd implies that
H2♯ τ consists only of disjoint P2. It thus remains to show the other direction.

Assume for contradiction that there is a subdivision vertex s ∈ SE of H2 such that τs

consists of only one block (recall that s has degree 2, thus τs either consists of two singleton
blocks, or of one block of size 2). Let e = {u, v} ∈ E(H) be the edge corresponding to s, that
is, s was created by subdividing e. Since H2♯ τ is a union of P2, we can infer that τv and τu

contain a singleton block (otherwise we would have created a connected component which is

ICALP 2023



68:14 Parameterised and Fine-Grained Subgraph Counting, Modulo 2

not isomorphic to P2). Now recall that both u and v have degree 4, since H is 4-regular. We
obtain a contradiction as follows: By assumption of the lemma, we know that τv and τu can
have at most two blocks. Since we have just shown that both contain a singleton block, it
follows that both τv and τu contain one further block of size 3. However, a block of size 3
yields a vertex of degree 3 in the fractured graph H2♯ τ , contradicting the fact that H2♯ τ

consists only of disjoint P2.
Thus we have established that, for each s ∈ SE , the partition τs consists of two singleton

blocks. Given this fact, the only way for H2♯ τ being a disjoint union of P2 is that each
partition τv, for v ∈ V (H) = V (H2) \ SE , consists of two blocks of size 2. ◀

We are now able to prove our hardness result.

▶ Lemma 26. The problem ⊕Sub(FP2) is ⊕W[1]-hard. Furthermore, on input kP2 and G,
the problem cannot be solved in time f(k) · |G|o(k/ log k) for any function f , unless rETH fails.

Proof. We reduce from ⊕cp-Hom(Q), which, by Lemma 22 and Theorem 12, is ⊕W[1]-hard
and for H ′ ∈ Q, it cannot be solved in time f(|H ′|) · |G|o(|V (H′)|/ log |V (H′)|), unless rETH
fails.

Let H ′ and (G, c) be an input instance to ⊕cp-Hom(Q). There is an algorithm that
takes as input a graph H ′ ∈ Q and finds a graph H ∈ ∆ with H ′ = H2 – this is basically
2-colouring. The run time of this algorithm depends on |H ′| but clearly not on (G, c). Let
k = 2|V (H)| and note that |E(H2)| = 2|E(H)| = 4|V (H)| = 2k. We consider the graph G

as a 2k-edge-coloured graph, coloured by cE . That is, each edge e = {x, y} of G is assigned
the colour cE(e) = {c(x), c(y)} which is an edge of H ′ = H2.

Now, for any H2-coloured graph (G′, c′) recall that ColSub(kP2 → (G′, c′
E)) is the set of

subgraphs of G′ that are isomorphic to kP2 and that include each edge colour (each edge of
H2) precisely once. We will see later that ⊕ColSub(kP2 → (G′, c′

E)) can be computed using
our oracle for ⊕Sub(FP2) using the principle of inclusion and exclusion.

It was shown in [29, Lemma 4.1] that there is a unique function a such that, for every
H2-coloured graph (G′, c′),

#ColSub(kP2 → (G′, c′
E)) =

∑
ρ

a(ρ) · Hom(H2♯ ρ → (G′, c′)) . (5)

where the sum is over all fractures of H2. As in Section 3.1 from [29, Corollary 4.3] we know
that

a(⊤) =
∑

ρ∈F(kP2,H2)

∏
w∈V (H2)

(−1)|ρw|−1 · (|ρw| − 1)! , (6)

where ⊤ is the fracture in which each partition consists only of one block and F(kP2, H2) is
the set of all fractures ρ of H2 such that H2♯ ρ ∼= kP2.

Our next goal is to show that a(⊤) = 1 mod 2. First, suppose that a fracture ρ contains
a partition ρw with at least three blocks. Then (|ρw| − 1)! = 0 mod 2. Thus such fractures
do not contribute to a(⊤) if arithmetic is done modulo 2. Next, note that if, for each w, the
partition ρw contains at most 2 blocks, then∏

w∈V (H2)

(−1)|ρw|−1 · (|ρw| − 1)! = 1 mod 2.
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Let Odd(kP2, H2) be the set of all fractures ρ of H2 such that H2♯ ρ ∼= kP2 and each
partition of ρ consists of at most 2 blocks. Our analysis then yields a(⊤) = |Odd(kP2, H2)|
mod 2. Finally, Lemma 25 states that Odd(kP2, H2) is precisely the set of odd fractures, and
Lemma 24 thus implies that |Odd(kP2, H2)| = 1 mod 2. Consequently, a(⊤) = 1 mod 2 as
well, and we have achieved the goal.

Next we can proceed similarly to the case of triangle packings. As in that case, the goal
is to compute ⊕Hom((H2, idH2) → (G, c))) which is equal to ⊕Hom((H2♯ ⊤, c⊤) → (G, c)).
Since a(⊤) is odd, we can invoke Lemma 14 to recover this term by evaluating the entire
linear combination (5), that is, if we can evaluate the function ⊕ColSub(kP2 → ⋆). This can
be done by using Lemma 15. Each call to the oracle is of the form ⊕Sub(kP2 → Ĝ) where
|Ĝ| is bounded by f(k) · |G|.

Now recall that k ∈ Θ(|V (H)|). By Lemma 22, we thus have k = Θ(tw(H2)). Hence our
reduction yields ⊕W[1]-hardness and transfers the conditional lower bound under rETH as
desired. ◀

We can now conclude the treatment of hereditary pattern classes by proving Theorem 4,
which we restate for convenience.

▶ Theorem 4. Let H be a hereditary class of graphs. If H is matching splittable, then
⊕Sub(H) is fixed-parameter tractable. Otherwise, the problem is ⊕W[1]-complete and,
assuming rETH, cannot be solved in time f(|H|) · |G|o(|V (H)|/ log |V (H)|) for any function f .

Proof. The fixed-parameter tractability result was shown in [12]. For the hardness result,
using the fact that H is not matching splittable and Theorem 16 we obtain four cases.

If H contains all cliques or all bicliques, then hardness follows from Lemma 17.
If H contains all triangle packings, then hardness follows from Lemma 21.
If H contains all P2-packings, then hardness follows from Lemma 26.

Since the case distinction is exhaustive, the proof is concluded. ◀
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