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Abstract
We study low sample complexity mechanisms in participatory budgeting (PB), where each voter
votes for a preferred allocation of funds to various projects, subject to project costs and total
spending constraints. We analyse the distortion that PB mechanisms introduce relative to the
minimum-social-cost outcome in expectation. The Random Dictator mechanism for this problem
obtains a distortion of 2. In a special case where every voter votes for exactly one project, [11] obtain
a distortion of 4/3. We show that when PB outcomes are determined as any convex combination of
the votes of two voters, the distortion is 2. When three uniformly randomly sampled votes are used,
we give a PB mechanism that obtains a distortion of at most 1.66, thus breaking the barrier of 2
with the smallest possible sample complexity.

We give a randomized Nash bargaining scheme where two uniformly randomly chosen voters
bargain with the disagreement point as the vote of a voter chosen uniformly at random. This
mechanism has a distortion of at most 1.66. We provide a lower bound of 1.38 for the distortion
of this scheme. Further, we show that PB mechanisms that output a median of the votes of three
voters chosen uniformly at random, have a distortion of at most 1.80.
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1 Introduction

More than 1500 cities around the globe have begun adopting Participatory Budgeting (PB)
[22, 13], a process through which residents can vote directly on a city government’s use of
public funds. Residents might, for example, vote directly on how to allocate a budget of
reserved funds between projects like street repairs or library renovations. PB has been shown
to promote government transparency, resident engagement, and good governance [23].
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We study a PB setup similar to [12] where each vote is an allocation of funds to projects
(we call it a “preferred budget”) subject to the constraint that the sum of allocations to all
projects is equal to one. Projects have a fixed cost, and allocations to any project cannot
exceed its cost. However, allocations less than the project’s cost are allowed. ([12] consider
all project costs equal to one). In this model, therefore, every vote and the outcome of the
PB election can be represented as a point on the unit simplex.

We study the distortion (Definition 5) that PB mechanisms introduce in expectation
relative to the social cost minimizing allocation in the worst case of PB instances, following
the lines of [1]. We adopt the ℓ1 distance as the cost function where a voter with preferred
budget a experiences a cost of d(a, b) = ∥a − b∥1 from an outcome budget b (Definition 2).

Several preference elicitation methods have been studied for PB [7, 2, 15, 5]. Policymakers
must then transform a list of votes into a real-world allocation of funds. Furthermore, even
though there may be an “optimal” allocation (under natural notions of social welfare), this
allocation may be intractable to compute [19, 21] or difficult to reliably estimate if turnout
is low [8]. In some situations, policymakers need to obtain a quick estimate of the budgetary
region in which preferences may lie. In these cases, and when running a fully-fledged PB
election is costly or difficult, low-sample complexity PB mechanisms are an attractive choice.

Low-sample complexity preference elicitation mechanisms have also been of interest
recently in computational social choice [11, 10, 1, 9] – in this work, we give low-sample
complexity mechanisms (using the preferred budgets of a small number of sampled voters)
for PB, which achieve a distortion of less than 2. Note that 2 is a natural barrier for the
distortion in this problem since the Random Dictator mechanism achieves a distortion of 2
in our model of PB. The Random Dictator mechanism chooses the outcome as the preferred
budget of a uniformly randomly chosen voter. From Theorem 5 of [1], its distortion is at
most 2, and from our Lemma 7, it is 2. We further prove that a mechanism that chooses
any linear combination of two randomly sampled votes (Random Diarchy) also attains a
distortion of 2 (Lemma 8). Another low sample-complexity mechanism, Random Referee [10],
asks a randomly chosen voter (“the referee”) to choose one out of two possible outcomes,
which are random samples from the preferred budgets of the voters. This mechanism also
attains a distortion of at least 2 in our setup (Lemma 9). We give a PB mechanism which
samples three voters uniformly at random and attains a distortion of at most 1.66.

1.1 Our Contributions
When the PB mechanism samples three voters uniformly at random, we show that aggregation
schemes that choose a median of their preferred budgets achieve a distortion of at most 1.80.
We refer to such schemes as the median schemes and denote this class of schemes by M.

We then turn to the case where two uniformly randomly chosen voters can come together
and “bargain” with a third voter’s preferred budget (again chosen uniformly at random) as the
“disagreement point.” We formulate the bargaining rules for the voters via the well-studied
Nash bargaining framework [6]. When these bargaining rules can be further specified by a
randomized rule (§4.2), we show that the distortion of the resulting mechanism is at most
1.66 (Theorem 35). We call this mechanism the randomized Nash bargaining scheme nrand.

A key technical tool we use is the analysis of pessimistic distortion (PD) (Definition 26)
first proposed by [10]. PD is a form of distortion where the comparison is made with a
counterfactual which chooses a separate outcome for every small subset of voters (of a fixed
size κ), thereby attaining a lower social cost than the true “optimal”. In this work, we use
κ = 6. This choice is due to computational constraints. We show that the PD with κ = 6 is
an upper bound on the distortion of our proposed mechanisms with any number of voters n.

We then reduce the problem of computing the PD into a set of linear programs for
the median schemes M and bilinear programs of constant size for the randomized Nash
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bargaining scheme nrand. For this, we use a projection of the preferred budgets of voters
into a space (we call it the incremental allocation space (§3)) that captures the common
preferences of a subset of voters relative to other voters. In the median schemes, funds are
allocated to projects ensuring that the final outcome is the median of the preferred budgets
of three randomly sampled voters. In the randomized Nash bargaining scheme nrand, the
expected funds allocated to a project satisfy additional proportionality constraints (§4.2),
resulting in bilinear programs. Since the proportionality constant is not fixed, this results in
another variable in the optimization formulation. The problem has a complex combinatorial
structure due to the nuances of Nash bargaining. However, we are able to exploit symmetries
of the problem, enabling us to solve it efficiently. Since the bilinear programs are of a constant
size (depends on κ, which we set to 6), we can solve these in fixed time.

Same as Random Dictator and Random Referee, our PB mechanism nrand also naturally
respects project interactions such as complementarity and substitution as long as the voters
are aware of these interactions. This is because the bargaining outcome between two voters
is guaranteed to be Pareto optimal for them. We describe this point in detail in §8.

1.2 Related Work
The sequential deliberation (SD) mechanism for social choice was proposed in [11] where
the two uniformly randomly chosen voters deliberate in each round under the rules of Nash
bargaining, and the outcome for every round is the disagreement point for the next round.
The SD for one round corresponds to the randomized Nash bargaining scheme nrand. They
analyzed the mechanism in median spaces, which include median graphs and trees, and
found an upper bound of the distortion of the mechanism to be 1.208. They also analyze
the distortion in the budget space (or unit simplex) in a special setting where each voter
only approved funds for a single project. In this case, they show that the distortion in the
equilibrium of SD is 4/3. This paper extends their work in the case of the unit simplex, such
that voters in our model do not have to restrict their vote to one project.

The authors of [16] study a model where voters’ opinions evolve via deliberations in small
groups over multiple rounds. Opinions in their model correspond to preferred budgets in
our model; however, unlike preferred budgets, opinions change as a result of deliberations.
They study the distortion in single-winner elections setting and show that it is bounded by

O

(
1 +

√
log n

n

)
when voters deliberate in groups of 3 (n is the number of voters).

The work most closely related to ours is [10]; they study the random referee mechanism.
We use their technique of analyzing the PD of 6 voters. However, they apply this technique
where the underlying decision space is the Euclidean plane and use the underlying geometric
structure to perform a grid search. In contrast, we study the PD with Nash bargaining, which
leads to a complex structure of outcomes that we capture in linear or bilinear programs.

The authors of [9] analyze low sample-complexity randomized mechanisms for PB. They
obtain constant factor guarantees for higher moments of distortion, and the distortion bound
they provide is much larger than 2. Several additional results and research directions in PB
are described in the survey [4].

1.3 Future Directions
A natural direction for future work is to analyze the distortion for multiple rounds of deliber-
ation in our model, with every round’s outcome serving as the next round’s disagreement
point. Another interesting modelling question is to study the deliberation or bargaining
process with more than two agents participating together. Closing the gap of the distortion
of nrand also remains an interesting open problem.

ICALP 2023
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1.4 Roadmap
We describe the model and preliminaries in §2, introduce a projection operation and give
some technical results in §3, characterize the outcome of different schemes in §4. We derive
the distortion of the class of median schemes in §5. We derive the distortion under nrand

in §6. We give empirical results on real-world Participatory Budget (PB) data in §7, and
discuss project interactions in §8.

2 Model and Preliminaries

Suppose we have m projects and are required to design a budget. A budget denotes the
fraction of the total funds that are to be spent on each project. Projects have a maximum
possible allocation or “project costs.” All votes respect these project costs, and consequently,
the outcomes of all our mechanisms also respect the project costs.2 For notational simplicity,
we drop the project costs from the model henceforth and operate under the assumption that
project costs are 1. All our results trivially follow for general project costs.

▶ Definition 1. Let bj denote the funds allotted to project j in budget b. We define the budget
simplex as the set of valid budgets i.e., B = {b ∈ Rm|

∑m
j=1 bj = 1 and bj ≥ 0, ∀j ∈ [m]}.

There are n voters, each with a preferred budget vi ∈ B. A vote profile P denotes the list of
preferred budgets of all voters, i.e, P = (v1, v2, . . . , vn). The funds allotted to project j by
voter i is vi,j . A vote profile defines an instance of PB. The outcome of an instance of PB is
a budget in B. Voters adopt the ℓ1 distance as the cost function. (Not to be confused with
the project costs, which is a different concept here.)

▶ Definition 2. For a, b ∈ B, the cost of an outcome b for a voter with preferred budget a is
d(a, b) =

∑m
j=1 |aj − bj |. The sum of cost over all budgets,

∑
i∈[n] d(vi, b), is the social-cost

of budget b.

We define the overlap utility which is closely related to the cost. Note that this notion of
overlap utility has been studied in knapsack voting [15, 12].

▶ Definition 3 (Overlap Utility). u(a, b) =
∑m

j=1 min(aj , bj).

▶ Lemma 4. For budgets a, b ∈ B, d(a, b) = 2 − 2u(a, b).

A proof is in Appendix A.13 of the extended version [17]. Lemma 4 implies that for a voter,
maximizing overlap utility is the same as minimizing the cost. Note that overlap utility is
symmetric, i.e, u(a, b) = u(b, a).

2.1 Distortion
Here we define distortion, which we use as a metric to quantify how good a outcome is in
comparison to the optimal solution for minimizing social-cost. We define distortion through
the cost d(·, ·).

▶ Definition 5. The distortion of budget b for vote profile P is

DistortionP (b) =
∑

v∈P d(v, b)
minb∗∈B

∑
v∈P d(v, b∗) .

2 There is no constraint on the minimum allocation to a project other than that it must be non-negative.
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Let h(P ) be the output of mechanism h for vote profile P .

▶ Definition 6. The distortion of a class of voting mechanisms H is: Distortion(H) =
supn∈Z+, P ∈Bn, h∈H E[DistortionP (h(P ))].

Note that distortion is defined as a supremum over all instances of PB and all mechanisms
in class H.3 The expectation is over the randomness of the mechanism, which also includes
the randomness in the selection of voters.

The distortion of a voting mechanism is widely used to evaluate its performance regarding
how close its output is to the social cost-minimizing outcome in expectation [1, 20, 3, 14, 10].
The Random Dictator [1] voting mechanism has a distortion of 2, as shown in Lemma 7. A
proof is given in Appendix A.1 in the extended version [17].

▶ Lemma 7. Any aggregation method constrained to choose its outcome as the preferred
budget of a uniformly randomly chosen voter has distortion 2.

Now, consider a mechanism that chooses the outcome via the deliberation between two
voters chosen uniformly at random with preferred budgets a and b. Within this class, we
consider mechanisms constrained to choose the outcome as a convex combination of budgets
a and b.

Now, consider a mechanism constrained to choose the outcome as a linear combination of
budgets a and b where a and b denote the preferred budgets of randomly sampled voters.
That is, α(P )a + (1 − α(P ))b for α(P ) ∈ [0, 1]. Note that α(P ) may be optimized over the
entire vote profile.4 We refer to this class of mechanisms as Random Diarchy and denote it
by Q. Interestingly, the distortion of Q is 2, the same as that of Random Dictator.

▶ Lemma 8. For Random Diarchy infq∈Q Distortion(q) = 2.

A proof is given in Appendix A.2 in the extended version [17]. We further show that
Random Referee scheme described in [11] where one of the two preferred budgets of the
bargaining voters is chosen based on the preferred budget of third sampled voter also has a
distortion ratio of at least 2 in Lemma 9, proven in Appendix A.3 in the extended version
[17]. We denote the class of such mechanisms by R.

▶ Lemma 9. For Random Referee infq∈R Distortion(q) ≥ 2.

2.2 Model of preference aggregation
Let us define the mechanism formally in steps and we call it Triadic scheme.
1. Pick a voter i uniformly at random and set the disagreement point c as the preferred

budget of voter i.
2. Now choose two voters a and b uniformly at random with replacement and they bargain

with c as the disagreement point.

All our theoretical results in this paper are for the outcome of the triadic scheme. However,
as discussed in [11], we can extend this bargaining scheme to multiple rounds by setting the
outcome of the previous round as the disagreement point for the next round and sampling
the two bargaining voters uniformly at random without replacement. We provide empirical
results for this setup for multiple rounds (upto 10 rounds) in § 7.

3 We will often study the distortion of a single mechanism, i.e., not a class. In that case, Distortion(h)
simply denotes the distortion of the mechanism h.

4 All such outcomes maximize the sum of the overlap utilities of the deliberating agents.

ICALP 2023
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Our bound on pessimistic distortion assumes that the voters are chosen with replacement
as done in [10]. This directly gives us a bound on the distortion when voters are sampled
without replacement. It is easy to see that the difference in these bounds is of O( 1

n ). The
case where two or more identical voters are sampled out of three defaults to the Random
Dictator mechanism, which has constant distortion – the probability of this event is of O( 1

n ).
We consider bargaining schemes satisfying one or more of the following constraints,

namely a) Pareto efficiency, b) Invariance to Affine Transformation, c) Symmetry, and
d) Independence of Irrelevant Alternatives. Bargaining schemes that satisfy all of these
constraints are the class of Nash bargaining schemes denoted by N [6].

▶ Definition 10. An outcome of N (a, b, c), the Nash bargaining between two voters with
preferred budgets a and b and the disagreement point c, is a budget z which maximizes the Nash
product (u(a, z)−u(a, c))× (u(b, z)−u(b, c)), subject to individual rationality u(a, z) ≥ u(a, c)
and u(b, z) ≥ u(b, c), and in case of a tie between possible outcomes, maximizes u(c, z).

The fact that N breaks ties in favor of the disagreement point is crucial for the distortion
of triadic scheme with bargaining schemes in N to be smaller than 2. It is also crucial for
the membership of N in a class of bargaining schemes that maximize the sum of overlap
utilities of the bargaining agents and the disagreement point. We now define this class of
bargaining schemes.

▶ Definition 11. M is the class of median schemes if any outcome z ∈ M(a, b, c)
maximises the sum of utilities with budgets a, b and c i.e. u(z, a) + u(z, b) + u(z, c).

The following important result is proved in Appendix A.11 in the extended version [17].

▶ Theorem 12. Every scheme in N is also a median scheme i.e. N ⊆ M

3 Incremental allocation space

We now give a function that captures the marginal preferences of a subset of voters S

regarding the allocation to project j, relative to the preference of the other voters (i.e., P \S).
This function will be useful as an analytical tool in the paper. Specifically,

▶ Definition 13. Given a vote profile P = (v1, v2, . . . , vn), and project j, the incremental
project allocation Xj,P : 2[n] → [0, 1] maps a subset of budgets S to

Xj,P (S) = max
((

min
i∈S

vi,j

)
−

(
max

i∈P \S
vi,j

)
, 0

)
.

Here max and min over ∅ are defined as 0 and 1, respectively. Xj,P (S) denotes the amount
by which the budgets in S all agree on increasing the allocation to project j above the
maximum allocation to j by any budget in P\S. Summing this quantity over all projects
j ∈ [m] gives us XP (S), which is defined in the following.

▶ Definition 14. For a vote profile P, the incremental allocation XP : 2[n] → R is
XP (S) =

∑m
j=1 Xj,P (S) for all S ⊆ P.

We use XP (.) in §5 since its complexity is dependent only on the number of voters n and
not on the number of projects m. This helps us give results valid for arbitrarily large values
of m. We illustrate the functions Xj,P (·) and XP (·) in the following example.
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▶ Example 15. Consider an instance of PB with three projects and a vote profile P with three
budgets a = ⟨1, 0, 0⟩, b = ⟨0, 1, 0⟩, and c = ⟨0.25, 0.25, 0.5⟩. 5 Then, X1,P (a) = 0.75. This is
because the budget a has allocation 1 to project 1, out of which only 0.75 is incremental
on top of max(b1, c1). Also, X2,P (a) = X3,P (a) = 0. As a result, XP (a) = 0.75. Similarly
X2,P (b) = XP (b) = 0.75. Also, X3,P (c) = XP (c) = 0.5. Further, XP (ac) = 0.25. This is
because the subset {a, c} has a minimum allocation of 0.25 to project 1 among themselves.
It is also incremental since b1 = 0. Further, we have X1,P (abc) = X2,P (abc) = X3,P (abc) =
XP (abc) = 0. This is because the group of all three budgets has no allocation that is common
to all. Finally, XP (∅) = X3,P (∅) = 0.5 because no budget allocated funds more than 0.5 to
project 3.

We use P(P ) to denote the power set of P . We now give an important corollary regarding
the function Xj,P (·).

▶ Corollary 16.
∑

S∈P(P ) Xj,P (S) = 1, ∀j ∈ [m].

A proof is given in Appendix A.8 in the extended version [17]. Corollary 16 says that
every incremental allocation to project j by budgets in S adds up to 1 when summed over
all subsets S (this includes the empty set; Xj,P (∅) > 0 implies that no voter allocated the
full 1 unit budget to project j).

3.1 Projection On Incremental Allocations
We now give a projection of Xj,P from P to Q ⊆ P to get Xj,Q. This operation has two
applications in this paper. First, it enables us to study the allocations of an outcome z

relative to the vote profile P by making projections from P ∪ {z} to P. Second, it is used to
study the outcomes of bargaining with a subset Q ⊆ P of voters with respect to the entire
vote profile P via projections from P to Q.

▶ Lemma 17. For any vote profile P and Q ⊆ P , the projection from P to Q is
Xj,Q(S) =

∑
Ŝ∈P(P \Q) Xj,P (Ŝ ∪ S) for all S ∈ P(Q), and all j ∈ [m]. Summing over

j ∈ [m], XQ(S) =
∑

Ŝ∈P(P \Q) XP (Ŝ ∪ S).

A proof is given in Appendix A.9 in the extended version [17]. Lemma 17 captures an
important technical fact. To calculate the incremental project allocation function on S over
a vote profile Q ⊆ P , i.e., XQ(S), we may sum XP (·) over all subsets of budgets in P which
contain all elements of S but no element of Q \ S. Note that here S ⊆ Q ⊆ P.

We now consider the problem of analyzing an outcome z with the help of the incremental
allocation function. Towards this, we define the function Zj,P (S) with respect to an outcome
z with the help of the projection operation described in Lemma 17.

▶ Definition 18. For vote profile P and budget z, define Zj,P : 2[n] → [0, 1] as Zj,P (S) =
Xj,P ∪{z}(S ∪ {z}) ∀S ⊆ P.

Recall from Definition 13 that Xj,P (S) denotes the amount by which all budgets in S

want to increase the allocation to project j over the maximum allocation to j by any budget
in P \ S. The quantity Zj,P (S) denotes the amount by which the outcome budget z “accepts”
this preference of S. Naturally, Zj,P (S) ≤ Xj,P (S).

Analogous to summing Xj,P (S) over all j ∈ [m] to get XP (S), we can sum Zj,P (S) over
all j ∈ [m] to get ZP (S).

5 For brevity, we omit braces and commas in the argument of X.

ICALP 2023
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▶ Definition 19. For vote profile P and budget z, define ZP (S) : 2[n] → [0, 1] as ZP (S) =∑m
j=1 Zj,P (S) ∀S ⊆ P.

ZP (S) informally denotes the amount by which outcome budget z “accepts” the preference
of S for increasing allocations above the allocations of P \ S across all projects. See that
ZP (S) ≤ XP (S).

▶ Corollary 20. For any vote profile P and budget z, Zj,P (S) ≤ Xj,P (S) for all j ∈ [m].
Summing over j ∈ [m], ZP (S) ≤ XP (S).

Proof. Follows directly from Lemma 17 since Xj,P (S) = Zj,P (S) + Xj,P ∪{z}(S) (we are
projecting from P ∪ {z} to P ). ◀

▶ Corollary 21.
∑

S∈P(P ) Zj,P (S) = zj for all vote profiles P and z ∈ B. Summing over all
projects j ∈ [m], we get

∑
S∈P(P ) ZP (S) = 1.

Proof. We have zj = Xj,{z}({z}) [Definition 13]. Apply Lemma 17 by doing a projection
from P ∪ {z} to {z}. ◀

This result captures, in the incremental common budget space, the fact that the total
funds allocated by a budget z to projects j ∈ [m] is 1. The following example illustrates
Zj,P (S).

▶ Example 22. Consider vote profile P = {a, b, c} with two projects. Let the budgets
a, b, and c be ⟨0.2, 0.8⟩, ⟨0.5, 0.5⟩, and ⟨0.8, 0.2⟩ respectively. Let the outcome budget z be
⟨0.4, 0.6⟩. In this case, X2,P (ab) = 0.3 and Z2,P (ab) = 0.3 since the excess allocation by
outcome z to project 2 over the allocation by budget c (i.e., 0.4) is larger than the least
excess allocation to project 2 by budgets a and b over allocation in budget c (i.e., X2,P (ab)
which is 0.3). In other words, the entire incremental allocation to project 2 by budgets
a and b is accepted by outcome z. However, X2,P (a) = 0.3 but Z2,P (a) = 0.1 since the
incremental allocation to project 2 by budget z over budgets b and c is 0.1. Thus only a
partial incremental allocation to project 2 by budget a is “accepted” by budget z.

4 Overview of Median and Nash bargaining schemes

Recall the triadic mechanism from § 2.2 and we characterize its outcome. Let the disagreement
point be c and the preferred budgets of the agents chosen randomly for the mechanism be a and
b. For simplicity of notation, we denote X{a,b,c}(S) by X(S) for S being any subset of {a, b, c}6.
We also denote the outcome budget of the bargaining by z and Z(a,b,c)(S) = X{a,b,c,z}(S∪{z})
by Z(S) for S ⊆ {a, b, c}.

4.1 Overview of class of schemes M and N
In Figure 1, we illustrate the incremental allocations {X(S)}S⊆{a,b,c} with budgets a, b, and c

on a Venn diagram. Recall from Definition 19 that Z(S) denotes what incremental allocation
from X(S) is “accepted” by outcome z. For the construction of Z(·), the bargaining agents
first select all the allocations “agreed” to by at least two of the three budgets. In Figure 1,
this corresponds to the area of the overlaps. Now, we have two cases, i.e. the total allocation
to Z is less than 1 or exceeds 1. We denote the difference between 1 and the total allocation
to Z by Excess.

6 Note that we do not consider XP (·) in this section where P is the set of the preferred budgets of all the
voters, even those not involved in the bargaining.
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Figure 1 Incremental allocations with two preferred budgets of bargaining agents a and b, and
disagreement point c.

Consider the case when the total allocation to Z(S) is less than 1. Here, the agents need
to make further allocations worth Excess. Under the class of median schemes M [described
in §4.3], they may select project allocations from X(a),X(b), and X(c) arbitrarily into the
outcome z and thus into Z(a), Z(b) and Z(c). In Figure 1, this corresponds to the area
covered by exactly one of the budgets. However, under Nash bargaining schemes N , they
select allocations worth excess

2 from each of X(a) and X(b).
Now, consider the case when the total allocation to Z(S) is more than 1. In this case,

under median schemes, M, the participating agents select total project allocations worth
Excess arbitrarily from X(ab),X(bc) and X(ca) and remove allocations to these projects. In
Figure 1, this corresponds to the area of the overlap of exactly two budgets. However, under
Nash bargaining schemes N , they select allocations worth |Excess|

2 from each of X(ac) and
X(bc) and remove allocations to these projects from the outcome z.

The following lemma characterizes the overlap of the outcome z ∈ N (a, b, c) with the
budgets a, b, and c, in terms of the incremental allocation functions X(·) and Z(·).

▶ Lemma 23. For any preferred budgets of bargaining agents a and b, disagreement point c,
and outcome z of N (a, b, c),

Z(abc) = X(abc), Z(ab) = X(ab),
Z(ac) = X(ac) + min(Excess/2, 0),
Z(bc) = X(bc) + min(Excess/2, 0),
Z(a) = Z(b) = max(0, Excess/2),
Z(c) = Z(∅) = 0.

Where, Excess = (1 − X(abc) − X(ab) − X(ac) − X(bc)).

Proof Sketch. In Nash bargaining, no part of z is such that it is not preferred by both a

and b. That is, Z(c) = Z(∅) = 0. Otherwise, we could construct a new outcome z′ that
reallocated the funds from Z(c) or Z(∅) to Z(a) and Z(b). This would increase u(a, z) and
u(b, z) and thus z would not be Pareto optimal. The parts of z that benefit both a and b

must be maximized. That is, Z(abc) = X(abc) and Z(ab) = X(ab). Otherwise, we could
construct a new outcome z′ that reallocates funds from any other project to the project that
benefits both a and b, thus showing that z is not Pareto optimal. The remaining part of the
proof is technical and is in Appendix A.12 in the extended version [17]. ◀

We give an explanation of the construction of the Nash bargaining solution z (and
correspondingly Z) in three steps.7

7 The steps are only for illustration purposes. There is no chronology or structure required in bargaining
processes. We can only characterize the outcome.

ICALP 2023



70:10 Low Sample Complexity Participatory Budgeting

Step 1: The voters with preferred budgets a and b mutually decide to allocate funds to
projects that benefit both of them. This means, for all projects j ∈ [m], zj = min(aj , bj).
In terms of X(·) and Z(·), this corresponds to Z(abc) = X(abc) and Z(ab) = X(ab). At this
point, Z(·) is zero for all other subsets of {a, b, c}.

Step 2: At this point, the total allocation to projects in the bargaining outcome z may
be less than 1. The bargaining agents now allocate more funds to the projects j ∈ [m] for
which zj < max(aj , bj) and zj < cj . Now zj is set to the “median” of (aj , bj , cj) for all
projects j ∈ [m]. In terms of X(·) and Z(·), this corresponds to setting Z(ac) = X(ac) and
Z(bc) = X(bc).
Step 3: Now, two possibilities arise for the total amount of funds allocated in z so far, i.e.,
the bargaining agents have either over-spent or under-spent the total funds. These cases are
central to the analysis in the paper and will be revisited several times.
Case 1: The total funds currently allocated in z is at most 1, i.e., Z(ab) + Z(bc) + Z(ac) +
Z(abc) ≤ 1. This is same as:

X(ab) + X(bc) + X(ac) + X(abc) ≤ 1. (1)

Recall the definition of Excess in Lemma 23. In this case, since there is a positive Excess,

the bargaining agents now allocate more funds to projects with zj < max(aj , bj). Since in
Nash bargaining we assume equal importance of the overlap utilities of both the bargaining
agents, they divide the Excess equally. They incrementally fund projects with zj < aj and
the projects with zj < bj with Excess/2 amount each. They ensure that zj ≤ max(aj , bj).
The precise manner of doing so is not important to satisfy the axioms of Nash bargaining.
In terms of Z(·), this corresponds to setting Z(a) = Z(b) = Excess/2.
Case 2: The total funds currently allocated in z exceeds 1, i.e., Z(ab) + Z(bc) + Z(ac) +
Z(abc) ≥ 1. This is same as:

X(ab) + X(bc) + X(ac) + X(abc) ≥ 1. (2)

If we are in this case, then the bargaining agents have overspent the funds and Excess
is negative. They need to remove −Excess amount of allocations from z. Recall that
at this point, zj is set to the median of (aj , bj , cj) for all projects j ∈ [m]. They remove
funds from projects with (zj > aj) and the projects with (zj > bj) with Excess/2 amount
each. They ensure that zj ≥ min(aj , bj). The precise manner of doing so is not important
to satisfy the axioms of Nash bargaining. In terms of Z(·), this corresponds to setting
Z(ac) = X(ac) + Excess/2, and Z(bc) = X(bc) + Excess/2.

We now give a randomized way of allocating the Excess funds in Step 3 while satisfying
the axioms of Nash bargaining.

4.2 Randomised Nash bargaining solution nrand

Case 1: Denote sa
j = max{aj − zj , 0} for all projects j.8 To projects with sa

j > 0, allocate
incremental funds ra

j at random such that E[ra
j ] is proportional to sa

j . The sum of ra
j over all

j ∈ [m] is Excess/2 and no incremental allocation ra
j is more than sa

j .9 A similar process is
followed for projects j with zj < bj by defining sb

j = max{bj − zj , 0} and making incremental
allocations rb

j summing to Excess/2, E[rb
j ] proportional to sb

j , and with rb
j ≤ sb

j .

8 This precisely corresponds to Xj,Q(a) in the incremental allocation space.
9 The randomness of this process is the same as the hypergeometric distribution with (discretized) sa

j

balls corresponding to each project j ∈ [m] in an urn, and we pick (discretized) Excess/2 balls without
replacement to provide incremental allocations.
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Case 2: Denote ta
j = max{zj − aj , 0} for all projects j ∈ [m].10 From projects with ta

j > 0,
remove ra

j amount of previously allocated funds at random such that E[ra
j ] is proportional

to ta
j . The sum of ra

j over all j ∈ [m] is −Excess/2 and with ra
j ≤ ta

j . A similar process is
followed for projects with zj > bj by defining tb

j = max{zj − bj , 0} and removing allocations
rb

j from project j summing to Excess/2, E[rb
j ] proportional to tb

j , and with rb
j ≤ tb

j .

We now give a characterization of median schemes M in terms of Z [recall that N ⊆ M
from Theorem 12 in §2.2].

4.3 Median schemes M
▶ Theorem 24. For any budgets a, b, c ∈ B, a budget z ∈ B is in M(a, b, c) if and only if it
satisfies the following conditions.
1. Z(abc) = X(abc) and Z(∅) = 0.
2. In Case 1: Z(ab) = X(ab), Z(bc) = X(bc), Z(ca) = X(ca).
3. In Case 2: Z(a) = Z(b) = Z(c) = 0.

The proof of this theorem is technical and is given in Appendix A.10 in the extended
version [17].

Note that all the conditions on the outcomes of the bargaining schemes in M are symmetric
in all three of {a, b, c}. However, outcomes in N also satisfy some additional conditions
which may not be symmetric in all three of {a, b, c}.

We now give a lower bound on Distortion(N ). Since M contains N , this bound also
applies to Distortion(M). Moreover, the same bound also holds for the distortion of nrand.

▶ Theorem 25. Distortion(M) ≥ Distortion(N ) > 1.38.

Also, Distortion(nrand) > 1.38.

Proof. The proof is by the following example of a PB instance. Suppose there are nA + nB

voters and nA + 1 projects for some nA, nB ≥ 1. Let oi denote the budget where the i-th
project receives allocation 1 and all the other projects get allocation 0. Each voter i in group
A (i ∈ [nA]) prefers budget oi. Each voter i in group B (i ∈ [nA + nB ] \ [nA]) prefers budget
onA+1. The analysis of this example is in Appendix A.4 in the extended version [17] where
we set nA = 2200; nB = 3000. ◀

We now give upper bounds of the distortion of M.

5 Distortion Of Schemes in M

To find an upper bound of the distortion of triadic scheme with any bargaining scheme, we
use a technique introduced in [10], called pessimistic distortion (PD). In this technique, we
first analyze the distortion for a small group of voters, call it PD, and then show that the
distortion over all voters cannot be more than the PD. Specifically, in this paper, we analyze
the PD for a group of 6 voters. The idea is that we allow the counterfactual solution to
choose a separate “optimal” budget for every 6-tuple of voters, thereby attaining a smaller
social cost than a common outcome for all voters. On the other hand, for our mechanism, we
consider the expected social cost under one outcome. This is why the distortion calculated is
pessimistic. Formally:

10 This precisely corresponds to Xj,Q(bc) in the incremental allocation space.
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▶ Definition 26. The pessimistic distortion (PD) of the class of mechanisms M with
triadic scheme with 6 voters is:

PD(M) = sup
P ∈B6; h∈M

1
20

∑
Q∈C([6],3)

1
3

∑
i∈[6]\Q

d(h(Q), Pi)

min
p∈B

1
6

∑
i∈[6]

d(p, Pi)
.

Here C(S, k) denotes the set of all k-combinations of set S.11

Notice that in the definition of PD, we only consider the cost for the non-bargaining
agents (same as in [10]). We illustrate the PD in Figure 2, where the bargaining is over
budgets {a, b}, the disagreement point is c, and the cost is computed only for {d, e, f}, the
budgets not involved in the bargaining. This definition is more pessimistic than considering
all agents’ costs. Further, since the outcome of M is symmetric in {a, b, c}, we can use any
combination Q of three voters to compute the outcome of bargaining without designating
one of the budgets as the disagreement point. The next result, proved in Appendix A.14 in

Figure 2 Illustration of PD where a, b, c are sampled for the mechanism M, and {d, e, f} are the
other budgets for which we measure the cost of outcome z.

the extended version [17], is that the distortion of any bargaining scheme in M with triadic
scheme cannot be more than its PD with triadic scheme with only 6 voters.

▶ Lemma 27. Distortion(M) ≤ PD(M).

We now give a representation of the overlap utilities u(·, ·) (equivalently the cost d(·, ·)), in
terms of the incremental allocations XP (S). This representation is of technical importance
for proofs.

▶ Lemma 28. For budgets {a, b}, and a vote profile P that includes {a, b}, we have u(a, b) =
X(ab)(ab) (1)=

∑
Ŝ∈P(P \{a,b}) XP (Ŝ ∪ {a, b}).

Proof. From Definition 3, we have u(a, b) =
∑m

j=1 min(aj , bj). From Definition 13 we have∑m
j=1 min(aj , bj) =

∑m
j=1 Xj,(a,b)(ab) = X(ab)(ab). Now apply Lemma 17 with Q = S =

{a, b}, to obtain equality (1). ◀

11 For simplicity of notation, we use n(Q) in place of n(PQ1 , PQ2 , PQ3 ) in PD.
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Lemma 28 shows that the overlap utility between two budgets a, b is the same as the
sum of what a, b, and all subsets of the other budgets in P have in common via the
incremental allocation function XP (S). For example, if P = (a, b, c, d), then u(a, b) =
XP (ab) + XP (abc) + XP (abd) + XP (abcd).

Lemma 28 is useful for the proof of the following important result, which is an upper
bound for PD(M).

▶ Lemma 29. PD(M) ≤ 1.80.

We give a sketch of the proof here. The detailed proof is in Appendix A.15 in the extended
version [17].

Proof Sketch. Let pQ denote a budget obtained on bargaining with budgets in set Q using
a bargaining scheme in M. Note that mechanisms in M are symmetric in Q therefore, we
do not need to designate a disagreement point in Q for analysis.

PD(M) = sup
P ∈B6; h∈M

1
60

∑
Q∈C([6],3)

∑
i∈[6]\Q d(h(Q), Pi)

1
6 minv∈B

∑
i∈[6] d(v, Pi)

,

≤ sup
P ∈B6

1
60

∑
Q∈C([6],3) suppQ∈M(Q)

∑
i∈[6]\Q d(pQ, Pi)

1
6 minv∈B

∑
i∈[6] d(v, Pi)

.

Suppose that PD(M) > 1.80. Then the following optimization problem has an optimal
objective value strictly greater than 0.

maximize 1
60

∑
Q∈C([6],3)

∑
i∈[6]\Q

d(pQ, Pi) − 1.80 · 1
6

∑
i∈[6]

d(v, Pi),

subject to P ∈ B6,

pQ ∈ M(Q) ∀Q ∈ C([6], 3),
v ∈ B. (3)

To convert this problem into a linear program, we map it to the incremental allocation space
of the set of 6 budgets P = {P1, P2, . . . , P6}. Denote XP (·) by X(·) for simplicity of notation
in the optimization programs. Similar to Definition 19, we define V (S) = X(P ∪{v})(S ∪ {v})
via the “optimal” budget v and ZQ(S) = X(P ∪ {pQ})(S ∪ {pQ}) using the outcome of our
mechanism pQ, for each Q ∈ C([6], 3).

By Lemma 4, we write the cost in terms of the overlap utility d(pQ, Pi) = 2 − 2u(pQ, Pi),
which, by Lemma 28 and the definition of ZQ(S), equals 2 − 2

∑
S∈P(P \Pi) ZQ(S ∪ Pi).

Similarly, we have d(v, Pi) = 2−2
∑

S∈P(P \Pi) V (S∪Pi). To make the pQ ∈ M(Q) constraints
linear, we use case analysis.

Consider a given Q = {q1, q2, q3} ∈ C([6], 3) and a budget pQ ∈ B. Let X(S) = XQ(S)
and Z(S) = X(Q∪{pQ})(S ∪ {pQ}). Theorem 24 implies that pQ ∈ M(Q) if and only if the
following holds:

Case 1: If X(q1q2q3) + X(q1q2) + X(q1q3) + X(q2q3) ≥ 1, Z(q1) = Z(q2) = Z(q3) = 0.
Case 2: If X(q1q2q3) + X(q1q2) + X(q1q3) + X(q2q3) ≤ 1,
Z(q1q2) = X(q1q2), Z(q1q3) = X(q1q3), Z(q2q3) = X(q2q3).

We break each pQ ∈ M(Q) constraint into two cases. Since there are
(6

3
)

such constraints in
the optimization problem, there are 2(6

3) cases overall. We represent each case by a binary
string of length 20 where a 0 or 1 at each position denotes whether the triplet Q corresponding
to that position is in Case 1 or Case 2.
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However, most of these 2(6
3) cases are not unique up to the permutation of preferred

budgets, i.e. when the preferred budgets of different voters are permuted, we may move from
one case to another. Since these cases have the same objective value, we do not need to
solve all the cases. Exploiting further symmetries, we have 2136 unique cases, each of which
is formulated as a linear program with precise details in Appendix A.15 in the extended
version [17]. We obtain the optimal value for each case to be 0 hence, a contradiction. ◀

Using Lemmas 27 and 29, we get the following key result.

▶ Theorem 30. Distortion(M) ≤ 1.80.

6 Distortion of nrand

Recall the randomized Nash bargaining scheme nrand explained in § 4.2. In this section, we
derive an upper bound for it. Towards this, we first define a hypothetical bargaining scheme
ñrand. This scheme is hypothetical because it assumes that the bargaining agents use some
knowledge about the preferred budgets of the non-bargaining agents to break ties among
potential outcomes. We then show in Lemma 32 that the Distortion of nrand is at most as
much as that of ñrand. We then bound the Distortion of ñrand by its expected pessimistic
distortion (EPD), a quantity similar in essence to the PD. We define the EPD in Definition 33.
Our main technical contribution in this section is the analysis of the EPD of ñrand, which we
do by expressing it as the solution of a bilinear optimization problem.

6.1 Construction of bargaining solution in ñrand

Recall Definition 18 of Zj,P (·) for an outcome budget z. Also recall that Zj,P (·) satisfies
Corollaries 20 and 21. For ñrand, we characterize the outcome in the incremental allocation
space; denoted by Z̃j,P (·). Same as Zj,P (·), Z̃j,P (·) also satisfies Corollaries 20 and 21, i.e.,

0 ≤ Z̃j,P (S) ≤ Xj,P (S)∀S ∈ P(P ) and all j ∈ [m]. (4)
m∑

j=1
Z̃j,P (S) = Z̃P (S) and,

∑
S∈P(P )

Z̃P (S) = 1. (5)

Before describing the construction of ñrand, we now give the following result on the overlap
utility u(a, z) of outcome budget z and any budget a ∈ P in terms of ZP (S).

▶ Lemma 31. For a vote profile P, a budget a ∈ P, and any budget z, the overlap utility is
u(a, z) =

∑
S∈P(P )|S∋a ZP (S).

Proof. In Lemma 28, use z for b, a for a, and P ∪ {z} for P . ◀

By Lemma 31, u(v, Z̃P ) =
∑

S∈P(P )|S∋a Z̃P (S).12 Similarly, the cost can be given by
d(v, Z̃P ) = 2 − 2u(v, Z̃P ).

Let c be the disagreement point, and {a, b} be the preferred budgets of the agents chosen
to bargain. Denote Q = {a, b, c}. For the construction of Z̃P (·), we first do Step 1 and Step
2 from § 4. We then have for all j ∈ [m], Z̃j,P (S) = Xj,P (S) for all S ∈ P(P ) such that S

contains at least 2 elements of Q and Z̃j,P (S) = 0 for all other S ∈ P(P ). We then encounter
either Case 1 or Case 2, as in § 4.

12 Note the overload in the notation of the overlap utility; it was initially defined for a pair of budgets v
and z, here we define it for v and Z̃ where Z̃ captures z.
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Case 1: Here we need to allocate more funds to projects. Recall the construction of z

for nrand in § 4.2. Recall the random incremental allocations ra
j and rb

j used in nrand. For
the incremental allocations in ñrand we construct αj,P (S) = ra

j · (Xj,P (S)/Xj,Q(a))13 for
all {S | a ∈ S; b, c ̸∈ S} for all projects j ∈ [m]. Intuitively, this may be thought of as a
proportional selection of projects from every subset of budgets S. Similarly we construct
βj,P (S) = rb

j · (Xj,P (S)/Xj,Q(b)) for all {S | b ∈ S; a, c ̸∈ S} and all projects j ∈ [m].
Now, set Z̃j,P (S) = Z̃j,P (S) + αj,P (S) ∀ {S | a ∈ S; b, c ̸∈ S} and Z̃j,P (S) = Z̃j,P (S) +

βj,P (S) ∀ {S | b ∈ S; a, c ̸∈ S} and ∀ j ∈ [m].

Case 2: In this case we need to remove allocations from projects. Recall the construction
of z for nrand in § 4.2. Recall the removals of allocations ra

j and rb
j used in nrand. For

the removals of allocations in ñrand, we construct αj,P (S) = ra
j · (Xj,P (S)/Xj,Q(bc)) for all

{S | b, c ∈ S, a ̸∈ S} for all j ∈ [m]. Similarly we construct βj,P (S) = rb
j · (Xj,P (S)/Xj,Q(ac))

for all {S | a, c ∈ S; b ̸∈ S}.

Now, set Z̃j,P (S) = Z̃j,P (S) − αj,P (S) ∀ {S | b, c ∈ S; a ̸∈ S}, and Z̃j,P (S) = Z̃j,P (S) −
βj,P (S) ∀ {S | a, c ∈ S; b ̸∈ S} ∀ j ∈ [m].

We can now construct Z̃P (S) via Z̃P (S) =
∑m

j=1 Z̃j,P (S). With this, we now construct
Z̃Q as the outcome of the hypothetical bargaining process, via the projection from P to Q

That is, Z̃Q(S) =
∑

Ŝ∈P(P \Q) Z̃P (S ∪ Ŝ) [recall projection in Lemma 17].
See that {Z̃j,P (.)}j∈[m] satisfies Corollaries 20 and 21. Further, Z̃Q(.) satisfies all equations

of Lemma 23 [proof in Appendix A.16 in the extended version [17]].

6.2 Distortion under nrand

We now bound the distortion of the triadic scheme with bargaining scheme nrand by that of
the hypothetical scheme ñrand. A proof is in the Appendix A.18 in the extended version [17].

▶ Lemma 32. Distortion(nrand) ≤ Distortion(ñrand).

We now follow a similar approach as in §5 and define expected pessimistic distortion
under bargaining scheme ñrand as follows.

▶ Definition 33. The expected pessimistic distortion of ñrand with triadic scheme with
6 voters, EPD(ñrand) is

sup
P ∈B6

1
60

∑
c∈[6]

∑
{a,b}∈

C([6]\{c},2)

1
3

∑
i∈[6]\{a,b,c}

E[d(ñrand(a, b, c), Pi)]

min
p∈B

1
6

∑
i∈[6]

d(p, Pi)
.

▶ Lemma 34. Distortion(ñrand) ≤ EPD(ñrand).

The proof is similar to Lemma 27 and is in Appendix A.19 in the extended version [17].

▶ Lemma 35. EPD(ñrand) ≤ 1.66.

13 Note that αj,P (S) ≤ ra
j since Xj,P (S) ≤ Xj,Q(a) [follows from Lemma 17] and∑m

j=1

∑
S∈P(P )

S∋a,S ̸∋b,c

αj,P (S) = excess
2 since

∑
S∈P(P )

S∋a,S ̸∋b,c

Xj,P (S) = Xj,Q(S) [follows from Lemma 17]

and the fact that
∑m

j=1 ra
j = excess/2 [as defined in Case 1 in §4.2].
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The proof is similar to that of Lemma 29 and is presented in Appendix A.20 in the
extended version [17]. We present the key ideas of the proof here.

Proof Sketch. Recall the construction of Z̃j,P (.) ∼ ñrand(a, b, c) and consider Case 1. A
similar analysis holds for Case 2 as well.

We show in Appendix A.20 in the extended version [17] that E[Z̃P (S)] = γ1
aXP (S) for all

{S : S ∋ a; S ̸∋ b, c} and E[Z̃P (S)] = γ1
b XP (S) for all {S : S ∋ b; S ̸∋ a, c} for some variables

0 ≤ γ1
a, γ1

b ≤ 1. Here, γ1
a and γ1

b denote what fraction of allocation from the incremental
allocation XP (S) is “accepted” into Z̃P (S). In our optimization problem formulation
equation (29) in Appendix A.20 in the extended version [17], we use γ1

b , γ1
a as variables

of our optimization formulation, together with XP (S) and therefore we obtain a bilinear
program. We solve it with the Gurobi solver [18]. Similar to the proof of Lemma 27, we
remove the cases that are not unique to permutations of voters and use further symmetries
of the problem to reduce number of bilinear programs from 2(6

3) to 1244. ◀

Using Lemmas 32, 34, and 35, we get the following result.

▶ Theorem 36. Distortion(nrand) ≤ 1.66.

7 Empirical Results

Recall triadic scheme as described in §2.2. We now define a sequential deliberation mechanism
that could run bargaining over multiple rounds by setting the disagreement point for each
round as the outcome of the previous round as proposed in [11].

1. Pick a voter i uniformly at random. Set the disagreement point for the deliberation c to
their preferred budget vi.

2. Repeat the following process T times,
a. Pick two voters independently and uniformly at random with replacement. They

bargain with c as the disagreement point.
b. Set the disagreement point c to the outcome of the bargaining.

3. The outcome of the process is c.

Observe that on setting T = 1, we exactly get triadic scheme as §2.2. To evaluate
the distortion of sequential deliberation in PB empirically, we ran a simulation from the
online participatory budgeting elections in Boston in 2016 (n = 4, 482), Cambridge in 2015
(n = 3, 273), Greensboro in 2019 (n = 512), and Rochester in 2019 (n = 1, 563) where the
data were obtained from https://budget.pbstanford.org/. In these elections, projects
had a fixed cost, and voters participated in knapsack voting [15], in which they could choose
any number of projects as long as they fitted within the fund limits. Note that in this
simulation setup partial project funding is not allowed, unlike the setup in the theoretical
model. We further present simulation results in Figures 4a, 4b, 4c on real dataset from a
PB (participatory budgeting) process run by a non-profit organisation in Boston in 2016
where they used a fractional allocation setting, more aligned with our theoretical work.

To simulate sequential deliberation, we picked a voter uniformly at random to set their
preferred budget as the disagreement point. We then picked another two voters independently
and uniformly at random and calculated a Nash bargaining solution between them. We
assumed that everyone voted truthfully. We then made the bargaining outcome the new
disagreement point and repeated the deliberation process for T = 10 rounds. We repeated this
entire simulation 10, 000 times for each PB election. The average distortion after each round
of deliberation is shown in Figure 3a. The point corresponding to 0 rounds of deliberation is

https://budget.pbstanford.org/
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Figure 3 (a) The average distortion after each round of sequential deliberation in a simulation
using the data from PB elections in four cities. The simulation was run 10,000 times for each city.
(b) The standard deviation (SD) of the fund allocation to each project in the simulation of sequential
deliberation in the PB election in Cambridge. Each line represents a project.

(a) Histogram of triadic scheme. (b) Average distortion. (c) SD of distortion.

Figure 4 Distortion results on PB platform in Boston under the fractional allocation setup

the first disagreement point and is selected uniformly at random. Since voters did not have
to use all the budget available, we added an “unspent” project and allocated the unspent
budget of each voter to this project. We normalized the budget to sum to 1 in each election.

The mean and standard deviation of the distortion after each round of sequential delibera-
tion for the fractional allocation setting as in the PB process in Boston is shown in Figures 4b
and 4c, respectively. A histogram plot of the distortion after one round of deliberation is
in Figure 4a. As before, we observe a quick convergence within three rounds of sequential
deliberation with the point corresponding to zero rounds of deliberation being the first
disagreement point.

The results from all the PB elections show that the average distortion is quite low, even
after only two rounds of deliberation. It also shows that the distortion converges quickly
within three rounds. Further, we measured the stability of the fund allocation to the projects
after each round of deliberation. We simulated sequential deliberation on the data from
the PB in Cambridge 1, 000, 000 times, each time with 10 rounds of deliberation. The fund
allocation to each project after each round was recorded. The fund allocation’s standard
deviation (SD) is shown in Figure 3b. We can see that the SD stabilizes after only three
rounds of deliberation.
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8 Triadic Scheme With Project Interactions

Mathematically, we model project interactions as follows: if projects in group q are perfect
complements of each other, then the overlap utility that voters can derive from each project
in q is the minimum funding of any project in q. For example, consider a proposal of buying
some computers for the community. Within this, one project is for buying hardware and
another one is for buying software. If the software and hardware projects are funded 0.2 and
0.5, then the community members can only use 0.2 each, and the extra funding of 0.3 for the
hardware project is wasted 14.

On the other hand, if the projects in group r are perfect substitutes, then the utility
that voters can derive from group r is the maximum funding of a project in r. Thus, if two
companies are paid 0.2 and 0.5 to do the same work, only 0.5 will be used, and 0.2 is wasted.

We now give a formal model of the set of projects. Let mc denote the number of groups of
perfect complementary projects, ms denote the number of groups of perfect substitute projects,
and mr denote the number of regular projects. Let s(q) denote the number of projects in
group q. For groups of perfect complementary and perfect substitute projects, s(q) ≥ 2 and
for regular projects s(q) = 1. The total number of projects is m =

(∑mc+ms

q=1 s(q)
)

+ mr. For
simplicity, project groups are arranged such that groups 1, . . . , mc are perfect complementary,
groups mc + 1, . . . , mc + ms are perfect substitutes, and mc + ms + 1, . . . , mc + ms + mr are
regular projects.

Let f(b) be the efficiency function which quantifies how much budget b respects the
project interactions. Specifically, f(b) takes a budget b ∈ Rm and outputs a vector in
Rmc+ms+mr , where

f(b)q =


s(q) · min({bj | j ∈ group q}) if q ∈ [1, mc] (perfect complementary groups),
max({bj | j ∈ group q}) if q ∈ [mc + 1, mc + ms], (perfect substitute groups)
{bj | j ∈ group q} otherwise. (regular projects).

For a group of perfect complementary projects, the corresponding output element is the
bottle-neck allocation in the group, multiplied by the number of projects in the group. For a
group of perfect substitute projects, the corresponding output element is the largest allocation
in that group. For regular projects, the corresponding output elements are the same as the
allocation to the project. We now give a modified definition of the overlap utility, accounting
for project interactions.

▶ Definition 37. The overlap utility of budgets a and b, accounting for project interactions

is u(a, b) =
mc+ms+mr∑

q=1
min(f(a)q, f(b)q).

In the following definition we formally state the requirements for a budget to be consistent
with the project interactions.

▶ Definition 38. A budget b respects the project interactions if and only if projects in
each perfect complementary group are all funded equally, and at most one project in each
perfect substitute group is funded at all.

The following lemma states that the efficiency function f(b) sums to 1 if and only if the
budget b respects the project interactions.

14 This is a stylized model and in general, the scale of the funds required for each project can be very
different.
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▶ Lemma 39. Budget b respects the project interactions iff the efficiency function f(b)
satisfies

∑
q f(b)q = 1. Otherwise,

∑
q f(b)q < 1.

We now give a result that a Pareto improvement exists over a budget that does not
respect the project interactions.

▶ Lemma 40. If
∑

q f(b)q < 1, then for some k ∈ [mc + ms + mr], there exists a budget b′

for which f(b′)k > f(b)k and f(b′)q ≥ f(b)q for all project groups q.

The proofs of lemmas 39 and 40 are presented in Appendix A.5 and A.6 in [17].
We now give the main result of this section. We show that if either of the budgets of the

bargaining agents respect the project interactions (which will be true for rational agents),
then the outcome of any median scheme respects project interactions. Since the class of
median schemes contains the class of Nash bargaining schemes (Theorem 12), this result also
applied to N and therefore also to our randomized bargaining scheme nrand.

▶ Theorem 41. If budget a or b respects the project interactions, then for any budget c ∈ B,

M(a, b, c) respects the project interactions.

Proof. Let z be an outcome from M(a, b, c). Assume without loss of generality that budget
a respects the project interactions, and suppose that outcome z does not. By Lemma 39,∑

q f(a)q = 1 and
∑

q f(z)q < 1. Thus, there exists some k where f(a)k > f(z)k. By
Lemma 40, there exists a budget z′ which respects the project interactions and f(z′)q ≥ f(z)q

for all project groups q and f(z′)k > f(z)k. The overlap utility functions satisfy:

u(a, z′) =
∑

q

min(f(a)q, f(z′)q) >
∑

q

min(f(a)q, f(z)q) = u(a, z),

u(b, z′) =
∑

q

min(f(b)q, f(z′)q) ≥
∑

q

min(f(b)q, f(z)q) = u(b, z).

u(c, z′) =
∑

q

min(f(c)q, f(z′)q) ≥
∑

q

min(f(c)q, f(z)q) = u(c, z).

This implies that the sum of overlap utilities of a, b, and C with z′ is higher than that with
z, a contradiction for an outcome of M. ◀

Theorem 41 implies that if every voter has a preferred budget that respects the project
interactions, then the outcome of the sequential deliberation mechanism will also respect the
project interactions, no matter how many rounds it runs.

9 Conclusion

We study low sample-complexity mechanisms for PB, which are particularly attractive when
the policymakers are interested in obtaining a quick estimate of the voter’s preferences
or when a full-fledged PB election is difficult or costly to conduct. In our PB setup, the
distortion of mechanisms that obtain and use the votes of only one uniformly randomly
sampled voter is 2. Extending this result, we show that when two voters are sampled, and a
convex combination of their votes is used by the mechanism, the distortion cannot be made
smaller than 2. We then show that with 3 samples, there is a significant improvement in
the distortion – we give a PB mechanism that obtains a distortion of 1.66. Our mechanism
builds on the existing works on Nash bargaining between two voters with a third voter’s
preferred outcome as the disagreement point. We also give a lower bound of 1.38 for our
mechanism.
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