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Abstract
Algorithmic self-assembly occurs when components in a disorganized collection autonomously combine
to form structures and, by their design and the dynamics of the system, are forced to intrinsically
follow the execution of algorithms. Motivated by applications in DNA-nanotechnology, theoretical
investigations in algorithmic tile-based self-assembly have blossomed into a mature theory with
research strongly leveraging tools from computability theory, complexity theory, information theory,
and graph theory to develop a wide range of models and to show that many are computationally
universal, while also exposing a wide variety of powers and limitations of each. In addition to
computational universality, the abstract Tile-Assembly Model (aTAM) was shown to be intrinsically
universal (FOCS 2012), a strong notion of completeness where a single tile set is capable of simulating
the full dynamics of all systems within the model; however, this result fundamentally required
non-deterministic tile attachments. This was later confirmed necessary when it was shown that the
class of directed aTAM systems, those in which all possible sequences of tile attachments eventually
result in the same terminal assembly, is not intrinsically universal (FOCS 2016). Furthermore,
it was shown that the non-cooperative aTAM, where tiles only need to match on 1 side to bind
rather than 2 or more, is not intrinsically universal (SODA 2014) nor computationally universal
(STOC 2017). Building on these results to further investigate the impacts of other dynamics, Hader
et al. examined several tile-assembly models which varied across (1) the numbers of dimensions
used, (2) restrictions imposed on the diffusion of tiles through space, and (3) whether each system is
directed, and determined which models exhibited intrinsic universality (SODA 2020). Such results
have shed much light on the roles of various aspects of the dynamics of tile-assembly and their effects
on the universality of each model. In this paper we extend that previous work to provide direct
comparisons of the various models against each other by considering intrinsic simulations between
models. Our results show that in some cases, one model is strictly more powerful than another, and
in others, pairs of models have mutually exclusive capabilities. This direct comparison of models
helps expose the impacts of these three important aspects of self-assembling systems, and further
helps to define a hierarchy of tile-assembly models analogous to the hierarchies studied in traditional
models of computation.
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1 Introduction

Self-assembling systems are those in which a disorganized collection of simple components
spontaneously combine to form complex, organized structures through random motion and
local interactions. From the pristine, periodic arrangements formed by crystallizing atoms
to the robust coordination of dividing cells in developing organisms, such systems are the
source of much complexity in nature and a topic of critical importance to many fields of
research. Among them is the field of DNA nanotechnology, wherein artificial DNA strands
are used as structural units that self-assemble according to the dynamics of DNA base pairing,
which has seen immense success over the past several decades in harnessing the power of
self-assembly to create microscopic structures with incredible precision [3, 11, 12, 18] and
even perform algorithmic tasks at the nano-scale [4, 6, 13, 14, 17, 20, 24, 25]. Because it’s
difficult and expensive to accurately model the chemistry of DNA, a variety of simplifying
models have been proposed to facilitate the design of DNA-based self-assembling systems.
Among the more popular and effective ones are tile-assembly (TA) models where components,
made of several bound DNA strands exposing small unbound portions with which other
components can bind, are abstractly represented as geometric tiles whose labeled sides
attach to one another according to predefined affinity rules [5, 16, 22]. The advantage of
these models lies not only in their success as design tools, but in their similarity to existing
models studied heavily in computer science such as Wang tiles and cellular automata. This
similarity isn’t a coincidence either; the first TA model proposed, the abstract Tile-Assembly
Model (aTAM), was designed, at least in part, to show that the dynamics of DNA-based
self-assembly are algorithmically universal [22]. Consequently, DNA nanotechnology shares a
unique relationship with the theory of computation, with theorists frequently borrowing ideas
from complexity, computability, and information theory to study questions regarding, among
many other things, what kinds of structures can be self-assembled, the relative difficulty of
assembling different shapes, and how variations in a model’s dynamics affect its algorithmic
power. This paper is particularly focused on that latter question. As with more conventional

Figure 1 During an intrinsic simulation, the dynamics of individual tile attachments are simulated
so that blocks of tiles in the simulating system “look like” individual tiles at scale.

models of computation, we generally study such questions by proving whether one model
is capable of simulating all systems of another. We have to be careful about our definition
of simulation however, as it’s generally straightforward to show that many TA models are
capable of universal computation. Consequently, most TA models are capable of “simulating”
all others in that they can simulate a Turing machine which can in turn simulate the other
model. To learn something useful about the relative power of two TA models therefore, we
have to consider the geometry of the tile-assembly dynamics. We do this by adapting a
tool from the theory of cellular automata, namely intrinsic simulation. For a simulation
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to be intrinsic, we require that the simulation is not merely symbolic (i.e. how a Turing
machine can simulate an aTAM system by storing an internal representation of the tiles as
symbols on its tape), but rather geometric wherein blocks of tiles in the simulating system
correspond to individual tiles in the simulated system and the order of tile attachments
in these blocks follow those in the simulated system up to a fixed scale factor. In other
words, such a simulation would appear identical to the system being simulated if we “zoomed
out” sufficiently far. This approach is not novel to our results, in fact there is already a
relatively mature theory of intrinsic simulations in tile-assembly which has resulted in a
“kind of computational complexity theory for self-assembly” [23]. Such efforts have been
instrumental in characterizing the relative power of TA models and has lead to a deeper
understanding how different dynamics can be used for the same algorithmic purpose.

Our results
In an attempt to extend several previous results regarding intrinsic simulation, here we
consider 3 specific variations of the aTAM: dimensionality, where both 2D and 3D systems
are considered, diffusion, where tiles cannot attach in regions which have been surrounded by
previously attached tiles, and directedness, where tile attachments in a system are required
to result in exactly one terminal assembly. It’s important to note that these variations aren’t
arbitrary either. The difference between directed and undirected systems is analogous to the
difference between deterministic and probabilistic algorithms and, among other things, plays
a role in the study of the complexity of shape assembly [21, 10]. The diffusion restriction on
the other hand is often used to make 3D tile-assembly models more “realistic” by limiting
tile attachments to those locations in which a tile could reasonably diffuse (i.e. not in a
region completely surrounded by other tiles). These variations can be introduced into the
aTAM in any combination to yield 8 different models and, considering all ordered pairs of
these 8 models gives rise to a table consisting of 64 entries each representing one model’s
ability or inability to intrinsically simulate the dynamics of another. Generally speaking,
results regarding these cross-model simulations are complex, involving intricate tile-assembly
constructions and counterexamples; consequently, only a handful of these entries have been
proved in past literature.

In this paper, we fill a considerable number of missing entries. Table 1 lays out our results
along with past results denoted by an asterisk. In it, entries are labeled to indicate whether
the model in the row’s header can simulate the model in the column’s header. There are of
course a few entries for which the answer is obvious, which we state as observations with
justification rather than full theorems, but many of our results are distinctly non-trivial and
some were rather unexpected. For instance, while we initially suspected that the diffusion
restricted version of the aTAM (i.e. the Planar aTAM or PaTAM) was, as it’s name suggests,
a weaker version of the aTAM, we found that both models exhibit dynamics which cannot
be simulated by the other. While the table is still missing a few entries, our contributions
have brought the number of known entries up to 52 from the 16 which previously existed
in published literature (8 of which were technically not explicitly stated, but were trivial
observations based on the tile sets and proofs presented in [7]).1 The rest of our paper is laid
out as follows. In Section 2, we provide definitions of the various models and concepts used.

1 It should also be noted that most of the remaining unknown entries involve simulating directed, diffusion
restricted systems. While we do hope to fill these entries in the future, we suspect that their proofs will
be quite complicated since simulating diffusion restricted systems is tricky and counterexamples are
often harder to find in directed systems.
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Table 1 Table of our results, outlining whether the row’s model can intrinsically simulate the
column’s model. PaTAM is the Planar aTAM, 3DaTAM the 3-dimensional aTAM, and SaTAM
is the Spatial aTAM (see Section 2.2 for full definitions). All refers to the set of all systems in a
model and dir refers to the subset of directed systems. Cells marked with an asterisk (*) are existing
results and those marked with a dagger (†) are trivial observations using tile sets from existing
results. All other results are novel.

aTAM PaTAM
all dir all dir

aTAM
all yes* [2] no

(thm. 11, obs. 5)
?

dir no (thm. 9) no* [9] ?

PaTAM
all

no (thm. 10, obs. 5)
no* [7] yes (thm. 13)

dir no (thm. 9) no* [7]

3DaTAM
all yes†(obs. 7) ? ?
dir no (thm. 9) yes† (obs. 7) no (thm. 9) ?

SaTAM
all yes† (obs. 7) ? ?
dir no (thm. 9) yes† (obs. 7) no (thm. 9) ?

3DaTAM SaTAM
all dir all dir

aTAM
all

no (obs. 6)
dir

PaTAM
all
dir

3DaTAM
all yes* [7] no

(thm. 12, obs. 5)
?

dir no (thm. 9) yes* [7] ?

SaTAM
all yes† (obs. 8) yes* [7] ?
dir no (thm. 9) yes† (obs. 8) no (thm. 9) ?

Then in Section 3 we state our results explicitly and sketch their proofs. That section is
perhaps the most important since it is where we intuitively explain our results and describe
how they follow from the dynamics of the model. Complete proofs and technical details can
be found in a full version of the paper on arXiv [8].

2 Preliminary definitions

Throughout this paper we will use Z, Z+, and N to denote the set of integers, positive
integers, and non-negative integers respectively. We will also assume Zd has the additional
structure of a lattice graph so that each point is a vertex and two points are adjacent (i.e.
share an edge) exactly when their Euclidean distance is 1.

2.1 Definition of the abstract Tile-Assembly Model
In this section, we define the abstract Tile-Assembly Model in 2 and 3 dimensions. We will
use the abbreviation aTAM to refer to the 2D model and 3DaTAM for the 3D model. These
definitions are borrowed from [7] and we note that [19] is a good introduction to the model
for unfamiliar readers.
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Fix d ∈ {2, 3} to be the number of dimensions and Σ to be some alphabet with Σ∗ its
finite strings. A glue g ∈ Σ∗ × N consists of a finite string label and non-negative integer
strength. A tile type is a tuple t ∈ (Σ∗ × N)2d, thought of as a unit square or cube with a
glue on each side. A tile set is a finite set of tile types. We always assume a finite set of tile
types, but allow an infinite number of copies of each tile type to occupy locations in the Zd

lattice, each called a tile.
Given a tile set T , a configuration is an arrangement (possibly empty) of tiles in the

lattice Zd, i.e. a partial function α : Zd 99K T . Two adjacent tiles in a configuration interact,
or are bound or attached, if the glues on their abutting sides are equal (in both label and
strength) and have positive strength. Each configuration α induces a binding graph Bα whose
vertices are those points occupied by tiles, with an edge of weight s between two vertices
if the corresponding tiles interact with strength s. An assembly is a configuration whose
domain (as a graph) is connected and non-empty. The shape Sα ⊆ Zd of assembly α is the
domain of α. For some τ ∈ Z+, an assembly α is τ -stable if every cut of Bα has weight at
least τ , i.e. a τ -stable assembly cannot be split into two pieces without separating bound
tiles whose shared glues have cumulative strength τ . Given two assemblies α, β, we say α is
a subassembly of β (denoted α ⊑ β) if Sα ⊆ Sβ and for all p ∈ Sα, α(p) = β(p).

A tile-assembly system (TAS) is a triple T = (T, σ, τ), where T is a tile set, σ is a finite
τ -stable assembly called the seed assembly, and τ ∈ Z+ is called the binding threshold. Given
a TAS T = (T, σ, τ) and two τ -stable assemblies α and β, we say that α T -produces β in
one step (written α →T

1 β) if α ⊑ β and |Sβ \ Sα| = 1. That is, α →T
1 β if β differs from α

by the addition of a single tile. The T -frontier is the set ∂T α =
⋃

α→T
1 β Sβ \ Sα of locations

in which a tile could τ -stably attach to α.
We use AT to denote the set of all assemblies of tiles in tile set T . Given a TAS

T = (T, σ, τ), a sequence of k ∈ Z+ ∪ {∞} assemblies α0, α1, . . . over AT is called a T -
assembly sequence if, for all 1 ≤ i < k, αi−1 →T

1 αi. The result of an assembly sequence is
the unique limiting assembly of the sequence. For finite assembly sequences, this is the final
assembly; whereas for infinite assembly sequences, this is the assembly consisting of all tiles
from any assembly in the sequence. We say that α T -produces β (denoted α →T β) if there is
a T -assembly sequence starting with α whose result is β. We say α is T -producible if σ →T α

and write A[T ] to denote the set of T -producible assemblies. We say α is T -terminal if α is
τ -stable and there exists no assembly which is T -producible from α. We denote the set of
T -producible and T -terminal assemblies by A□[T ].

When T is clear from context, we may omit T from the notation above.

Cooperative Attachment

Given a TAS T = (T, σ, τ), for a tile to attach to an assembly it must match glues whose
cumulative strength is at least τ in order to result in a τ -stable assembly. This can happen
if, for instance, one of the matched glues has strength at least τ , in which case any other
matching glues are superfluous. Alternatively, a tile may still attach without any τ -strength
glues though this requires multiple glues to match whose strengths sum to at least τ . We
refer to such attachments as cooperative.

2.2 Model Variations
In this paper we consider 3 variations of the aTAM. Other than the 3D aTAM, these include
directed and diffusion restricted versions of the models. We say that a TAS T is directed if
|A□[T ]| = 1, i.e. T admits only a single producible terminal assembly. When we refer to a
directed model we simply mean the set of all directed systems in a model. Directed systems
are desirable for self-assembly since we often want our tiles to grow into a single target shape.

ICALP 2023
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For diffusion restricted models, we note that in the aTAM it’s possible for tiles to attach
within a region of space which has been completely surrounded by other tiles. In 2D, we can
imagine that the tiles are able to navigate around the assembly through the 3rd dimension,
but in 3D such attachments are difficult to justify. Consequently, we also consider models
where such attachments are forbidden. In 2D, this restriction could model a self-assembly
process on the surface of a droplet of water where surface tension prevents the components
from taking advantage of the 3rd dimension. We call the 2D diffusion restricted aTAM the
Planar aTAM or PaTAM, and we call the 3D diffusion restricted aTAM the Spatial aTAM
or SaTAM. In these models, and their directed subsets, we refer to regions which have been
completely surrounded (in which no tile attachments are allowed to occur) constrained. To
formally model this restriction, we first note that given a finite d-dimensional assembly α, the
graph Zd \ Sα consists of a finite number of connected components, exactly one of which will
be infinite in size. We say that this component graph is the outside of α while the finite-sized
components are constrained. In a diffusion restricted system we only allow tile attachments
on the outside of an assembly.

2.3 Intrinsic Simulation

First we provide a high-level definition of the notion of intrinsic simulation which should be
sufficient for understanding our results. A full technical definition follows afterward. For
brevity, in this paper, unless explicitly stated, “simulation” will refer to intrinsic simulation.

High-Level Description of Simulation

Simulation of system T by system S occurs at a scale factor m, so that m×m (or m×m×m

in 3D) blocks of tiles from S, which we refer to as macrotiles, correspond to individual
tiles in T . For a given simulation, we define a macrotile representation function R which
describes this mapping of macrotiles to tiles. Additionally for convenience, using R we define
an assembly representation function R∗ which maps entire assemblies from S to assemblies
in T , essentially evaluating R on each macrotile location for a given assembly in S. Note
that we don’t require all locations within a macrotile to contain a tile and macrotile blocks
containing tiles can still be mapped to empty space under R. When a tile attachment causes
the representation of a macrotile location to map to a tile for the first time, we say that
the attachment has caused the macrotile to resolve and once a macrotile has resolved, any
additional tile attachments within the macrotile cannot change its representation under
R. While we do allow macrotile locations to map to empty space, for a simulation to be
valid there must be restrictions on where tiles are allowed to attach in S. For our notion of
simulation to be useful as a metric of comparing the relative capabilities of models, we require
that S only place tiles within the macrotile regions immediately adjacent (not diagonally) to
those which have already resolved, and we call such locations fuzz. This allows tiles in S
to attach only in macrotiles which could potentially resolve during a valid simulation, since
only the locations in T mapped to by the fuzz locations could possibly receive tiles in T .
If a class of systems C can all be simulated by another class of systems C ′ sharing a single
tile set (though each may have a different seed assembly), we say that class C ′ intrinsically
simulates C with a universal tile set. We can also say that C ′ is intrinsically universal (IU)
for C.
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Formal Definition of Simulation

Now we provide formal definitions for intrinsic simulation. The definitions here are taken
from [7] and specifically refer to 3D systems. Similar definitions for 2D intrinsic simulation
are given in [9]. For simulation of a 2D system by a 3D system, we use the 3D definitions
and assume that all systems in the 2D system are defined in 3D so that assemblies occupy
only the z = 0 plane.

From this point on, let T be a tile set and let the scale factor be m ∈ Z+. An m-block
macrotile over T is a partial function α : Z3

m 99K T , where Zm = {0, 1, . . . , m − 1}. Let
BT

m be the set of all m-block macrotiles over T . The m-block with no domain is said to
be empty. For a general assembly α : Z3 99K T and (x′, y′, z′) ∈ Z3, define αm

(x′,y′,z′) to be
the m-block macrotile defined by αm

(x′,y′,z′)(ix, iy, iz) = α(mx′ + ix, my′ + iy, mz′ + iz) for
0 ≤ ix, iy, iz < m. For some tile set S, a partial function R : BS

m 99K T is said to be a valid
m-block macrotile representation from S to T if for any α, β ∈ BS

m such that α ⊑ β and
α ∈ dom R, then R(α) = R(β).

For a given valid m-block macrotile representation function R from tile set S to tile set
T , define the assembly representation function2 R∗ : AS → AT such that R∗(α′) = α if and
only if α(x, y, z) = R

(
α′m

(x,y,z)

)
for all (x, y, z) ∈ Z3. For an assembly α′ ∈ AS such that

R∗(α′) = α, α′ is said to map cleanly to α ∈ AT under R∗ if for all non empty blocks α′m
(x,y,z),

(x, y, z) + (ux, uy, uz) ∈ dom (α) for some (ux, uy, uz) ∈ U3 such that u2
x + u2

y + u2
z ≤ 1, or if

α′ has at most one non-empty m-block αm
0,0. In other words, α′ may have tiles on macrotile

blocks representing empty space in α, but only if that position is adjacent to a tile in α. We
call such growth “around the edges” of α′ fuzz and thus restrict it to be adjacent to only
valid macrotiles, but not diagonally adjacent (i.e. we do not permit diagonal fuzz).

In the following definitions, let T = (T, σT , τT ) be a TAS, let S = (S, σS , τS) be a TAS,
and let R be an m-block representation function R : BS

m → T .

▶ Definition 1. We say that S and T have equivalent productions (under R), and we write
S ⇔ T if the following conditions hold:
1. {R∗(α′)|α′ ∈ A[S]} = A[T ].
2. {R∗(α′)|α′ ∈ A□[S]} = A□[T ].
3. For all α′ ∈ A[S], α′ maps cleanly to R∗(α′).

▶ Definition 2. We say that T follows S (under R), and we write T ⊣R S if α′ →S β′, for
some α′, β′ ∈ A[S], implies that R∗(α′) →T R∗(β′).

The next definition essentially specifies that every time S simulates an assembly α ∈ A[T ],
there must be at least one valid growth path in S for each of the possible next steps that T
could make from α which results in an assembly in S that maps to that next step. While
this definition is unfortunately dense, it accommodates subtle situations such as where S
must “commit to” a subset of possible representations in T before being explicitly mapped,
under R, to any one in particular.

▶ Definition 3. We say that S models T (under R), and we write S |=R T , if for every
α ∈ A[T ], there exists Π ⊂ A[S] where Π ̸= ∅ and R∗(α′) = α for all α′ ∈ Π, such that, for
every β ∈ A[T ] where α →T β, (1) for every α′ ∈ Π there exists β′ ∈ A[S] where R∗(β′) = β

and α′ →S β′, and (2) for every α′′ ∈ A[S] where α′′ →S β′, β′ ∈ A[S], R∗(α′′) = α, and
R∗(β′) = β, there exists α′ ∈ Π such that α′ →S α′′.

2 Note that R∗ is a total function since every assembly of S represents some assembly of T ; the functions
R and α are partial to allow undefined points to represent empty space.

ICALP 2023
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Figure 2 An illustration of the window movie lemma. On the left are two producible assemblies
α = αL ∪ αR and β = βL ∪ βR made from the same tile set, which are each divided into two
subassemblies by the window w. For both assemblies, the window w has the same window movie, i.e.
the order in which tiles present glues along the window, depicted by numbers on the tiles describing
the relative order in which they attached. Since all growth within the windowed regions depends
only on the glues presented along the window, we can splice these assemblies to get αL ∪ βR or
βL ∪ αR (illustrated on the right). The window movie lemma then guarantees that both of these
assemblies are producible.

▶ Definition 4. We say that S intrinsically simulates T (under R) if S ⇔R T (equivalent
productions), T ⊣R S and S |=R T (equivalent dynamics).

2.4 Window Movie Lemma

In [15], the authors proved the Window Movie Lemma, a pumping lemma of sorts for the
aTAM (and its variants) which has since seen much use as a powerful tool for proving that
certain tile-assembly simulations are impossible. Since it appears in several of our proofs,
we first informally describe the lemma, then explicitly state it. A window is an edge cut
which partitions the lattice graph (Z2 in 2D or Z3 in 3D) into two regions. Given some
window w and some assembly sequence α⃗ in a TAS T , a window movie M is defined to be
the ordered sequence of glues presented along w by tiles in T during the assembly sequence α⃗.
Informally, if we think of the window w as a thin pane dividing two regions of tile locations
and imagine stepping through the assembly sequence α⃗ one tile attachment at a time, M is
constructed by recording the glues which appear on the surface of the pane and their relative
order. More formally, a window movie is the sequence M α⃗

w = {(vi, gi)} of pairs of grid graph
vertices vi and glues gi, given by order of appearance of the glues along window w during α⃗.
Furthermore, if k glues appear along w during the same assembly step in α⃗, then these glues
appear contiguously and are listed in lexicographical order of the unit vectors describing
their orientation in M α⃗

w .
Informally, the Window Movie Lemma states that any tile attachments that occur within

the region bounded by a window are possible in a region bounded by the same window (up
to translation) with an identical window movie. This allows us to splice assembly sequences
together and, consequently, pump a sequence of tile attachments so long as we can ensure the
existence of identical window movies. Figure 3 illustrates how the Window Movie Lemma
can be used to pump growth.
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Figure 3 Using the Window Movie Lemma to “pump” assembly sequences. The top assembly
depicts a ribbon of tiles growing horizontally to the right and numbers on tiles describe a relative
order of attachment. If such a ribbon of tiles grows long enough, then by pigeonhole principle,
eventually there must exist two identical vertical slices along its length. Because every tile attachment
inside a window w depends only on the tiles and their relative order of attachment along the window,
we can thus find an assembly sequence where growth repeats after the second identical vertical slice.
This can be performed indefinitely to “pump” the ribbon.

Window Movie Lemma

Let α⃗ = {αi} and β⃗ = {βi} be assembly sequences in TAS T and let α, β be the result
assemblies of each respectively. Let w be a window that partitions α into two configurations
αL and αR and let w′ = w + c⃗ be a translation of w that partitions β into two configurations
βL and βR (with αL and βL being the configurations containing their respective seed tiles).
Furthermore define M α⃗

w and M β⃗
w to be the window movies for α⃗, w and β⃗, w′ respectively.

Then if M α⃗
w = M β⃗

w, the assemblies αL ∪β′
R and β′

L ∪αR (where β′
L = βL − c⃗ and β′

R = βR − c⃗)
are also producible.

3 Results

In this section we sketch our results. Detailed proofs can be found in the full version on
arXiv [8]. We begin with some trivial observations which allow us to fill in several boxes
from Table 1.

▶ Observation 5. If there exists a directed system T in tile-assembly model M which cannot
be simulated by any system in tile-assembly model M ′, then (1) there exists a system in M

which cannot be simulated by any system in M ′, (2) there exists a system in M which cannot
be simulated by any directed system in M ′, and (3) there exists a directed system in M which
cannot be simulated by any directed system in M ′.

▶ Observation 6. There exists systems, both directed and undirected, in the 3D models
(3DaTAM and SaTAM) which cannot be simulated by any systems in any of the 2D models
(aTAM and PaTAM, both directed and undirected).

Observation 5 holds because the set of directed systems in a model is a subset of all
systems in that model. Consequently, T is a system in both M and in the directed subset
of M . By assumption, T cannot be simulated by any system in M ′ and therefore cannot

ICALP 2023
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be simulated by any subset of systems of M ′, particularly the subset of directed systems.
Regarding Observation 6, while we restrict the notion of simulation to use square macrotiles,
simulations of systems on triangular lattices have been implemented using roughly hexagonal
macrotiles made from square tiles [1], so one might imagine the possibility that by loosening
our definition of simulation to use more interesting macrotiles, it could be possible to capture
the geometry of 3D square tiles using 2D tiles. In our case however, we note that there
can exist no planar embedding of the lattice graph of Z3 as a consequence of Kuratowski’s
theorem. Consequently, there can be no way to divide Z2 into connected regions of macrotile
locations which preserves the adjacency of points in Z3 and therefore simulation could not
be possible even if we generalized our notion of macrotiles. This is true for any 3D systems
which have producible assemblies whose domains, as graphs, are non-planar as is trivially
possible in all 3D models considered.

3.1 Simulations using existing tile sets

In [7], it was shown that there exists IU tile sets for the 3DaTAM, SaTAM, and both models’
subsets of directed systems. While the main focus of that result was intrinsic simulation
within a model, those IU tile sets can be used to trivially fill in a few boxes of Table 1. First
we note that any aTAM system can also be thought of as a 3DaTAM system (or even SaTAM
system since tiles occupying only a single plane of 3D space can’t constrain a 3D region)
with glues only appearing on 4 of the 6 faces of any tile. Second, we note that the IU tile sets
for the 3DaTAM and SaTAM differed only by the addition of a few tile types responsible
for growing a wall around each face of a macrotile before resolving. This was necessary for
intrinsic universality in the SaTAM since without them, the tiles making up a macrotile
were sparse enough to necessarily allow a diffusion path for tiles to pass through a resolved
macrotile. Consequently, if we don’t include those tile types, then the IU tile set can simulate
3DaTAM systems even in the SaTAM since without walls surrounding each macrotile, the
diffusion restriction does not interfere with the attachment of any tiles. Finally, by design,
this tile set preserves directedness when simulating a directed system. Therefore, using the
IU tile set and proofs from [7], the following observations hold.

▶ Observation 7. There exists a universal tile set in both the 3DaTAM and SaTAM which
intrinsically simulates all systems in the aTAM, preserving directedness.

▶ Observation 8. There exists a universal tile set in the SaTAM which intrinsically simulates
all systems in the 3DaTAM, preserving directedness.

3.2 Directed systems cannot simulate undirected systems

▶ Theorem 9. There exist systems in the aTAM, 3DaTAM, PaTAM, and SaTAM, which
cannot be simulated by any directed system in any of these models.

Whereas directed systems only have one terminal assembly, undirected systems can have
several. Figure 4 illustrates the tile set and terminal assemblies of a simple undirected system
T which can be a system in the aTAM, 3DaTAM, PaTAM, or SaTAM without modification
as it does not use any dynamics unique to any of those models. Because directed systems can
only have a single terminal assembly, any directed system attempting to simulate T would
necessarily fail since any assembly representation function R∗ could not map one terminal
assembly to both terminal assemblies of T .
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(a) (b)

Figure 4 (a) Tile set of an undirected system for the proof of Theorem 9 and (b) Its two terminal
assemblies.

Figure 5 System T of the proof of Theorem 10. An infinite planter grows to the east from the
seed and initiates upward growth of an infinite series of counters, each taller than the last, which
initiate single-tile-wide paths that grow to the left then crash downward into the planter. To the left
of each counter, at its base, it is possible for a red tile to attach.

3.3 The PaTAM cannot simulate the aTAM
Here we show that there are aTAM systems which cannot be correctly simulated by any
PaTAM systems. To show this, we take advantage of the fact that aTAM systems are capable
of growth inside of constrained regions while PaTAM systems are not. Specifically, we show
that the PaTAM can’t simulate the directed aTAM and, by Observation 5, note that this
also implies that the PaTAM can’t simulate the aTAM.

▶ Theorem 10. There exists a system T which is a directed aTAM system, and therefore
also an aTAM system, which cannot be simulated by any PaTAM system.

Figure 5 is a schematic diagram of the terminal assembly of T , a directed aTAM system
which we claim is impossible to simulate in the PaTAM. Note that T is more complex than
a system in which tiles attach to constrain a region which could have another tile attach
within. This is because the definition of intrinsic simulation allows for macrotiles to resolve
even when they aren’t completely filled with tiles. Consequently, while macrotiles may map
to tiles constraining a region, the tiles making up the macrotiles may not constrain a region.
Our construction is designed to ensure that at some point, any supposed simulating system
must constrain a region before the tiles inside are able to attach. In our directed aTAM
system T , this is done by first initiating the growth of a planter, a gadget that counts up
in binary as it grows eastward, initiating the growth of increasingly tall arms at defined
intervals. These arms are essentially binary counter gadgets which each grow upward to a
distance, encoded in the glues of the tiles provided by the planter, and initiate the growth of
thin arms when they finish. The thin arms are just a single tile wide and begin by growing
a fixed distance to the west before growing south to crash into the planter below. By this
process, each arm initiated by the planter constrains increasingly large regions of space
which each contain a single location between the planter and arms, in which a single tile
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Figure 6 A schematic of system P for the proof of Theorem 11. Tiles grow in a rectangular shape,
periodically spawning arms which can crash into the walls and constrain a region. It is undirected
and its size depends non-deterministically on the number of tiles that attach between each corner.

can cooperatively attach (denoted by the red squares in Figure 5). Each of the tiles making
up the southward growing portion of the thin arms are of the same tile type, each with
identical glues on their north and south faces. While it is possible for different macrotiles
to map to the same tile in T , there are only so many combinations of tiles that make up a
macrotile. Consequently, regardless of scale factor, if we look far enough down the planter,
there will be an arm which grows tall enough that the simulating set must repeat a macrotile
representation in two places along the same thin arm. We can then use the Window Movie
Lemma to show that this arm “pumps” in our supposed simulating system, before crashing
into the planter. It is therefore impossible for any simulating PaTAM system to prevent
a region from becoming constrained before the macrotile inside is able to resolve, yielding
terminal assemblies which aren’t correctly mapped to a terminal assembly in T .

3.4 The aTAM cannot simulate the PaTAM
Given that the PaTAM is just the aTAM with an added restriction on tile attachment,
it’s not terribly surprising that the PaTAM can’t simulate the full dynamics of the aTAM;
however, less obvious is the fact that the planarity restriction also gives the PaTAM some
capabilities not possible in the aTAM, namely the ability to constrain a region and stop
growth within. We utilize this ability in our proof of Theorem 11 which is sketched here.
Also, by Observation 5, this also holds for the directed aTAM.

▶ Theorem 11. There exists a PaTAM system P which cannot be simulated by any aTAM
system.

As with the proof for Theorem 10, in the definition of intrinsic simulation, we consider
all possible representation functions and scale factors to prove impossibility. Figure 6 is a
schematic diagram of PaTAM system P which is impossible to correctly simulate in the
aTAM. Growth of P begins with tiles attaching in a row growing east. The length of this
row is non-deterministic as at any point along the row, it’s possible for a corner tile to
attach, initiating growth to the north. Consequently, P is an undirected system so any
potential simulating system must be able to simulate all possible assemblies of P. Similarly,
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northward and eastward growing rows of tiles attach with some length depending on how
many tiles attached before each corner. Finally, a column of tiles begins growing south
and, as it does, initiates the growth of several arms eastward, each spaced 4 tiles apart.
Both the southward growing column of tiles and the arms continue growth until they are
constrained or crash into another part of the assembly. To show that P cannot be simulated
in the aTAM, we assume the existence of a simulating aTAM system T and prove that it
must admit some assembly sequences which don’t correspond to those in P. To do this, we
consider an assembly sequence in P where the rectangle of tiles grows to a size, based on the
scale factor of the simulation, so that a sufficiently large number of sufficiently long arms are
spawned by the south growing column of tiles. We also choose an assembly sequence where
the south growing column will eventually collide with the seed tile, constraining the region
containing the arms. Because we’ve chosen the assembly to be sufficiently large, each arm
is capable of being “pumped” as per the window movie lemma. We then grow the bottom
arm until just after it has collided with the east wall and note that, while T is an aTAM
system and can still grow tiles inside of the constrained region, tiles on the inside and outside
will no longer be able to affect each other’s growth. There are a few cases to be considered,
depending on whether or not the representation function has resolved the last tile of the
bottom arm, but essentially we then show that we can continue the growth of the west wall
until its macrotiles have resolved to tiles in P that constrain the rectangle’s interior. By
a counting argument and our choice of the number of arms, we can then show that one of
the other arms must be able to continue growth within the constrained region, and that the
assembly sequence in T maps to one invalid in P.

3.5 The 3DaTAM cannot simulate the SaTAM
The proof of Theorem 12 is similar in principle to the proof of Theorem 11, albeit with a
slightly different system which takes advantage of the differences between 2D and 3D. We
sketch the proof here.

▶ Theorem 12. There exists an SaTAM system S which cannot be simulated by any 3DaTAM
system.

Figure 7 Cut-away view of system S from the proof of Theorem 12. Two chambers are connected
by a thin tunnel. Pillars growing inside the outer west chamber will eventually constrain the region
within the chambers, at which point, the pillar growing in the inner east chamber will no longer be
able to continue growth.
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The system S for this result, as illustrated in Figure 7, initially grows 2 nearly sealed
chambers connected by a thin tunnel which allows for a diffusion path between them. These
chambers both have a fixed base size of 9 × 9, but they can grow to have an arbitrary height
in a way similar to the frame of the system used in the proof of Theorem 11. Once fully
grown, the ceiling of one chamber contains a single tile wide opening which is the only way
for tiles to diffuse into the chambers from outside; we call the chamber with this hole the
outer chamber and the other one the inner chamber. Additionally, from the bottoms of both
chambers, pillars can grow upwards to an arbitrary height by the attachment of copies of tiles
with identical tile types. The pillar in the inner chamber will eventually crash into the ceiling
or until the pillar in the outer chamber grows tall enough to plug the opening in its ceiling
and constrain the space inside. We show that S cannot be simulated by any 3DaTAM system
by showing that, in any potential simulating system, under the right conditions, although
unwanted, it must still possible for the inner chamber pillar to continue growth even after
the outer chamber pillar has sealed the chambers. To do this, we note that during some
supposed simulation, the only way for the pillar in the inner chamber to “know” that the
chambers have been sealed, is for tiles to attach inside of the tunnel. Consequently, because
the tunnel is thin with a cross-section made of a hollow 3 × 3 square, the chambers can only
communicate with each other a finite amount of times during a simulation. Specifically, if
the scale factor of the simulation is c, then the number of tiles that can be placed in any
x-coordinate corresponding to the tunnel is bounded by 5c × 5c which includes any potential
tiles growing in the fuzz adjacent to the macrotiles of the tunnel. Therefore, by a simple
counting argument, if we initially grew our chambers to have a sufficiently large height, then
there must exist some assembly sequence where both pillars grow by any desired number
of macrotiles (which we choose to be long enough to allow pumpable growth) and during
which no tile is placed in the center of the tunnel. Using the Window Movie Lemma, we then
construct an assembly sequence where the outer chamber pumps to constrain the chambers.
Because during this assembly sequence, no tiles are placed in the center of the tunnel, there
is nothing to stop the inner chamber pillar from also being pumped. Such an assembly
sequence must be possible in any 3DaTAM system which supposedly simulates our system S,
and since this assembly sequence corresponds to one which is invalid in the SaTAM, such a
simulation is impossible.

3.6 The PaTAM can simulate the directed PaTAM
▶ Theorem 13. There exists a universal Planar aTAM tile set S that can simulate any
directed PaTAM system.

Despite the fact that both the PaTAM and directed PaTAM are not intrinsically universal
for themselves[7], using tools from [7] and [2] we are able to construct a PaTAM tile set
capable of simulating arbitrary directed PaTAM systems. Here we outline the process by
which a PaTAM tileset S can simulate any given directed PaTAM system T . The tileset S

is universal, meaning that regardless of the directed PaTAM system T , the same tileset will
be used at a fixed binding threshold, with only the seed of the simulating system changing
to accommodate T .

Given a directed PaTAM system T , we define a simulating system S using a fixed tile set
at binding threshold 2. The seed of S consists of already-resolved macrotiles in the same
configuration as the seed of T . Each macrotile in S consists of a 9 × 9 grid of structures we
call component blocks (CBs) which are each made of many smaller tile-based constructions
and which each store an encoding of the system T along with a bit of extra data in the form
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Figure 8 A schematic describing the 9 × 9 grid of potential component blocks which may appear
in a macrotile location. Squares containing two arrows indicate a grid location which may contain
a probe region. The surrounding macrotiles are illustrated using colored tiles to represent their
relative direction from the current macrotile. Colors of CB locations indicate which surrounding
macrotile the CB may have information about.

of specific glues on some of its tiles. The CBs of a macrotile each perform calculations using
tiles which emulate Turing machines to determine how they should grow and whether or not
the macrotile can resolve given the current information regarding the surrounding macrotiles.

Each CB essentially behaves like an individual tile on the 9 × 9 grid and we can think of
CBs as growing in one of two ways. Either the CB grows using tile attachments from another
adjacent CB in a way analogous to a τ -strength tile attachment, or a CB can grow in the gap
between two adjacent CBs in certain locations of the grid designated as probe regions. This
is analogous to a tile attachment that occurs by cooperative binding between two opposing
tiles (which we refer to as across-the-gap cooperation). These “cooperative attachments”
between CBs are used to consolidate information between the CBs. For instance, one CB
might contain information encoded about the north adjacent macrotile and one might contain
information about the west; in the probe region between them, a new CB can grow which will
contain the information about both which it can then use to determine if a tile attachment in
T would be possible in the tile location corresponding to the macrotile. Figure 8 illustrates
the layout of a macrotile into CB locations with these probe regions indicated by squares
with two opposing arrows.

Probe regions are CB locations in which two adjacent CBs, on opposite sides, can present
structures called probes which are long, thin structures that grow from the surrounding CBs
towards the center of a CB location. Each probe that grows in a probe region, indicates
some possible combination of information from surrounding macrotiles and grows in a unique
position according to this information. The length of a probe is chosen to be just shy of the
center of the CB location, so that when two probes align from opposing sides of the probe
region, there will be exactly a single tile wide gap between them. This gap allows a tile to
cooperatively attach and grow along the sides of the probes to recover the information from
both. Otherwise, if no probes in a probe region align, there will be enough room for the
components that make up a CB to squeeze in between the probes from one side of the probe
region to another. Figure 9 illustrates two scenarios involving probe regions.

Probe regions were introduced in [2] to solve the problem illustrated in Figure 10. Naively
when simulating a tile system, to check for macrotiles which may cooperate across-the-gap,
tiles must grow to query both adjacent macrotiles and determine if the attachment is possible.
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Figure 9 Probe regions between component blocks. The red and blue CBs grow probes to the
center of the CB location in the middle while the green CB attempts to grow through the probe
region. On the left, two probes happen to align, in which case a path of tiles containing information
from the green CB cannot pass and the CB to the east results from the cooperative tile attachment
between the probes. On the right, no probes align meaning the path of tiles from the green CB can
squeeze between the probes to influence the growth of the CB to the east.

Figure 10 When checking for across-the-gap cooperation during a simulation, tiles can’t naively
span the entire gap without disconnecting two regions of space.

This however necessarily separates regions of space and in the case of planar systems also
constrains one before it has been determined if the attachment can even occur. If it cannot,
then tiles will no longer be able to attach in the constrained region and the simulation will
likely end up being invalid. Probes avoid this problem by aligning exactly when across-the-gap
cooperation is possible while still allowing tile structures to grow through if they don’t align.

Figure 11 Hands made of component blocks growing from surrounding macrotiles.

Now that we have an idea of how the component blocks and probe regions behave we
describe the protocol for resolving a macrotile by highlighting a few important cases. Growth
within a macrotile begins when one or more of the surrounding macrotiles resolve and tiles
begin to attach within the macrotile. From a surrounding macrotile, the protocol always
begins by the growth of two “T”-shaped structures made from CBs called hands illustrated
in Figure 11. Note that two adjacent surrounding macrotiles may both attempt to grow
hands in the same location. This is handled by a single point of competition and the first
surrounding macrotile for placing a tile in the closest corner of the shared hand locations
is allowed to place theirs. Between the hands and the surrounding macrotiles probes are
grown in the regions indicated on the right of Figure 11 which allows a CB to “attach”
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cooperatively to combine information from both the hand and nearby macrotile. In some
cases this information may be redundant, but with two or more surrounding macrotiles at
least one location will always be able to combine information from two macrotiles.

Figure 12 Once the hands have grown, CBs cooperate until information from all sides has been
combined into a single CB. Then the macrotile can resolve.

The CBs resulting from cooperation between the hands and surrounding macrotiles then
cooperate once again and CBs grow along the hands to form clockwise elbows with additional
probe regions between them. CBs then cooperatively attach between these elbows and
cooperate again near the center of the tile to eventually combine all of the information from
the surrounding macrotiles. Once this occurs, the CB which “attaches” in the center of the
tile contains the information from all sides. If the surrounding macrotiles represent tiles
in T capable of placing a tile, additional CBs can grow to the remaining sides to present
this information to the remaining sides and repeat the procedure in the adjacent macrotile
locations.

Figure 13 Probe regions between opposing macrotiles can check for across-the-gap cooperation.

In the case that an across-the-gap cooperation is possible in T , the protocol deviates
slightly. Illustrated in Figure 13, if across-the-gap cooperation is possible between the east
and west macrotiles, their hands will share a probe region with aligned probes. Consequently,
a CB can grow in that location and resolve the macrotile. This growth may constrain the
region to the south, halting any tile attachments and CB growth in the south side of the
macrotile, but this doesn’t matter since the macrotile will only need to start the process in
adjacent macrotiles that haven’t yet resolved. The described protocol is robust to different
orders of hand growth and different numbers of surrounding macrotiles, including those
that don’t end up contributing to macrotile resolution. If at any time a CB has sufficient
information to determine how the macrotile should resolve, it begins growth to the center
and then surrounding edges of the macrotile. This process will not be interrupted by other
CBs since we are simulating a directed system where at most one unique tile can attach in
each location.
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