
Parameter Estimation for Gibbs Distributions
David G. Harris #

Department of Computer Science, University of Maryland, College Park, MD, USA

Vladimir Kolmogorov #

Institute of Science and Technology Austria, Klosterneuburg, Austria

Abstract
A central problem in computational statistics is to convert a procedure for sampling combinatorial
objects into a procedure for counting those objects, and vice versa. We will consider sampling
problems which come from Gibbs distributions, which are families of probability distributions over
a discrete space Ω with probability mass function of the form µΩ

β (ω) ∝ eβH(ω) for β in an interval
[βmin, βmax] and H(ω) ∈ {0} ∪ [1, n].

The partition function is the normalization factor Z(β) =
∑

ω∈Ω eβH(ω), and the log partition
ratio is defined as q = log Z(βmax)

Z(βmin)

We develop a number of algorithms to estimate the counts cx using roughly Õ(q
ε2) samples

for general Gibbs distributions and Õ(n2

ε2) samples for integer-valued distributions (ignoring some
second-order terms and parameters), We show this is optimal up to logarithmic factors. We illustrate
with improved algorithms for counting connected subgraphs and perfect matchings in a graph.

2012 ACM Subject Classification Mathematics of computing → Probabilistic algorithms; Applied
computing → Physics

Keywords and phrases Gibbs distribution, sampling

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.72

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2007.10824

Acknowledgements We thank Heng Guo for helpful explanations of algorithms for sampling con-
nected subgraphs and matchings, Maksym Serbyn for bringing to our attention the Wang-Landau
algorithm and its use in physics.

1 Introduction

A central problem in computational statistics is to convert a procedure for sampling combin-
atorial objects into a procedure for counting those objects, and vice versa. We will consider
sampling algorithms for Gibbs distributions. Formally, given a real-valued function H(·)
over a finite set Ω, the Gibbs distribution is defined as a family of distributions µΩ

β over Ω,
parameterized by β, of the form

µΩ
β (ω) = eβH(ω)

Z(β)

These distributions occur in a number of sampling algorithms, as we describe shortly;
they also frequently occur in physics, where the parameter −β corresponds to the inverse
temperature, the function H(ω) is called the Hamiltonian of the system, and the normalizing
constant Z(β) =

∑
ω∈Ω eβH(ω) is called the partition function.

EA
T

C
S

© David G. Harris and Vladimir Kolmogorov;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 72; pp. 72:1–72:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davidgharris29@gmail.com
mailto:vnk@ist.ac.at
https://doi.org/10.4230/LIPIcs.ICALP.2023.72
https://arxiv.org/abs/2007.10824
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

72:2 Parameter Estimation for Gibbs Distributions

Suppose we have access to an oracle which return a sample from µΩ
β for any chosen query

value β ∈ [βmin, βmax]. We will seek to estimate the vector of counts (also known as the
(discrete) density of states (DOS)), defined as

cx = |H−1(x)|, x ≥ 0

In statistical physics, for instance, this essentially gives full information about the system
and physically relevant quantities such as entropy, free energy, etc. Another parameter,
whose role is less intuitive, is the partition ratio function

Q(β) = Z(β)
Z(βmin) ,

and in particular the value Q(βmax) = Z(βmax)
Z(βmin) . This can interpreted as a measure of the

“diversity” of the distribution as β varies.
As is common in this setting, we assume that (after rescaling if necessary) we are given

known parameters n, q with

log Q(βmax) ≤ q, H(Ω) ⊆ F def= {0} ∪ [1, n]

In some cases, the domain is integer-valued, i.e. H(Ω) ⊆ H def= F ∩ Z = {0, 1, . . . , n} for
integer n. We call this the general integer setting. A special case of the integer setting, which
we call the log-concave setting, is when the counts c0, c1, c2, . . . , cn−1, cn are non-zero and
satisfy ck/ck−1 ≥ ck+1/ck for k = 1, . . . , n− 1. The general case, where H(ω) takes values
in F , is called the continuous setting.1

There is an associated probability distribution we call the gross Gibbs distribution µβ(x)
over F given by

µβ(x) = cxeβx

Z(β) , Z(β) =
∑

x

cxeβx

We will only require oracle access to µβ , for any chosen query value β ∈ [βmin, βmax]; this
is provided automatically given access to µΩ

β . We let γ denote the target failure probability
and ε the target accuracy of our algorithms, i.e. with probability at least 1−γ, the algorithms
should return estimates within a factor of [e−ε, eε] of the correct value. Throughout, “sample
complexity” refers to the number of calls to the oracle; for brevity, we also define the cost of
a sampling algorithm to be its expected sample complexity.

To avoid degenerate cases, we assume n, q ≥ 2 and ε, γ ∈ (0, 1
2) throughout. If upper

bounds n and/or q are not available directly, they can often be estimated by simple algorithms
(up to constant factors), or can be guessed by exponential back-off strategies.

1.1 Algorithmic sampling-to-counting
To make our problem setting more concrete, consider the following scenario: we have a
combinatorial system, where the objects have a “weight”, and we have an algorithm to
sample objects from the corresponding Gibbs distribution for any parameter β. This may
be an exact sampler, or it may be an approximate sampler such as a Markov chain whose
stationary distribution is the Gibbs distribution. The runtime (e.g. the mixing time of the
Markov chain) may depend on β. As a few prominent examples:

1 The log-concave algorithms still work if some of the counts ci are equal to zero; in this case, the non-zero
counts must form a discrete interval {i0, i0 + 1, . . . , i1 − 1, i1} and the required bound must hold for
k = i0 + 1, . . . , i1 − 1.

D. G. Harris and V. Kolmogorov 72:3

1. Connected subgraphs of a given graph; the weight of a subgraph is its cardinality [10].

2. Matchings of a given graph; the weight of a matching, again, is its cardinality [15, 13].

3. Independent sets in bounded-degree graphs; the weight is the size of the independent
set [7, 13].

4. Assignments to a given k-SAT instance; the weight is the number of unsatisfied clauses [8].

5. Vertex cuts for the ferromagnetic Ising model; the weight is the imbalance of the cut [5].

We may wish to know the number of objects of a given weight class, e.g. connected
subgraphs of a given size. This can be viewed in terms of estimating the counts ci. In a
number of these applications, such as connected subgraphs and matchings, the count sequence
is further known to be log-concave.

Our estimation algorithms can be combined with these prior sampling algorithms to
yield improved algorithmic results, essentially for free. As some examples, we will show the
following:

▶ Theorem 1. Let G = (V, E) be a connected graph, and for each i = 0, . . . , |E| − |V |+ 1
let ci be the number of connected subgraphs with |E| − i edges. There is an fully-polynomial
randomized approximation scheme (FPRAS) to estimate all values ci in time complexity
Õ(|E|3|V |/ε2).

▶ Theorem 2. Let G = (V, E) be a graph of maximum degree D and for each i = 0, . . . , |V |
let ci be the number of independent sets of size i. For any constant ξ > 0 there is an FPRAS
with runtime Õ(|V |2/ε2) to simultaneously estimate all values c0, . . . , ct for t = (αc − ξ)|V |,
where αc is the computational hardness threshold shown in [7].

▶ Theorem 3. Let G = (V, E) be a graph with |V | = 2v and for each i = 0, . . . , v let ci be
the number of matchings in G with i edges. Suppose cv > 0 and cv−1/cv ≤ f for a known
parameter f . There is an FPRAS for all ci running in time Õ(|E||V |3f/ε2). In particular,
if G has minimum degree at least |V |/2, the time complexity is Õ(|V |7/ε2).

Theorem 1 improves by a factor of |E| over the algorithm in [11]. Similarly, Theorem 3
improves by a factor of |V | compared to the FPRAS for counting matchings in [15]. Theorem 2
matches the runtime of an FPRAS for a single value ik given in [13].

There are two minor technical issues we should clarify here. First, to obtain a randomized
estimation algorithm, we must also bound the computational complexity of our procedures in
addition to the number of oracle calls. In all the algorithms we develop, the computational
complexity is a small logarithmic factor times the query complexity. The computational
complexity of the oracle is typically much larger than this overhead. Thus, our sampling
procedures translate directly into efficient randomized algorithms, whose runtime is the
expected sample complexity multiplied by the oracle’s computational complexity. We will
not comment on computational issues henceforth.

Second, we may only have access to some approximate oracle µ̃β that is close to µβ

in terms of total variation distance (e.g. by running an MCMC sampler). By a standard
coupling argument (see e.g. [19, Remark 5.9]), our results remain valid if exact oracles are
replaced with sufficiently close approximate oracles.

ICALP 2023

72:4 Parameter Estimation for Gibbs Distributions

1.2 Our contributions
Before we can formally describe our algorithm for count estimation, we need to clear up
two technical issues. The first is that counts can only be recovered up to scaling, so some
(arbitrary) normalization must be chosen. For sake of consistency with other algorithms, we
use the parameter π(x) defined as:

π(x) def= µβmin(x) = cxeβminx

Z(βmin)

The second, much trickier, issue is that if a count cx is relatively small, then it is inherently
hard to estimate accurately. To explain this, suppose that maxβ∈[βmin,βmax] µβ(x) = µ∗. In
this case, Ω(1/µ∗) samples are clearly needed to distinguish between cx = 0 and cx > 0; with
fewer samples, we will never draw x from the oracle. Moreover, Ω(1

µ∗ε2) samples are needed
to estimate cx to relative error ε. Since we can vary β, the complexity of estimating cx must
depend on the best case µβ(x), over all allowed values of β. This gives rise to the parameter
∆(x) defined as

∆(x) def= max
β∈[βmin,βmax]

µβ(x)

With these two provisos, let us define the problem P δ,ε
count for parameters δ, ε ∈ (0, 1) as

follows. We seek to obtain a pair of vectors (π̂, u), to satisfy two properties:
(i) for all x ∈ F with cx ̸= 0, there holds |π̂(x)− π(x)| ≤ u(x) ≤ επ(x)(1 + δ/∆(x)).
(ii) for all x ∈ F with cx = 0, there holds π̂(x) = 0, and u(x) can be set to an arbitrary

value.

In other words, [π̂(x) − u(x), π̂(x) + u(x)] should be a confidence interval for π(x). In
particular, if ∆(x) ≥ δ, then P δ,ε

count provides a (1 ± O(ε)) relative approximation to π(x).
When ∆(x)≪ δ, then it still provides meaningful approximation guarantees which are critical
in some of our other algorithms.

We develop three main algorithmic results:

▶ Theorem 4. P δ,ε
count can be solved with the following complexities:

In the continuous setting, with cost O
(

q log n+
√

q log n/δ

ε2 log q
δγ

)
.

In the general integer setting, with cost O
(

n2+n/δ
ε2 log2 nq

γ

)
.

In the log-concave setting, with cost O
(

min{(q+n) log n,n2}+1/δ
ε2 log nq

γ

)
.

where recall that cost refers to the expected number of queries to the oracle.

Our full results are somewhat more precise, see Theorems 13, 20 and 21 for more details.
We also show lower bounds for P δ,ε

count; we summarize these results here as follows:

▶ Theorem 5. Let n ≥ n0, q ≥ q0, ε < ε0, δ < δ0, γ < 1/4 for certain absolute constants
n0, q0, ε0, δ0. There are problem instances µ which satisfy the given bounds n and q such that:
(a) P δ,ε

count requires cost Ω((q+√
q/δ) log 1

γ

ε2).
(b) P δ,ε

count requires cost Ω(min{q+√
q/δ,n2+n/δ} log 1

γ

ε2), and µ is integer-valued.
(c) P δ,ε

count requires cost Ω((1/δ+min{q,n2}) log 1
γ

ε2), and µ is log-concave.

These first two results match Theorem 4 up to logarithmic factors in n and q. The
result for the log-concave setting has an additive discrepancy Õ(n

ε2) in the regime when
1/δ + q = o(n). (Throughout, we use the notation Õ(x) = x polylog(x).) See Theorem 36 for
a more precise and general statement of these bounds. We emphasize that these lower bounds
only apply to estimation algorithms which make use of the Gibbs oracle in a black-box way.

D. G. Harris and V. Kolmogorov 72:5

Some count-estimation algorithms have been considered for specific problems, e.g. in [14]
for counting matchings or in [7] for counting independent sets. These procedures depended
on specific properties of the Gibbs distribution, e.g. log-concavity. In addition, the algorithm
in [14] was roughly worse by a factor of n compared to Theorem 4. By swapping in our new
algorithm for P δ,ε

count, we will immediately obtain simpler, and more efficient, algorithms for
these problems.

The general problem Pcount has not been theoretically analyzed, to our knowledge. In
practice, the Wang-Landau (WL) algorithm [20] is a popular heuristic to estimate counts
in physical applications. This uses a completely different methodology from our algorithm,
based on a random walk on F with a running count estimate ĉ. As discussed in [18], there
are more than 1500 papers on the WL algorithm as well as variants such as the 1/t-WL
algorithm [3]. These algorithms are not well understood; some variants are guaranteed to
converge asymptotically [9], but bounds on convergence rate or accuracy seem to be lacking.
For a representative example, see for example [17], which describes a Gibbs distribution
model of protein folding, and uses the WL algorithm to determine relevant properties.

Estimating partition ratio

As a key building block, we develop new subroutines to estimate partition ratios. Formally, let
us define the problem P all

ratio to compute a data structure D with an associated deterministic
function Q̂(α|D) satisfying the property

| log Q̂(α|D)− log Q(α)| ≤ ε for all α ∈ (βmin, βmax]

We say in this case that D is ε-close. We emphasize that, although generating D will
require sampling from the Gibbs distribution, using it will not. Our main result here will be
the following:

▶ Theorem 6. P all
ratio can be solved with the following complexities:

In the continuous setting, with cost O
(

q log n
ε2 log 1

γ

)
.

In the general integer setting, with cost O
(

n2 log n
ε2 log 1

γ + n log q
)
.

In the log-concave integer setting, with cost O
(

n2

ε2 log 1
γ + n log q

)
.

A number of algorithms have been developed for pointwise estimation of Q(βmax), with
steadily improving sample complexities [4, 19, 12]. We denote this problem by P point

ratio .
The best prior algorithm for P

point
ratio in the continuous setting [16] had cost O

(
q log n

ε2 log 1
γ

)
(matching our algorithm for P all

ratio). No specialized algorithms were known for the integer
setting. We also show matching lower bounds:

▶ Theorem 7. Let n ≥ n0, q ≥ q0, ε < ε0, δ < δ0, γ < 1/4 for certain absolute constants
n0, q0, ε0, δ0. There are problem instances µ which satisfy the given bounds n and q such that:
(a) P point

ratio requires cost Ω(q log 1
γ

ε2).

(b) P point
ratio requires cost Ω(min{q,n2} log 1

γ

ε2). and µ is log-concave

Thus, Theorem 6 is optimal up to logarithmic factors; this essentially settles the complexity
of Pratio as functions of n and q.

The first algorithm of Theorem 6, for the continuous setting, is similar to the pointwise
algorithm in [16]; we defer it the to the full version of the paper.

ICALP 2023

72:6 Parameter Estimation for Gibbs Distributions

1.3 Overview
We will develop two, quite distinct, types of algorithms: the first uses “cooling schedules”
similar to [12, 16], and the second is based on a new type of “covering schedule” for the
integer setting. In Section 6, we use these algorithms for approximate counting of matching
and connected subgraphs. In Section 7, we show the lower bounds for the problems Pratio
and Pcount.

We remark that when q ≤ n2 in the integer setting, general continuous algorithms may
be more efficient than the specialized integer algorithms for some tasks. These will be used
for our algorithms to count independent sets and connected subgraphs, for instance.

Before the technical details, let us provide a high-level roadmap. For simplicity, we
assume that tasks need to be solved with constant success probability.

The continuous setting

We can use a variant on an algorithm of [16] to solve P all
ratio. Assuming this problem can be

solved, let us examine the problem P δ,ε
count. As a starting point, consider the identity

π(x) = e−(β−βmin)x · µβ(x) ·Q(β) for all x ∈ F , β ∈ [βmin, βmax]. (1)

For any value β, we can estimate Q(β) using our algorithm for P all
ratio, and we can estimate

µβ(x) by drawing Θ(1
µβ(x)ε2) samples from µβ . We then make use of the following important

result: if µβ([0, x]) and µβ([x, n]) are both bounded below by constants, then µβ(x) ≥
Ω(∆(x)).

Therefore, we do the following: (i) use binary search to find value β with µβ([0, x]) ≈
µβ([x, n]); and (ii) estimate µβ(x) using O(1

δε2) samples; (iii) use Eq. (1) to determine π(x).
From standard concentration bounds, this satisfies the conditions of P δ,ε

count; for example, if
∆(x) ≥ δ, then µβ(x), and hence π(x), is estimated within relative error ε.

To estimate all the counts, we find cut-points y1, . . . , yt, where each interval [yi, yi+1] has
a corresponding value βi with µβi

([yi, n]) ≥ Ω(1) and µβi
([0, yi+1]) ≥ Ω(1). Any x ∈ [yi+1, yi]

then has µβi(x) ≥ Ω(∆(x)), so we can use samples from µβi to estimate cx simultaneously for
all x ∈ [yi, yi+1]. We show that only t = O(

√
q log n) distinct intervals are needed, leading to

a cost of O(
√

q log n

δε2) plus the cost of solving P all
ratio. The formal analysis appears in Section 3.

The integer setting

To solve P δ,ε
count, we develop a new data structure we call a covering schedule. This consists of

a sequence βmin = β0, β1, . . . , βt = βmax and corresponding values k1, . . . , kt so that µβi(ki)
and µβi

(ki+1) are large for all i. (The definition is adjusted slightly for the endpoints i = 0
and i = t). Define wi = min{µβi

(ki), µβi
(ki+1)} (“weight” of i). If we take Ω(1/wi) samples

from µβi , we can accurately estimate the quantities µβi(ki), µβi(ki+1), in turn allowing us to
estimate

Q(βi)
Q(βi−1) = e(βi−βi−1)ki

µβi−1(ki)
µβi

(ki)

By telescoping products, this in turn allows us to estimate every value Q(βi).
Next, for each index x ∈ H, we use binary search to find α with µα([0, x]) ≈ µα([x, n])

and then estimate µα(x) by taking O(1
δε2) samples. If α lies in interval [βi, βi+1] of the

covering schedule, we can use the estimates for Q(βi) and Q(βi+1) to estimate Q(α) and
hence π(x). Since we do this for each x ∈ H, the overall cost of this second phase is roughly
O(n

δε2).

D. G. Harris and V. Kolmogorov 72:7

There is a more efficient algorithm for P δ,ε
count for log-concave counts. In this case, for a

fixed β and x ∈ [σ−, σ+] we have µβ(x) ≥ min{µβ(σ−), µβ(σ+)}. Thus, a single value βi in a
covering schedule “covers” the interval [ki, ki+1]. We can solve P δ,ε

count with O(1
δε2 +

∑
i

1
wiε2)

samples, by drawing Θ(1
wiε2) samples at βi and Θ(1

δε2) samples at βmin and βmax.
After solving P δ,ε

count, we can then solve P all
ratio essentially for free, by estimating Q̂(α |

D) =
∑

i e(α−βmin)iπ̂(i). So P all
ratio in the integer setting reduces to a special case of Pcount.

(Interestingly, the continuous-case algorithm works very differently – there, P all
ratio is a

subroutine used to solve Pcount.)

Obtaining a covering schedule

The general Pcount algorithm described above uses O(
∑

i
n

wiε2) samples to estimate the values
Q(βi), and similarly the log-concave algorithm uses O(1

δε2 +
∑

i
1

wiε2) samples. We thus refer
to the quantity

∑
i

1
wi

as the inverse weight of the schedule. In the most technically involved
part of the paper, we produce a covering schedule with inverse weight O(n log n) (or O(n) in
the log-concave setting). Here we just sketch some key ideas.

First, we construct a “preschedule” where each interval can choose two different indices
σ−

i , σ+
i instead of a single index ki, with the indices interleaving as σ−

i ≤ σ−
i+1 ≤ σ+

i ≤ σ+
i+1.

The algorithm repeatedly fill gaps: if some half-integer ℓ + 1/2 is not currently covered,
then we can select a value β with µβ([0, ℓ]) ≈ µβ([ℓ + 1, n]). For this β, there is a value
σ+ ∈ [ℓ + 1, n] with µβ(σ+) · (σ+ − ℓ) ≥ Ω(1

log n), and similarly a value σ− ∈ [0, k] with
µβ(σ−) · (ℓ− σ− + 1) ≥ Ω(1

log n). The interval [σ−, σ+] then fills the gap and also has weight
w ≥ Ω(1

(σ+−σ−) log n).
At the end of the process, we throw away redundant intervals so each x is covered by

at most two intervals, and “uncross” them into a schedule with ki ∈ {σ+
i−1, σ−

i }. Since
1

wi
≤ O((σ+

i − σ−
i) log n) for each i, this gives an O(n log n) bound of the inverse weight of

the schedule.

2 Preliminaries

Define z(β) = log Z(β) and z(β1, β2) = log Z(β2)
Z(β1) = log Q(β2)

Q(β1) ; note that z(βmin, βmax) ≤ q by
definition. We write z′(β) for the derivative of function z.

Define the Chernoff separation functions F+(x, t) =
(

eδ

(1+δ)1+δ

)x and F−(x, t) =
(

e−δ

(1−δ)1−δ

)x,
where δ = t/x. These are well-known upper bounds on the probability that a binomial
random variable with mean x is larger than x + t or smaller than x− t, respectively. We also
define F (x, t) = F+(x, t) + F−(x, t).

For a random variable X, we write V(X) for the variance of X, and S[X] = E[X2]
(E[X])2 − 1 =

V(X)
(E[X])2 for the relative variance of X.

We write µβ(x, y), µβ [x, y) instead of µβ((x, y)), µβ([x, y)), etc. for readability.

2.1 The Balance subroutine
Given a target χ, we sometimes need to find a value β with µβ [0, χ] ≈ 1/2 ≈ µβ [χ, n]. That
is, χ is the “balancing point” in the distribution µβ . Formally, for values βleft ≤ βright, let us
denote by Λτ (βleft, βright, χ) the set of values β ∈ [βleft, βright] which satisfy the following
two properties:

Either β = βleft or µβ [0, χ) ≥ τ

Either β = βright or µβ [χ, n] ≥ τ

ICALP 2023

72:8 Parameter Estimation for Gibbs Distributions

To find this, we use a subroutine Balance. To summarize briefly, since µβ [0, χ] is a
monotonic function of β and can be estimated by sampling, the value β is found via a noisy
binary search. Our main result is the following:

▶ Theorem 8. Suppose that τ is an arbitrary constant and βmin ≤ βleft < βright ≤ βmax.
Then β ← Balance(βleft, βright, χ, γ, τ) has cost O(log nq

γ). With probability at least 1− γ,
there holds β ∈ Λτ (βleft, βright, χ) (we say in this case that the call is good).

The details appear in the full paper. The following observation explains the motivation
for the definition.

▶ Proposition 9. If β ∈ Λτ (βmin, βmax, x), then µβ(x) ≥ τ∆(x).

Proof. Consider α ∈ [βmin, βmax] with µα(x) = ∆(x). The result is clear if α = β. Suppose
that α < β; the case α > β is completely analogous. So β > βmin = βleft, and since
β ∈ Λτ (βmin, βmax, x), this implies that µβ [0, x] ≥ τ . We then have:

µα(x) = cxeαx∑
y cyeαy

≤ cx∑
y≤x cyeα(y−x) ≤

cx∑
y≤x cyeβ(y−x)

= cxeβx∑
y≤x cyeβy

= µβ(x)
µβ [0, x] ≤

µβ(x)
τ

. ◀

2.2 Statistical sampling
We can obtain an unbiased estimator of the probability vector µβ by computing empirical
frequencies µ̂β from N independent samples from µβ ; we denote this process as µ̂β ←
Sample(β; N). We record the following standard concentration bound, which we will use
repeatedly:

▶ Lemma 10. For ε, γ ∈ (0, 1
2), p◦ ∈ (0, 1], suppose we draw random variable p̂ ∼

1
N Binom(N, p) where N ≥ 3eε log(4/γ)

(1−e−ε)2p◦
. Then, with probability at least 1 − γ, the follow-

ing two bounds both hold:

|p̂− p| ≤ ε(p + p◦), and (2)

p̂ ∈

{
[e−εp, eεp] if p ≥ e−εp◦

[0, p◦) if p < e−εp◦
(3)

In particular, if Eq. (3) holds and min{p, p̂} ≥ p◦, then | log p̂− log p| ≤ ε.

Proof. See full paper. ◀

Many of our algorithms are based on calling µ̂β ← Sample(β; N) and making decisions
depending on the values µ̂β(I) for certain sets I ⊆ F ; they succeed when the estimates
µ̂β(I) are close to µβ(I). We say the execution of Sample well-estimates I if Eqs. (2),(3)
hold for p = µβ(I) and p̂ = µ̂β(I); otherwise it mis-estimates I. Likewise we say Sample
well-estimates k if it well-estimates the singleton set I = {k}. Since this comes up so
frequently, we write

µ̂β ← Sample(β; ε, γ, p◦)

as shorthand for µ̂β ← Sample(β;
⌈ 3eε log(4/γ)

(1−e−ε)2p◦

⌉
). Note that this has cost O(log(1/γ)

ε2p◦
), and

each set I is well-estimated with probability at least 1− γ.
As we have touched upon, our algorithms for P δ,ε

count estimate each value π(x) by sampling
µ̂α(x) for a well-chosen value α. We use similar formulas to produce the estimates π̂(x), u(x)
in all these cases. We record the following general result:

D. G. Harris and V. Kolmogorov 72:9

▶ Lemma 11. Suppose that for x ∈ F , we are given α ∈ [βmin, βmax] and non-negative
parameters Q̂(α), µ̂α(x), p◦ (all of which may depend upon x), satisfying the following bounds:
(A1) | log Q̂(α)− log Q(α)| ≤ 0.1ε.
(A2) p◦ ≤ µα(x)(1 + δ/∆(x))
(A3) |µ̂α(x)− µα(x)| ≤ 0.1ε(µα(x) + p◦).

Then the estimated values

π̂(x) = Q̂(α)e(βmin−α)xµ̂α(x), u(x) = 0.4Q̂(α)e(βmin−α)xε(µ̂α(x) + p◦)

satisfy the criteria for the problem P δ,ε
count.

Proof. See full paper. ◀

Since this formula comes up so often, we write

EstimatePi(x, α, p◦)

as shorthand for setting π̂(x), u(x) according to the formula in Lemma 11. The values Q̂(α)
and µ̂α(x) should be clear from the context.

In a number of places, we need to estimate certain telescoping products. Direct Monte
Carlo sampling does not give strong tail bounds, so we use a standard method based on
median amplification. See the full paper for a description and proof.

▶ Theorem 12. Suppose we can sample non-negative random variables X1, . . . , XN . The
subroutine EstimateProducts(X, τ, ε, γ) takes input ε, γ ∈ (0, 1) and τ > 0, and returns
a vector of estimates (X̂prod

1 , . . . , X̂prod
N). It uses O(N(1 + τ/ε2) log 1

γ) total samples of
the X variables. If τ ≥

∑N
i=1 S[Xi], then with probability at least 1 − γ, it holds that

X̂
prod
i∏i

j=1
E[Xj]

∈ [e−ε, eε] for all i = 1, . . . , N .

In this case, it is also convenient to define X̂
prod
0 = 1 =

∏0
j=1 E[Xj].

3 Solving P δ,ε
count in the continuous setting

In this section, we develop Algorithm 1 for P δ,ε
count. Here, we use a general algorithm to solve

P all
ratio in the continuous setting with cost O

(
q log n

ε2 log 1
γ

)
.

Algorithm 1 Solving P δ,ε
count for error parameter γ.

1 call D ← PratioAll(ε/10, γ/4).
2 initialize x0 ← n, α0 ← βmax
3 for t = 1 to T = 10 min{q,

√
q log n} do

4 set αt ← Balance(βmin, αt−1, xt−1, γ
100T , 1/4)

5 set µ̂αt
← Sample(αt;

108 log 50T
δγ

δε2)
6 if αt > βmin then
7 set xt to be the minimum value with µ̂αt [0, xt] ≥ 1/100
8 foreach y ∈ (xt, xt−1] do EstimatePi(y, αt, δ/200) with Q̂(αt) = Q̂(αt | D)
9 else if αt = βmin then

10 foreach y ∈ [0, xt−1] do EstimatePi(y, αt, δ/200) with Q̂(αt) = Q̂(αt | D)
11 return

ICALP 2023

72:10 Parameter Estimation for Gibbs Distributions

▶ Theorem 13. Algorithm 1 solves P δ,ε
count with cost

O
(min{q,

√
q log n} log q

δγ

δε2 +
q log n log 1

γ

ε2

)
.

The complexity bound follows immediately from specification of suborutines. We next analyze
the success probability; this will require a number of intermediate calculations.

▶ Proposition 14. With probability at least 1− γ/10, the following conditions hold for all
iterations t:

(i) αt ∈ Λ1/4(βmin, αt−1, xt−1) and xt < xt−1 and and µαt [0, xt) ≤ 1
70

(ii) αt = βmin or µαt
[0, xt] ≥ 1

200 .

Proof. See full paper. ◀

For the remainder of the analysis, we suppose that the bounds of Proposition 14 hold.

▶ Proposition 15. For all iterations t, we have αt+1 < αt strictly and µαt+1 [xt, n] ≥ 1/4.
Furthermore, if αt+1 ̸= βmin, then z(αt+1, αt) ≥ 2 + xt+1

xt−1−xt+1
.

Proof. See full paper. ◀

▶ Lemma 16. The loop at line 3 terminates before iteration T .

Proof. Suppose not; by Proposition 14, we have x1 > x2 > · · · > xT −1 > βmin strictly. Since
each xi comes from F , we must have x1 ≤ n and xT −2 ≥ 1. Let g = T − 4; note that due to
bounds on n, q. we have g ≥ T/2 > 0. For each ℓ = 1, . . . , g, consider the non-negative value
aℓ = log(xℓ−1

xℓ+1
). We note the following bound:

g∑
ℓ=1

aℓ = log x1

x3
+ log x2

x4
+ log x3

x5
+ · · ·+ log xg−2

xg
+ log xg−1

xg+1

= log x1 + log x2 − log xg − log xg+1 by telescoping sums
≤ log n + log n− 0− 0 = 2 log n

By using Proposition 15 for each iteration 1, . . . , g, we can compute:

q ≥ z(βmax, βmin) ≥
g∑

i=1
z(αi+1, αi) ≥

g∑
i=1

2 + xi+1

xi−1 − xi+1
= 2g +

g∑
ℓ=1

1
eaℓ − 1 . (4)

By Jensen’s inequality applied to the concave function y 7→ 1
ey−1 , we have

g∑
ℓ=1

1
eaℓ − 1 ≥

g

exp(1
g

∑g
ℓ=1 aℓ)− 1

≥ g

exp(2 log n
g)− 1

. (5)

If q > 2 log n, then Eq. (4) shows g ≤ q/2. If q ≥ 2 log n, then exp(2 log n
g)− 1 ≤ 4e log n

g ,
and then Eq. (5) implies q ≥ g

(4e log n)/g ≥ g2/20, i.e. g ≤
√

20q log n. Either way, we have
g ≥ min{

√
20q log n, q/2}. Since g ≥ T/2, this is a contradiction to the definition of T . ◀

▶ Proposition 17. With probability at least 1 − γ/10, the preconditions of Lemma 11 for
EstimatePi (with p◦ = δ/200) hold for all y ∈ F .

Proof. See full paper. ◀

Overall, the total failure probability is at most γ/10 (from Proposition 14) plus γ/10
(from Proposition 17). This concludes the proof of Theorem 13. It also shows the first part
of Theorem 4.

D. G. Harris and V. Kolmogorov 72:11

4 Solving Pcount and P all
ratio for integer-valued Gibbs distributions

The algorithms in the integer setting hinge on a data structure called the covering schedule.
Formally, we define a covering schedule to be a sequence of the form

(β0, w0, k1, β1, w1, k2, . . . , βt−1, wt−1, kt, βt, wt)

which satisfies the following additional constraints:
(i) βmin = β0 < . . . < βt = βmax;
(ii) k1 < k2 < · · · < kt

(iii) wi ∈ [0, 1] for i = 0, . . . , t.

Note that t ≤ n + 1. We say that I is proper if for all i = 1, . . . , t it satisfies

µβi−1(ki) ≥ wi−1 and µβi
(ki) ≥ wi.

We define

InvWeight(I) =
t∑

i=0

1
wi

.

Our algorithm to solve Pcount will have four stages. As a high-level summary, it proceeds
as follows:
1. Construct a suitable covering schedule I = (β0, w0, k1, . . . , kt, βt, wt).
2. Estimate the values Q(βi) for i = 0, . . . , t.
3. Use these estimates Q̂(βi) to estimate the counts ci

4. Use the estimated counts ĉi to estimate the entire function Q(β)

The first stage is quite involved, so we defer it to Section 5 where we show the following
result:

▶ Theorem 18. There is a procedure FindCoveringSchedule(γ) which produces a covering
schedule I, which is proper with probability at least 1− γ. In the general integer setting, the
procedure has cost O(n log3 n + n log n log 1

γ + n log q) and has InvWeight(I) ≤ O(n log n).
In the log-concave setting, the procedure has cost O(n log2 n + n log 1

γ + n log q) and has
InvWeight(I) ≤ O(n).

The second stage is summarized in the following result:

▶ Theorem 19. There is an algorithm PratioCoveringSchedule(I, ε, γ) which takes as input
a covering schedule I = (β0, w0, k1, . . . , kt, βt, wt) and produces estimates Q̂(β0), . . . , Q̂(βt).

The overall algorithm cost is O
(min{nW,q log n} log 1

γ
ε2

)
where W = InvWeight(I). If I is

proper, then with probability at least 1−γ it satisfies | log Q̂(βi)−Q(βi)| ≤ ε for all i. (When
this latter condition holds, we say that the call to PratioCoveringSchedule is good).

Proof. To get the cost O
(

q log n
ε2 log 1

γ

)
, we simply run the algorithm D ← PratioAll(ε, γ)

for the continuous setting as in Theorem 6, and output Q̂(βi | D) for all i. To get the other
cost bound (in terms of W), we use the following algorithm:

ICALP 2023

72:12 Parameter Estimation for Gibbs Distributions

Algorithm 2 Estimating values Q(βi) via EstimateProducts.

1 for i = 1, . . . t form random variables Xi ∼ Bernoulli(µβi−1(ki)) and
Yi ∼ Bernoulli(µβi

(ki))
2 set X̂prod ← EstimateProducts(X, W, ε/2, γ/4)
3 set Ŷ prod ← EstimateProducts(Y, W, ε/2, γ/4)
4 for i = 0, . . . , t set Q̂(βi) = exp

(∑i
j=1(βj − βj−1)kj

)
· X̂prod

i /Ŷ prod
i

Here, assuming that I is proper, we have S[Xi] = 1
µβi−1 (ki)−1 ≤

1
wi−1

for each i, so∑
i S[Xi] ≤W . Likewise

∑
i S[Yi] ≤W . So with probability at least 1− γ/2 the estimates

X̂
prod
i , Ŷ

prod
i are all within e±ε/2 of

∏i
j=1 E[Xj],

∏i
j=1 E[Yj] respectively. Observe that

E[
∏i

j=1 Xj]
E[

∏i
j=1 Yj]

=
i−1∏
j=1

µβj−1(kj)
µβj (kj) =

∏
j

e(βj−1−βj)kj
Z(βj)

Z(βj−1) = Z(βi)
Z(β0) · exp

(i∑
j=1

(βj−1−βj)kj

)

so in that case, the values Q̂(βi) are also within e±ε of Z(βi)/Z(β0) = Q(βi) as required. ◀

4.1 Solving P δ,ε
count

We now move on to the third stage, of using the covering schedule to solve Pcount. There
are two quite distinct algorithms here: one for generic integer-valued distributions, and a
specialized algorithm for log-concave distributions. We begin with the following algorithm
for general integer distributions:

Algorithm 3 Solving problem P δ,ε
count.

1 set I = (β0, w0, k1, . . . , kt, βt, wt)← FindCoveringSchedule(γ/10)
2 set (Q̂(β0), . . . , Q̂(βt))← PratioCoveringSchedule(I, ε/100, γ/10)
3 for i = 0, . . . , t do let µ̂βi

← Sample(βi; ε/100, γ
10(n+1)2 , wi)

4 for j ∈ H do
5 set α← Balance(βmin, βmax, j, γ

10(n+1)2 , 1/4)
6 find index i < t with α ∈ [βi, βi+1]
7 let µ̂α ← Sample(α; ε/100, γ

10(n+1)2 , δ/4)
8 if µ̂α(ki+1) ≥ δ then EstimatePi(j, α, δ/4) where

Q̂(α) = µ̂βi
(ki+1)

µ̂α(ki+1) e(α−βi)ki+1Q̂(βi)
9 else if j ≥ ki+1 then EstimatePi(j, βi+1, wi+1/8) where Q̂(βi+1) is set at line

2.
10 else if j < ki+1 then EstimatePi(j, βi, wi/8) where Q̂(βi) is set at line 2.

▶ Theorem 20. Algorithm 3 solves P δ,ε
count with cost O

((n/δ) log n
γ +n2 log n log 1

γ
ε2 + n log q

)
.

Proof. See full paper. ◀

This gives the second part of Theorem 4. As we have mentioned, there is an alternative
algorithm to estimate counts in the log-concave setting:

D. G. Harris and V. Kolmogorov 72:13

Algorithm 4 Solving P δ,ε
count in the log-concave setting.

1 set I = (β0, w0, k1, . . . , kt, βt, wt)← FindCoveringSchedule(γ/10)
2 set (Q̂(β0), . . . , Q̂(βt))← PratioCoveringSchedule(I, 0.1ε, γ/6)
3 update δ ← min{δ, 1/n, 1/InvWeight(I)}.
4 for i = 1, . . . t− 1 do
5 let µ̂βi ← Sample(βi; 0.01ε, γ

6(n+1) , wi)
6 foreach j ∈ {ki + 1, ki + 2, . . . , ki+1} do EstimatePi(j, βi, δ/4)
7 let µ̂βmin ← Sample(βmin; 0.01ε, γ

6(n+1) , w′
0) for w′

0 = min{w0, δ/2}
8 foreach j ∈ {0, 1, . . . , k1} do EstimatePi(j, βmin, w′

0).
9 let µ̂βmax ← Sample(βmax; 0.01ε, γ

6(n+1) , w′
t) for w′

t = min{wt, δ/2})
10 foreach j ∈ {kt + 1, kt + 2, . . . , n} do EstimatePi(j, βmax, w′

t).

▶ Theorem 21. In the log-concave setting, Algorithm 4 solves P δ,ε
count with cost

O
(

n log2 n + n log q +
min{n2, q log n} log 1

γ + (n + 1/δ) log n
γ

ε2

)
Proof. See full paper. ◀

Again, with some simplification of parameters, this gives the third part of Theorem 4.

4.2 Solving P all
ratio

Finally, having estimated the counts, we can proceed to use these estimates to fill in the
entire function Q(β). This is a black-box reduction from Pcount to P all

ratio.

▶ Theorem 22. Given a solution (π̂, u) for P
1/n,0.1ε
count in the integer setting, we can solve

P all
ratio with probability one and no additional queries to the oracle.

Proof. The data structure D is the vector π̂, and for a query value α we set Q̂(α | D) =∑
i∈H π̂(i)e(α−βmin)i. See full paper for proof details. ◀

Our P δ,ε
count algorithms thus solve P all

ratio with cost O
(n2 log n log 1

γ
ε2 + n log q

)
in the general

integer setting, and O
(n2 log 1

γ

ε2 + n log q
)

in the log-concave setting. This shows the two
bounds of Theorem 6.

5 Constructing a covering schedule

In the full paper, we show that any non-negative log-concave sequence a1, . . . , am satisfying
ak ≤ 1

k for each k ∈ [m] satisfies a1 + · · ·+ am ≤ e. Without the log-concavity assumption
we would have a1 + . . . + am ≤

∑m
k=1

1
k ≤ 1 + log m (by a well-known inequality for the

harmonic series). Motivated by these facts, we define the following parameter in this section:

ρ
def=

{
1 + log(n + 1) in the general integer setting
e in the log-concave setting

We will show the following more precise bound on the weight of the schedule.

ICALP 2023

72:14 Parameter Estimation for Gibbs Distributions

▶ Theorem 23. In the integer setting, the procedure FindCoveringSchedule(γ) produces a
covering schedule I with InvWeight(I) ≤ a(n + 1)ρ and P[I is proper] ≥ 1− γ, where a > 4
is an arbitrary constant. It has cost O(nρ(log2 n + log 1

γ) + n log q).

This immediately implies Theorem 18. In order to build the covering schedule, we first
build an object with relaxed constraints called a preschedule, discussed in Sections 5.1. In
Section 5.2, we convert this into a schedule.

5.1 Constructing a preschedule

Let us fix constants τ ∈ (0, 1
2), λ ∈ (0, 1), and set ϕ = τλ3/ρ. Let us introduce basic

terminology and definitions.
An H-interval is a discrete set of points {σ−, σ− + 1, . . . , σ+ − 1, σ+}, for integers

0 ≤ σ− ≤ σ+ ≤ n. We also write this more compactly as σ = [σ−, σ+]. We define
span(σ) = σ+ − σ− + 1, i.e. the cardinality of σ when viewed as a subset of H.

A segment is a tuple θ = (β, σ) where β ∈ [βmin, βmax], and σ is an H-segment. We say θ

is ϕ-proper (or just proper if ϕ is understood) if it satisfies the following two properties:
Either β = βmin or µβ(σ−) ≥ ϕ/span(σ)
Either β = βmax or µβ(σ+) ≥ ϕ/span(σ)

A preschedule is a sequence of distinct segments J = ((β0, σ0), . . . , (βt, σt)) satisfying the
following properties:
(I0) σ−

i+1 ≤ σ+
i for i = 0, . . . , t− 1.

(I1) βmin = β0 ≤ . . . ≤ βt = βmax.
(I2) 0 = σ−

0 ≤ . . . ≤ σ−
t ≤ n and 0 ≤ σ+

0 ≤ . . . ≤ σ+
t = n

We say that I is ϕ-proper if all segments θi are ϕ-proper.
The main idea of the algorithm is to maintain a sequence of proper segments satisfying

properties (I1) and (I2), and grow it until it satisfies (I0). This uses an additional subroutine
σ ← FindInterval(β, σleft, σright), where β ∈ [βmin, βmax], and σleft, σright are two discrete
intervals in H and the returned interval σ = [σ−, σ+] has σ− ∈ σleft, σ+ ∈ σright. Deferring
for the moment the definition of FindInterval, the details are provided below.

Algorithm 5 Computing an initial preschedule.

1 call σmin ← FindInterval(βmin, {0},H) and σmax ← FindInterval(βmax,H, {n})
2 initialize J to contain the two segments (βmin, σmin), (βmax, σmax)
3 while J does not satisfy (I0) do
4 pick arbitrary consecutive segments θleft = (βleft, σleft) and

θright = (βright, σright) in J with σ+
left < σ−

right.

5 let M =
⌊ σ+

left+σ−
right

2
⌋

+ 1
2

6 call β ← Balance(βleft, βright, M, 1
4n , τ)

7 call

σ ←

FindInterval(β, [σ−

left, M − 1
2], [M + 1

2 , σ+
right]) if βleft < β < βright

FindInterval(β, {σ−
left}, [M + 1

2 , σ+
right]) if β = βleft

FindInterval(β, [σ−
left, M − 1

2], {σ+
right}) if β = βright

8 insert (β, σ) into J between θleft and θright

9 return J

D. G. Harris and V. Kolmogorov 72:15

Now let us say that a segment (β, σ, w) is extremal if it satisfies the following conditions:

µβ(k) ≤ 1
λ
· span(σ)

span(σ) + (σ− − k) · µβ(σ−) ∀k ∈ {0, . . . , σ− − 1} (6a)

µβ(k) ≤ 1
λ
· span(σ)

span(σ) + (k − σ+) · µβ(σ+) ∀k ∈ {σ++1, . . . , n} (6b)

There are two additional invariants we hope to maintain in Algorithm 5:
(I3) Each segment θ of J is ϕ-proper.
(I4) Each segment θ of J is extremal.

We say the call σ ← FindInterval(β, σleft, σright) is good if the segment θ = (β, σ)
satisfies (I3) and (I4), and we say the call at line 7 is valid if β ∈ Λτ (βleft, βright, M) and
both θleft and θright satisfy (I3), (I4). The calls at line 1 are always valid. The following
result summarizes FindInterval.

▶ Theorem 24. FindInterval(β, σleft, σright) has cost O
(
ρ(σ+

right−σ−
left + 1) log n

)
. If the

call is valid, then the call is good with probability at least 1− 1
4(n+2) .

We defer the proof, which is quite technical, the full paper. Putting it aside for the
moment, we have the following results:

▶ Proposition 25. Algorithm 5 outputs a preschedule, and it is ϕ-proper with probability at
least 1/2.

Proof. If all calls to Balance and FindInterval are good, then J maintains properties (I3)
and (I4), and in particular it is ϕ-proper. The loop in lines 3 – 8 is executed at most n times,
since each time it covers a new half-integer value M . So the algorithm calls FindInterval
at most n + 2 times and Balance at most n times. Since Balance or FindInterval fail with
probability at most 1

4n and 1
4(n+2) respectively, properties (I3) and (I4) are maintained with

probability at least 1/2. ◀

▶ Proposition 26. Algorithm 5 has cost O(n log q + nρ log2 n).

Proof. See full paper. ◀

5.2 Converting the preschedule into a covering schedule
There are two steps to convert the preschedule into a covering schedule. First, we throw
away redundant intervals. Second, we “uncross” the adjacent intervals. While we are doing
this, we also check if the resulting schedule is proper; if not, we will discard it and generate a
new preschedule from scratch.

▶ Proposition 27. Given a preschedule J , there is a procedure MinimizePreschedule(J),
which has zero sample complexity, to generate a preschedule J ′ = ((β0, σ0), . . . , (βt, σt))
satisfying the following three properties:
(J1) σ+

i < σ−
i+2 for i = 0, . . . , t− 2.

(J2) β0 < β1 < · · · < βt strictly.
(J3) For any k ∈ H, there are at most two segments θi = (βi, σi) ∈ J ′ with k ∈ σi.
Furthermore, if J is ϕ-proper, then so is J ′ with probability one.

Proof. Start with J and repeatedly apply two operations: (i) discard a segment i ∈
{1, . . . , t− 1} if σ−

i+1 ≤ σ+
i−1 or (ii) merge adjacent segments with βi = βi+1, namely, replace

the two segments (βi, σi), (βi+1, σi+1) with a single segment (βi, [σ−
i , σ+

i+1]). The operations
are performed in any order until no further changes are possible; let J ′ be the result of this
process. ◀

ICALP 2023

72:16 Parameter Estimation for Gibbs Distributions

We next describe the procedure to uncross a preschedule. Here ν > 0 is some arbitrary
constant.

Algorithm 6 UncrossSchedule(J , γ) for preschedule J = ((β0, σ0), . . . , (βt, σt)).

1 for i = 0, . . . , t do let µ̂βi ← Sample(βi; ν
2 , γ

4(t+1) , e−ν/2wi) where wi = ϕ/span(σi)
2 for i = 1, . . . , t do
3 if ∃ k ∈ {σ+

i−1, σ−
i } s.t. µ̂βi−1(k) ≥ e−ν/2wi−1 and µ̂βi

(k) ≥ e−ν/2wi then
4 set ki = k for arbitrary such k

5 else return ⊥
6 return covering schedule I = (β0, e−νw0, k1, β1, e−νw1, k2, . . . , kt, βt, e−νwt)

▶ Theorem 28. Suppose that preschedule J satisfies properties (J1), (J2), (J3). Then:
(a) The output is either ⊥ or a covering schedule I with InvWeight(I) ≤ 2eν (n+1)

ϕ .
(b) It outputs an improper covering schedule with probability at most γ, irrespective of J .
(c) If J is ϕ-proper, then it outputs a proper covering schedule with probability at least 1− γ.
(d) The cost is O(nρ log n

γ).

Proof. See full paper. ◀

We can finish by combining all the preschedule processing algorithms, as follows:

Algorithm 7 Algorithm FindCoveringSchedule(γ).

1 while true do
2 call Algorithm 5 with appropriate constants ν, λ, τ to compute preschedule J
3 call J ′ ← MinimizePreschedule(J)
4 call I ← UncrossSchedule(J ′, γ/4)
5 if I ≠ ⊥ then return I

By Proposition 25 and Theorem 28, each iteration of Algorithm 7 terminates with
probability at least 1

2 (1 − γ/4) ≥ 3/8, so there are O(1) expected iterations. Each call to
UncrossSchedule has cost O(nρ log n

γ). By Proposition 26, each call to Algorithm 5 has
cost O(n log q + nρ log n).

By Theorem 28(a), InvWeight(I) ≤ 2ρ(n + 1) · eν

τλ3 . The term eν

τλ3 gets arbitrarily close
to 2 for constants ν, λ, τ sufficiently close to 0, 1, 1

2 respectively.
Finally, by Proposition 28, each iteration of Algorithm 7 returns a non-proper cover-

ing schedule with probability at most γ/4 (irrespective of the choice of J). Thus, the
total probability of returning a non-proper covering schedule over all iterations is at most∑∞

i=0(3/8)iγ/4 = 2γ/5 ≤ γ as desired.
This shows Theorem 23.

6 Combinatorial applications

Consider a combinatorial setting with ci objects of weights i = 0, . . . , n, and we can sample
from a Gibbs distribution at rate β (for certain values of β). If we know at least one of the
counts, then estimates for π(x) directly translate into estimate of ci. Our usual strategy here
will be to solve P δ,ε

count for δ = O(minx ∆(x)), for chosen boundary parameters βmin, βmax;
in this case, it can easily be seen that the resulting estimated counts ĉi = c0π̂(i)/π̂(0) are
accurate within e±ε relative error.

D. G. Harris and V. Kolmogorov 72:17

In many of these combinatorial applications, the counts are known to be log-concave; in
this case, there are natural choices for algorithm parameters which lead to particularly clean
bounds. When counts are not log-concave, more involved properties of the Gibbs distribution
(e.g. it approaches a normal distribution) must be used.

▶ Theorem 29. Suppose the counts are log-concave and non-zero. If βmin ≤ log c0
c1

and
βmax ≥ log cn−1

cn
, then ∆(k) ≥ 1

n+1 for all k = 0, . . . , n, and log Q(βmax) ≤ q := 3nΓ where
Γ := max{βmax, log c1

c0
, 1}. In particular, for δ = 1

n+1 , we can solve P δ,ε
count with cost

O
(

min
{nΓ log n log 1

γ

ε2 ,
n2 log 1

γ

ε2 + n log Γ
})

Proof. See full paper. ◀

Theorem 3 follows directly from Theorem 29 combined with an MCMC sampler for
matchings appearing [15]. (See full paper for details).

6.1 Counting connected subgraphs
Consider a connected graph G = (V, E). In [11], Guo & Jerrum described an algorithm
to sample a connected subgraph G′ = (V, E′) with probability proportional to

∏
f∈E′(1−

p(f))
∏

f∈E−E′ p(f), for any weighting function p : E → [0, 1]. If we set p(f) = 1
1+eβ for all

edges f , then their algorithm samples from the Gibbs distribution with ci being the number
of connected subgraphs of G with |E| − i edges. Guo & He [10] subsequently improved the
algorithm runtime; we summarize their result as follows:

▶ Theorem 30 ([10], Corollary 10). There is an algorithm to sample from the Gibbs distribution
with counts ci for any value of β > 0; the expected runtime is O(|E|+ |E||V |eβ).

Proof of Theorem 1. The sequence ci counts the number of independent sets in the co-
graphic matroid, where n = |E| − |V |+ 1. By the result of [1], this sequence ci is log-concave;
also c0 = 1 so it suffices to estimates counts up to any scaling. The ratios cn−1/cn and c1/c0
are both at most |E|, since to enumerate a connected graph with |V | edges we may select a
spanning tree and any other edge in the graph, and to enumerate a graph with |E| − 1 edges
we simply select an edge of G to delete.

So we can apply Theorem 29, setting βmax = log |E| ≥ log cn−1
cn

, βmin = − log |E| ≤ log c0
c1

and Γ = log |E|. The definition of an FPRAS traditionally sets γ = O(1), and here n = |E|.
So the algorithm uses O(|E| log2 |E|

ε2) samples in expectation. With these parameters, each
call to the sampling oracle of Theorem 30 has runtime O(|E|2|V |). The total runtime is then
O(|E|3|V | log2 |E|

ε2). ◀

The work [11] sketches an FPRAS for this problem as well; the precise complexity is
unspecified and appears to be much larger than Theorem 1. We also note that Anari et
al. [2] provide a general FPRAS for counting the number of independent sets in arbitrary
matroids, which would include the number of connected subgraphs. This uses a very different
sampling method, which is not based on the Gibbs distribution. They do not provide concrete
complexity estimates for their algorithm.

6.2 Counting independent sets in bounded-degree graphs
For a graph G = (V, E) of maximum degree D, let Ik denote the collection of independent
sets of size k for k = 0, . . . , |V |. A key problem in statistical physics is to sample efficiently
from Ik. Here, there is critical hardness threshold defined by λc = (D−1)D−1

(D−2)D ≈ e/D, such

ICALP 2023

72:18 Parameter Estimation for Gibbs Distributions

that, for β > λc, it is intractable to sample from the Gibbs distribution at rate λ; on the
other, for β < λc, there is a polynomial-time sampler for the Gibbs distribution. We quote
the following result of [6].

▶ Theorem 31 ([6]). Let D ≥ 3 and ξ > 0 be any fixed constants. There is an algorithm
to approximately sample from the Gibbs distribution at β ∈ [0, λc − ξ], up to total variation
distance ρ, with runtime O(n log n log(n/ρ)).

The related problem of estimating the values ik was considered in [7]. Based on this
sampling result, they identified a related computational threshold for estimating the counts
ck = |Ik|. Namely, they define the threshold value αc = λc

1+(D+1)λc
and then show that,

for k > αc|V |, it is intractable to estimate ck or to sample approximately uniformly from
Ik; on the other hand, for constant D ≥ 3 and ξ > 0 and k < (αc − ξ)|V |, then describe
an algorithm to estimate ck in polynomial time. A follow-up work [13] provided tighter
estimates for the Gibbs distribution and improved algorithms; specifically, it showed how to
estimate a given count ci for i < (α− ξ)|V | with runtime Õ(n2/ε2).

A key analytical technique of [13] was to show that the Gibbs distribution for independent
sets closely approximated to a normal distribution, i.e. it obeyed a type of Central Limit
Theorem. Using Theorem 3.1 of [13], we have the following crude estimate:

▶ Lemma 32 ([13]). Let D ≥ 3 and ξ > 0 be any fixed constants. There is a constant ξ′ > 0
such that, for any k ≤ (αc−ξ)|V |, there is some value β ∈ [0, λc−ξ′] with µβ(k) ≥ Ω(1/

√
|V |).

By using Lemma 32, we immediately get the following result:

▶ Theorem 33. Let D ≥ 3 and ξ > 0 be any fixed constants. There is an algorithm to
estimate all counts c0, . . . c⌊(αc−ξ)|V |⌋ with runtime Õ(n2 log(1/γ)

ε2).

Proof. We set βmin = 0, βmax = λc − ξ′, n = |V |. Note that the Gibbs distribution is not
necessarily log-concave. Since c0 = 1 and clearly ci ≤ 2n for all i, we have Q(βmax)/Q(βmin) ≤
(2neβmaxn)/1; in particular, since βmax = O(1) (for fixed D), we have Q(βmax)/Q(βmin) ≤
eO(n) and we can take q = Θ(n). By Lemma 32, we have ∆(k) ≥ Ω(1/

√
n) for these

parameters. Thus, it suffices to solve P δ,0.1ε
count for δ = Ω(1/

√
n).

For this purpose, we will actually use the continuous-setting algorithm – it is more efficient
than the general integer-setting algorithm. By Theorem 13, this algorithm has cost

O
(min{q,

√
q log n} log q

δγ

δε2 +
q log n log 1

γ

ε2

)
= O

(n log3/2 n + n log n log 1
γ

ε2

)
.

Accordingly, we need to run the approximate sampler of Theorem 31 with ρ =
poly(n, 1/ε, log 1

γ) leading to a computational complexity of O(n log n log(n log 1/γ
ε)). With

some simplification of parameters, the overall runtime becomes

O
(n2 log5/2 n log(n/ε) + n2 log2 n log 1

γ log(n log 1/γ
ε)

ε2

)
= Õ

(n2 log 1
γ

ε2

)
. ◀

We note that the algorithm in [13] has this same runtime, but only estimates a single count
ci; our algorithm simultaneously produces estimates for all values ci up to the threshold value
i < (αc − ξ)|V | with the same runtime. It also does not depend on the precise distributional
properties of the Gibbs distribution; it only requires the much cruder estimate in Lemma 32.

D. G. Harris and V. Kolmogorov 72:19

7 Lower bounds on sample complexity

Following [16], our strategy is to construct a target instance c(0) surrounded by an envelope
of d alternate instances c(1), . . . , c(d), such that solving P point

ratio or Pcount on an unknown
instance c(r) distinguishes between the cases r = 0 and r > 0. On the other hand, an
“indistinguishability lemma” gives a lower bound on the sample complexity of any such
procedure to distinguish the distributions.

Define µ
(r)
β to be the Gibbs distribution with parameter β for instance c(r), and Z(r)(β)

to be its partition function, and z(r) = log Z(r), and ∆(r)(x) = maxβ∈[βmin,βmax] µ
(r)
β (x).

We will require that the instances are balanced, namely, that they satisfy the property∏d
r=1 c

(r)
x = (c(0)

x)d for all x ∈ F . We also define parameters

U(β) =
d∏

r=1

Z(r)(β)
Z(0)(β)

, Ψ = max
β∈[βmin,βmax]

log U(β).

▶ Lemma 34 ([16]). Let A be an algorithm which generates queries β1, . . . , βT ∈ [βmin, βmax]
and receives values x1, . . . , xT , where each xi is drawn from µβi . At some point the procedure
stops and outputs TRUE or FALSE. The queries βi and the stopping time T may be adaptive
and may be randomized.

Suppose that A outputs TRUE on input c(0) with probability at least 1− γ and outputs
FALSE on inputs c(1), . . . , c(d) with probability at least 1− γ, for some parameter γ < 1/4.

If the instances are balanced, then the cost of A on instance c(0) is Ω(d log(1/γ)
Ψ).

To get more general lower bounds for count estimation, we consider a problem variant
called P̌ δ,ε

count, namely, to compute a vector ĉ ∈ (R>0 ∪ {?})F satisfying the following two
properties:

(i) for all pairs x, y with ĉx, ĉy ̸= ?, there holds | log ĉx

ĉy
− log cx

cy
| ≤ ε

(ii) for all x with ∆(x) ≥ δ there holds ĉx ̸= ?.

Given a solution (π̂, u) to P δ,0.1ε
count , we can solve P̌ δ,ε

count with zero sample complexity and
probability one (see full paper for details). Problem P̌ δ,ε

count is easier than P δ,ε
count (up to constant

factors in parameters), in two ways: first, it does not require any specific normalization of
the counts, only pairwise consistency. Second, it only provides approximation guarantees for
cx if ∆(x) ≥ δ, while P δ,ε

count provides meaningful bounds over a wide range of scales.

▶ Corollary 35.
(a) Suppose that |z(0)(βmin, βmax) − z(r)(βmin, βmax)| > 2ε for all r = 1, . . . , d. Then any

algorithm for P point
ratio must have cost Ω(d log(1/γ)

Ψ) on instance c(0).
(b) Suppose that for each r = 1, . . . , d there are x, y with ∆(0)(x), ∆(0)(y) ≥ δ, and
| log(c(0)

x /c
(0)
y) − log(c(r)

x /c
(r)
y)| > 2ε. (We refer to the values x, y as the witnesses

for r.) Then any algorithm for P̌ δ,ε
count must have cost Ω(d log(1/γ)

Ψ) on instance c(0).

Proof. We show how to convert these algorithms into procedures distinguishing c(0) from
c(1), . . . , c(d):
(a) Given a solution Q̂(βmax) to P point

ratio , output TRUE if | log Q̂(βmax)−z(0)(βmin, βmax)| ≤ ε,
else output FALSE.

(b) Given a solution ĉ to P̌ δ,ε
count, output TRUE if ĉ ≠ ? for all x with ∆(0)(x) ≥ δ, and

every pair x, y with ∆(x), ∆(y) ≥ δ satisfy | log(ĉx/ĉy)− log(c(0)
x /c

(0)
y)| ≤ ε, else output

FALSE. ◀

By applying Corollary 35 to carefully constructed instances, we will show the following:

ICALP 2023

72:20 Parameter Estimation for Gibbs Distributions

▶ Theorem 36. Let n ≥ n0, q ≥ q0, ε < ε0, δ < δ0, γ < 1/4 for certain absolute constants
n0, q0, ε0, δ0. There are problem instances µ which satisfy the given bounds n and q such that:
(a) P̌ δ,ε

count requires cost Ω(min{q+√
q/δ,n2+n/δ} log 1

γ

ε2), and µ is integer-valued.

(b) P̌ δ,ε
count requires cost Ω((1/δ+min{q,n2}) log 1

γ

ε2), and µ is log-concave.

(c) P
point
ratio requires cost Ω(min{q,n2} log 1

γ

ε2), and µ is log-concave.

(d) P̌ δ,ε
count requires cost Ω((q+√

q/δ) log 1
γ

ε2).

(e) P point
ratio requires cost Ω(q log 1

γ

ε2).

The lower bounds on P̌ δ,ε
count immediately imply lower bounds on P δ,ε

count, in particular,
they give Theorems 5 and 7. Result (e) was already shown in [16], but we include it here
since it is a corollary of other results.

The proofs and constructions appear in the full paper.

References
1 K. Adiprasito, J. Huh, and E. Katz. Hodge theory for combinatorial geometries. Annals of

Mathematics, 188(2):381–452, 2018.
2 N. Anari, K. Liu, S. O. Gharan, and C. Vinzant. Log-concave polynomials II: High-dimensional

walks and an FPRAS for counting bases of a matroid. In Proc. 51st annual ACM Symposium
on Theory of Computing (STOC), pages 1–12, 2019.

3 R. E. Belardinelli and V. D. Pereyra. Wang-Landau algorithm: A theoretical analysis of the
saturation of the error. The Journal of Chemical Physics, 127(18):184105, 2007.

4 I. Bezáková, D. Štefankovič, V. V. Vazirani, and E. Vigoda. Accelerating simulated annealing
for the permanent and combinatorial counting problems. SIAM J. Comput., 37:1429–1454,
2008.

5 Charlie Carlson, Ewan Davies, Alexandra Kolla, and Will Perkins. Computational thresholds
for the fixed-magnetization ising model. In Proc. 54th annual ACM Symposium on Theory of
Computing (STOC), pages 1459–1472, 2022.

6 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of Glauber dynamics: Entropy
factorization via high-dimensional expansion. In Proc. 53rd annual ACM Symposium on
Theory of Computing (STOC), pages 1537–1550, 2021.

7 Ewan Davies and Will Perkins. Approximately counting independent sets of a given size in
bounded-degree graphs. In Proc. 48th International Colloquium on Automata, Languages, and
Programming (ICALP), pages 62:1–62:18, 2021.

8 W. Feng, H. Guo, Y. Yin, and C. Zhang. Fast sampling and counting k-SAT solutions in the
local lemma regime. In Proc. 52nd annual ACM Symposium on Theory of Computing (STOC),
pages 854–867, 2020.

9 G. Fort, B. Jourdain, E. Kuhn, T. Leliévre, and G. Stoltz. Convergence of the Wang-Landau
algorithm. Mathematics of Computation, 84(295):2297–2327, 2015.

10 H. Guo and K. He. Tight bounds for popping algorithms. Random Struct. Algorithms,
57(2):371–392, 2020.

11 H. Guo and M. Jerrum. A polynomial-time approximation algorithm for all-terminal network
reliability. SIAM J. Comput., 48(3):964–978, 2019.

12 M. Huber. Approximation algorithms for the normalizing constant of Gibbs distributions. The
Annals of Applied Probability, 25(2):974–985, 2015.

13 Vishesh Jain, Will Perkins, Ashwin Sah, and Mehtaab Sawhney. Approximate counting and
sampling via local central limit theorems. In Proc. 54th annual ACM Symposium on Theory
of Computing (STOC), pages 1473–1486, 2022.

14 M. Jerrum and A. Sinclair. Approximating the permanent. SIAM J. Comput., 18(6):1149–1178,
1989.

D. G. Harris and V. Kolmogorov 72:21

15 M. Jerrum and A. Sinclair. The Markov Chain Monte Carlo method: an approach to
approximate counting and integration. Approximation algorithms for NP-hard problems, pages
482–520, 1996.

16 V. Kolmogorov. A faster approximation algorithm for the Gibbs partition function. Proceedings
of Machine Learning Research, 75:228–249, 2018.

17 Pedro Ojeda, Martin E Garcia, Aurora Londoño, and Nan-Yow Chen. Monte Carlo simulations
of proteins in cages: influence of confinement on the stability of intermediate states. Biophysical
journal, 96(3):1076–1082, 2009.

18 L. N. Shchur. On properties of the Wang-Landau algorithm. Journal of Physics: Conference
Series, 1252, 2019.

19 D. Štefankovič, S. Vempala, and E. Vigoda. Adaptive simulated annealing: A near-optimal
connection between sampling and counting. J. of the ACM, 56(3) Article #18, 2009.

20 F. Wang and D. P. Landau. Efficient, multiple-range random walk algorithm to calculate the
density of states. Phys. Rev. Lett., 86(10):2050–2053, 2001.

ICALP 2023

	1 Introduction
	1.1 Algorithmic sampling-to-counting
	1.2 Our contributions
	1.3 Overview

	2 Preliminaries
	2.1 The Balance subroutine
	2.2 Statistical sampling

	3 Solving {P^{#1}_count} {delta, epsilon} in the continuous setting
	4 Solving {P^{#1}_count} {} and {P^all_ratio} for integer-valued Gibbs distributions
	4.1 Solving {P^{#1}_count} {delta, epsilon}
	4.2 Solving {P^all_ratio}

	5 Constructing a covering schedule
	5.1 Constructing a preschedule
	5.2 Converting the preschedule into a covering schedule

	6 Combinatorial applications
	6.1 Counting connected subgraphs
	6.2 Counting independent sets in bounded-degree graphs

	7 Lower bounds on sample complexity

