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Abstract
A subset of [n] = {1, 2, . . . , n} is called stable if it forms an independent set in the cycle on the
vertex set [n]. In 1978, Schrijver proved via a topological argument that for all integers n and k with
n ≥ 2k, the family of stable k-subsets of [n] cannot be covered by n − 2k + 1 intersecting families.
We study two total search problems whose totality relies on this result.

In the first problem, denoted by Schrijver(n, k, m), we are given an access to a coloring of the
stable k-subsets of [n] with m = m(n, k) colors, where m ≤ n − 2k + 1, and the goal is to find a
pair of disjoint subsets that are assigned the same color. While for m = n − 2k + 1 the problem is
known to be PPA-complete, we prove that for m < d · ⌊ n

2k+d−2 ⌋, with d being any fixed constant,
the problem admits an efficient algorithm. For m = ⌊n/2⌋ − 2k + 1, we prove that the problem is
efficiently reducible to the Kneser problem. Motivated by the relation between the problems, we
investigate the family of unstable k-subsets of [n], which might be of independent interest.

In the second problem, called Unfair Independent Set in Cycle, we are given ℓ subsets V1, . . . , Vℓ

of [n], where ℓ ≤ n − 2k + 1 and |Vi| ≥ 2 for all i ∈ [ℓ], and the goal is to find a stable k-subset S of
[n] satisfying the constraints |S ∩ Vi| ≤ |Vi|/2 for i ∈ [ℓ]. We prove that the problem is PPA-complete
and that its restriction to instances with n = 3k is at least as hard as the Cycle plus Triangles
problem, for which no efficient algorithm is known. On the contrary, we prove that there exists
a constant c for which the restriction of the problem to instances with n ≥ c · k can be solved in
polynomial time.
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1 Introduction

For integers n and k with n ≥ 2k, the Kneser graph K(n, k) is the graph whose vertices
are all the k-subsets of [n] = {1, 2 . . . , n}, where two such sets are adjacent in the graph
if they are disjoint. The graph K(n, k) admits a proper vertex coloring with n − 2k + 2
colors. This indeed follows by assigning the color i, for each i ∈ [n − 2k + 1], to all the
vertices whose minimal element is i, and the color n − 2k + 2 to the remaining vertices,
those contained in [n] \ [n − 2k + 1]. In 1978, Lovász [22] proved, settling a conjecture of
Kneser [20], that fewer colors do not suffice, that is, the chromatic number of the graph
satisfies χ(K(n, k)) = n − 2k + 2. Soon later, Schrijver [28] strengthened Lovász’s result by
proving that the subgraph S(n, k) of K(n, k) induced by the stable k-subsets of [n], i.e., the
vertices of K(n, k) that form independent sets in the cycle on the vertex set [n], has the same
chromatic number. It was further shown in [28] that the graph S(n, k) is vertex-critical, in
the sense that any removal of a vertex from the graph decreases its chromatic number.
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73:2 Finding Constrained Independent Sets in Cycles

It is interesting to mention that despite the combinatorial nature of Kneser’s conjec-
ture [20], Lovász’s proof [22] relies on the Borsuk–Ulam theorem [6], a fundamental result in
the area of algebraic topology. Several alternative proofs and extensions were provided in
the literature over the years (see, e.g., [24, 25]). Although they are substantially different
from each other, they all essentially rely on topological tools.

The computational search problem associated with Kneser graphs, denoted by Kneser,
was proposed by Deng, Feng, and Kulkarni [7] and is defined as follows. Its input consists
of integers n and k with n ≥ 2k and an access to a coloring of the vertices of K(n, k)
with n − 2k + 1 colors. The goal is to find a monochromatic edge in the graph, i.e., two
disjoint k-subsets of [n] that are assigned the same color by the given coloring. Since the
number of colors used by the input coloring is strictly smaller than the chromatic number
of K(n, k) [22], it follows that this search problem is total, in the sense that every input
is guaranteed to have a solution. Note that the input coloring may be given as an oracle
access that provides the color of any queried vertex, and that an algorithm for the problem
is considered efficient if its running time is polynomial in n. In other variants of the problem,
the input coloring is given by some succinct representation, e.g., a Boolean circuit or an
efficient Turing machine. The computational search problem Schrijver is defined similarly,
where the input represents a coloring of the vertices of S(n, k) with n − 2k + 1 colors, and the
goal is to find a monochromatic edge, whose existence is guaranteed by the aforementioned
result of Schrijver [28].

The computational complexity of the Schrijver problem was determined in [15], where
it was shown to be complete in the complexity class PPA. This complexity class, introduced
in 1994 by Papadimitriou [26], is known to capture the complexity of several additional total
search problems whose totality is based on the Borsuk–Ulam theorem, e.g., Consensus Halving,
Bisecting Sandwiches, and Splitting Necklaces [12]. Note that this line of PPA-completeness
results is motivated not only from the computational complexity perspective, but also from
a mathematical point of view, as one may find those results as an indication for the necessity
of topological arguments in the existence proof of the solutions of these problems. As for
the Kneser problem, it is an open question whether it is also PPA-hard, as was suggested
by Deng et al. [7]. We remark that its complexity is related to that of the Agreeable Set
problem from the area of resource allocation (see [23, 16]). The Kneser and Schrijver
problems were also investigated in the framework of parameterized algorithms [16, 17], where
it was shown that they admit randomized fixed-parameter algorithms with respect to the
parameter k, namely, algorithms whose running time is nO(1) · kO(k) on input colorings of
K(n, k) and S(n, k).

Before turning to our results, let us mention another computational search problem,
referred to as the Cycle-Plus-Triangles problem. Its input consists of an integer k and a
graph on 3k vertices, whose edge set is the disjoint union of a Hamilton cycle and k pairwise
vertex-disjoint triangles. The goal is to find an independent set of size k in the graph. The
existence of a solution for every input of the problem follows from a result of Fleischner and
Stiebitz [13], which settled in the early nineties a conjecture of Du, Hsu, and Hwang [9] as
well as its strengthening by Erdös [10]. Their proof in fact shows that every such graph is
3-choosable, and thus 3-colorable, so in particular, it contains an independent set of size k.
Here, however, the existence of a solution for every input of the problem is known to follow
from several different arguments. While the proof of [13] relies on the polynomial method in
combinatorics (see also [3]), an elementary proof was given slightly later by Sachs [27], and
another proof, based on the chromatic number of S(n, k), was provided quite recently by
Aharoni et al. [1]. Yet, none of these proofs is constructive, in the sense that they do not
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suggest an efficient algorithm for the Cycle-Plus-Triangles problem. The question of
whether the problem admits an efficient algorithm was asked by several authors and is still
open (see, e.g., [14, 1, 4]). Interestingly, the approach of [1] implies that the problem is not
harder than the restriction of the Schrijver problem to colorings of S(n, k) with n = 3k.

1.1 Our Contribution
In this paper, we introduce two total search problems concerned with finding stable sets
under certain constraints. The totality of the problems relies on the chromatic number
of the graph S(n, k) [28]. We study these problems from algorithmic and computational
perspectives. In what follows, we describe the two problems and our results on each of them.

1.1.1 The Generalized Schrijver Problem
We start by considering a generalized version of the Schrijver problem, which allows the num-
ber of colors used by the input coloring to be any prescribed number. Let Schrijver(n, k, m)
denote the problem which asks to find a monochromatic edge in S(n, k) for an input coloring
that uses m = m(n, k) colors. Note that every input of the problem is guaranteed to have a
solution whenever m ≤ n − 2k + 1, and that for m = n − 2k + 1, the problem coincides with
the standard Schrijver problem.

The Schrijver(n, k, m) problem obviously becomes easier as the number of colors m

decreases. For example, it is not difficult to see that for m = ⌊n/k⌋ − 1, the problem can be
solved efficiently, in time polynomial in n. Indeed, the clique number of the graph S(n, k) is
⌊n/k⌋, which is strictly larger than m, so by querying the input coloring for the colors of the
vertices of a clique of maximum size, one can find two adjacent vertices with the same color.
Our first result extends this observation and essentially shows that the Schrijver(n, k, m)
problem can be solved efficiently for any number of colors m satisfying m = O(n/k).

▶ Theorem 1. For every integer d ≥ 2, there exists an algorithm for the Schrijver(n, k, m)
problem with m < d · ⌊ n

2k+d−2 ⌋ whose running time is nO(d).

Our next result relates the generalized Schrijver(n, k, m) problem to the Kneser
problem.

▶ Theorem 2. Schrijver(n, k, ⌊n/2⌋ − 2k + 1) is polynomial-time reducible to Kneser.

The simple proof of Theorem 2 involves a proper coloring of the subgraph of K(n, k)
induced by the unstable k-subsets of [n], i.e., the vertices of K(n, k) that do not form vertices
of S(n, k). This graph, which we denote by U(n, k), can be properly colored using ⌈n/2⌉
colors. Indeed, every unstable k-subset of [n] includes an odd element, hence by assigning to
each vertex of U(n, k) some odd element that belongs to its set, we obtain a proper coloring
of the graph with the desired number of colors. Since U(n, k) is a subgraph of K(n, k), it
follows that for all admissible values of n and k, we have χ(U(n, k)) ≤ min(n − 2k + 2, ⌈n/2⌉).

Motivated by the reduction given by Theorem 2, we further explore the graph U(n, k),
whose study may be of independent interest. We prove that the above upper bound on the
chromatic number is essentially tight (up to an additive 1 in certain cases; see Corollary 19 and
the discussion that follows it). The proof is topological and applies the Borsuk–Ulam theorem.
We further determine the independence number of the graph U(n, k) (see Theorem 20), using
a structural result of Hilton and Milner [18] on the largest non-trivial intersecting families of
k-subsets of [n].

ICALP 2023
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The motivation for Theorem 2 comes from the fact that the Schrijver problem is
known to be PPA-hard, whereas no hardness result is known for the Kneser problem. It
would be interesting to figure out whether or not the Schrijver(n, k, m) problem with
m = ⌊n/2⌋ − 2k + 1 admits an efficient algorithm. While this challenge is left open, the
following result shows that the problem is not harder than the restriction of the standard
Schrijver problem to colorings of S(n, k) with n = 4k.

▶ Theorem 3. If there exists a polynomial-time algorithm for the restriction of the Schrijver
problem to colorings of S(n, k) with n = 4k, then there exists a polynomial-time algorithm
for the Schrijver(n, k, m) problem where m = ⌊n/2⌋ − 2k + 1.

We finally observe that the restriction of Schrijver(n, k, m) with m = ⌊n/2⌋ − 2k + 1
to instances satisfying n = Ω(k4) admits an efficient randomized algorithm. This essentially
follows from the fixed-parameter algorithm presented in [17] (see Section 3 for details).

1.1.2 The Unfair Independent Set in Cycle Problem
The second problem studied in this paper is the Unfair Independent Set in Cycle problem,
denoted by Unfair-IS-Cycle and defined as follows. Its input consists of two integers n and
k with n ≥ 2k and ℓ subsets V1, . . . , Vℓ of [n], where ℓ ≤ n − 2k + 1 and |Vi| ≥ 2 for all i ∈ [ℓ].
The goal is to find a stable k-subset S of [n] that satisfies the constraints |S ∩ Vi| ≤ |Vi|/2
for i ∈ [ℓ]. The name of the problem essentially borrows the terminology of [1], where a set
is said to fairly represent a set Vi if it includes at least roughly half of its elements, hence the
desired stable set in the Unfair-IS-Cycle problem is required to unfairly represent each
of the given sets Vi. It is not difficult to show, using the chromatic number of S(n, k), that
every input of the Unfair-IS-Cycle problem has a solution (see Lemma 13). Note that
the requirement that the input sets satisfy |Vi| ≥ 2 for all i ∈ [ℓ] is discussed in Section 2.4.

It is natural to compare the definition of the Unfair-IS-Cycle problem to that of the
Fair Independent Set in Cycle problem, denoted by Fair-IS-Cycle and studied in [15] (see
Definition 11). While the goal in the former is to find a stable subset of [n] with a prescribed
size k that includes no more than half of the elements of each Vi, the goal in the latter is,
roughly speaking, to find a stable subset of [n], of an arbitrary size, that includes at least half
of the elements of each Vi. The specification of the size k in the inputs of Unfair-IS-Cycle
makes the problem non-trivial and allows us to study it for various settings of the quantities
n and k.

The following result shows that the complexity of the Unfair-IS-Cycle problem
is perfectly captured by the class PPA. This is established using the Schrijver and
Fair-IS-Cycle problems which are PPA-complete [15].

▶ Theorem 4. The Unfair-IS-Cycle problem is PPA-complete.

We next consider some restrictions of the Unfair-IS-Cycle problem to instances in
which the integer n is somewhat larger than 2k. On the one hand, the restriction of the
problem to instances with n = 3k is at least as hard as the Cycle-Plus-Triangles problem,
for which no efficient algorithm is known (see Proposition 15). On the other hand, we prove
that on instances whose ratio between n and k is above some absolute constant, the problem
can be solved in polynomial time.

▶ Theorem 5. There exists a constant c > 0, such that there exists a polynomial-time
algorithm for the restriction of the Unfair-IS-Cycle problem to instances with n ≥ c · k.
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The proof of Theorem 5 is based on a probabilistic argument with alterations, which is
derandomized into a deterministic algorithm using the method of conditional expectations
(see, e.g., [5, Chapters 3 and 16.1]). The approach is inspired by a probabilistic argument of
Kiselev and Kupavskii [19], who proved that for n ≥ (2 + o(1)) · k2, every proper coloring
of the Kneser graph K(n, k) with n − 2k + 2 colors has a trivial color class (all of whose
members share a common element).

1.2 Outline
The rest of the paper is organized as follows. In Section 2, we collect some definitions
and results that will be used throughout the paper. In Section 3, we study the gener-
alized Schrijver problem and prove Theorems 1, 2, and 3. In Section 4, we study the
Unfair-IS-Cycle problem and prove Theorems 4 and 5. Finally, in Section 5, we consider
the family of unstable k-subsets of [n] and study the chromatic and independence numbers
of the graph U(n, k). Some proofs are omitted and can be found in the full version of this
paper.

2 Preliminaries

2.1 Kneser and Schrijver Graphs
For integers n and k, let

([n]
k

)
denote the family of all k-subsets of [n]. A subset of [n] is

called stable if it does not include two consecutive elements nor both 1 and n, equivalently, it
forms an independent set in the cycle on the vertex set [n] with the natural order along the
cycle. Otherwise, the set is called unstable. The family of stable k-subsets of [n] is denoted
by

([n]
k

)
stab. The Kneser graph and the Schrijver graph are defined as follows.

▶ Definition 6. For integers n and k with n ≥ 2k, the Kneser graph K(n, k) is the graph on
the vertex set

([n]
k

)
, where two sets A, B ∈

([n]
k

)
are adjacent if they satisfy A ∩ B = ∅. The

Schrijver graph S(n, k) is the subgraph of K(n, k) induced by the vertices of
([n]

k

)
stab.

Obviously, the number of vertices in K(n, k) is
(

n
k

)
. The number of vertices in S(n, k) is

given by the following lemma (see, e.g., [16, Fact 4.1]).

▶ Lemma 7. For all integers n and k with n ≥ 2k, the number of stable k-subsets of [n] is
n
k ·

(
n−k−1

k−1
)
.

As usual, we denote the independence number of a graph G by α(G), and its chro-
matic number by χ(G). The chromatic numbers of K(n, k) and S(n, k) were determined,
respectively, by Lovász [22] and by Schrijver [28], as stated below.

▶ Theorem 8 ([22, 28]). For all integers n and k with n ≥ 2k,

χ(K(n, k)) = χ(S(n, k)) = n − 2k + 2.

2.2 Intersecting Families
A family F of sets is called intersecting if for every two sets A, B ∈ F it holds that A ∩ B ̸= ∅.
Note that a family of k-subsets of [n] is intersecting if and only if it forms an independent
set in the graph K(n, k). An intersecting family F is said to be trivial if there exists an
element that belongs to all members of F . Otherwise, the family F is non-trivial. The
famous Erdös-Ko-Rado theorem [11] asserts that the largest size of an intersecting family

ICALP 2023
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of k-subsets of [n] is
(

n−1
k−1

)
, which is attained by the maximal trivial intersecting families.

The following result of Hilton and Milner [18] determines the largest size of a non-trivial
intersecting family in this setting and characterizes the extremal families attaining it.

▶ Theorem 9 (Hilton–Milner Theorem [18]). For integers k ≥ 3 and n ≥ 2k, let F ⊆
([n]

k

)
be

a non-trivial intersecting family. Then,

|F| ≤
(

n − 1
k − 1

)
−

(
n − k − 1

k − 1

)
+ 1.

Moreover, if n > 2k then equality holds if and only if there exist an element i ∈ [n] and a
k-subset A of [n] with i /∈ A such that F =

{
F ∈

([n]
k

) ∣∣∣ i ∈ F, F ∩ A ̸= ∅
}

∪ {A}, or k = 3

and there exists a 3-subset A of [n] such that F =
{

F ∈
([n]

3
) ∣∣∣ |F ∩ A| ≥ 2

}
.

2.3 Complexity Classes
The complexity class TFNP consists of the total search problems in NP, i.e., the search
problems in which every input has a solution, where a solution can be verified in polynomial
time. The complexity class PPA (Polynomial Parity Argument [26]) consists of the problems
in TFNP that can be reduced in polynomial time to a problem called Leaf. The definition
of the Leaf problem is not needed in this paper, but we mention it briefly below for
completeness.

The Leaf problem asks, given a graph with maximum degree 2 and a leaf (i.e., a vertex of
degree 1), to find another leaf in the graph. The input graph, though, is not given explicitly.
Instead, the vertex set of the graph is defined to be {0, 1}n for some integer n, and the graph
is succinctly represented by a Boolean circuit that for a vertex of the graph computes its (at
most two) neighbors. Note that the size of the graph might be exponential in the size of its
description.

2.4 Computational Problems
We gather here several computational problems that will be studied and used throughout
the paper. We start with a computational search problem associated with Schrijver graphs.
This problem is studied in Section 3.

▶ Definition 10 (Generalized Schrijver Problem). For m = m(n, k), the Schrijver(n, k, m)
problem is defined as follows. The input is a coloring c :

([n]
k

)
stab → [m] of the vertices of

the graph S(n, k) with m colors, and the goal is to find a monochromatic edge, i.e., two
vertices A, B ∈

([n]
k

)
stab such that A ∩ B = ∅ and c(A) = c(B). In the black-box input model,

the coloring c is given as an oracle access that given a vertex A outputs its color c(A). In
the white-box input model, the coloring c is given by a Boolean circuit that for a vertex A

computes its color c(A). For m = n − 2k + 1, the problem Schrijver(n, k, m) is denoted by
Schrijver.

The Kneser problem is defined similarly to the Schrijver problem. Here, the input
coloring c :

([n]
k

)
→ [n − 2k + 1] is defined on the entire vertex set of K(n, k). By Theorem 8,

every input of the Schrijver and Kneser problems is guaranteed to have a solution.
Moreover, whenever m = m(n, k) ≤ n − 2k + 1, every input of the Schrijver(n, k, m)
problem has a solution as well.

We remark that algorithms for the Schrijver(n, k, m) problem are considered in this
paper with respect to the black-box input model. The running time of such an algorithm is
referred to as polynomial if it is polynomial in n. Observe that a polynomial-time algorithm
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for the Schrijver(n, k, m) problem in the black-box input model yields an algorithm for the
analogue problem in the white-box input model, whose running time is polynomial as well (in
the input size). For computational complexity results, like reductions and PPA-completeness,
we adopt the more suitable white-box input model. For example, the Schrijver problem in
the white-box input model was shown in [15] to be PPA-complete.

Another search problem studied in [15] is the following.

▶ Definition 11 (Fair Independent Set in Cycle Problem). In the Fair-IS-Cycle problem,
the input consists of integers n and m along with a partition V1, . . . , Vm of [n] into m sets.
The goal is to find a stable subset S of [n] satisfying |S ∩ Vi| ≥ 1

2 · |Vi| − 1 for all i ∈ [m].

The existence of a solution for every input of the Fair-IS-Cycle problem was proved in [1].
It was shown in [15] that the Fair-IS-Cycle problem is PPA-complete, even restricted to
instances in which each part Vi of the given partition has an odd size larger than 2.

We next define the Unfair-IS-Cycle problem, studied in Section 4.

▶ Definition 12. The input of the Unfair-IS-Cycle problem consists of two integers n and
k with n ≥ 2k and ℓ subsets V1, . . . , Vℓ of [n], where ℓ ≤ n − 2k + 1 and |Vi| ≥ 2 for all i ∈ [ℓ].
The goal is to find a stable k-subset S of [n] that satisfies the constraints |S ∩ Vi| ≤ |Vi|/2 for
i ∈ [ℓ].

Note that Definition 12 requires the sets V1, . . . , Vℓ of an instance of the Unfair-IS-Cycle
problem to satisfy |Vi| ≥ 2 for all i ∈ [ℓ]. This requirement is justified by the observation
that if |Vi| = 1 for some i ∈ [ℓ], then any solution for the instance does not include the single
element of Vi. Hence, by removing this element from the given sets and from the ground set,
such an instance can be reduced to an instance with ground set of size smaller by one. By
repeatedly applying this reduction, one can get a “core” instance that fits Definition 12.

We observe that the Unfair-IS-Cycle problem is total. The argument relies on the
chromatic number of the graph S(n, k).

▶ Lemma 13. Every instance of the Unfair-IS-Cycle problem has a solution.

Proof. Consider an instance of the Unfair-IS-Cycle problem, i.e., integers n and k with
n ≥ 2k and ℓ subsets V1, . . . , Vℓ of [n], where ℓ ≤ n − 2k + 1 and |Vi| ≥ 2 for all i ∈ [ℓ]. For
every i ∈ [ℓ], let

Fi =
{

S ∈
(

[n]
k

)
stab

∣∣∣ |S ∩ Vi| > |Vi|/2
}

,

and notice that every two sets of Fi have a common element of Vi, hence Fi is an intersecting
family. However, by Theorem 8, the chromatic number of S(n, k) is n − 2k + 2, hence the
family of stable k-subsets of [n] cannot be covered by fewer than n − 2k + 2 intersecting
families. By ℓ ≤ n − 2k + 1, this implies that there exists a set S ∈

([n]
k

)
stab that does not

belong to any of the families Fi, hence it satisfies |S ∩ Vi| ≤ |Vi|/2 for all i ∈ [ℓ]. This implies
that S is a valid solution for the given instance, and we are done. ◀

We end this section with the definition of the Cycle-Plus-Triangles problem.

▶ Definition 14 (Cycle plus Triangles Problem). In the Cycle-Plus-Triangles problem,
the input consists of an integer k and a graph G on 3k vertices, whose edge set is the disjoint
union of a Hamilton cycle and k pairwise vertex-disjoint triangles. The goal is to find an
independent set in G of size k.

The existence of a solution for every input of the Cycle-Plus-Triangles problem follows
from a result of [13] (see also [27, 1]).

ICALP 2023
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3 The Generalized Schrijver Problem

In this section, we prove our results on the Schrijver(n, k, m) problem (see Definition 10).
We start with Theorem 1.

Proof of Theorem 1. Fix some integer d ≥ 2. For integers n and k with n ≥ 2k, put
t = ⌊ n

2k+d−2 ⌋ and m = d · t − 1, and consider an instance of the Schrijver(n, k, m) problem,
i.e., a coloring c :

(
n
k

)
stab → [m] of the vertices of S(n, k). The definition of t allows us

to consider t pairwise disjoint subsets J1, . . . , Jt of [n], where each of the subsets includes
2k + d − 2 consecutive elements. For each i ∈ [t], let Si denote the family of all stable
k-subsets of Ji with respect to the natural cyclic order of Ji (where the largest element
precedes the smallest one), and notice that Si ⊆

(
n
k

)
stab. Consider the algorithm that given

an oracle access to a coloring c as above, queries the oracle for the colors of all the sets of
S1 ∪ · · · ∪ St, and returns a pair of disjoint sets from this collection that are assigned the
same color by c.

For correctness, we show that the collection of sets S1 ∪ · · · ∪ St necessarily includes two
vertices that form a monochromatic edge. Indeed, since the number of colors used by the
coloring c does not exceed d · t − 1, it follows that either there exist distinct i, j ∈ [t] for
which a vertex of Si and a vertex of Sj have the same color, or there exists an i ∈ [t] for
which the vertices of Si are colored using fewer than d colors. For the former case, notice
that for distinct i and j, every vertex of Si is disjoint from every vertex of Sj , hence the
collection includes two vertices that form a monochromatic edge. For the latter case, let
i ∈ [t] be an index for which the vertices of Si are colored using fewer than d colors. Observe
that the subgraph of S(n, k) induced by Si is isomorphic to the graph S(2k + d − 2, k), hence
by Theorem 8, its chromatic number is (2k + d − 2) − 2k + 2 = d. Since the vertices of Si

are colored using fewer than d colors, it follows that they include two vertices that form a
monochromatic edge, and we are done.

We finally analyze the running time of the algorithm. By Lemma 7, the number of vertices
in the graph S(n, k) is

n

k
·
(

n − k − 1
k − 1

)
= n

k
·
(

n − k − 1
n − 2k

)
≤ n · (n − k − 1)n−2k ≤ nn−2k+1.

Since the subgraph of S(n, k) induced by each Si is isomorphic to S(2k+d−2, k), it follows that
the total number of queries that the algorithm makes does not exceed t·(2k+d−2)d−1 ≤ nO(d).
This implies that in running time nO(d), it is possible to enumerate all the sets of S1 ∪· · ·∪St,
to query the oracle for their colors, and to find the desired monochromatic edge. This
completes the proof. ◀

We consider now the Schrijver(n, k, m) problem with m = ⌊n/2⌋ − 2k + 1. We first
prove Theorem 2 that says that the problem is efficiently reducible to the Kneser problem
(whose definition is given in Section 2.4).

Proof of Theorem 2. Put m = ⌊n/2⌋ − 2k + 1, and let c :
([n]

k

)
stab → [m] be an instance of

the Schrijver(n, k, m) problem. Consider the reduction that maps such a coloring c to a
coloring c′ :

([n]
k

)
→ [n − 2k + 1] of the vertices of K(n, k) defined as follows. For every set

A ∈
([n]

k

)
, if A is unstable then it includes an odd element, so denote its smallest odd element

by 2i − 1, and define c′(A) = i. Notice that this i satisfies 1 ≤ i ≤ ⌈n/2⌉. Otherwise, A is a
stable k-subset of [n], and we define c′(A) = c(A)+⌈n/2⌉. Notice that m+⌈n/2⌉ = n−2k+1,
hence the colors used by c′ are all in [n − 2k + 1], as needed for an instance of the Kneser
problem. Notice further that given a Boolean circuit that computes the coloring c, it is
possible to efficiently produce a Boolean circuit that computes the coloring c′.
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For correctness, we simply show that any solution for the produced instance of the
Kneser problem is also a solution for the given instance of the Schrijver(n, k, m) problem.
To see this, consider a solution for the former, i.e., two disjoint k-subsets A and B of [n]
with c′(A) = c′(B). By the definition of c′, the color assigned by c′ to A and B cannot be
some i ≤ ⌈n/2⌉ because this would imply that the element 2i − 1 belongs to both A and
B, which are disjoint. It thus follows that A and B are stable k-subsets of [n] satisfying
c′(A) = c(A)+⌈n/2⌉ and c′(B) = c(B)+⌈n/2⌉. By c′(A) = c′(B), it follows that c(A) = c(B),
hence A and B form a monochromatic edge in S(n, k) and thus a solution for the given
instance of the Schrijver(n, k, m) problem. This completes the proof. ◀

The reduction presented in the proof of Theorem 2 extends a given coloring of S(n, k) to
a coloring of the entire graph K(n, k). To do so, it uses a proper coloring with ⌈n/2⌉ colors of
the subgraph U(n, k) of K(n, k) induced by the unstable k-subsets of [n]. However, in order
to obtain a coloring of K(n, k) with n−2k +1 colors, as required for instances of the Kneser
problem, one has to reduce from the Schrijver(n, k, m) problem with m = ⌊n/2⌋ − 2k + 1.
This suggests the question of whether U(n, k) can be properly colored using fewer colors.
Motivated by this question, we study some properties of this graph in Section 5, where we
essentially answer this question in the negative (see Corollary 19 and the discussion that
follows it).

We next show that the Schrijver(n, k, m) problem with m = ⌊n/2⌋ − 2k + 1 is not
harder than the restriction of the standard Schrijver problem to colorings of S(n, k) with
n = 4k. This confirms Theorem 3.

Proof of Theorem 3. Suppose that there exists a polynomial-time algorithm, called Algo,
for the restriction of the Schrijver problem to colorings of S(n, k) with n = 4k. Such an
algorithm is able to efficiently find a monochromatic edge in the graph S(4k, k) given an
access to a coloring of its vertices with fewer than χ(S(4k, k)) colors. By Theorem 8, it holds
that χ(S(4k, k)) = 2k + 2. Suppose without loss of generality that the algorithm Algo queries
the oracle for the colors of the two vertices of the monochromatic edge that it returns.

For integers n and k with n ≥ 4k, put m = ⌊n/2⌋ − 2k + 1, and let c :
(

n
k

)
stab → [m] be

an instance of the Schrijver(n, k, m) problem, i.e., a coloring of the vertices of S(n, k) with
m colors. We present an algorithm that finds a monochromatic edge in S(n, k). It may be
assumed that n > 8k. Indeed, otherwise it holds that m ≤ 2k + 1 < χ(S(4k, k)), hence a
monochromatic edge can be found by running the given algorithm Algo on the restriction
of the coloring c to the subgraph of S(n, k) induced by the stable k-subsets of [4k]. Since
this graph is isomorphic to S(4k, k), Algo is guaranteed to find a monochromatic edge in this
subgraph, which also forms a monochromatic edge in the entire graph S(n, k).

Now, put t = ⌊ n
4k ⌋, and let J1, . . . , Jt be t pairwise disjoint subsets of [n], where each of

the subsets includes 4k consecutive elements. For each i ∈ [t], let Si denote the family of
all stable k-subsets of Ji with respect to the natural cyclic order of Ji (where the largest
element precedes the smallest one). Observe that the subgraph of S(n, k) induced by the
vertices of each Si is isomorphic to S(4k, k). Observe further that

t · (2k + 2) >
( n

4k
− 1

)
· (2k + 2) = n

2 + n

2k
− 2k − 2 >

⌊n

2

⌋
− 2k + 1 = m, (1)

where the last inequality holds because n > 8k.
Consider the algorithm that given an oracle access to a coloring c as above, for each

i ∈ [t], simulates the algorithm Algo on the restriction of the coloring c to the subgraph of
S(n, k) induced by the vertices of Si. If all the vertices queried throughout the ith simulation
have at most 2k + 1 distinct colors, then the algorithm returns the monochromatic edge
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returned by Algo. Otherwise, for each i ∈ [t], the algorithm uses the queries made in the ith
simulation of Algo to produce a set Fi ⊆ Si of 2k + 2 vertices with distinct colors. Then,
the algorithm finds a monochromatic edge that involves two vertices of F1 ∪ · · · ∪ Ft and
returns it. This completes the description of the algorithm. Since the running time of Algo
is polynomial, the described algorithm can be implemented in polynomial time.

Let us prove the correctness of the algorithm. Suppose first that for some i ∈ [t], all the
vertices queried throughout the ith simulation of Algo have at most 2k + 1 distinct colors
(including the two vertices of the returned edge). In this case, the answers of the oracle in the
ith simulation is consistent with some coloring with at most 2k + 1 colors of the subgraph of
S(n, k) induced by Si. Since this graph is isomorphic to S(4k, k), whose chromatic number
is 2k + 2, Algo is guaranteed to find in the graph a monochromatic edge, which is also a
monochromatic edge in S(n, k), and thus a valid output of the algorithm. Otherwise, for
each i ∈ [t], the attempt to simulate Algo on the subgraph of S(n, k) induced by Si provides
a set Fi of 2k + 2 vertices of Si with distinct colors. By (1), the total number m of colors
used by the coloring c is smaller than t · (2k + 2). This implies that there exist distinct
indices i, j ∈ [t] for which a vertex of Fi and a vertex of Fj have the same color. Since the
vertices of Si are disjoint from those of Sj , these two vertices form a monochromatic edge in
S(n, k) and form a valid output of the algorithm. ◀

We end this section with the observation that there exists an efficient randomized algorithm
for the Schrijver(n, k, m) problem with m = ⌊n/2⌋ − 2k + 1 on instances with n = Ω(k4).
This follows from the paper [17], which yields that for such n and k, the Schrijver(n, k, m)
problem is essentially reducible to the Schrijver(n − 1, k, m − 1) problem in randomized
polynomial time (with exponentially small failure probability). By applying this reduction
m − 1 times, it follows that the Schrijver(n, k, m) problem with m = ⌊n/2⌋ − 2k + 1 where
n = Ω(k4), is efficiently reducible to the Schrijver(⌈n/2⌉ + 2k, k, 1) problem, which can
obviously be solved efficiently.

4 The Unfair Independent Set in Cycle Problem

In this section, we study the Unfair-IS-Cycle problem (see Definition 12).

4.1 Hardness
We prove now Theorem 4, which asserts that Unfair-IS-Cycle is PPA-complete.

Proof of Theorem 4. We first show that the Unfair-IS-Cycle problem belongs to PPA.
To do so, we show a polynomial-time reduction to the Schrijver problem in the white-box
input model, which lies in PPA [15] (see Definition 10).

Consider an instance of the Unfair-IS-Cycle problem, i.e., integers n and k with n ≥ 2k

and ℓ subsets V1, . . . , Vℓ of [n], where ℓ ≤ n − 2k + 1 and |Vi| ≥ 2 for all i ∈ [ℓ]. For such
an instance, the reduction produces a Boolean circuit that given a stable k-subset A of [n],
outputs the smallest index i ∈ [ℓ] such that |A ∩ Vi| > |Vi|/2 if such an i exists, and outputs
ℓ otherwise. Note that this circuit represents a coloring c :

([n]
k

)
stab → [ℓ] of the vertices

of the graph S(n, k) with ℓ ≤ n − 2k + 1 colors, hence it is an appropriate instance of the
Schrijver problem. Clearly, the Boolean circuit that computes c can be constructed in
polynomial time.

For correctness, we show that a solution for the constructed Schrijver instance can
be used to efficiently find a solution for the given Unfair-IS-Cycle instance. Consider
a monochromatic edge of S(n, k), i.e., two disjoint sets A, B ∈

([n]
k

)
stab with c(A) = c(B).
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Since A and B are disjoint, it is impossible that |A ∩ Vi| > |Vi|/2 and |B ∩ Vi| > |Vi|/2 for
some i ∈ [ℓ]. By the definition of the coloring c, it follows that c(A) = c(B) = ℓ, hence
|A ∩ Vi| ≤ |Vi|/2 and |B ∩ Vi| ≤ |Vi|/2 for all i ∈ [ℓ − 1]. Moreover, at least one of A and B

intersects Vℓ at no more than |Vℓ|/2 elements, and thus forms a valid solution for the given
Unfair-IS-Cycle instance. Since it is possible to check in polynomial time which of the
sets A and B satisfies this requirement, the proof of the membership of Unfair-IS-Cycle
in PPA is completed.

We next prove that the Unfair-IS-Cycle problem is PPA-hard. To do so, we reduce
from the Fair-IS-Cycle problem (see Definition 11). We use here the fact, proved in [15],
that this problem is PPA-hard even when it is restricted to the instances in which the
parts of the given partition have odd sizes larger than 2. Consider such an instance of the
Fair-IS-Cycle problem, i.e., integers n and m along with a partition V1, . . . , Vm of [n] such
that |Vi| is odd and satisfies |Vi| ≥ 3 for all i ∈ [m]. Notice that n and m have the same
parity, and define k = n−m

2 . Our reduction simply returns the integers n and k, which
clearly satisfy n ≥ 2k, and the sets V1, . . . , Vm. Note that |Vi| ≥ 2 for all i ∈ [m] and that
the number m of sets is n − 2k. Since the latter does not exceed n − 2k + 1, this is a valid
instance of the Unfair-IS-Cycle problem.

For correctness, we show that a solution for the constructed Unfair-IS-Cycle instance
is also a solution for the given Fair-IS-Cycle instance. Let S be a solution for the
Unfair-IS-Cycle instance, i.e., a stable k-subset of [n] such that for all i ∈ [m] it holds that
|S∩Vi| ≤ |Vi|/2. Since the sizes of the sets V1, . . . , Vm are odd, it follows that |S∩Vi| ≤ |Vi|−1

2
for all i ∈ [m]. Since the sets V1, . . . , Vm form a partition of [n], it further follows that

|S| =
∑

i∈[m]

|S ∩ Vi| ≤
∑

i∈[m]

|Vi|−1
2 = n − m

2 = k. (2)

However, by |S| = k, we derive from (2) that |S ∩ Vi| = |Vi|−1
2 for all i ∈ [m]. This implies

that S is a stable k-subset of [n] satisfying |S ∩ Vi| ≥ |Vi|/2 − 1 for all i ∈ [m], hence it forms
a valid solution for the given Fair-IS-Cycle instance. This completes the proof. ◀

Given the PPA-hardness of the Unfair-IS-Cycle problem, it is interesting to identify
the range of the parameters n and k for which the hardness holds. One can verify, using
properties of the hard instances constructed in [15], that the hardness given in Theorem 4
holds for instances with n = (2 + o(1)) · k, where the o(1) term tends to 0 as n and k tend
to infinity. The following simple result shows that for n = 3k the problem is at least as
hard as the Cycle-Plus-Triangles problem, whose tractability is an open question (see
Definition 14). The proof can be found in the full version of this paper.

▶ Proposition 15. The Cycle-Plus-Triangles problem is polynomial-time reducible to
the restriction of the Unfair-IS-Cycle problem to instances that consist of k sets of size 3
that form a partition of [n] where n = 3k.

4.2 Algorithms
We next prove Theorem 5, which states that the Unfair-IS-Cycle problem can be solved
efficiently on instances with n ≥ c · k for some absolute constant c.

Proof of Theorem 5. We start by presenting a randomized algorithm, based on a probabil-
istic argument with alterations, and then derandomize it using the method of conditional
expectations.
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Consider an instance of the Unfair-IS-Cycle problem, i.e., integers n and k with
n ≥ 2k and ℓ subsets V1, . . . , Vℓ of [n], where ℓ ≤ n − 2k + 1 and |Vi| ≥ 2 for all i ∈ [ℓ]. Put
ri = |Vi| ≥ 2 for each i ∈ [ℓ]. Suppose further that n ≥ c · k for a sufficiently large constant
c to be determined later. Let p = 2k/n ≤ 2/c, and consider the following randomized
algorithm.
1. Pick a random subset A of [n] by including in A every element of [n] independently with

probability p.
2. Remove from A every element j ∈ [n] that satisfies {j, j + 1} ⊆ A (where for j = n, the

element j + 1 is considered as 1). Let A′ denote the obtained set.
3. For every i ∈ [ℓ] that satisfies |A′ ∩ Vi| > ri/2, remove from A′ arbitrary |A′ ∩ Vi| − ⌊ri/2⌋

elements of Vi. Let A′′ denote the obtained set.
4. If |A′′| ≥ k, then return an arbitrary k-subset of A′′. Otherwise, return “failure”.

We first claim that unless the algorithm returns “failure”, it returns a valid output. Indeed,
Item 2 of the algorithm guarantees that the set A′ is stable. Further, Item 3 guarantees
that its subset A′′ satisfies |A′′ ∩ Vi| ≤ ⌊ri/2⌋ for all i ∈ [ℓ]. Therefore, in the case where
|A′′| ≥ k, any k-subset of A′′ returned in Item 4 of the algorithm is a valid solution for the
given Unfair-IS-Cycle instance.

We next estimate the expected size of the set A′′ produced by the algorithm. The set A

chosen in Item 1 of the algorithm includes every element of [n] with probability p. Hence, its
expected size satisfies E [|A|] = p · n. In Item 2 of the algorithm, the probability of every
element of [n] to be removed from A is equal to the probability that both the element and
its successor modulo n belong to A, which is p2. By linearity of expectation, this implies
that the expected size of the set A′ satisfies E [|A′|] = (p − p2) · n. It remains to estimate the
expected number of elements removed from A′ in Item 3 of the algorithm. Observe that for
each i ∈ [ℓ], the algorithm removes from A′ the smallest possible number of elements of Vi

ensuring that the obtained set A′′ includes at most ⌊ri/2⌋ of them. Therefore, the number of
removed elements of Vi does not exceed the number of subsets of Vi of size ⌊ri/2⌋ + 1 that
are contained in A (because it suffices to remove one element from each of them). It thus
follows that the expected number of elements of Vi that are removed from A′ in Item 3 of
the algorithm is at most(

ri

⌊ri/2⌋ + 1

)
· p⌊ri/2⌋+1 ≤ 2ri · p⌊ri/2⌋+1 ≤ (4p)⌊ri/2⌋+1 ≤ (4p)2,

where in the last inequality we use the assumption ri ≥ 2 and the fact that p ≤ 1/4 (which
holds for any sufficiently large choice of the constant c). It therefore follows, using again the
linearity of expectation, that the expected size of A′′ satisfies

E [|A′′|] ≥ (p − p2) · n − ℓ · (4p)2 ≥ (p − 17p2) · n ≥ k,

where the second inequality holds by ℓ ≤ n, and the last inequality by the definition of
p = 2k/n, assuming again that n ≥ c · k for a sufficiently large constant c (say, c = 68). This
implies that there exists a random choice for the presented randomized algorithm for which
it returns a valid solution.

We next apply the method of conditional expectations to derandomize the above algorithm.
Let us start with a few notations. For a set S ⊆ [n], define

f(S) = |S| − |{j ∈ [n] | {j, j + 1} ⊆ S}| −
∑
i∈[ℓ]

∣∣∣{B ⊆ S ∩ Vi

∣∣∣ |B| = ⌊ri/2⌋ + 1
}∣∣∣. (3)
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In words, f(S) is determined by subtracting from the size of S the number of pairs of
consecutive elements in S (modulo n) as well as the number of subsets of S ∩ Vi of size
⌊ri/2⌋ + 1 for each i ∈ [ℓ]. For a vector x ∈ {0, 1, ∗}n, let Sx denote a random subset of
[n] such that for every i ∈ [n], if xi = 1 then i ∈ Sx, if xi = 0 then i /∈ Sx, and if xi = ∗
then i is chosen to be included in Sx independently with probability p = 2k/n. We refer to
the vector x as a partial choice of a subset of [n]. We further define a potential function
ϕ : {0, 1, ∗}n → R that maps every vector x ∈ {0, 1, ∗}n to the expected value of f(S) where
S is chosen according to the distribution Sx, that is, ϕ(x) = E [f(Sx)].

We observe that given a partial choice x ∈ {0, 1, ∗}n, the value of ϕ(x) can be calculated
efficiently, in time polynomial in n. Indeed, to calculate the expected value of f(Sx), it
suffices, by linearity of expectation, to calculate the expected value of each of the three terms
in (3) evaluated at the set Sx. It is easy to see that the expected value of the first term is

|{j ∈ [n] | xj = 1}| + p · |{j ∈ [n] | xj = ∗}|,

and that the expected value of the second term is∣∣∣{j ∈ [n]
∣∣∣xj = xj+1 = 1

}∣∣∣ + p ·
∣∣∣{j ∈ [n]

∣∣∣{xj , xj+1} = {1, ∗}
}∣∣∣

+ p2 ·
∣∣∣{j ∈ [n]

∣∣∣xj = xj+1 = ∗
}∣∣∣.

As for the third term, by linearity of expectation, it suffices to determine the expected
value of∣∣∣{B ⊆ Sx ∩ Vi

∣∣∣ |B| = ⌊ri/2⌋ + 1
}∣∣∣

for i ∈ [ℓ]. Letting si = |{j ∈ Vi | xj = ∗}| and ti = |{j ∈ Vi | xj = 1}|, one can check that
the required expectation is precisely

⌊ri/2⌋+1∑
m=0

(
si

m

)
·
(

ti

⌊ri/2⌋ + 1 − m

)
· pm.

Since all the terms can be calculated in time polynomial in n, so can ϕ(x).
We describe a deterministic algorithm that finds a set S ⊆ [n] satisfying f(S) ≥ k.

Given such a set, the algorithm is completed by applying Items 2, 3, and 4 of the algorithm
presented above. Indeed, by applying Items 2 and 3 we obtain a stable set S′′ such that
|S′′ ∩ Vi| ≤ ri/2 for all i ∈ [ℓ]. The fact that f(S) ≥ k guarantees that this set S′′ satisfies
|S′′| ≥ k, hence Item 4 returns a valid solution.

To obtain the desired set S ⊆ [n] with f(S) ≥ k, our algorithm maintains a partial choice
x ∈ {0, 1, ∗}n satisfying ϕ(x) ≥ k. We start with x = (∗, . . . , ∗), for which the analysis of the
randomized algorithm guarantees that ϕ(x) ≥ k, provided that n ≥ c · k for a sufficiently
large constant c. We then choose the entries of x, one by one, to be either 0 or 1. In the
ith iteration, in which x1, . . . , xi−1 ∈ {0, 1}, the algorithm evaluates ϕ at the two partial
choices xi←0 = (x1, . . . , xi−1, 0, ∗, . . . , ∗) and xi←1 = (x1, . . . , xi−1, 1, ∗, . . . , ∗), and continues
to the next iteration with one of them which maximizes the value of ϕ. By the law of total
expectation, it holds that ϕ(x) = p · ϕ(xi←1) + (1 − p) · ϕ(xi←0), implying that the choice
of the algorithm preserves the inequality ϕ(x) ≥ k. At the end of the process, we get a
vector x ∈ {0, 1}n with ϕ(x) ≥ k, which fully determines the desired set S with f(S) ≥ k.
Since the evaluations of ϕ can be calculated in time polynomial in n, the algorithm can be
implemented in polynomial time. This completes the proof. ◀
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Given the above result, it would be interesting to determine the smallest constant c for
which the Unfair-IS-Cycle problem can be solved efficiently on instances with n ≥ c ·k. Of
particular interest is the restriction of the problem to instances with n = 3k and with pairwise
disjoint sets of size 3, because as follows from Proposition 15, an efficient algorithm for
this restriction would imply an efficient algorithm for the Cycle-Plus-Triangles problem.
Interestingly, it turns out that the restriction of the Unfair-IS-Cycle problem to instances
with n = 4k and with pairwise disjoint sets of size 4 does admit an efficient algorithm. This
is a consequence of the following result derived from an argument of Alon [2] (see also [4]).

▶ Proposition 16. There exists a polynomial-time algorithm that given an integer k and a
partition of [4k] into k subsets V1, . . . , Vk with |Vi| = 4 for all i ∈ [k], finds a partition of
[4k] into four stable k-subsets S1, S2, S3, S4 of [4k] such that |Sj ∩ Vi| = 1 for all j ∈ [4] and
i ∈ [k].

5 Unstable Sets

In this section, we consider two subgraphs of the Kneser graph K(n, k) induced by families
of unstable k-subsets of [n]. These subgraphs are defined as follows.

▶ Definition 17. Let n and k be integers with n ≥ 2k. Let Ũ(n, k) denote the subgraph
of K(n, k) induced by the family of all k-subsets of [n] that include a pair of consecutive
elements (where the elements n and 1 are not considered as consecutive for n > 2). Let
U(n, k) denote the subgraph of K(n, k) induced by the family of all k-subsets of [n] that
include a pair of consecutive elements modulo n, i.e., the family of unstable k-subsets of [n].

5.1 Chromatic Number
We study now the chromatic numbers of the graphs U(n, k) and Ũ(n, k). It is worth
mentioning here that a result of Dol’nikov [8] generalizes the lower bound of Lovász [22]
on the chromatic number of K(n, k) to general graphs, using a notion called colorability
defect (see also [24, Chapter 3.4] and [21]). This generalization implies a tight lower bound
of n − 2k + 2 on the chromatic number of K(n, k) and a somewhat weaker lower bound of
n − 4k + 4 on the chromatic number of S(n, k) (see, e.g., [25]). It turns out, though, that this
generalized approach of [8] does not yield any meaningful bounds on the chromatic numbers
of the graphs from Definition 17.

The following theorem determines the exact chromatic number of the graph Ũ(n, k).

▶ Theorem 18. For all integers n and k with n ≥ 2k,

χ(Ũ(n, k)) = min(n − 2k + 2, ⌊n/2⌋).

The proof of Theorem 18 relies on a topological argument and can be found in the full
version of the paper. We derive the following result on the chromatic number of U(n, k).

▶ Corollary 19. For all integers n and k with n ≥ 2k,

min(n − 2k + 2, ⌊n/2⌋) ≤ χ(U(n, k)) ≤ min(n − 2k + 2, ⌈n/2⌉).

Proof. For the upper bound, apply first Theorem 8 to obtain that

χ(U(n, k)) ≤ χ(K(n, k)) = n − 2k + 2.
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Next, since every vertex of U(n, k) includes two consecutive elements modulo n, it must
include an odd element. By assigning to every such vertex its minimal odd element, we obtain
a proper coloring of U(n, k) with ⌈n/2⌉ colors, hence χ(U(n, k)) ≤ ⌈n/2⌉. This completes
the proof of the upper bound. The lower bound follows by combining Theorem 18 with the
fact that Ũ(n, k) is an induced subgraph of U(n, k). ◀

We conclude this section with a discussion on the tightness of Corollary 19. Notice that
the upper and lower bounds provided in Corollary 19 coincide whenever the integer n is even
or satisfies n ≤ 4k − 4. For other values of n and k the two bounds differ by 1. Yet, it turns
out that the proof technique of Theorem 18 can be used to show that the upper bound in
Corollary 19 is tight for all integers n that are congruent to 1 modulo 4. This leaves us with
a gap of 1 between the upper and lower bounds in Corollary 19 only for those integers n and
k, where n is congruent to 3 modulo 4 and satisfies n ≥ 4k − 1.

We further observe that for an odd integer n and for every proper coloring of U(n, k) that
includes a trivial color class (all of whose members share a common element), the number
of used colors is at least the upper bound in Corollary 19. Indeed, the restriction of such a
coloring to the vertices that do not include the common element of the trivial color class is
a proper coloring of a graph isomorphic to Ũ(n − 1, k), so by Theorem 18 it uses at least
min(n − 2k + 1, (n − 1)/2) colors. Together with the additional color of the trivial color class,
the total number of colors is at least min(n − 2k + 2, ⌈n/2⌉), as claimed.

5.2 Independence Number
We next determine the largest size of an independent set in the graph U(n, k). The proof
uses the Hilton–Milner theorem (Theorem 9) and can be found in the full version of the
paper.

▶ Theorem 20. For all integers k ≥ 2 and n ≥ 2k, it holds that

α(U(n, k)) =
(

n − 1
k − 1

)
−

(
n − k − 1

k − 1

)
.
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