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Abstract
The Sparse Johnson-Lindenstrauss Transform of Kane and Nelson (SODA 2012) provides a linear
dimensionality-reducing map A ∈ Rm×u in ℓ2 that preserves distances up to distortion of 1 + ε with
probability 1 − δ, where m = O(ε−2 log 1/δ) and each column of A has O(εm) non-zero entries.
The previous analyses of the Sparse Johnson-Lindenstrauss Transform all assumed access to a
Ω(log 1/δ)-wise independent hash function. The main contribution of this paper is a more general
analysis of the Sparse Johnson-Lindenstrauss Transform with less assumptions on the hash function.
We also show that the Mixed Tabulation hash function of Dahlgaard, Knudsen, Rotenberg, and
Thorup (FOCS 2015) satisfies the conditions of our analysis, thus giving us the first analysis of a
Sparse Johnson-Lindenstrauss Transform that works with a practical hash function.
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1 Introduction

Dimensionality reduction is an often applied technique to obtain a speedup when working with
high dimensional data. The basic idea is to map a set of points X ⊆ Ru to a lower dimension
while approximately preserving the geometry. The Johnson-Lindenstrauss lemma [24] is a
foundational result in that regard.

▶ Lemma 1 ([24]). For any 0 < ε < 1, integers n, u, and X ⊆ Ru with |X| = n, there exists
a map f : X → Rm with m = O(ε−2 log n) such that

∀w, w′ ∈ X, |∥f(w) − f(w′)∥2 − ∥w − w′∥2| ≤ ε ∥w − w′∥2 .

It has been shown in [6, 30] that the target dimension m is optimal for nearly the entire
range of n, u, ε. More precisely, for any n, u, ε there exists a set of points X ⊆ Ru with
|X| = n such that for any map f : X → Rm where the Euclidean norm is distorted by at
most (1 ± ε) must have m = Ω(min

{
u, n, ε−2 log(ε2n)

}
).
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76:2 A Sparse Johnson-Lindenstrauss Transform Using Fast Hashing

All known proofs of the Johnson-Lindenstrauss lemma constructs a linear map f . The
original proof of Johnson and Lindenstrauss [24] chose f(x) = Πx where Π ∈ Rm×u is an
appropriately scaled orthogonal projection into a random m-dimensional subspace. Another
simple construction is to set f(x) = 1√

m
Ax where A ∈ Rm×u and each entry is an independent

Rademacher variable.1 In both cases, it can be shown that as long as m = Ω(ε−2 log 1/δ)
then

∀w ∈ Ru, Pr
[∣∣∣∥f(w)∥2

2 − ∥w∥2
2

∣∣∣ ≥ ε ∥w∥2
2

]
≤ δ. (1)

The Johnson-Lindenstrauss lemma follows by setting δ < 1/
(

n
2
)

and taking w = z − z′ for
all pairs z, z′ ∈ X together with a union bound. (1) is also known as the distributional
Johnson-Lindenstrauss lemma and it has been shown that the target dimension m is tight,
more precisely, m must be at least Ω(min

{
u, ε−2 log 1/δ

}
) [23, 26].

Sparse Johnson-Lindenstrauss Transform

One way to speed up the embedding time is replacing the dense A of the above construction
by a sparse matrix. The first progress in that regard came by Achlioptas in [3] who showed
that A can be chosen with i.i.d. entries where Aij = 0 with probability 2/3 and otherwise
Aij is chosen uniformly in ±

√
3
m . He showed that this construction can achieve the same m

as the best analyses of the Johnson-Lindenstrauss lemma. Hence this achieves essentially a
3x speedup, but the asymptotic embedding time is still O(m ∥x∥0) where ∥x∥0 is number of
non-zeros of x.

Motivated by improving the asymptotic embedding time, Kane and Nelson in [28],
following the work in [14, 27, 8], introduced the Sparse Johnson-Lindenstrauss Trans-
form which maps down to essentially optimal dimension m = O(ε−2 log n) and only has
s = O(ε−1 log n) non-zeros entries per column. This speeds up the embedding time to
O(ε−1 log n ∥x∥0) = O(εm ∥x∥0) thus improving the embedding time by a factor of ε−1. It
nearly matches a sparsity lower bound by Nelson and Nguyen [31] who showed that any
sparse matrix needs at least s = Ω(ε−1 log(n)/ log(1/ε)) non-zeros per column.

Using Hashing

When the input dimension, u, is large it is not feasible to store the matrix A explicitly.
Instead, we use a hash function to calculate the non-zero entries of A. Unfortunately, the
previous analyses of the Sparse Johnson-Lindenstrauss Transform [28, 10] assume access to a
Ω(log 1/δ)-wise independent hash function which is inefficient. This motivates the natural
question:

What are the sufficient properties we need of the hash function for a Sparse
Johnson-Lindenstrauss Transform to work?

The goal of this work is to make progress on this question. In particular, we provide a
new analysis of a Sparse Johnson-Lindenstrauss Transform with fewer assumptions on the
hash function. This improved analysis allows us to conclude that there exists a Sparse
Johnson-Lindenstrauss Transform that uses Mixed Tabulation hashing which is efficient.

1 A Rademacher variables, X, is a random variable that is chosen uniformly in ±1, i.e., Pr[X = 1] =
Pr[X = −1] = 1

2 .
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Mixed Tabulation Hashing

Before introducing Mixed Tabulation hashing, we will first discuss Simple Tabulation hashing
which was introduced by Zobrist [39]. Simple Tabulation hashing takes an integer parameter
c > 1, and we view a key x ∈ [u] = {0, . . . , u − 1} as a vector of c characters, x0, . . . , xc−1 ∈
Σ = [u1/c]. For each character, we initialize a fully random table Ti : Σ → [2r] and the hash
value of x is then calculated as

h(x) = T0[x0] ⊕ . . . ⊕ Tc−1[xc−1],

where ⊕ is the bitwise XOR-operation. We say that h is a Simple Tabulation hash function
with c characters.

We can now define Mixed Tabulation hashing which is a variant of Simple Tabulation
hashing that was introduced in [11]. As with Simple Tabulation hashing, Mixed Tabulation
hashing takes c > 1 as a parameter, and it takes a further integer parameter d ≥ 1. Again,
we view a key x ∈ [u] as vector of c characters, x0, . . . , xc−1 ∈ Σ = [u1/c]. We then let
h1 : Σc → [2r], h2 : Σc → Σd, and h3 : Σd → [2r] be independent Simple Tabulation hashing.
Mixed Tabulation hashing is then defined as follows

h(x) = h1(x) ⊕ h3(h2(x)).

We say that h a mixed tabulation hash function with c characters and d derived characters.
We call h2(x) ∈ Σd the derived characters. Mixed Tabulation hashing can be efficiently
implemented by storing h1 and h2 as a single table with entries in [2r] × Σd, so the whole
hash function can be computed with just c + d lookups.

Our Contributions

Our main contribution is a new analysis of a Sparse Johnson-Lindenstrauss Transform that
does not rely on the high independence of the hash function. Instead we show that it
suffices that the hash function supports a decoupling-decomposition combined with strong
concentration bounds.

We show that Mixed Tabulation hashing satisfies these conditions. This gives the first
instance of a practical hash function that can support a Sparse Johnson-Lindenstrauss
Transform.

1.1 Sparse Johnson-Lindenstrauss Transform
As mentioned earlier, the Sparse Johnson-Lindenstrauss Transform was introduced by Kane
and Nelson [28] and they provided two different constructions with the same sparsity. Later a
simpler analysis was given in [10] which also generalized the result to a more general class of
constructions. In this paper, we will only focus on one of the constructions which is described
below.

Before we discuss the construction of the Sparse Johnson-Lindenstrauss Transform, we
will first consider the related CountSketch which was introduced in [9] and was analyzed
for dimensionality reduction in [36]. In CountSketch, we construct the matrix A as follows:
We pick a pairwise independent hash function, h : [u] → [m], and a 4-wise independent sign
function σ : [u] → {−1, 1}. For each x ∈ [u], we set Ah(x),x = σ(x) and the rest of the x’th
column to 0. Clearly, this construction has exactly 1 non-zero entry per column. It was
shown in [36] that if m = Ω(ε−2δ−1) then it satisfies the distributional Johnson-Lindenstrauss
lemma, Equation (1). The result follows by bounding the second moment of ∥Ax∥2

2 − ∥x∥2
2

for any x ∈ Rd and then apply Chebyshev’s inequality.

ICALP 2023



76:4 A Sparse Johnson-Lindenstrauss Transform Using Fast Hashing

The bad dependence in the target dimension, m, on the failure probability, δ, is because
we only use the second moment. So one might hope that you can improve the dependence by
looking at higher moments instead. Unfortunately, it is not possible to improve the dependence
for general x ∈ Rd, and it is only possible to improve the dependence if ∥x∥2

∞ / ∥x∥2
2 is small.

Precisely, how small ∥x∥2
∞ / ∥x∥2

2 has to be, has been shown in [17]. So to improve the
dependence on δ, we need to increase the number of non-zero entries per column.

We are now ready to describe the construction of the Sparse Johnson-Lindenstrauss
Transform. The construction is to concatenate s CountSketch matrices and scale the
resulting matrix by 1√

s
. This clearly gives a construction that has s non-zero entries per

column and as it has been shown in [28, 10] if s = Ω(ε−1 log(1/δ)) then we can obtain the
optimal target dimension m = O(ε−2 log(1/δ)). More formally, we construct the matrix A

as follows:
1. We pick a hash function, h : [s] × [u] → [m/s] and a sign function σ : [s] × [u] → {−1, 1}.
2. For each x ∈ [u], we set Ai·m/s+h(i,x),x = σ(i,x)√

s
for every i ∈ [s] and the rest of the x’th

column to 0.
In the previous analyses [28, 10], it was shown that if h and σ are Ω(log 1/δ)-wise independent
then the construction works. Unfortunately, it is not practical to use a Ω(log 1/δ)-wise
independent hash function so the goal of this work is to obtain an analysis of a Sparse
Johnson-Lindenstrauss Transform with fewer assumptions about the hash function. In
particular, we relax the assumptions of the hash function, h, and the sign function, σ, to
just satisfying a decoupling-decomposition and a strong concentration property. The formal
theorem is stated in Section 3.

We also show that Mixed Tabulation satisfies these properties and thus that the Sparse
Johnson-Lindenstrauss Transform can be implemented using Mixed Tabulation. Let us
describe more formally, what we mean by saying that Mixed Tabulation can implement the
Sparse Johnson-Lindenstrauss Transform. We let h1 : Σc = [u] → [m/s], h2 : Σc → Σd, and
h3 : Σd → [m/s] be the independent Simple Tabulation hash functions that implement the
Mixed Tabulation hash function, h1(x)⊕h3(h2(x)). We then extend it to the domain [s]× [u]
as follows:
1. Let h′

2 : [s] × Σc → Σd be defined by h′
2(i, x) = h2(x) ⊕ (i, . . . , i)︸ ︷︷ ︸

d times

, i.e., each derived

character gets xor’ed by i.
2. We then define h : [s] × [u] → [m/s] and σ : [s] × [u] → {−1, 1} by h(i, x) = h1(x) ⊕

h3(h′
2(i, x)) and σ(i, x) = σ1(x) · σ3(h′

2(i, x)), where h1 and h3 are the Simple Tabulation
hash functions described above, and σ1 : Σc → {−1, 1} and σ3 : Σd → {−1, 1} are
independent Simple Tabulation functions.

1.2 Hashing Speed
When we use tabulation schemes, it is often as a fast alternative to Ω(log n)-independent
hashing. Typically, we implement a q-independent hash function using a degree q − 1
polynomial in O(q) time, and Siegel [34] has proved that this is best possible unless we use
large space. More precisely, for some key domain [u], if we want to do t < q memory accesses,
then we need space at least u1/t. Thus, if we want higher than constant independence but
still constant evaluation times, then we do need space uΩ(1). In our application, we have to
compute many hash values simultaneously, so an alternative strategy would be to evaluate
the polynomial using multi-point evaluation. This would reduce the time per hash value to
O(log2 q) but this is still super constant time.
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With tabulation hashing, we use tables of size O(|Σ|) where |Σ| = u1/c and c = O(1). The
table lookups are fast if the tables fit in cache, which is easily the case for 8-bit characters.
In connection with each lookup, we do a small number of very fast AC0 operations: a cast, a
bit-wise xor, and a shift. This is incomparable to polynomial in the sense of fast cache versus
multiplications, but the experiments from [1, Table 1] found Simple Tabulation hashing to
be faster than evaluation a 2-wise independent polynomial hashing.

Tabulation schemes are most easily compared by the number of lookups. Storing h1
and h2 in the same table, Mixed Tabulation hashing uses c + d lookups. With d = c, the
experiments from [1] found Mixed Tabulation hashing to be slightly more than twice as
slow as Simple Tabulation hashing, and the experiments from [12] found Mixed Tabulation
hashing to be about as fast as 3-wise independent polynomial hashing. This motivates our
claim that Mixed Tabulation hashing is practical.

In theory, we could also use a highly independent hash function that uses large space, but
we don’t know of any efficient construction. Siegel states about his construction, it is “far
too slow for any practical application” [34], and while Thorup [35] has presented a simpler
construction than Siegel’s, it is still not efficient. The experiments in [1] found it to be more
than an order magnitude slower than Mixed Tabulation hashing.

2 Related Work

Even Sparser Johnson-Lindenstrauss Transforms

As touched upon earlier, there is a lower bound by Nelson and Nguyen [31] that rules out
significant improvements, but never the less there has been research into sparser embedding.
In the extreme, Feature Hashing of [38] considers the case of s = 1. The lower bound excludes
Feature Hashing from working for all vectors, but in [17] they gave tight bounds for which
vectors it works in terms of the measure ∥w∥2

∞ / ∥w∥2
2. This was later generalized in [21] to

a complete understanding between the tradeoff between s and the measure ∥w∥2
∞ / ∥w∥2

2. In
this paper, we will only focus on the case s = Θ(ε−1 log 1/δ) and m = Θ(ε−2 log 1/δ)

Fast Johnson-Lindenstrauss Transform

Another direction to speed-up the evaluation of Johnson-Lindenstrauss transforms is to
exploit dense matrices with fast matrix-vector multiplication. This was first done by Ailon
and Chazelle [4] who introduced the Fast Johnson-Lindenstrauss Transform. Their original
construction was recently [16] shown to give an embedding time O(u log u + m(log 1/δ +
ε log2(1/δ)/ log(1/ε))).

This has generated a lot follow-up work that has tried to improve the run-
ning to a clean O(u log u). Some of the work sacrifice the optimal target dimen-
sion, m = O(ε−2 log 1/δ), in order to speed-up the construction, and are satis-
fied with sub-optimal m = O(ε−2 log n log4 u) [29], m = O(ε−2 log3 n) [15], m =
O(ε−1 log3/2 n log3/2 u + ε−2 log n log4 u) [29], m = O(ε−2 log2 n) [19, 37, 18], and m =
O(ε−2 log n log2(log n) log3 u) [22]. Another line of progress is to assume that the target
dimension, m, is substantially smaller then the starting dimension, u. Under the assump-
tion that m = o(u1/2) the work in [5, 7] achieves embedding time O(u log m). The only
construction that for some regimes improves on the original Fast Johnson-Lindenstrauss
Transform is the recent analysis [22] of the Kac Johnson-Lindenstrauss Transform, which
uses the Kac random walk [25]. They show that it can achieve an embedding time of
O(u log u + min

{
u log n, m log n log2(log n) log3 u

}
).

ICALP 2023



76:6 A Sparse Johnson-Lindenstrauss Transform Using Fast Hashing

Previous Work on Tabulation Hashing

The work by Patrascu and Thorup [33] initiated the study of tabulation based hashing
that goes further than what 3-wise independence of constructions would suggest. A long
line of papers have shown tabulation based hashing to work for min-wise hashing [32, 13],
hashing for k-statistics [11], and the number of non-empty-bins [2]. Furthermore, multiple
papers have been concerned with showing strong concentration results for tabulation based
hashing [33, 32, 1, 20]. Tabulation based hashing has also been studied experimentally where
they have been shown to exhibit great performance [12, 1].

Preliminaries
In this section, we will introduce the notation which will be used throughout the paper. First
we introduce p-norms.

▶ Definition 2 (p-norm). Let p ≥ 1 and X be a random variable with E[|X|p] < ∞. We then
define the p-norm of X by ∥X∥p = E[|X|p]1/p.

Throughout the paper, we will repeatedly work with value functions v : U × [m] → R.
We will allow ourself to sometime view them as vectors, and in particular, we will write

∥v∥2 =
√∑

x∈U

∑
j∈[m/s]

v(x, j)2,

∥v∥∞ = max
x∈U,j∈[m/s]

|v(x, j)| .

We will also use the Ψp-function introduced in [20].

▶ Definition 3. For p ≥ 2 we define the function Ψp : R+ × R+ → R+ as follows,

Ψp(M, σ2) =


(

σ2

pM2

)1/p

M if p < log pM2

σ2

1
2
√

pσ if p < e2 σ2

M2

p

e log pM2
σ2

M if max
{

log pM2

σ2 , e2 σ2

M2

}
≤ p

.

It was shown in [20] that Ψp(1, λ) is within a constant factor of the p-norm of a Poisson
distributed random variable with parameter λ. They also showed that Ψp(M, σ2) can be
used to upper bound expressions involving a fully random hash function h : U → [m]. Let
v : U × [m] → R be a value function then they showed that∥∥∥∥∥∑

x∈U

v(x, h(x))

∥∥∥∥∥
≤

CΨp(∥v∥∞ , ∥v∥2
2 /m) ,

where C is a universal constant.

3 Overview of the New Analysis

Our main technical contribution is a new analysis of the Sparse Johnson-Lindenstrauss
Transform that relaxes the assumptions on the hash function, h. We show that if h satisfies
a decoupling decomposition property and a strong concentration property then we obtain
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the same bounds for the Sparse Johnson-Lindenstrauss Transform. Both of these properties
are satisfied by h if h is Ω(log 1/δ)-wise independent so our assumptions are weaker than
those of the previous analyses.

In this section, we will give an informal overview of new approach. The technical details
and the formal statement of the result will be in Section 4.

In order to describe our approach, we look at the random variable

Z = ∥Aw∥2
2 − 1 = 1

s

∑
i∈[s]

∑
x ̸=y∈[u]

σ(i, x)σ(i, y) [h(i, x) = h(i, y)] wxwy. (2)

Here w ∈ Ru is a unit vector. With this notation the goal becomes to bound Pr[|Z| ≥ ε].
The first step in our analysis is that we want to decouple Equation (2). Decoupling

was also used in one of the proofs in [10], but since we want to prove the result for more
general hash functions, we cannot directly use the standard decoupling inequalities. We will
instead assume that our hash function allows a decoupling-decomposition. This will formally
be defined in Section 4 and we will for now assume that our hash function allows for the
standard decoupling inequality. If we apply Markov’s inequality and a standard decoupling
inequality for fully random hashing we obtain the expression.

Pr[|Z| ≥ ε] ≤ ε−p E[|Z|p]

≤
(

ε−1 4
s

)p

E

∣∣∣∣∣∣
∑
i∈[s]

∑
x,y∈[u]

σ(i, x)σ′(i, y) [h(i, x) = h′(i, y)] wxwy

∣∣∣∣∣∣
p (3)

where (h′, σ′) are independent copies of (h, σ) and p ≥ 2. The power of decoupling stems
from the fact that it breaks up some of the dependencies and allows for a simpler analysis.

The goal is now to analyse
∥∥∥∑i∈[s]

∑
x,y∈[u] σ(i, x)σ′(i, y) [h(i, x) = h′(i, y)] wxwy

∥∥∥
p
. This

is done by first fixing (h′, σ′) and bounding
∥∥∥∑i∈[s],j∈[m/s]

∑
x∈[u] σ(i, x) [h(i, x) = j] wxaij

∥∥∥
p

using the randomness of (h, σ) where aij =
∑

y∈[u] σ′(i, y) [h′(i, y) = j] wy. In order to do
this, we will assume that the pair (h, σ) is strongly concentrated. Again the formal definition
of this is postponed to Section 4, but informally, we say that the pair is strongly concentrated
if it has concentration results similar to those of fully random hashing.

We now take the view that |aij | is the load of the bin (i, j) ∈ [s] × [m/s]. The idea is
then to split [s] × [m/s] into heavy and light bins and handle each separately. We choose a
parameter k and let I be the heaviest k bins. Using the triangle inequality, we then get that∥∥∥∥∥∥

∑
i∈[s],j∈[m/s]

∑
x∈[u]

σ(i, x) [h(i, x) = j] wxaij

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑

(i,j)∈I

∑
x∈[u]

σ(i, x) [h(i, x) = j] wxaij

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑

(i,j)∈[s]×[m/s]\I

∑
x∈[u]

σ(i, x) [h(i, x) = j] wxaij

∥∥∥∥∥∥
p

.

We show that the contribution from the light bins is as if the collisions are independent.
This should be somewhat intuitive since if we only have few collisions in each bin then the
collisions behave as if they were independent. In contrast, we show that the contribution
from the heavy bins is dominated by the heaviest bin. This turns out to be exactly what we
need to finish the analysis.

ICALP 2023
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4 Technical Results

In this section, we will expand on the description from Section 3 and formalize the ideas.

Decoupling

Ideally, we would like to use the standard decoupling inequality, Equation (3). Unfortunately,
we cannot expect more general hash functions to support such a clean decoupling. We
therefore introduce the notion of a decoupling-decomposition.

▶ Definition 4 (Decoupling-decomposition). Let p ≥ 2, L ≥ 1, and 0 ≤ γ ≤ 1. We say that
a collection of possibly randomized sets, (Uα), is a (p, L, γ)-decoupling-decomposition for
a property P of a pair (h, σ), if there exist hash functions hα : [s] × Uα → [m/s] and sign
functions s : [s] × Uα → {−1, 1} for all α such that

Pr[|Z| ≥ ε]

≤

ε−1
∑

α

L

s

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈Uα

σα(i, x)σ′
α(i, y) [hα(i, x) = h′

α(i, y)] wxwy

∥∥∥∥∥∥
p

p

+ γ (4)

where (hα, σα) and (h′
α, σ′

α) has the same distribution, and (hα, σα) satisfies the property P

when conditioned on (h′
α, σ′

α) and Uα.

The reader should compare Equation (3) for fully random hashing with Equation (4).
There are 3 main differences between the expressions.
1. The first thing to notice is that, in the decoupling-decomposition we sum over different

sets (Uα), where this is not needed for fully random hashing. We allow the decoupling-
decomposition to use a different decoupling on each of the sets Uα. This is very powerful
since general hash functions are not necessarily uniform over the input domain.

2. For the decoupling-decomposition, we allow an additive error probability γ. This is useful
if the hash function allows for decoupling most of the time except when some unprobable
event is happening.

3. The last difference is that a much larger loss-factor is allowed by the decoupling-
decomposition than Equation (3). In the case of fully random hashing, we only lose a
factor of 4 but for more general hash functions this loss might be bigger.

Finally, we note that Equation (3) implies if (h, σ) is 2p-wise independent for an integer
p ≥ 2 then [u] is a decoupling-decomposition of (h, σ) for any property P that is satisfied
by (h, σ).

Strong Concentration

The second property we need is that the hash function is strongly concentrated.

▶ Definition 5 (Strong concentration). Let h : [s] × U → [m/s] be a hash function and
σ : [s] × U → {−1, 1} be a sign function. We say that the pair (h, σ) is (p, L)-strongly-
concentrated if
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1. For all value functions, v : [s] × [m/s] → R, and all vectors, w ∈ RU ,∥∥∥∥∥∥
∑
i∈[s]

∑
x∈U

σ(i, x)v(i, h(i, x))wx

∥∥∥∥∥∥
p

≤ Ψp

(
L ∥v∥∞ ∥w∥∞ , L

s

m
∥v∥2

2 ∥w∥2
2

)
, (5)

∥∥∥∥∥∥
∑
i∈[s]

∑
x∈U

σ(i, x)v(i, h(i, x))wx

∥∥∥∥∥∥
p

≤
√

L
p

log(m/s) ∥v∥2
2 ∥w∥2

2 . (6)

2. For all vectors, w ∈ RU ,∥∥∥∥∥∥
∑
i∈[s]

∑
j∈[m/s]

(∑
x∈U

σ(i, x) [h(i, x) = j] wx

)2
∥∥∥∥∥∥

p/2

≤ L max
{

s ∥w∥2
2 ,

p

log m/s
∥w∥2

2

}
.

(7)

3. If p ≤ log m,∥∥∥∥∥ max
i∈[s],j∈[m/s]

∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j] wx

∣∣∣∣∣
∥∥∥∥∥

p

≤ e

√
L

log m

log m/s
∥w∥2 . (8)

We need essentially 3 different properties of our hash function to say that it is strongly
concentrated.
1. The first property is a concentration result on the random variable∑

i∈[s]

∑
x∈U

σ(i, x)v(i, h(i, x))wx.

Here we need two different concentration results: The first concentration result, Equa-
tion (5), roughly corresponds to a p-norm version of what you would obtain by applying
Bennett’s inequality to a fully random hash function, while the second concentration
result, Equation (5), corresponds to the best hypercontractive result you can obtain for
weighted sums of independent Bernoulli-Rademacher variables with parameter s/m.2

2. The second property bounds the sum of squares

W =
∑
i∈[s]

∑
j∈[m/s]

(∑
x∈U

σ(i, x) [h(i, x) = j] wx

)2

.

The condition, Equation (7), bounds ∥W∥p/2 by the maximum of two cases. The first
case corresponds to E[W ], and the second case is motivated by applying Equation (6) to

sup
z∈R[s]×[m/s],

∥z∥2=1

∥∥∥∥∥∥
∑
i∈[s]

∑
j∈[m]

∑
x∈U

σ(i, x)zi,h(i,x)wx

∥∥∥∥∥∥
2

p

.

While this at first glance might seem odd, it is roughly the best you can do, since one
can show that

max

E[W ] , sup
z∈R[s]×[m/s],

∥z∥2=1

∥∥∥∥∥∥
∑
i∈[s]

∑
j∈[m]

∑
x∈U

σ(i, x)zi,h(i,x)wx

∥∥∥∥∥∥
2

p

 ≤ ∥W∥p/2 .

2 A Bernoulli-Rademacher variable with parameter α is random variable, X ∈ {−1, 0, 1}, with Pr[X = 1] =
Pr[X = −1] = α/2 and Pr[X = 0] = 1 − α.
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3. The final property is a bound on the largest coordinate,
maxi∈[s],j∈[m/s]

∣∣∑
x∈U σ(i, x) [h(i, x) = j] wx

∣∣. The bound is a natural consequence of
Equation (6) for fully random hashing. Namely, for fully random hashing we get that∥∥∥∥∥ max

i∈[s],j∈[m/s]

∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j] wx

∣∣∣∣∣
∥∥∥∥∥

p

≤

∥∥∥∥∥ max
i∈[s],j∈[m/s]

∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j] wx

∣∣∣∣∣
∥∥∥∥∥

log m

≤ e max
i∈[s],j∈[m/s]

∥∥∥∥∥
∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j] wx

∣∣∣∣∣
∥∥∥∥∥

log m

≤ e

√
L

log m

log m/s
∥w∥2 .

This derivation is not true for general hash function, but the hash function can still satisfy
Equation (8).

The results of [20] show that if the hash function h : [s] × U → [m/s] and the sign
function σ : [s] × U → [m/s] is p-wise independent for an integer p ≥ 2 then the pair (h, σ) is
(p, K)-strongly-concentrated where K is a universal constant.

The Main Result

We are now ready to state our main result which is a new analysis of a Sparse Johnson-
Lindenstrauss Transform that only assumes that the hash function has a decoupling-
decomposition for the strong concentration property.

▶ Theorem 6. Let h : [s] × [u] → [m/s] be a hash function and σ : [s] × [u] → {−1, 1} be a
sign function. Furthermore, let 0 < ε < 1 and 0 < δ < 1 be given, and define p = log 1/δ.

Assume that there exists constants L1, L2, L3, and 0 ≤ γ < 1, that only depends on (h, σ)
and p, such that
1. There exists a (p, L1, γ)-decoupling-decomposition, (Uα), for the (p, L2)-strong-

concentration property of (h, σ)
2. For all vectors w ∈ Ru,

∑
α

∑
x∈Uα

w2
x ≤ L3 ∥w∥2

2.
3. m ≥

(
16e7L2

1L3
2L2

3
)

· ε−2 log(1/δ).
4. s ≥

(
64e3L1L

3/2
2 L3

)
· ε−1 log(1/δ).

Then the following is true

Pr[|Z| ≥ ε] ≤ δ + γ.

As discussed earlier, a fully random hash function satisfies all the property needed of the
theorem and thus gives a new analysis of the Sparse Johnson-Lindenstrauss Transform for
fully random hashing. We will also later show that Mixed Tabulation satisfies the assumption
of the theorem hence giving the first analysis of a Sparse Johnson-Lindenstrauss Transform
with a practical hash function that works.

The main difficulty in the analysis of Theorem 6 is contained in the following technical
lemma. The idea in the proof of Theorem 6 is to use the decoupling-decomposition and apply
the following lemma to each part.
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▶ Lemma 7. Let h, h : [s] × U → [m/s] be hash functions and σ, σ : [s] × U → {−1, 1} be
sign functions. Let p ≥ 2 and assume that there exists a constant L such that (h, σ) is (p, L)-
strongly concentrated when conditioning on (h, σ), and similarly, (h, σ) is (p, L)-strongly
concentrated when conditioning on (h, σ). Then for all vectors w ∈ RU ,

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈U

σ(i, x)σ(i, y)
[
h(i, x) = h(i, y)

]
wxwy

∥∥∥∥∥∥
p

≤ Ψp

(
32e3L3/2 ∥w∥2

2 , 32e6L3 s2

m
∥w∥4

2

)
+ 36e3L

p

log m/s
∥w∥2

2 .

The lemma shows that the expression has two different regimes. The first regime,
Ψp

(
32e3L3/2 ∥w∥2

2 , 32e6L3 s2

m ∥w∥4
2

)
, is essentially what we would expect if each of the colli-

sions,
[
h(i, x) = h(i, y)

]
, are independent of each other. The other regime, 36e3L p

log m/s ∥w∥2
2,

is essentially what you expect the largest coordinate to contribute.
Our analysis is inspired by these two regimes and tries to exploit them explicitly. We

start by fixing (h, σ) and divide the coordinates into heavy and light coordinates. We
then show that contribution of the light coordinates is Ψp

(
32e3L3/2 ∥w∥2

2 , 32e6L3 s2

m ∥w∥4
2

)
which matches the intuition that if we only have few collisions on each coordinate then the
collisions behave as if they were independent. Similarly, we show that the contribution of
the heavy coordinates is dominated by the heaviest coordinate, namely, the contribution is
36e3L p

log m/s ∥w∥2
2.

Mixed Tabulation Hashing

Our main result for Mixed Tabulation hashing is the following.

▶ Theorem 8. Let h : [s] × [u] → [m/s] and σ : [s] × [u] → {−1, 1} be Mixed Tabulation
functions as described in Section 1.1. Furthermore, let 0 < ε < 1 and 0 < δ < 1 be given,
and define p = log 1/δ.

If m ≥ γ3c
p ε−2 log(1/δ) and s ≥ γ

3/2c
p ε−1 log(1/δ) where γp = Kc max

{
1, p

log|Σ|

}
for a

universal constant K.
Then the following is true

Pr[|Z| ≥ ε] ≤ δ + ε3c |Σ|−d
.

The result follows by proving that Mixed Tabulation hashing has a
(p, 4c+2, 4ε−23c s

m |Σ|−d)-decoupling-decomposition and that Mixed Tabulation has
the strong concentration property. The main new part is in showing the decoupling-
decomposition while the analysis of the strong concentration property is modification of the
analysis in [20].

Due to space constraints, the proof is deferred to the full version.
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5 Analysis of the Sparse Johnson-Lindenstrauss Transform

Lets us start by showing how Lemma 7 implies our main result, Theorem 6.

Proof of Theorem 6. We start by using Equation (4) of the decoupling decomposition to
get that

Pr[|Z| ≥ ε]

≤

ε−1
∑

α

L1

s

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈Uα

σα(i, x)σ′
α(i, y) [hα(i, x) = h′

α(i, y)] vxvy

∥∥∥∥∥∥
p

p

+ γ

Now we fix α and apply Lemma 7 while fixing Uα∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈Uα

σα(i, x)σ′
α(i, y) [hα(i, x) = h′

α(i, y)] vxvy

∥∥∥∥∥∥
p

≤ Ψp

(
32e3L

3/2
2 , 32e6L3 s2

m

) ∑
x∈Uα

w2
x + 36e3L2

p

log m/s

∑
x∈Uα

w2
x

Using this we get that

∑
α

L1

s

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈Uα

σα(i, x)σ′
α(i, y) [hα(i, x) = h′

α(i, y)] vxvy

∥∥∥∥∥∥
p

≤
∑

α

L1

s

(
Ψp

(
32e3L

3/2
2 , 32e6L3 s2

m

) ∑
x∈Uα

w2
x + 36e3L2

p

log m/s

∑
x∈Uα

w2
x

)

We now use that
∑

α

∑
x∈Uα

w2
x ≤ L3 ∥w∥2

2 to get that

∑
α

L1

s

(
Ψp

(
32e3L

3/2
2 , 32e6L3 s2

m

) ∑
x∈Uα

w2
x + 36e3L2

p

log m/s

∑
x∈Uα

w2
x

)

≤ L3L1

s

(
Ψp

(
32e3L

3/2
2 , 32e6L3 s2

m

)
+ 36e3L2

p

log m/s

)
∥w∥2

2

It can now be checked that if m and s satisfies the stated assumptions then

L3L1

s

(
Ψp

(
32e3L

3/2
2 , 32e6L3 s2

m

)
+ 36e3L2

p

log m/s

)
∥w∥2

2 ≤ e−1ε

Combining all the facts, we get that

Pr[|Z| ≥ ε] ≤
(
ε−1(e−1ε)

)p + γ = δ + γ.

This finishes the proof. ◀

The rest of the section is concerned with proving our main technical lemma, Lemma 7.
First we need the following two lemmas from [20].
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▶ Lemma 9. Let f : Rn
≥0 → R≥0 be a non-negative function which is monotonically increasing

in every argument, and assume that there exists positive reals (αi)i∈[n] and (ti)i∈[n] such that
for all λ ≥ 0,

f(λα0t0, . . . , λαn−1tn−1) ≤ λf(t0, . . . , tn−1) .

Let (Xi)i∈[n] be non-negative random variables. Then for all p ≥ 1 we have that

∥f(X0, . . . , Xn−1)∥p ≤ n1/p max
i∈[n]

(
∥Xi∥p/αi

ti

)1/αi

f(t0, . . . , tn−1) .

▶ Lemma 10. Let p ≥ 2, M > 0, and σ2 > 0 then

1
2

√
pσ ≤ Ψp(M, σ2) ≤ max

{
1
2

√
pσ,

1
2e

pM

}
.

We are now ready to prove Lemma 7.

Proof of Lemma 7. We start by defining vh, vh̄ : [s] × [m/s] → R by,

vh(i, j) =
∑
x∈U

σ(i, x)wx [h(i, x) = j] ,

vh̄(i, j) =
∑
y∈U

σ(i, y)wy

[
h(i, y) = j

]
.

We then want to prove that∥∥∥∥∥∥
∑

i∈[s],j∈[m/s]

vh(i, j)vh̄(i, j)

∥∥∥∥∥∥
p

≤ Ψp

(
32e3L3/2 ∥w∥2

2 , 32e6L3 ∥w∥4
2

)
+ 4e3L

p

log m/s
∥w∥2

2 .

First we consider the case where p
log m/s ∥w∥2

2 ≥ s ∥w∥2
2. By Cauchy-Schwartz and

Equation (7) we get that∥∥∥∥∥∥
∑

i∈[s],j∈[m/s]

vh(i, j)vh̄(i, j)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑

i∈[s],j∈[m/s]

vh(i, j)2

∥∥∥∥∥∥
p

≤ L
p

log m/s
∥w∥2

2 .

We now focus on the case where p
log m/s ∥w∥2

2 < s ∥w∥2
2. We define π : [m] → [s] × [m/s]

to be a bijection which satisfies that

|vh(π(0))| ≥ |vh(π(1))| ≥ . . . ≥ |vh(π(m − 1))| .

We note that π is a random function but we can define π such that it only depends on the
randomness of h and σ. We define k = ⌊p/ log(m/p)⌋, I = {π(i) | i ∈ [k]}, and the random
functions v′

h, v′′
h : [s] × [m/s] → R by

v′
h(i, j) = vh(i, j) [(i, j) ∈ I] ,

v′′
h(i, j) = vh(i, j) [(i, j) ̸∈ I] .
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Again we note that v′
h and v′′

h only depends on the randomness of h and σ. We can then
write our expression as

∥∥∥∥∥∥
∑

i∈[s],j∈[m/s]

vh(i, j)vh̄(i, j)

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)vh(i, h(i, y))wy

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

.

We will bound each of the term separately. We start by bounding∥∥∥∑i∈[s]
∑

y∈U σ(i, y)v′
h(i, h(i, y))wy

∥∥∥
p
. We fix h and σ and use Equation (6) to get

that

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤
∥∥∥∥√L

p

log m/s
∥w∥2

2 ∥v′
h∥2

2

∥∥∥∥
p

=
√

L
p

log m/s
∥w∥2

∥∥∥∥∥∥
√ ∑

(i,j)∈I

v′
h(i, j)2

∥∥∥∥∥∥
p

.

We note that
∑

(i,j)∈I v′
h(i, j)2 = maxJ⊆[s]×[m/s],|J|=k

∑
(i,j)∈J vh(i, j)2. We then get that

∥∥∥∥∥∥
√ ∑

(i,j)∈I

v′
h(i, j)2

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
√

max
J⊆[s]×[m/s],|J|=k

∑
(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

≤

 ∑
J⊆[s]×[m/s],|J|=k

∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

p


1/p

≤
(

ms

k

)1/p

max
J⊆[s]×[m/s],|J|=k

∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

We use Sterling’s bound and get that
(

ms
k

)1/p ≤
(

ems
k

)k/p ≤
(

ems log(ms/p)
p

)1/ log(ms/p)
≤ e3.

So we get that

∥∥∥∥∥∥
√ ∑

(i,j)∈I

v′
h(i, j)2

∥∥∥∥∥∥
p

≤ e3 max
J⊆[s]×[m/s],|J|=k

∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

A standard volumetric argument gives that there exists a 1/4-net, Z ⊆ RJ , with |Z| ≤ 9k,
such that
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∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥ sup
z∈RJ ,∥z∥2=1

∑
(i,j)∈J

zi,jvh(i, j)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥sup
z∈Z

∑
(i,j)∈J

zi,jvh(i, j)

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥ sup
z∈RJ ,∥z∥2=1

∑
(i,j)∈J

(zi,j − z′
i,j)vh(i, j)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥sup
z∈Z

∑
(i,j)∈J

zi,jvh(i, j)

∥∥∥∥∥∥
p

+ sup
z∈RJ ,∥z∥2=1

∥z − z′∥2

∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

where z′ ∈ Z is the closest element to z, and as such ∥z − z′∥2 ≤ 1/4. Since there are at most
9k elements in Z then

∥∥∥supz∈Z

∑
(i,j)∈J zi,jvh(i, j)

∥∥∥
p

≤ 9 supz∈Z

∥∥∥∑(i,j)∈J zi,jvh(i, j)
∥∥∥

p
,

where we used that k ≤ p. Collecting the fact we get that∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

≤ 36 sup
z∈Z

∥∥∥∥∥∥
∑

(i,j)∈J

zi,jvh(i, j)

∥∥∥∥∥∥
p

Using this we get that

e3 max
J⊆[s]×[m/s],|J|=k

∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

≤ 36e3 max
J⊆[s]×[m/s],|J|=k

max
z∈Z

∥∥∥∥∥∥
∑

(i,j)∈J

zi,jvh(i, j)

∥∥∥∥∥∥
p

= 36e3 max
J⊆[s]×[m/s],|J|=k

max
z∈Rs×m/s,

∥z∥2=1

∥∥∥∥∥∥
∑
i∈[s]

∑
x∈U

σ(i, x)zi,h(i,x) [(i, h(i, x)) ∈ J ] wx

∥∥∥∥∥∥
p

We can then use Equation (6) to get that

36e3 max
J⊆[s]×[m/s],|J|=k

max
z∈Rs×m/s,

∥z∥2=1

∥∥∥∥∥∥
∑
i∈[s]

∑
x∈U

σ(i, x)zi,h(i,x) [(i, h(i, x)) ∈ J ] wx

∥∥∥∥∥∥
p

≤ 36e3 max
J⊆[s]×[m/s],|J|=k

max
z∈Rs×m/s,

∥z∥2=1

√
L

p

log m/s
∥w∥2 ∥z∥2

= 36e3
√

L
p

log m/s
∥w∥2

Combining the facts, we get that
∥∥∥∑i∈[s]

∑
y∈U σ(i, y)v′

h(i, h(i, y))wy

∥∥∥
p

≤ 36e3L p
log m/s ∥w∥2

2.

ICALP 2023



76:16 A Sparse Johnson-Lindenstrauss Transform Using Fast Hashing

We will now bound
∥∥∥∑i∈[s]

∑
y∈U σ(i, y)v′′

h(i, h(i, y))wy

∥∥∥
p
. We fix h and ε and use

Equation (5) to get that∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤
∥∥∥Ψp

(
L ∥w∥∞ ∥v′

h∥∞ , L
s

m
∥w∥2

2 ∥v′
h∥2

2

)∥∥∥
p

≤
∥∥∥Ψp

(
L ∥w∥∞ |v′

h(π(k + 1))| , L
s

m
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2 ∥vh∥2
2

)∥∥∥
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.

Now we use Lemma 9 to get that,∥∥∥Ψp

(
L ∥w∥∞ |v′

h(π(k + 1))| , L
s

m
∥w∥2

2 ∥vh∥2
2

)∥∥∥
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≤
√

2Ψp

(
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s

m
∥w∥2

2

∥∥∥∥vh∥2
2

∥∥∥
p/2

)
.

Since we assume that p
log m ∥w∥2

2 < s ∥w∥2
2 then Equation (7) give us that

∥∥∥∥vh∥2
2

∥∥∥
p/2

≤

Ls ∥w∥2
2.

We will now bound ∥v′
h(π(k + 1))∥p. For this, we will distinguish between two cases:

Either p ≥ log m or p < log m. Let us first case where p ≥ log m. We will use that

|v′
h(π(k + 1))| ≤

∑
i∈[k+1]|v′

h(π(i))|
k+1 . We then get that

∥v′
h(π(k + 1))∥p

≤

∥∥∥∥∥
∑
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h(π(i))|

k + 1
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p

≤
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p
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2
(

m
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)1/p
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∥∥∥

p

k + 1

We note that
∥∥∥∑(i,j)∈J σi,jvh(i, j)

∥∥∥
p

=
∥∥∥∑x∈U

∑
(i,j)∈J σ(i, x)si,j [h(i, x) = j] wx

∥∥∥
p
. Since

we have that p ≥ log m then k ≥ 1 which implies that k + 1 ≤ 2 p
log(m/p) . We then get that(

m
k+1
)1/p ≤

(
em

2p/ log(m/p)

)2/ log(m/p)
≤ 2e3. We now use Equation (6) to get that,
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√
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Combining this we get that ∥v′
h(π(k + 1))∥p ≤ 4e3

√
L p

log m/s

∥w∥2√
k+1 . We then obtain that,
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If log m/p ≤ 4 log m/s then we get that,∥∥∥∥∥∥
∑
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If log m/p > 4 log m/s then m/p > (m/s)4 which implies that pm

s2 ≤ √
pm. Using this

we get that
p16e6L3 log m/p

log m/s
∥w∥4

2

L2 s2
m ∥w∥4

2
≤ 16e6L

√
pm log m/p ≤ 16e6L. Where we have used that

√
s log 1/x ≤ 1. Now we use Lemma 10 to get that∥∥∥∥∥∥
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Now let us consider the case where p < log m. By Equation (8), we get that
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We then obtain that,∥∥∥∥∥∥
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If s ≤ m3/4 then we get that log m ≤ 4 log m/s and
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as wanted. If s ≥ m3/4 then we get that peL3 log m
L2s2/m ≤ eLm log2 m

s2 ≤ eL log2 m
m1/2 ≤ 16/eL, where

we have used that
√

x log2 1/x ≤ 16/e2. Again we use Lemma 10 to get that

√
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.

Combining everything we get that∥∥∥∥∥∥
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Now we conclude that∥∥∥∥∥∥
∑

i∈[s],j∈[m/s]

vh(i, j)vh̄(i, j)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤ Ψp

(
32e3L3/2 ∥w∥2

2 , 32e6L3 ∥w∥4
2

)
+ 4e3L

p

log m/s
∥w∥2

2 .

Thus finishing the proof. ◀
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