
Approximating Max-Cut on Bounded Degree
Graphs: Tighter Analysis of the FKL Algorithm
Jun-Ting Hsieh #Ñ

Carnegie Mellon University, Pittsburgh, PA, USA

Pravesh K. Kothari # Ñ

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
In this note, we describe a αGW + Ω̃(1/d2)-factor approximation algorithm for Max-Cut on weighted
graphs of degree ⩽ d. Here, αGW ≈ 0.878 is the worst-case approximation ratio of the Goemans-
Williamson rounding for Max-Cut. This improves on previous results for unweighted graphs by Feige,
Karpinski, and Langberg [1] and Florén [3]. Our guarantee is obtained by a tighter analysis of the
solution obtained by applying a natural local improvement procedure to the Goemans-Williamson
rounding of the basic SDP strengthened with triangle inequalities.
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1 Introduction

In 1994, Goemans and Williamson [4] described a polynomial time algorithm based on round-
ing the natural semidefinite relaxation for the Max-Cut problem to obtain an approximation
ratio of αGW ≈ 0.878. Assuming the Unique Games Conjecture [5], this rounding algorithm
is in fact worst-case optimal [6].

When the underlying graph has bounded degree, the complexity landscape of Max-Cut
is much less clear. In particular, the Goemans-Williamson (GW) rounding algorithm can
be improved by an elementary local-search based post-processing step applied to the cut
obtained by GW rounding of the SDP relaxation strengthened by adding triangle inequalities.
The first such result was shown by Feige, Karpinski, and Langberg [1] (FKL) to obtain
an approximation ratio of αGW + ϵ(d) for ϵ(d) = Ω(1/d4) for unweighted degree d graphs.
Florén [3] later improved the FKL analysis to obtain ϵ(d) = Ω(1/d3) in the same setting.

In this note, we refine the local search scheme of FKL and give a tighter analysis to show
that ϵ(d) = Ω̃(1/d2). Moreover, we extend the result to weighted instances of Max-2LIN,
which generalizes Max-Cut.

▶ Theorem 1. There is a polynomial time algorithm that takes input a (weighted) Max-2LIN
instance φ on a graph with n vertices and degree ⩽ d and outputs an assignment that satisfies
a number of constraints that is within an αGW + Ω

(
1

d2 log d

)
of the optimum.

1 https://simons.berkeley.edu/talks/title-tba-5
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77:2 Approximating Max-Cut on Bounded Degree Graphs

As in FKL, the high-level plan is to show that when the “edgewise” analysis of the
Goemans-Williamson rounded solution is “tight” (otherwise, we already obtain an improve-
ment on the worst-case GW guarantee), the rounded solution is locally suboptimal. That
is, there is a cd-fraction of vertices, for some constant cd depending only on d, such that
switching them to the other side should cut more of the edges to their neighbors and thus
increase the cut by at least one edge. But flipping a vertex may kill the increase from others.
So we may not be able to “win” from every one of the candidates. The analysis then involves
managing this dependency and lower bounding cd. Specifically, FKL and Florén accomplish
this by analyzing the chance that more than half of a vertex’s neighbors lie on the same side
of the partition generated by GW rounding. In such a plan, they have to handle vertices of
odd and even degrees slightly differently and generalizations to weighted graphs seem to lose
additional factors in the approximation ratio.

Instead of trying to gain only a single edge from a vertex flip, our analysis directly focuses
on lower bounding the quantitative gain in the weighted cut by such an operation. This
strategy also allows us to easily generalize our results to Max-2LIN and to arbitrary weighted
graphs.

There is still a wide gap between approximation algorithms and hardness for Max-Cut
in the bounded degree setting. In particular, for every ϵ > 0, the best known hardness
result by Trevisan [7] rules out polynomial time algorithms with an approximation ratio
> αGW +5/

√
d+ϵ for graphs of large enough constant degree d. Improving the approximation

ratio to get closer to this bound (this will likely need a scheme different from FKL’s) or
obtaining a better inapproximability results are outstanding open questions.

2 The Algorithm and Analysis

▶ Algorithm 2 (Max-2LIN on bounded degree graphs).
Given: A graph G = (V, E) on n vertices, m edges and maximum degree d, signs

bij ∈ {±1}, and non-negative weights wij > 0 for each {i, j} ∈ E.
Operation:

1. Find unit vectorsa v1, . . . , vn ∈ Rn that maximize 1
m

∑
{i,j}∈E wij

1
2 (1+bij⟨vi, vj⟩),

and, satisfy ∥aivi − ajvj∥2 + ∥ajvj − akvk∥2 ⩾ ∥aivi − akvk∥2 for every triple
{i, j, k} and (ai, aj , ak) ∈ {±1}3.

2. Sample g ∼ N (0, In)b , and set xi = sgn(⟨g, vi⟩) ∈ {±1}.
3. Set ε = 1

Cd
√

log d
for some large enough constant C > 0. Define S := {i ∈ V :

⟨g, vi⟩ ∈ (−ε, ε)} to be the candidate set of suboptimal vertices. For each i ∈ S,
partition its neighbors N(i) into 3 disjoint sets:

(a) Ai = N(i) ∩ S = {j ∈ N(i) : ⟨g, vj⟩ ∈ (−ε, ε)},
(b) Bi = {j ∈ N(i) : bijxi⟨g, vj⟩ ⩽ −ε},
(c) Ci = {j ∈ N(i) : bijxi⟨g, vj⟩ ⩾ ε}.

4. Output x′ obtained by flipping xi for every i ∈ S such that
∑

j∈Bi
wij >∑

j∈Ai∪Ci
wij .

a Approximately solving an SDP in poly(n) time produces such vectors with value at most 2− poly(n)

smaller.
b As in standard implementations of the GW rounding scheme, truncating Gaussian samples to

rationals of poly(n)-bits suffices to recover the stated guarantees up to a loss of an additive
2− poly(n) in the approximation ratio. We will omit a detailed discussion of issues of numerical
precision in this note.
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Analysis. We will appeal to the following three elementary facts.

▶ Fact 3 (Gaussian Measure in the Core). For any ε > 0,

ε√
2π

e−ε2/2 ⩽ Pr
g∼N (0,1)

[g ∈ (0, ε)] ⩽ ε√
2π

.

▶ Fact 4 (Sheppard’s Lemma [2]). Let g1, g2 be standard Gaussian variables with covariance
σ = E[g1g2] ∈ [−1, 1]. Then, Pr[g1 ⩾ 0 ∧ g2 ⩾ 0] = 1

2 − 1
2π arccos(σ).

▶ Fact 5 (Corollary of Schur Product Theorem). Let A ∈ Rn×n be positive semidefinite. For
any t ∈ N, the matrix B ∈ Rn×n with entries Bij = At

ij is positive semidefinite.

Our analysis crucially relies on the following basic fact about the arcsin function.

▶ Lemma 6 (Basic Facts about Taylor Approximation for arcsin). Let the Taylor expansion of
the arcsin function be arcsin(x) =

∑∞
k=0 ckx2k+1 for |x| ⩽ 1 where ck = (2k)!

22k(k!)2(2k+1) . For
any τ ∈ N, τ > τ0 where τ0 is a universal constant,
(1) for x > 0, arcsin(x) ⩾

∑τ
k=0 ckx2k+1,

(2) for |x| ⩽ 1/2, arcsin(x) ⩾
∑τ

k=0 ckx2k+1 − O(τ−1/2 · 2−2τ ),
(3) for x = 1, arcsin(1) = π

2 =
∑τ

k=0 ck + Θ(τ−1/2).

Proof. We first show that ck = Θ(k−3/2) by Stirling’s approximation:

ck = (1 + O(1/k)) ·
√

4πk(2k/e)2k

22k · 2πk(k/e)2k · (2k + 1) = 1
2
√

π
k−3/2(1 + O(1/k)) .

Therefore, for any τ > τ0 where τ0 is a universal constant,
∞∑

k=τ

ck = Θ(1)
∞∑

k=τ

k−3/2 = Θ(1)
∫ ∞

τ

x−3/2 dx = Θ(τ−1/2) .

Now we prove the lemma. (1) is straightforward because ck > 0 for all k. (2) holds since∣∣∣∣∣
∞∑

k=τ+1
ckx2k+1

∣∣∣∣∣ ⩽
∞∑

k=τ+1
ck|x|2k+1 ⩽ 2−2τ

∞∑
k=τ+1

ck ⩽ O(τ−1/2 · 2−2τ ) .

Finally, (3) follows directly from
∑∞

k=τ+1 ck = Θ(τ−1/2). ◀

Lemma 6 states that for some large threshold τ , the Taylor approximation error for
|x| ⩽ 1/2 is a factor 2−2τ smaller than the error for x = 1. This gap allows us to prove the
key lemma below:

▶ Lemma 7. Let d ∈ N, d ⩾ 2. Let A ∈ Rd×d be a positive semidefinite matrix such that
Aii = 1 and Aij ⩾ −1/2 for all i, j ∈ [d]. Let w ∈ Rd

⩾0 be a vector with non-negative entries.
Then,

d∑
i,j=1

wiwj arcsin(Aij) ⩾ Ω
(

∥w∥2
1

d
√

log d

)
.

Proof. Pick a threshold τ = C log2 d for a large enough constant C. Since we have the
assumption that Aij ⩾ −1/2 and wi ⩾ 0 for all i, j, we can bound the off-diagonal entries
using (1) and (2) of Lemma 6,

ICALP 2023
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d∑
i̸=j

wiwj arcsin(Aij) ⩾
d∑

i ̸=j

wiwj

(
τ∑

k=0
ckA2k+1

ij − O(τ−1/22−2τ )
)

=
τ∑

k=0
ck

d∑
i ̸=j

wiwjA2k+1
ij − Õ

(
∥w∥2

1
d2C

)
.

The diagonal entries are arcsin(1) =
∑τ

k=0 ck + Θ(τ−1/2) by (3) of Lemma 6. Thus, we get

d∑
i,j=1

wiwj arcsin(Aij) ⩾
τ∑

k=0
ck

d∑
i,j=1

wiwjA2k+1
ij +

d∑
i=1

w2
i · Ω(τ−1/2) − Õ

(
∥w∥2

1
d2C

)

=
τ∑

k=0
ck

d∑
i,j=1

wiwjA2k+1
ij + Ω

(
∥w∥2

2√
log d

)
− Õ

(
∥w∥2

1
d2C

)
.

Since A ⪰ 0, by Fact 5 we know that
∑d

ij=1 wiwjA2k+1
ij ⩾ 0 for all k ⩾ 0. Finally, any

w ∈ Rd satisfies ∥w∥2
2 ⩾ 1

d ∥w∥2
1. This completes the proof. ◀

2.1 Proof of Theorem 1
Let ρ∗ = arg minρ∈[−1,1]

1+ 2
π arcsin(ρ)

1+ρ ≈ 0.689 such that 1+ 2
π arcsin(ρ∗)

1+ρ∗
= αGW. Following [1],

we can assume without loss of generality that for all (i, j) ∈ E with sign bij , the SDP solution
satisfies bij⟨vi, vj⟩ ∈ [ρ∗ − 0.01, ρ∗ + 0.01].

Observe that after Item 2 of Algorithm 2, for every i in the candidate set S, by definition
all edges between i and Bi are violated, while all edges between i and Ci are satisfied.
Moreover, it is crucial that Bi and Ci are disjoint from S, so their assignments will not be
flipped in Item 4. For edges between i and Ai, in the worst case all of them are violated after
flipping. Thus, if

∑
j∈Bi

wij >
∑

j∈Ai∪Ci
wij , then flipping xi will increase the Max-2LIN

value.
We will prove that the expected gains from such local updates are large. For a vertex

i ∈ S, let Wi :=
∑

j∈N(i) wij be the total weight of edges incident to i. Define the local gain
from i to be

∆i :=

∑
j∈Bi

wij −
∑

j∈Ai∪Ci

wij


+

=

2
∑
j∈Bi

wij − Wi


+

,

where we denote (z)+ = max(0, z). The following is the key lemma of our analysis showing
that conditioned on i ∈ S, the expected local gain from vertex i is at least Ω̃( Wi

d ).

▶ Lemma 8 (Expected local gain). Let d ∈ N, d ⩾ 2 and ε = 1
Cd

√
log d

for a large enough
constant C. For a vertex i ∈ V with degree d, the expected local gain E[∆i|i ∈ S] ⩾

Ω
(

Wi

d
√

log d

)
.

Proof. Consider vertex i ∈ S and its d neighbors, denoted [d]. We first introduce some
notations for the analysis.

We can assume that vi = (1, 0, . . . , 0) without loss of generality due to rotational symmetry.
For every neighbor j ∈ [d], let vj = (ρj , v′

j) where the first coordinate is ρj ∈ bij ·[ρ∗ ±0.01]
and v′

j ∈ Rn−1 since we assume that bij⟨vi, vj⟩ ≈ ρ∗ for all (i, j) ∈ E.
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Denote the unit vector v̂j = v′
j/∥v′

j∥2.
Let g = (g1, . . . , gn) ∼ N (0, In) be the sampled Gaussian vector, and let g′ = (g2, . . . , gn).
Let hj := bijxi⟨v̂j , g′⟩. The random vector h = (h1, . . . , hd) is a multivariate Gaussian
variable with covariance matrix Σ ∈ Rd×d where Σjj = 1 and Σjk = bijbik⟨v̂j , v̂k⟩.

Since ∥vj∥2 = 1, we have ∥v′
j∥2 =

√
1 − ρ2

j ∈ [0.726 ± 0.01], and ⟨vj , g⟩ = ρjg1 +√
1 − ρ2

j ⟨v̂j , g′⟩. Recall that S = {i ∈ V : ⟨g, vi⟩ ∈ (−ε, ε)}. Thus, i ∈ S means that
⟨vi, g⟩ = g1 ∈ (−ε, ε). Next, we define the following random variable

Z :=
d∑

j=1
wij · 1 (hj ⩽ −3ε) .

Conditioned on the event that |g1| < ε,

hj ⩽ −3ε =⇒ bijxi⟨vj , g⟩ ⩽ |ρjg1| +
√

1 − ρ2
j · hj ⩽ −ε .

Therefore, we have Z ⩽
∑

j∈Bi
wij (recall that Bi = {j ∈ N(i) : bijxi⟨vj , g⟩ ⩽ −ε}). Then,

∆i =

2
∑
j∈Bi

wij − Wi


+

⩾ (2Z − Wi)+ .

Thus, it suffices to lower bound E[(2Z − Wi)+].
First, every hj is a standard Gaussian, so let p := Pr[hj ⩽ −3ε] = 1

2 − cε for some
c ⩽ 3√

2π
by Fact 3. Then, E[Z] = pWi. Next, we lower bound E[(Z − Wi/2)2].

E
[
(Z − Wi/2)2] = E

 d∑
j=1

wij

(
1(hj ⩽ −3ε) − 1

2

)2

= 1
4

d∑
j=1

w2
ij +

d∑
j ̸=k

wijwik

(
Pr [hj ⩽ −3ε ∧ hk ⩽ −3ε] − p + 1

4

)

⩾
1
4

d∑
j=1

w2
ij +

d∑
j ̸=k

wijwik

(
1
2 − 1

2π
arccos(Σjk) − 2cε −

(
1
4 − cε

))

⩾
1

2π

d∑
j,k=1

wijwik arcsin(Σjk) − cεW 2
i . (1)

The third line follows from Pr[hj ⩽ −3ε ∧ hk ⩽ −3ε] ⩾ Pr [hj ⩽ 0 ∧ hk ⩽ 0] − 2 · Pr[−3ε ⩽
hj ⩽ 0] and applying Fact 4. The final inequality is because π

2 − arccos(θ) = arcsin(θ) and
arcsin(Σjj) = arcsin(1) = π

2 .
By the triangle inequality of the SDP solution, for any j ̸= k, ∥vi−bijvj∥2+∥vi−bikvk∥2 ⩾

∥bijvj − bikvk∥2. Expanding this, we get

bijbik

(
ρjρk +

√
1 − ρ2

j

√
1 − ρ2

k⟨v̂j , v̂k⟩
)

⩾ bijρj + bikρk − 1 .

Since bijρj ∈ [ρ∗ ± 0.01] for all j ∈ [d], we have

Σjk = bijbik⟨v̂j , v̂k⟩ ⩾ −0.2 .

ICALP 2023
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This is crucial since we can now apply Lemma 7 to Equation (1) and get

E
[
(Z − Wi/2)2] ⩾ Ω

(
W 2

i

d
√

log d

)
− O(εW 2

i ) .

Finally, we lower bound E[(2Z − Wi)+]. Let Z = Z − Wi/2, and let Z+ = max(0, Z) and
Z− = max(0, −Z). Thus, Z = Z+ − Z− and Z

2 = Z
2
+ + Z

2
− by definition, and both Z+ and

Z− lie in [0, Wi/2]. Furthermore, E[Z] = E[Z+] − E[Z−] = pWi − Wi/2 = −cεWi. Then,

E
[
Z

2] = E
[
Z

2
+ + Z

2
−

]
⩽

Wi

2 · E
[
Z+ + Z−

]
= Wi · E[Z+] + c

2εW 2
i .

Setting ε ⩽ 1
Cd

√
log d

for a large enough C, we have E[Z+] ⩾ Ω
(

Wi

d
√

log d

)
. This completes

the proof. ◀

We can now prove Theorem 1.

Proof of Theorem 1. We first assume that for all (i, j) ∈ E with sign bij , the SDP solution
satisfies bij⟨vi, vj⟩ ∈ [ρ∗ − 0.01, ρ∗ + 0.01] where ρ∗ ≈ 0.689. Recall that in Algorithm 2, for
every i ∈ S, all edges between i and Bi are violated, and all edges between i and Ci are
satisfied. Further, since Bi and Ci are disjoint from S, the vertices in Bi and Ci will not be
flipped. For edges between i and Ai, in the worst case all of them are violated after flipping.
Thus, we have a local gain of at least ∆i = (

∑
j∈Bi

wij −
∑

j∈Ai∪Ci
wij)+.

The expected total gain from the local updates (over the random sample of g) is

E[∆] = E
∑
i∈S

∆i =
∑
i∈V

E [1(i ∈ S)∆i] =
∑
i∈V

Pr[i ∈ S] ·E[∆i|i ∈ S] ⩾ Ω(ε)
∑
i∈V

E[∆i|i ∈ S] ,

where Pr[i ∈ S] = Ω(ε) is due to Fact 3. Then, setting ε = 1
Cd

√
log d

for a large enough

constant C, by Lemma 8 and the fact that the total weight W = 1
2
∑

i∈V Wi, we have

E[∆] ⩾ Ω(ε) ·
∑
i∈V

Ω
(

Wi

d
√

log d

)
= W · Ω

(
1

d2 log d

)
.

Therefore, if the Max-2LIN instance φ has optimum OPT ⩽ W , then in expectation we can
find an assignment that satisfies

φ(x) ⩾ αGW · OPT + W · Ω
(

1
d2 log d

)
⩾

(
αGW + Ω

(
1

d2 log d

))
· OPT .

From here on, we follow the same argument as [1]. Let δ = Ω( 1
d2 log d ) be the improvement

above. If more than δ/2 fraction of the (weighted) edges satisfy bij⟨vi, vj⟩ /∈ [ρ∗ ± 0.01],
then hyperplane rounding already gives us αGW + Ω(δ) approximation ratio. If at most δ/2
fraction of the edges have bij⟨vi, vj⟩ /∈ [ρ∗ ± 0.01], then we can simply ignore those edges and
get an approximation of (1 − δ/2)(αGW + δ) ⩾ αGW + Ω(δ). This completes the proof. ◀
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