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Abstract
In [11, 13], Saunderson, Parrilo, and Willsky asked the following elegant geometric question: what is
the largest m = m(d) such that there is an ellipsoid in Rd that passes through v1, v2, . . . , vm with
high probability when the vis are chosen independently from the standard Gaussian distribution
N(0, Id)? The existence of such an ellipsoid is equivalent to the existence of a positive semidefinite
matrix X such that v⊤

i Xvi = 1 for every 1 ⩽ i ⩽ m – a natural example of a random semidefinite
program. SPW conjectured that m = (1 − o(1))d2/4 with high probability. Very recently, Potechin,
Turner, Venkat and Wein [10] and Kane and Diakonikolas [8] proved that m ≳ d2/ logO(1)(d) via a
certain natural, explicit construction.

In this work, we give a substantially tighter analysis of their construction to prove that m ≳ d2/C

for an absolute constant C > 0. This resolves one direction of the SPW conjecture up to a constant.
Our analysis proceeds via the method of Graphical Matrix Decomposition that has recently been
used to analyze correlated random matrices arising in various areas [3, 2]. Our key new technical
tool is a refined method to prove singular value upper bounds on certain correlated random matrices
that are tight up to absolute dimension-independent constants. In contrast, all previous methods
that analyze such matrices lose logarithmic factors in the dimension.
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1 Introduction

Given vectors v1, . . . , vm ∈ Rd, we say that these vectors satisfy the ellipsoid fitting property
if there exists an origin-centered ellipsoid that passes through all these points, i.e., if there
exists a matrix Λ such that
1. vT

i Λvi = 1 for all i ∈ [m],
2. Λ ⪰ 0.
In this work, we study vectors sampled i.i.d. from the standard Gaussian distribution. It is
known that when m ⩽ d + 1, the vectors satisfy the ellipsoid fitting property with probability
1 [12]. On the other hand, when m >

(
d+1

2
)
, by a simple dimension argument, the vectors
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78:2 Ellipsoid Fitting up to a Constant

don’t satisfy the ellipsoid fitting property with probability 1. This prompts the question:
what is the largest m = m(d) such that v1, . . . , vm ∼ N (0, Id) satisfy the ellipsoid fitting
property with probability at least 1 − od(1) (taking d → ∞)?

In a series of work, Saunderson et. al. [11, 12, 13] studied this problem in the context
of diagonal and low-rank matrix decomposition. Motivated by numerical experiments, they
conjectured that the ellipsoid fitting property for Gaussian random vis exhibits a phase
transition at m ∼ d2

4 (see also the experiments presented in [10]).

▶ Conjecture 1 (SCPW conjecture). Let ε > 0 be a constant and v1, . . . , vm ∼ N (0, Id) be
i.i.d. standard Gaussian vectors in Rd. Then,
1. If m ⩽ (1 − ε)d2

4 , then v1, . . . , vm have the ellipsoid fitting property with probability
1 − od(1).

2. If m ⩾ (1 + ε) d2

4 , then v1, . . . , vm have the ellipsoid fitting property with probability od(1).

Prior works have focused on establishing the positive result – that is, part (1) of the
above conjecture. Early works [11, 13] established that the ellipsoid fitting property holds for
m ⩽ O(d6/5−ε) independent Gaussian vector whp. In the context of proving Sum-of-Squares
lower bounds for the Sherringtin-Kirkpatrick model, the work [4] obtains a result that, as
an immediate corollary, improves the above bound to O(d3/2−ε). In fact, their work gives
an implicit bound of m ⩽ O(d2/ polylog(d)) for ellipsoid fitting when restricted to degree-2
Sum-of-Squares.

Very recently, two independent works of Potechin et. al. [10] and Kane and Diakonikolas [8]
proposed new constructions of Λ (that differ from the constructions obtained by the method
of pseudo-calibration in [4]) and recovered the bound of m ⩽ O(d2/ polylog(d)). In their
works [10, 8], the authors ask the question of analyzing their construction (or a different one)
to obtain an improved and almost optimal estimate of m = d2/C for some absolute constant
C > 0. The main result of this paper accomplishes this goal. Specifically, we prove:

▶ Theorem 2 (Main result). There is a universal constant c > 0 such that if m ⩽ cd2, then
v1, . . . , vm ∼ N (0, Id) have the ellipsoid fitting property with probability 1 − od(1).

We establish Theorem 2 by analyzing the construction of Kane and Diakonikolas [8]
(which is a variant of the construction proposed in [10]). Our key idea is to depart from the
analysis conducted by [8] and instead rely on the graphical matrix decomposition method.
This method decomposes a random matrix with correlated entries into a sum of structured
random matrices called graph matrices. Graph matrices can be thought of as an analog of
the Fourier basis in the analysis of functions over product spaces. This method was first
employed in the works establishing tight sum-of-squares lower bound on the planted clique
problem [5, 1, 3, 7] and has since then been employed in several follow-up works on proving
sum-of-squares lower bounds and more recently in analyzing well-conditionedness of linear
algebraic algorithms for generalizations of tensor decomposition [2]).

The key technical work in the analysis then becomes understanding the smallest and
largest singular values of graph matrices. All prior works rely on arguments that establish
bounds on the largest singular values that are accurate up to polylogarithmic factors in the
underlying dimension of the matrices. The work of [2] recently showed how to use such
bounds to also obtain estimates of the smallest singular values of graph matrices (which,
otherwise are significantly more challenging to prove). Nevertheless, the slack in such bounds
does not allow us to obtain any improvement on the previous estimates [8] in our application.
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Our main technical contribution is a new technique to establish bounds on the largest
singular values of graph matrices that are tight up to dimension-independent absolute
constants. This allows us to obtain substantially improved estimates for the SCPW conjecture.
Given the host of previous applications of such bounds, we expect that our results will have
many more applications down the line.

Table 1 Comparison of our result with prior work.

Construction Bound on m

Conjectured d2/4
[11, 13] O(d6/5−ε)
[4] O(d3/2−ε) ∗

[10] O(d2/ polylog(d))
[8] O(d2/ log4(d))
this paper O(d2)

∗The bound O(d2/ polylog(d)) is implicit in their work.

1.1 Technical overview
Following the convention of [8], for the rest of the paper we will assume that v1, . . . , vm ∼
N (0, 1

d Id) such that each vector has expected norm 1. Note that this does not change the
problem as we can simply scale Λ.

Our construction of Λ is the “identity perturbation construction”, which is the same
one analyzed in [8] and was proposed in [10]. As an intuition, observe that Λ = Id almost
works: vT

i Idvi = ∥vi∥2
2 ≈ 1. Thus, the idea is to define Λ as a perturbation of Id: Λ =

Id −
∑m

i=1 wiviv
T
i , where w = (w1, . . . , wm) ∈ Rm. To determine w, observe that the

constraints vT
i Λvi = 1 give m linear constraints on w, and this can be written as a linear

system represented by a matrix M ∈ Rm×m with entries M [i, j] = ⟨vi, vj⟩2. Thus, given
that M is full rank, w is uniquely determined by w = M−1η for some vector η (see Eq. (2)).
This construction satisfies vT

i Λvi = 1 automatically, so the next thing is to prove that Λ ⪰ 0.
Therefore, we have two high-level goals:
1. Prove that M is full rank and analyze M−1.
2. Prove that R :=

∑n
i=1 wiviv

T
i has spectral norm bounded by 1.

Proving the second statement immediately implies that Λ is a valid construction.
To achieve the first goal, we decompose M into several components. Roughly, we write

M = A+B where A is a perturbed identity matrix A = Im −T and B is a rank-2 matrix (see
Section 2.2). We first show that ∥T∥op ⩽ O(

√
m
d ) < 0.5 with m ⩽ O(d2) (Lemma 9), hence

A is well-conditioned. Then, using the fact that B has rank 2, we can apply the Woodbury
matrix identity (Fact 7 and Fact 8 ) – a statement on the inverse of low-rank corrections
of matrices – to conclude that M is invertible and obtain an expression for M−1. This is
carried out in Section 2.3.

Next, for the second goal, we need to further expand A−1. Since ∥T∥op < 1, we can apply
the Neumann series and write A−1 = (Im − T )−1 =

∑∞
k=0 T k. For the analysis, we select

certain thresholds to truncate this series such that the truncation error is small. Then, we
write M−1 in terms of the truncated series plus a small error, which will be useful later for
the analysis of R. This is carried out in the full version.

Finally, given the expression of M−1, R naturally decomposes into 4 matrices. Then, all
we need to do is to bound the spectral norm of each of these matrices (see the full version).
Bounding ∥R∥op ⩽ 1 implies that Λ ⪰ 0, completing the proof.

ICALP 2023
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Requiring tight norm bounds. Our main technical lemmas are the spectral norm bounds
of T (Lemma 9) and the matrices in the decomposition of R. Clearly, we need our norm
bound ∥T∥op ⩽ O(

√
m
d ) to be tight without polylog factors so that m ⩽ O(d2) suffices, and

similarly for matrices from R.
The standard starting point is the trace moment method: for any symmetric matrix

M ∈ Rn×n and q ∈ N (usually taking q = polylog(n) suffices),

∥M∥2q
op ⩽ tr(M2q) =

∑
i1,i2,...,i2q∈[n]

M [i1, i2]M [i2, i3] · · · M [i2q, i1] .

We view the summand as a closed walk i1 → i2 → · · · → i2q → i1 on n vertices. For a
random matrix, we study the expected trace E tr(M2q). In the simple case when M is a
Gaussian matrix (GOE), we see that after taking the expectation, the non-vanishing terms
are closed walks where each edge (u, v) is traversed even number of times. This is in fact
true for any symmetric M with independent random entries as long as the odd moments of
the entries are zero. Thus, a precise upper bound on E tr(M2q) can be obtained by carefully
counting such closed walks (see [14]).

Our matrices are more complicated; each entry is a mean-zero polynomial of Gaussian
random variables. To carry out the trace method, we represent the matrices as graphs, hence
the term graph matrices. The framework of graph matrices was first introduced by [3], and
over the years, off-the-shelf norm bounds (e.g. [1]) for graph matrices have been developed
and successfully used in several works [9, 4, 6, 7, 2]. However, the currently known norm
bounds are only tight up to polylog factors, hence not sufficient for us. Therefore, the bulk
of our paper is to prove norm bounds for these matrices that are tight up to constant factors.
In fact, some of our bounds on graph matrices are even tight in the constant factor. However,
we do not pursue the exact constants for two reasons. First, obtaining bounds which are
tight in the constant factor would require additional technical work. Second, numerical
experiments from [10] show that the identity perturbation construction we analyze has a
threshold of d2

CIP
where CIP ≈ 10, so it falls short of the d2

4 threshold and we would need a
different construction to reach this threshold.

Key idea towards tight norm bounds. Here, we briefly discuss the high-level ideas for
proving tight norm bounds. To illustrate our techniques, in Section 3 we will give a full proof
for a matrix that arises in our analysis as an example, and also discuss key ideas that allow
us to analyze more complicated matrices.

The key to counting walks is to specify an encoding, which we view as information
required for a walker to complete a walk. If we can show that such an encoding uniquely
identifies a walk, then we can bound the walks by bounding the number of possible encodings.
Thus, it suffices to come up with an (efficient) encoding scheme and prove that the walker
is able to complete a walk. Using standard encoding schemes, we quickly realize that the
walker may be confused during the walk, i.e., the walker does not have enough information
to perform the next step. Thus, we need to pay for additional information in the encoding
to resolve confusions. So far, this is the same high-level strategy that was used in prior
work [14, 1, 7], and this extra pay is often the source of extra log factors in the norm bounds.

Our key innovation is to pay for the extra information during steps that require much
less information than normal. Roughly speaking, we label each step of the walk as either
(1) visiting a new vertex, (2) visiting an old vertex via a new edge, (3) using an old edge
but not the last time, (4) using an old edge the last time (see Definition 20). The high level
idea is that the dominating walks in the trace are the ones that use only the 1st and 4th
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types, while the 2nd and 3rd types require less information (which we call gaps). The main
observation is that the walker will be confused only when there are steps of the 2nd and
3rd type involved, but we can pay extra information during these steps to resolve potential
(future) confusions. This is illustrated in Section 3.5.

1.2 Comparison to prior work
Comparison to Kane and Diakonikolas [8]. Our candidate matrix Λ is the same as theirs.
A slight difference is that they write Λ = Id +

∑m
i=1 δiviv

T
i where v1, . . . , vm are the vectors

normalized to the unit sphere. Then, same as our w vector, (δ1, . . . , δm) must satisfy a linear
system represented by a matrix M ∈ Rm×m where M [i, j] = ⟨vi, vj⟩2. This is closely related
to our M matrix, and to prove that M is invertible, they also decompose M into several
components and bound their spectral norms. However, they were only able to bound the
spectral norm by O(

√
m log2 d

d ), which requires m ⩽ O(d2/ log4(d)). We also point out that
they explicitly emphasize the gap from spectral norm bound poses a significant hurdle in
their analysis, which is indeed a major contribution of our work.

Next, to bound the spectral norm of R :=
∑m

i=1 δiviv
T
i , they use an elegant cover (or

ε-net) argument which is significantly different than ours. They show that for any fixed
unit vector u ∈ Sd−1, |uT Ru| = |

∑m
i=1 δi⟨vi, u⟩2| ⩽ 1/2 with exponentially small failure

probability. This allows then to take a union bound over all 2O(d) unit vectors in an ε-net.
To do this, they use the elegant trick that vi and ∥vi∥2 are independent random variables,
so uT Ru can be written as a sum of independent variables: uT Ru = ⟨ε, γ⟩, where εi only
depends on ∥vi∥2 and γ is a function of u and the vi’s. By Hoeffding’s inequality, they get a
tail probability of exp

(
− Ω

(
d3

m log2(d)

))
. In order to union bound over 2O(d) vectors, this

also requires that m ⩽ O(d2/ log2(d)). Thus, while the main source of their polylog gap is
their matrix norm bound, another source is the epsilon-net argument. This is partially why
we adopt the proof strategy of using graph matrix decompositions which is seemingly more
complicated.

Comparison to Potechin, Turner, Venkat and Wein [10]. They study a construction of
“least-square minimization” proposed by [11], which is equivalent to projecting out the identity
mass onto the subspace of matrices satisfying the constraints. In particular, their matrix
analysis proceeding via Woodbury expansion and Neumann series using graph matrices serves
as a road-map for our current work, and gives rise to a motivating question in the beginning
for our work: can a more careful analysis get us all the way to a constant factor gap, or is
the polylog gap inherent in the analysis? A priori, it is not clear whether this kind of matrix
analysis, forsaking the underlying geometric insight, might get us anywhere beyond a single
polylog factor, as it is conceivable that some polylog factor is inherent for matrices that may
arise in the analysis. In this work, we answer this question affirmatively and en-route we
develop a more refined understanding of the structured random matrices that we believe
would be useful in further and more fine-grained investigations of problems in average-case
complexity.

Comparison to Ghosh et. al. [4]. In the context of the Planted Affine Plane problem, and its
downstream application for the Sherrington-Kirkpatrick Hamiltonian, Ghosh et. al. reaches
the threshold of Õ(d3/2−ε) for nO(ε)-degree Sum-of-Squares. They adopt the framework of
pseudo-calibration [3] to obtain a candidate matrix, and follow a similar recipe as ours via
graph matrix decompositions and spectral analysis. Even though their stated result falls

ICALP 2023
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short of the Õ(d2) threshold for fitting ellipsoid, it is folklore among the SoS lower bounds
community that their proof implicitly extends to Õ(d2) when restricted to degree-2 SoS.
That said, it is an interesting question whether solutions coming from a pseudo-calibration
type of construction might give us some extra mileage in ultimately closing the constant gap.
A natural idea is to analyze the planted distribution pioneered in [9, 4]: unfortunately, it
can be easily verified that the low-degree polynomial hardness for the particular planted
distribution actually falls apart even if we assume an arbitrary constant gap. Since the
low-degree hardness is usually deemed as a precursor for SoS lower bounds, an analysis based
on pseudo-calibration that gets us the right constant (or in fact, any constant) lands one on
a pursuit for a ”quieter” planting.

2 Proof of main result

Given v1, v2, . . . , vm that are i.i.d. samples from N (0, 1
d Id), recall that we must construct a

matrix Λ such that (1) vT
i Λvi = 1 for any i ∈ [m], and (2) Λ ⪰ 0.

In this section, we describe our candidate matrix (Definition 3). To prove that it satisfies
the two conditions above, we need to analyze certain random matrices (and their inverses) that
arise in the construction, which involves decomposing the matrices into simpler components.
We will state our key spectral norm bounds (Lemma 9 and Lemma 13) whose proofs are
deferred to later sections, and complete the proof of Theorem 2 in Section 2.4.

2.1 Candidate construction
The following is our candidate matrix Λ, which is the same as the one used in [8].

▶ Definition 3 (Candidate matrix). Given v1, . . . , vm ∼ N (0, 1
d Id), we define the matrix

Λ ∈ Rd×d to be

Λ := Id −
m∑

i=1
wiviv

T
i (1)

where we take w = (w1, w2, . . . , wm) to be the solution to the linear system Mw = η for
η ∈ Rm given by

ηi := ∥vi∥2
2 − 1, ∀i ∈ [m] , (2)

and M ∈ Rm×m with entries given by

M [i, j] := ⟨vi, vj⟩2, ∀i, j ∈ [m] . (3)

We first make the following simple observation.

▶ Observation 4. For any i ∈ [m], the constraint vT
i Λvi = 1 is satisfied.

Proof. For any i ∈ [m],

vT
i Λvi = vT

i Idvi −
∑

j∈[m]

wj⟨vi, vj⟩2 = ∥vi∥2
2 − ⟨M [i], w⟩ = ∥vi∥2

2 − ηi = 1 .

Here M [i] is the i-th row of M , and the equality above follows from Mw = η and ηi = ∥vi∥2
2−1

from Eq. (2). ◀
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Structure of subsequent sections. For Λ to be well-defined, we require that M is full rank
(hence invertible). Note that it is easy to see that M is positive semidefinite, since M is a
Gram matrix with M [i, j] = ⟨v⊗2

i , v⊗2
j ⟩. To analyze M , we will show a decomposition of M

in Section 2.2 that allows us to more easily analyze its inverse. In Section 2.3, we will prove
that M is in fact positive definite (Lemma 12).

Next, to prove that Λ ⪰ 0, we will write Λ = Id − R where

R :=
m∑

i=1
wiviv

T
i =

m∑
i=1

(
M−1η

)
[i] · viv

T
i , (4)

and prove that ∥R∥op is bounded by 1. Finally, combining the analyses, we finish the proof
of Theorem 2 in Section 2.4.

2.2 Decomposition of M

The proof of Theorem 2 requires careful analysis of the matrix M from Eq. (3) and its inverse.
To this end, we first decompose M as M = A + B such that intuitively, A is perturbation of
a (scaled) identity matrix and B has rank 2. We will later see how this decomposition allows
us to analyze M−1 more conveniently.

▶ Proposition 5 (Decomposition of M).

M = Mα + Mβ + MD +
(

1 + 1
d

)
Im︸ ︷︷ ︸

:=A

+ 1
d

Jm + 1
d

(
1m · ηT + η · 1T

m

)
︸ ︷︷ ︸

:=B

(5)

where Jm is the all-ones matrix, Mα, Mβ are matrices with zeros on the diagonal and MD is
a diagonal matrix, defined as follows:

Mα[i, j] :=
∑

a̸=b∈[d] vi[a] · vi[b] · vj [a] · vj [b] for i ̸= j ∈ [m],
Mβ [i, j] :=

∑
a∈[d]

(
vi[a]2 − 1

d

) (
vj [a]2 − 1

d

)
for i ̸= j ∈ [m],

MD[i, i] := ∥vi∥4
2 − 2

d ∥vi∥2
2 − 1 for i ∈ [m].

Proof. For any off-diagonal entry i ̸= j ∈ [m], on the right-hand side we have

M [i, j] = ⟨vi, vj⟩2 =

∑
a∈[d]

vi[a]vj [a]

2

=
∑

a ̸=b∈[d]

vi[a] · vi[b] · vj [a] · vj [b] +
∑

a∈[d]

vi[a]2 · vj [a]2 .

The first term is exactly Mα[i, j]. For the second term,

∑
a∈[d]

vi[a]2 · vj [a]2 =
∑

a∈[d]

(
vi[a]2 − 1

d

)(
vj [a]2 − 1

d

)
+ 1

d

(
∥vi∥2

2 + ∥vj∥2
2
)

− 1
d

=
∑

a∈[d]

(
vi[a]2 − 1

d

)(
vj [a]2 − 1

d

)
︸ ︷︷ ︸

Mβ [i,j]

+ ∥vi∥2
2 − 1
d︸ ︷︷ ︸

1
d ηi

+ ∥vj∥2
2 − 1
d︸ ︷︷ ︸

1
d ηj

+1
d

.

Thus, M [i, j] = Mα[i, j] + Mβ [i, j] + 1
d + 1

d

(
1m · ηT + η · 1T

m

)
[i, j].

ICALP 2023
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For the diagonal entries, the right-hand side of the (i, i) entry is

MD[i, i] +
(

1 + 1
d

)
+ 1

d
+ 2

d
ηi =

(
∥vi∥4

2 − 2
d

∥vi∥2
2 − 1

)
+ 1 + 2

d
+ 2

d
(∥vi∥2

2 − 1)

= ∥vi∥4
2 = M [i, i] .

This completes the proof. ◀

▶ Remark 6. The intention behind this decomposition is that for vi ∼ N (0, 1
d Id), Mα,

Mβ , MD are all mean 0 (though their variances are not the same) since E∥vi∥2
2 = 1 and

E∥vi∥4
2 = 1 + 2

d . Therefore, we expect ∥Mα + Mβ + MD∥op to be small, which implies that
A is positive definite and well-conditioned. Furthermore, observe that B has rank 2:

B = 1
d

Jm + 1
d

(
1m · ηT + η · 1T

m

)
= 1

d

[
1m η

]
·
[
1 1
1 0

]
·
[
1m

η

]
. (6)

2.3 Inverse of M

The decomposition of M into A and a rank-2 matrix B (Eq. (5)) allows us to apply the
Woodbury matrix identity about the inverse of low-rank corrections of invertible matrices.

▶ Fact 7 (Matrix Invertibility). Suppose A ∈ Rn1×n1 and C ∈ Rn2×n2 are both invertible
matrices, and U ∈ Rn1×n2 and V ∈ Rn2×n1 are arbitrary. Then, A + UCV is invertible if
and only if C−1 + V A−1U is invertible.

▶ Fact 8 (Woodbury matrix identity [15]). Suppose A ∈ Rn1×n1 and C ∈ Rn2×n2 are both
invertible matrices, and U ∈ Rn1×n2 and V ∈ Rn2×n1 are arbitrary. Then

(A + UCV )−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1 .

In light of Fact 8, we can write B in Eq. (6) as B = UCUT where U = V T = 1√
d

[
1m η

]
∈

Rm×2 and C =
[
1 1
1 0

]
, and M = A + UCUT . Note that C−1 =

[
0 1
1 −1

]
, and we have

C−1 + UT A−1U =
[

1T
mA−11m

d 1 + ηT A−11m

d

1 + ηT A−11m

d −1 + ηT A−1η
d

]
:=
[
r s

s u

]
. (7)

We first need to show that A is invertible. Recall from Eq. (5) that A = (1 + 1
d )Im + Mα +

Mβ + MD. We will prove the following lemma, whose proof is deferred to the full version.

▶ Lemma 9 (Mα, Mβ , MD are bounded). Suppose m ⩽ cd2 for a small enough constant c.
With probability 1 − od(1), we have
1. ∥Mα∥op ⩽ 0.1,
2. ∥Mβ∥op ⩽ 0.1,
3. ∥MD∥op ⩽ O

(√ log d
d

)
.

As an immediate consequence, we get the following:

▶ Lemma 10 (A is well-conditioned). With probability 1 − od(1), the matrix A from Eq. (5)
is positive definite (hence full rank), and

0.5Im ⪯ A ⪯ 1.5Im .
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Proof. Since A = (1 + 1
d )Im + Mα + Mβ + MD, by Lemma 9 the eigenvalues of A must lie

within 1 ± 0.2 ± Õ(1/
√

d) ∈ (0.5, 1.5) (we assume d is large). ◀

Next, from Fact 7, we can prove that M is invertible (Lemma 12) by showing that the
2 × 2 matrix C−1 + UT A−1U is invertible, which is in fact equivalent to ru − s2 ≠ 0. We
first need the following bound on the norm of η, whose proof is deferred to the full version.

▷ Claim 11. With probability at least 1 − od(1), ∥η∥2
2 ⩽ (1 + od(1)) 2m

d .

▶ Lemma 12 (Bounds on r, s, u; M is invertible). Suppose m ⩽ cd2 for a small enough
constant c. Let r, s, u ∈ R be defined as in Eq. (7). With probability at least 1 − od(1), we
have
1. r ∈ m

d · [2/3, 2],
2. |s| ⩽ O(

√
d),

3. u ∈ [−1, −1/2].
Thus, we have s2 − ru ⩾ Ω

(
m
d

)
. As a consequence, M is invertible.

Proof. By Lemma 10, we know that 2
3 Im ⪯ A−1 ⪯ 2Im. Thus, r = 1

d 1T
mA−11m ∈ 1

d ∥1m∥2
2 ·

[2/3, 2], hence r ∈ m
d · [2/3, 2].

For s, we know that ∥η∥2
2 ⩽ (1 + o(1)) 2m

d by Claim 11. Thus,

1
d

∣∣ηT A−11m

∣∣ ⩽ 1
d

∥A−1∥op · ∥η∥2 · ∥1m∥2 < (1 + od(1)) · 2
√

2m2

d3 ⩽ O(
√

d) .

Thus, |s| =
∣∣∣1 + ηT A−11m

d

∣∣∣ ⩽ O(
√

d).
For u, we have
1
d

∣∣ηT A−1η
∣∣ ⩽ 1

d
∥A−1∥op · ∥η∥2

2 < (1 + od(1)) · 4m

d2 <
1
2 ,

where the last inequality follows for some m < cd2 for small enough c. Thus, u = −1 +
ηT A−1η

d ∈ [−1, −1/2].
With the bounds on r, s and u, we immediately get s2 − ru ⩾ Ω( m

d ).
To prove that M is invertible, let us first recall that we write M = A + UCUT where A

is defined in Eq. (5) and U = V T = 1√
d

[
1m η

]
∈ Rm×2 and C =

[
1 1
1 0

]
.

By Lemma 10, A is invertible. Then by Fact 7, we know that M is invertible if and only

if C−1 + UT A−1U :=
[
r s

s u

]
(see Eq. (7)) is invertible, which is equivalent to ru − s2 ̸= 0.

Thus, s2 − ru ⩾ Ω( m
d ) suffices to conclude that M is invertible. ◀

2.4 Finishing the proof of Theorem 2
The final piece of proving Theorem 2 is to show that R =

∑m
i=1 wiviv

T
i has spectral norm

bounded by 1, which immediately implies that the candidate matrix Λ = Id − R ⪰ 0.

▶ Lemma 13 (R is bounded). There exists some absolute constant cR s.t.for m ⩽ d2

cR
, whp

∥R∥op ⩽
1
2 .

The proof is deferred to the full version. In particular, we will write an expanded
expression of M−1 and obtain a decomposition of R. Then, we prove tight spectral norm
bounds for matrices in the decomposition, which then completes the proof of Lemma 13.

Combining Lemma 12 and Lemma 13 we can finish the proof of Theorem 2.

ICALP 2023



78:10 Ellipsoid Fitting up to a Constant

Proof of Theorem 2. The matrix M (recall Eq. (3)) is invertible due to Lemma 12, thus
our candidate matrix Λ = Id − R matrix defined in Definition 3 is well-defined. Furthermore,
by the norm bound in Lemma 13, we have ∥R∥op < 1. This proves that Λ ≻ 0. ◀

3 Machinery for tight norm bounds of graph matrices

One of the main technical contributions of this paper is providing tight spectral norm bounds
(up to constants per vertex/edge) for structured random matrices with correlated entries
(a.k.a. graph matrices). We note that prior to this work, most known norm bounds for such
matrices are only tight up to some logarithmic factors [1], while not much is known in terms
of precise bounds without log factors except for several specific cases (see e.g. [14]).

3.1 Preliminaries
We first give a lightweight introduction to the theory of graph matrices. For interested readers
who seek a thorough introduction or a more formal treatment, we refer them to its origin
in a sequence of works in Sum-of-Squares lower bounds [3, 1]. We will follow the notations
used in [1]. Throughout this section, we assume that there is an underlying (random) input
matrix G and a Fourier basis {χt}t∈N.

We first define shapes, which are representations of structured matrices whose entries
depend on G.

▶ Definition 14 (Shape). A shape τ is a tuple (V (τ), Uτ , Vτ , E(τ)) associated with a (multi)
graph (V (τ), E(τ)). Each vertex in V (τ) is associated with a vertex-type that indicates the
range of the labels for the particular vertex. Each edge e ∈ E(τ) is also associated with a
Fourier index t(e) ∈ N. Moreover, we have Uτ , Vτ ⊆ V (τ) as the left and right boundary of
the shape.

We remind the reader that Vτ should be distinguished from V (τ), where Vτ is the right
boundary set, while V (τ) is the set of all vertices in the graph.

Figure 1 show the shapes for matrices Mα and Mβ defined in Proposition 5. For these
shapes, there are two vertex-types (square and circle). The two ovals in each shape indicate
the left and right boundaries Uτ and Vτ .

We next describe how to associate a shape to a matrix (given the underlying matrix G).

Uτ Vτ

(a) GOE, zero diagonal.

Uτ Vτ

(b) Mα.

2 2

Uτ Vτ

(c) Mβ .

Figure 1 Graph matrix representation of a d × d GOE matrix with zero diagonal, and the m × m

matrices Mα and Mβ as defined in Proposition 5. Square vertices take labels in [m] and circle
vertices take labels in [d]. The two ovals indicate the left and right boundaries of the shapes. If an
edge e is not labeled with an index, then t(e) = 1 by default.

▶ Definition 15 (Mapping of a shape). Given a shape τ , we call a function σ : V (τ) → N a
mapping of the shape if
1. σ assigns a label for each vertex according to its specified vertex-type;
2. σ is an injective mapping for vertices of the same type.
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▶ Definition 16 (Graph matrix for shape). Given a shape τ , we define its graphical matrix
Mτ to be the matrix indexed by all possible boundary labelings of S, T , and for each of its
entry, we define

Mτ [S, T ] =
∑

σ:V (τ)→N
σ(Uτ )=S, σ(Vτ )=T

∏
e∈E(τ)

χt(e)(G[σ(e)]) .

Observe that for each entry Mτ [S, T ], since σ must map Uτ and Vτ to S and T , Mτ [S, T ]
is simply a sum over labelings of the “middle” vertices V (τ) \ (Uτ ∪ Vτ ). Take Figure 1
for example. Suppose G ∈ Rm×d and square and circle vertices take labels in [m] and [d]
respectively, then we can write out the entries of the matrix: for i ̸= j ∈ [m],

Mα[i, j] =
∑

a ̸=b∈[d]

χ1(G[i, a]) · χ1(G[i, b]) · χ1(G[j, a]) · χ1(G[j, b]) ,

Mβ [i, j] =
∑

a∈[d]

χ2(G[i, a]) · χ2(G[j, a]) .

Note also that since σ must be injective for vertices of the same type and Uτ ̸= Vτ in
both examples, there is no mapping such that σ(Uτ ) = σ(Vτ ). Thus, by Definition 16, both
matrices have zeros on the diagonal.

Adaptation to our setting. The above is a general introduction for graph matrices. In this
work, we specialize to the following setting:

G ∈ Rm×d is a random Gaussian matrix whose rows are v1, . . . , vm ∼ N (0, 1
d Id).

The Fourier characters {χt}t∈N are the (scaled) Hermite polynomials.
For all graph matrices that arise in our analysis,

|S| = |T | = 1,
There are two vertex-types: square vertices take labels in [m] and circle vertices take
labels in [d].

▶ Remark 17. For our technical analysis, we also employ our techniques on a generalization
of graph matrices where we relax the injectivity condition. That said, for the purpose of
illustrating our techniques, it suffices to consider ordinary graph matrices.

▶ Definition 18 (DV size constraint). Let DV be a size constraint such that for each graph
matrix τ considered in this work, |V (τ)| ⩽ DV .

For concreteness, we will take DV = polylog(d) throughout this work.

Trace moment method. For all our norm bounds, we will use the trace moment method:
for any graph matrix Mτ with underlying random matrix G and any q ∈ N,

E∥Mτ ∥2q
op ⩽ E tr

(
(Mτ MT

τ )q
)

= E
∑

S1,T1,S2,T2,...Sq−1,Tq−1:
boundaries

Mτ [S1, T1]MT
τ [T1, S2] · · · MT

τ [Tq−1, S1] .

where the expectation is taken over G.
Notice that the summation is over closed walks across the boundaries: S1 → T1 → S2 →

T2 → · · · → S1, where S1, T1, . . . are boundary labelings of Mτ . In particular, the walk is
consist of 2q-steps of a “block walk”, with the (2t − 1)-th step across a block described by
Mτ and the (2t)-th step across a block described by MT

τ .
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The crucial observation is that after taking expectation, all closed walks must walk on
each labeled edge (i.e., Fourier character) an even number of times, since all odd moments of
the Fourier characters are zero. Therefore, bounding the matrix norm is reduced to bounding
the contribution of all such walks.

E∥Mτ ∥2q
op ⩽

∑
P: closed walk

∏
e∈E(P)

E
[
χt(e)(G[e])mulP (e)

]
, (8)

where E(P) denotes the set of labeled edges used by the walk P, mulP(e) denotes the
number of times e appears in the walk, and t(e) denotes the Fourier index (with slight abuse
of notation).

▶ Remark 19. We remind the reader not to confuse vertices/edges in the walk with ver-
tices/edges in the shape. The vertices in a walk are “labeled” by elements in [m] or [d]
(depending on the vertex-type). Similarly, each edge e ∈ E(P) in a walk is labeled by an
element in [m] × [d]. We will use the terms “labeled vertex” and “labeled edge” unless it is
clear from context.

3.2 Global bounds via a local analysis
Observe that Eq. (8) is a weighted sum of closed walks of length 2q. To obtain an upper bound,
the standard approach is to specify an efficient encoding scheme that uniquely identifies each
closed walk, and then upper bound the total number of such encodings.

We begin by defining a step-labeling – a categorization of each step in the closed walk.

▶ Definition 20 (Step-labeling). For each step throughout the walk, we assign it the following
label,
1. F (a fresh step): it uses a new labeled edge making the first appearance and leads to a

destination not seen before;
2. S (a surprise step): it uses a new labeled edge to arrive at a vertex previously visited in

the walk;
3. H (a high-mul step): it uses a labeled edge that appears before, and the edge is making a

middle appearance (i.e., it will appear again in the subsequent walk);
4. R (a return step): it uses a labeled edge that appears before, and the edge is making its

last appearance.
Analogously, for any shape τ , we call Lτ : E(τ) → {F, R, S, H} a step-labeling of the block.
The subscript τ is ignored when it is clear.

We note that the terms “fresh”, “high-mul” and “return” are adopted from the GOE
matrix analysis in [14]. Next, to obtain a final bound for Eq. (8), we consider two factors for
each step (which depend on the step-label):
1. Vertex factor: a combinatorial factor that specifies the destination of the step;
2. Edge factor: an analytical factor from the edge which accounts for the E[χt(e)(G[e])mul(e)]

term in Eq. (8).

For example, a vertex factor for an F step to a circle vertex can be d, an upper bound
on the number of possible destinations. One can think of vertex factors as the information
needed for a decoder to complete a closed walk. Essentially, the step-labeling and appropriate
vertex factors should uniquely identify a closed walk, and combined with edge factors, we
can obtain an upper bound for Eq. (8).
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We note that the approach stated above is a global encoding scheme. One may proceed
via a global analysis – carefully bounding the number of step-labelings allowed (e.g., using
the fact that the F and R steps must form a Dyck word [14]), and then combining all vertex
and edge factors to obtain a final bound. However, to get tight norm bounds for complicated
graph matrices (like Mα), the global analysis becomes unwieldy.

Local analysis. One of our main insights is to use a local analysis. We now give a high-
level overview of our strategy while deferring the specific details of our vertex/edge factor
assignment scheme to subsequent sections. Recall that a closed walk consists of “block-steps”
described by the shape τ . Thus, we treat each walk as a “block walk” and bound the
contributions of a walk block by block. This prompts us to bound the contribution of the
walk at a given block-step to the final trace in Eq. (8) by

vtxcost · edgeval ⩽ Bq(τ)

where Bq(τ) is some desired upper bound that depends on the vertex/edge factor assignment
scheme. We define it formally in the following.

▶ Definition 21 (Block value function). Fix q ∈ N and a shape τ . For any vertex/edge factor
assignment scheme, we call Bq(τ) a valid block-value function for τ of the given scheme if

E
[
tr
(
(Mτ MT

τ )q
)]

⩽ (matrix dimension) · Bq(τ)2q ,

and for each block-step BlockStepi throughout the walk,

vtxcost(BlockStepi) · edgeval(BlockStepi) ⩽ Bq(τ) .

We point out that the block-value function B should be considered as a function of both the
shape τ and the length of the walk q (we will drop the subscript when it is clear throughout
this work), and it also depends on the assignment scheme. Thus, our task is to find a
vertex/edge factor assignment scheme such that Bq(τ) is as small as possible. Moreover, the
matrix dimension, which is at most poly(d) in our case, is the factor that comes up in the
start of the walk to specify the original vertex, and can be ignored as it is ultimately an
1 + o(1) factor once we take a long enough walk.

Given Definition 21, the norm bound follows immediately.

▶ Proposition 22. Let Mτ be a graph matrix with dimension poly(d), and let q = Ω(log2 d).
Suppose Bq(τ) is a valid block-value function. Then, with probability 1 − 1

poly(d) ,

∥Mτ ∥op ⩽ (1 + od(1)) · Bq(τ) .

Proof. We apply Markov’s inequality: for any ε > 0,

Pr [∥Mτ ∥op > (1 + ε)Bq(τ)] ⩽ Pr
[
tr
(
(Mτ MT

τ )q
)

> (1 + ε)2qBq(τ)2q
]

⩽ (1 + ε)−2q poly(d)

⩽
1

poly(d)

for q = Ω( 1
ε log d). Setting ε = 1

log d , we can conclude that ∥Mτ ∥op ⩽ (1 + od(1)) · Bq(τ) with
high probability. ◀

The next proposition shows that we can easily obtain a valid Bq(τ) once we have an
appropriate factor assignment scheme.

ICALP 2023



78:14 Ellipsoid Fitting up to a Constant

▶ Proposition 23. For any graph matrix Mτ and any valid factor assignment scheme,

Bq(τ) =
∑

L:step-labelings for E(τ)

vtxcost(L) · edgeval(L)

is a valid block-value function for τ .

Proof. The second requirement in Definition 21 is clear. For the first requirement, observe
that the trace can be bounded by the matrix dimension (specifying the start of the walk)
times

∑
L1,...,L2q :

step-labelings for E(τ)

2q∏
i=1

vtxcost(Li) ·edgeval(Li) ⩽

( ∑
L:step-labelings for E(τ)

vtxcost(L) · edgeval(L)

)2q

. ◀

With this set-up, the main task is then to find an appropriate vertex/edge factor assign-
ment scheme and obtain a good upper bound on Bq(τ).

3.3 Vertex factor assignment scheme

We now proceed to bound the vertex factors for each step-label. We note that in this section,
“vertices” refer to “labeled vertices” in the walk (having labels in [m] or [d]; recall Remark 19).
First, we define the weight of a square (resp. circle) vertex to be m (resp. d), since we need
an element in [m] (resp. [d]) to specify which vertex to go to in the walk.

We first show a “naive” vertex factor assignment scheme. In the following scheme, we use
a potential unforced return factor, denoted Pur, to specify the destination of any R step. We
will defer the specific details of Pur to Section 3.5.

Vanilla vertex factor assignment scheme.

1. For each vertex i that first appears via an F step, a label in weight(i) is required;
2. For each vertex i that appears beyond the first time:

If it is arrived via an R step, the destination may need to be specified, and this is
captured by the Pur factor.
If it is not arrived via an R step, then it must be an S or H step. A vertex cost
in 2q · DV is sufficient to identify the destination, where we recall 2q is the length
of our walk, and DV the size upper bound of each block.

The first thing to check is that this scheme combined with an step-labeling uniquely
identifies a closed walk (given the start of the walk). This is immediate for F and R steps by
definition. For S and H steps, since the destination is visited before in the walk, 2q · DV is
sufficient as it is an upper bound on the number of vertices in the walk.

A potential complication with analyzing the above assignment scheme directly is that it
exhibits a significant difference in the vertex factors. For example, consider a vertex that
appears only twice in the walk on a tree. Its first appearance requires a label in [n], while its
subsequent appearance does not require any cost if it is reached using an R step because
backtracking from a tree is fixed (since there is only one parent). This disparity can result
in a very loose upper bound for the trace when applying Proposition 23; in fact, the norm
bound for Mτ obtained in this manner is equivalent to using the naive row-sum bound.
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Redistribution. One of our main technical insights is to split the factors such that both first
and last appearance contributes a factor of comparable magnitude; we call this redistribution.

We first formally define “appearance” in a block-step to clarify our terminology,

▶ Definition 24 (Vertex appearance in block-step). Each labeled vertex appearance can be
“first”, “middle” and “last”. Moreover, each vertex on the block-step boundary (Uτ or Vτ )
appears in both adjacent blocks.

For example, suppose a vertex first appears in the right-boundary of block i and last
appears in the left-boundary of block j, then it will make middle appearances in the left-
boundary of block i + 1 and right-boundary of block j − 1 as well.

We are now ready to introduce the following vertex-factor assignment scheme with
redistribution that assigns vertex-factor to each vertex’s appearance to handle the disparity.

Vertex factor assignment scheme with redistribution.

1. For each vertex i that makes its first appearance, assign a cost of
√

weight(i);
2. For any vertex’s middle appearance, if it is not arrived at via an R step, assign a cost

of 2q · DV (where we recall 2q is the length of our walk, and DV the size constraint
of each block);

3. For any vertex’s middle appearance, if it is at arrived via an R step, its cost is
captured by Pur;

4. For each vertex i that makes its last appearance, assign a cost of
√

weight(i) that
serves as a backpay.

Deducing vertex factor from local step-labeling. As presented, the vertex factor assignment
scheme requires knowing which vertex is making first/middle/last appearance. We further
show that the vertex appearances, or more accurately, an upper bound of the vertex factors,
can be deduced by a given step-labeling of the block. Fix traversal direction from U to V ,

Localized vertex factor assignment from step-labeling.

1. For any vertex v that is on the left-boundary U , it cannot be making the first
appearance since it necessarily appears in the previous block;

2. For any vertex v that is on the right-boundary V , it cannot be making the last
appearance since it necessarily appears in the subsequent block;

3. For any vertex v reached via some S/R/H step, it cannot be making its first
appearance;

4. For any vertex v that incident to some F/S/H step, it cannot be making its last
appearance since the edge necessarily appears again.

The first two points are due to Definition 24. The last point is because each labeled edge
(i.e., Fourier character) must be traversed by an R step to close it.

3.4 Bounding edge-factors
To bound the contribution of the walks, we need to consider factors coming from the edges
traversed by the walk. Recall from Eq. (8) that each edge e in a closed walk P gets a factor
E[χmulP (e)

t(e) ], where t(e) is the Fourier index associated with the edge.
In our case, the Fourier characters are the scaled Hermite polynomials. Recall that we

assume that our vectors are sampled as vi ∼ N (0, 1
d Id). Thus, we define the polynomials

{Ht}t∈N such that they are orthogonal and Ex∼N (0,1/d)[Ht(x)2] = t! · d−t. Specifically,
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1. H1(x) = x,
2. H2(x) = x2 − 1

d .
We first state the following bound on the moments of Ht, which follows directly from standard
bounds on the moments of Hermite polynomials:

▶ Fact 25 (Moments of Hermite polynomials). Let d ∈ N. For any t ∈ N and even k ∈ N,

Ex∼N (0,1/d)
[
Ht(x)k

]
⩽

1
dkt/2 (k − 1)kt/2(t!)k/2 ⩽ (t!)k/2

(
k

d

)kt/2
.

For matrices that arise in our analysis, we only have H1 and H2 edges. The following is
our edge-factor assignment scheme to account for contributions from the Fourier characters.

Edge-factor assignment scheme.

For an H1 edge,
1. F/S: assign a factor of 1√

d
for its first appearance;

2. H: assign a factor of 2q√
d

for its middle appearance;
3. R: assign a factor of 1√

d
for its last appearance.

For an H2 edge,
1. F/S: assign a factor of

√
2

d for its first appearance (equivalently, we can view a single
H2 edge as two edge-copies of H1 and assign each a factor of

√
2√
d

which is a valid
upper bound);

2. H: assign a factor of 8q2

d for its middle appearance;
3. R: assign a factor of

√
2

d for its last appearance (equivalently, we can view a single
H2 edge as two edge-copies of H1 and assign each a factor of

√
2√
d

which is a valid
upper bound).

▶ Proposition 26. The above scheme correctly accounts for the edge factors from H1 and
H2 edges.

Proof. If an edge has multiplicity 2, then it must be traversed by one F/S step and one R

step.
If it is an H1 edge, then the scheme assigns a factor 1

d , which equals Ex∼N (0,1/d)[H1(x)2].
If it is an H2 edge, then the scheme assigns a factor 2

d2 , which equals Ex∼N (0,1/d)[H2(x)2].
For an edge with multiplicity k > 2, it must be traversed by one F/S step, one R step and
k − 2 H steps. Moreover, since k is even and 2q is the length of the walk, we have 4 ⩽ k ⩽ 2q.

If it is an H1 edge, then the scheme assigns a factor 1
d · ( 2q√

d
)k−2 ⩾ d−k/2(2q)k/2 ⩾ ( k

d )k/2.
By Fact 25, it is an upper bound on Ex∼N (0,1/d)[H1(x)k].
If it is an H2 edge, then the scheme assigns a factor 2

d2 · ( 8q2

d )k−2 ⩾ d−k2k/2(2q)k ⩾
2k/2( k

d )k. By Fact 25, it is an upper bound on Ex∼N (0,1/d)[H2(x)k].
This shows that the edge factor assignment scheme above is correct. ◀

3.5 Bounding return cost (Pur factors)
In our vertex factor assignment scheme described in Section 3.3, we use a potential unforced
return factor, denoted Pur, to specify the destination of any return (R) step. Note that the
term “unforced return” is adopted from [14] as well. In this section, we complete the bound
of vertex factors by bounding the Pur factor.
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For starters, we will define a potential function for each vertex at time t, which measures
the number of returns R pushed out from the particular vertex by time t that may require a
label in 2q · DV . Notice that a label in 2q · DV is sufficient for any destination vertex arrived
via an R step because the vertex appears before; however, this may be a loose bound.

We observe the following: a label in 2q · DV may be spared if the vertex is incident to
only one un-closed F/S edge; we call this a forced return. Formally, we define a return step
as unforced if it does not fall into the above categories,

▶ Definition 27 (Unforced return). We call a return (R) step an unforced return if the source
vertex is incident to more than 1 (or 2 in the case of a square vertex) unclosed edge.

We now proceed to formalize the above two observations by introducing a potential function
to help us bound the number of unforced returns from any given vertex throughout the walk.
The number of unforced returns throughout the walk would then be immediately given once
we sum over all vertices in the walk.

▶ Definition 28 (Potential-unforced-return factor Pur). For any time t and vertex v, let
Purt(v) be defined as the number of potential unforced return from v throughout the walk
until time t.

3.5.1 Pur bound for circle vertices
In our setting, each circle vertex pushes out at most 1 edge during the walk, analogous to
the case of typical adjacency matrix. This serves as a starting point for our Pur bound for
circle vertices.

▶ Lemma 29 (Bounding Purt for circle vertices). For any time t, suppose the walker is
currently at a circle vertex v, then

Purt(v) ⩽ #(R steps closed from v) + #(unclosed edges incident to v at time t) − 1
⩽ 2 · st(v) + ht(v) ,

where we define the following counter functions:
1. st(v) is the number of S steps arriving at v by time t;
2. ht(v) is the number of H steps arriving at v by time t.

Proof. We first prove the first inequality. The R steps closed from v may all be unforced
returns, and the unclosed edges incident to v may be closed by unforced returns in the future.
Note that we have a −1 in the above bound because for each vertex we may by default
assume the return is using a particular edge, hence at each time we know there is an edge
presumed-to-be forced.

We prove the second inequality by induction. Define Pt(v) := #(R steps closed from v) +
#(unclosed edges incident to v at time t) − 1 for convenience. At the time when v is first
created by an F step, Pt(v) = 0 (1 open edge minus 1) and st(v) = ht(v) = 0.

At time t, suppose the last time v was visited was at time t′ < t, and suppose that the
inequality holds true for t′. Note that at time t′ + 1, Pt′+1(v) = Pt′(v) + 1 if a new edge was
created by an F or N step leaving v, otherwise Pt′+1(v) = Pt′(v) (for R step it adds 1 to the
number of closed edges closed from v, but decreases 1 open edge). On the other hand, st′(v)
and ht′(v) remain the same (we don’t count out-going steps for st(v), ht(v)).

When we reach v at time t, we case on the type of steps:
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Arriving by an R step: the edge is now closed, but the R step was not from v. So
Pt(v) = Pt′+1(v) − 1 ⩽ Pt′(v), while st(v) = st′(v) and ht(v) = ht′(v).
Arriving by an S step: the edge is new, so Pt(v) = Pt′+1(v) + 1 ⩽ Pt′(v) + 2, and we have
st(v) = st′(v) + 1.
Arriving by an H step: Pt(v) = Pt′+1(v) ⩽ Pt′(v) + 1, and ht(v) = ht′(v) + 1.

In all three cases, assuming Pt′(v) ⩽ 2 · st′(v) + ht′(v), we have Pt(v) ⩽ 2 · st(v) + ht(v),
completing the induction. ◀

3.5.2 Pur bound for square vertices
The argument of Lemma 29 does not apply well for vertices incident to multiple edges in a
single step. In particular, this may happen for square vertices in Mα as each is arrived via 2
edges and each pushes out 2 edges (recall Figure 1). This is not an issue for Mβ , but we
will treat square vertices in Mβ the same way to unify the analysis; in the context of Pur for
square vertices, one may think of Mβ as collapsing the two circle vertices in Mα.

To handle this issue, we observe that it suffices for us to pay an extra cost of [2] for
each square vertex, which would allow us to further presume 2 edges being forced. We then
generalize the prior argument to capture this change.

▶ Lemma 30 (Bounding Purt for square vertices). For any time t, suppose the walker is
currently at a square vertex v, then

Purt(v) ⩽ #(R steps closed from v) + #(unclosed edges incident to v at time t) − 2
⩽ 2(st(v) + ht(v)) .

where st(v) and ht(v) are the number of S and H steps arriving at v by time t, respectively.

Proof. We prove this by induction. Note that this is immediate for the base case
when v first appears since a square vertex is incident to 2 edges. Define Pt(v) :=
#(R steps closed from v) + #(unclosed edges incident to v at time t) − 2 for convenience.
Suppose the inequality is true at time t′, and assume vertex v appears again at time t. The
departure at time t′ + 1 from v may open up at most 2 edges, hence Pt′+1(v) ⩽ Pt′(v) + 2.

When we reach v at time t (via 2 edges), we case on the type of steps:
Arriving by two R steps: the two edges closed by the R steps are not closed from v. So
Pt(v) = Pt′+1 − 2 ⩽ Pt′(v), while st(v) = st′(v) and ht(v) = ht′(v).
Arriving by one S/H and one R step: in this case, Pt(v) = Pt′+1(v) ⩽ Pt′(v) + 2 and
st(v) + ht(v) = st′(v) + ht′(v) + 1.
Arriving by two S/H steps: in this case, Pt(v) = Pt′+1(v) + 2 ⩽ Pt′(v) + 4, whereas
st(v) + ht(v) = st′(v) + ht′(v) + 2.

In all three cases, we have Pt(v) ⩽ 2(st(v) + ht(v)), completing the induction. ◀

▶ Corollary 31. For each surprise/high-mul visit, it suffices for us to assign a Pur factor of
2, which is a cost of (2q · DV )2 so that each Pur factor throughout the walk is assigned.

3.6 Wrapping up with a toy example
Recall Proposition 23 that for a graph matrix of shape τ ,

Bq(τ) =
∑

L: step-labelings for E(τ)

vtxcost(L) · edgeval(L) (9)
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is a valid block-value function for τ (Definition 21). Moreover, by Proposition 22, we can
take q = polylog(d) and conclude that with probability 1 − o(1),

∥Mτ ∥op ⩽ (1 + o(1)) · Bq(τ) .

For each given shape, it suffices for us to bound the block-value for each edge-labeling. We
demonstrate how this may be readily done given the above bounds using the GOE example,
and defer the analysis of the specific matrices that show up in our setting to the full version
of the paper.

3.6.1 Tight bound for GOE
We now show how the above framework allows us to readily deduce a tight norm bound for
G ∼ GOE(0, 1

d ), where G is a d × d symmetric matrix with each (off-diagonal) entry sampled
from N (0, 1

d ). It is well-known that the correct norm of G is 2 + od(1) [14]. Figure 1a shows
the shape τ associated with G, which simply consists of one edge. We now proceed to bound
Eq. (9).
Edge factor. According to our edge factor scheme described in Section 3.4 (for H1 edges),

an F/R/S step-label gets a factor of 1√
d

while an H step-label gets 2q√
d
.

Pur factor. By Lemma 29, there is no Pur factor for F/R, while S and H get 2 and 1 Pur
factors respectively.

Vertex factor. The weight of a circle vertex is d, thus any vertex making a first or last
appearance gets a factor of

√
d. We now case on the step-label and apply the vertex

factor assignment scheme described in Section 3.3.

F : the vertex in Uτ must be making a middle appearance; it is not first due to Definition 24,
and it is not last as otherwise the edge appears only once throughout the walk. The
vertex in Vτ is making a first appearance, so it gets a factor of

√
d;

R: the vertex in Vτ is making a middle appearance, since it is incident to an R edge
(hence not first appearance), and it is on the boundary hence bound to appear again the
next block. The vertex in Uτ may be making its last appearance, so it gets a factor of√

d;
S: the vertex in Uτ is making a middle appearance (same as F ), and the vertex in Vτ is
making a middle appearance since it cannot be first and must appear again. In addition,
it gets 2 factors of Pur, which gives a bound of (2q · DV )2;
H: analogous to the above, both vertices are making middle appearance, and it gets 1
factor of Pur, giving a bound of 2q · DV .

Combining the vertex and edge factors, we can bound Eq. (9):

Bq(τ) =
√

d · 1√
d

+
√

d · 1√
d

+ (2q · DV )2 · 1√
d

+ (2q · DV ) · 2q√
d
⩽ 2 + od(1) ,

since q and DV are both polylog(d). Therefore, by Proposition 22, we can conclude that
∥G∥op ⩽ 2 + od(1) with high probability, which is the correct bound.
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