
Finding Almost Tight Witness Trees
Dylan Hyatt-Denesik #

Eindhoven University of Technology, The Netherlands

Afrouz Jabal Ameli #

Eindhoven University of Technology, The Netherlands

Laura Sanità #

Bocconi University, Milano, Italy

Abstract
This paper addresses a graph optimization problem, called the Witness Tree problem, which seeks
a spanning tree of a graph minimizing a certain non-linear objective function. This problem is of
interest because it plays a crucial role in the analysis of the best approximation algorithms for two
fundamental network design problems: Steiner Tree and Node-Tree Augmentation. We will show
how a wiser choice of witness trees leads to an improved approximation for Node-Tree Augmentation,
and for Steiner Tree in special classes of graphs.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases Algorithms, Network Design, Approximation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.79

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2211.12431 [15]

Funding The second and the third authors are grateful for the support received from the NWO-
VIDI grant VI.Vidi.193.087.

Acknowledgements The authors would like to thank Haris Angelidakis for his valuable discussion
on this project. Furthermore, the authors would like to acknowledge the 2021 Hausdorff trimester
program “Discrete Optimization”, during which this work was started.

1 Introduction

Network connectivity problems play a central role in combinatorial optimization. As a general
goal, one would like to design a cheap network able to satisfy some connectivity requirements
among its nodes. Two of the most fundamental problems in this area are Steiner Tree and
Connectivity Augmentation.

Given a network G = (V,E) with edge costs, and a subset of terminals R ⊆ V , Steiner
Tree asks to compute a minimum-cost tree T of G connecting the terminals in R. In
Connectivity Augmentation, we are instead given a k-edge-connected graph G = (V,E)
and an additional set of edges L ⊆ V × V (called links). The goal is to add a minimum-
cardinality subset of links to G to make it (k + 1)-edge-connected. It is well-known that the
problem for odd k reduces to k = 1 (called Tree Augmentation), and for even k reduces to
k = 2 (called Cactus Augmentation) (see [9]). All these problems are NP-hard, but admit
a constant factor approximation. In the past 10 years, there have been several exciting
breakthrough results in the approximation community on these fundamental problems
(see [5, 13, 4, 16, 17, 6, 19, 14, 1, 7, 8, 11, 2, 18, 20]).

EA
T
C
S

© Dylan Hyatt-Denesik, Afrouz Jabal Ameli, and Laura Sanità;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 79; pp. 79:1–79:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d.v.p.hyatt-denesik@tue.nl
mailto:a.jabal.ameli@tue.nl
mailto:laura.sanita@unibocconi.it
https://doi.org/10.4230/LIPIcs.ICALP.2023.79
https://arxiv.org/abs/2211.12431
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

79:2 Finding Almost Tight Witness Trees

1 1 1

1

3 2

4 1

Figure 1 In black, the tree T = (R ∪ S, E). The dashed edges represent a witness tree W . The
labels on edges of E and vertices of S indicate w̄(e) and w(v), respectively. We have νT (W) = (H4 +
H1)/2 = 1.5416̄. Assuming unit cost on the edges of E, we have ν̄T (W) = (4H1 + H2 + H3)/6 = 1.2̄.

Several of these works highlight a deep relation between Steiner Tree and Connectivity
Augmentation: the approximation techniques used for Steiner Tree have been proven to
be useful for Connectivity Augmentation and vice versa. This fruitful exchange of tools
and ideas has often lead to novel results and analyses. This paper continues bringing new
ingredients in this active and evolving line of work.

Specifically, we focus on a graph optimization problem which plays a crucial role in the
analysis of some approximation results mentioned before. This problem, both in its edge- and
node-variant, is centered around the concept of witness trees. We now define this formally
(see Figure 1 for an example).

Edge Witness Tree (EWT) problem. Given is a tree T = (V,E) with edge costs c :
E → R≥0. We denote by R the set of leaves of T . The goal is to find a tree W =
(R,EW), where EW ⊆ R×R, which minimizes the non-linear objective function ν̄T (W) =

1
c(E)

∑
e∈E c(e)Hw̄(e), where c(E) =

∑
e∈E c(e), the function w̄ : E → Z≥0 is defined as

w̄(e) := |{pq ∈ EW : e is an internal edge of the p-q path in T}|

and Hℓ denotes the ℓth harmonic number (Hℓ = 1 + 1
2 + 1

3 + · · ·+ 1
ℓ).

Node Witness Tree (NWT) problem. Given is a tree T = (V,E). We denote by R

the set of leaves of T , and S = V \ R. The goal is to find a tree W = (R,EW), where
EW ⊆ R×R, which minimizes the non-linear objective function νT (W) = 1

|S|
∑

v∈S Hw(v),
where w : S → Z≥0 is defined as

w(v) := |{pq ∈ EW : v is an internal node of the p-q path in T}|

and again Hℓ denotes the ℓth harmonic number.
We refer to a feasible solution W to either of the above problems as a witness tree. We call
w̄ (resp. w) the vector imposed on E (resp. S) by W . We now explain how these problems
relate to Steiner Tree and Connectivity Augmentation.

EWT and relation to Steiner Tree

Currently, the best approximation factor for Steiner Tree is (ln(4)+ε), which can be achieved
by three different algorithms [13] [5] [20]. These algorithms yield the same approximation
because in all three of them, the analysis at some point relies on constructing witness trees.

More in detail, suppose we are given a Steiner Tree instance (G = (V,E), R, c) where
c : E → R≥0 gives the edge costs. We can define the following:

γ(G,R,c) := min
T ∗=(R∪S∗,E∗): T ∗ is

optimal Steiner tree of (G,R,c)

min
W : W is a
witness tree

of T ∗

ν̄T ∗(W)

D. Hyatt-Denesik, A. Jabal Ameli, and L. Sanità 79:3

We also define the following constant γ:

γ := sup{γ(G,R,c) : (G,R, c) is an instance of Steiner Tree}.

Byrka et al. [5] were the first to essentially prove the following.

▶ Theorem 1. For any ε > 0, there is a (γ + ε)-approximation algorithm for Steiner Tree.

Furthermore, the authors in [5] showed that γ ≤ ln(4), and hence they obtained the previously
mentioned (ln(4) + ε)-approximation for Steiner Tree.

NWT and relation to Connectivity Augmentation

Basavaraju et al [3] introduced an approximation-preserving reduction from Cactus Aug-
mentation (which is the hardest case of Connectivity Augmentation)1 to special instances of
Node-Steiner Tree, named CA-Node-Steiner-Tree instances in [2]: the goal here is to connect
a given set R of terminals of a graph G via a tree that minimizes the number of non-terminal
nodes (Steiner nodes) in it. The special instances have the crucial property that each Steiner
node is adjacent to at most 2 terminals.

Byrka et al. [4] built upon this reduction to prove a 1.91-approximation for CA-Node-
Steiner-Tree instances. This way, they were the first to obtain a better-than-2 approximation
factor for Cactus Augmentation (and hence, for Connectivity Augmentation). Interestingly,
Nutov [16] realized that a similar reduction also captures a fundamental node-connectivity
augmentation problem: the Node-Tree Augmentation (defined exactly like Tree Augmentation,
but replacing edge-connectivity with node-connectivity). This way, he could improve over an
easy 2-approximation for Node-Tree Augmentation that was also standing for 40 years [12].
Angelidakis et al. [2] subsequently explicitly formalized the problem at the heart of the
approximation analysis: namely, the NWT problem.

More in detail, given a CA-Node-Steiner-Tree instance (G = (V,E), R), we can define
the following:

ψ(G,R) := min
T ∗=(R∪S∗,E∗): T ∗ is

optimal Steiner tree of (G,R)

min
W : W is a
witness tree

of T ∗

νT ∗(W),

We also define the constant ψ:

ψ := sup{ψ(G,R) : (G,R) is an instance of CA-Node-Steiner-Tree}.

Angelidakis et al. [2] proved the following.

▶ Theorem 2. For any ε > 0, there is a (ψ+ε)-approximation algorithm for CA-Node-Steiner
Tree.

Furthermore, the authors of [2] proved that ψ < 1.892, and hence obtained a 1.892-
approximation algorithm for Cactus Augmentation and Node-Tree Augmentation. This is
currently the best approximation factor known for Node-Tree Augmentation (for Cactus
Augmentation there is a better algorithm [6]).

1 Tree Augmentation can be easily reduced to Cactus Augmentation by introducing a parallel copy of
each initial edge.

ICALP 2023

79:4 Finding Almost Tight Witness Trees

Our results and techniques

Our main result is an improved upper bound on ψ. In particular, we are able to show
ψ < 1.8596. Combining this with Theorem 2, we obtain a 1.8596-approximation algorithm
for CA-Node-Steiner-Tree. Hence, due to the above mentioned reduction, we improve the
state-of-the-art approximation for Node-Tree Augmentation.

▶ Theorem 3. There is a 1.8596-approximation algorithm for CA-Node-Steiner-Tree (and
hence, for Node-Tree Augmentation).

Our result is based on a better construction of witness trees for the NWT problem.
At a very high level, the witness tree constructions used previously in the literature use
a marking-and-contraction approach, that can be summarized as follows. First, root the
given tree T at some internal Steiner node. Then, every Steiner node v chooses (marks)
an edge which connects to one of its children: this identifies a path from v to a terminal.
Contracting the edges along this path yields a witness tree W . The way this marking choice
is made varies: it is random in [5], it is biased depending on the nature of the children in
[4], it is deterministic and taking into account the structure of T in [2]. However, all such
constructions share the fact that decisions can be thought of as being taken “in one shot”,
at the same time for all Steiner nodes. Instead, here we consider a bottom-up approach
for the construction of our witness tree, where a node takes a marking decision only after
the decisions of its children have been made. A sequential approach of this kind allows
a node to have a more precise estimate on the impact of its own decision to the overall
non-linear objective function cost, but it becomes more challenging to analyze. Overcoming
this challenge is the main technical contribution of this work, and the insight behind our
improved upper-bound on ψ.

We complement this result with an almost-tight lower-bound on ψ, which improves over
a previous lower bound given in [2].

▶ Theorem 4. For any ε > 0, there exists a CA-Node-Steiner-Tree instance (Gε, Rε) such
that ψ(Gε,Rε) > 1.8416̄− ε.

The above theorem implies that, in order to significantly improve the approximation for
Node-Tree Augmentation, very different techniques need to be used. To show our lower-bound
we prove a structural property on optimal witness trees, called laminarity, which in fact
holds for optimal solutions of both the NWT problem and the EWT problem.

As an additional result, we also improve the approximation bound for Steiner Tree in the
special case of Steiner-claw free instances. A Steiner-Claw Free instance is a Steiner-Tree
instance where the subgraph G[V \R] induced by the Steiner nodes is claw-free (i.e., every
node has degree at most 2). These instances were introduced in [10] in the context of
studying the integrality gap of a famous LP relaxation for Steiner Tree, called the bidirected
cut relaxation, that is long-conjectured to have integrality gap strictly smaller than 2.

▶ Theorem 5. There is a (991
732 + ε < 1.354)-approximation for Steiner Tree on Steiner-claw

free instances.

We prove the theorem by showing that, for any Steiner-Claw Free instance (G,R, c),
γ(G,R,c) ≤ 991

732 . The observation we use here is that an optimal Steiner Tree solution T in
this case is the union of components that are caterpillar graphs2: this knowledge can be

2 A caterpillar graph is defined as a tree in which every leaf is of distance 1 from a central path.

D. Hyatt-Denesik, A. Jabal Ameli, and L. Sanità 79:5

e1 e2r1

r2
r3

r4

P(a)

e1 e2r1

r2
r3

r4

P(b)

Figure 2 In both figures we have a tree, T , shown with black edges and green edges, with leaves,
R, denoted by squares. Crossing edges e1 and e2 are shown with solid red edges. The green edges
denote the path P . Figure (a): In this case, r1 and r3 are in the same component of W \{e1, e2},
represented by the dashed black edge. We can replace e1 with r2r3 or replace e2 with r1r4 (red
dashed edges). Figure (b): In this case, r3 and r2 are in the same component, denoted by the black
dashed edge. We can replace e1 and e2 with r1r3 and r2r4 (red dashed edges).

exploited to design ad-hoc witness trees. Interestingly, we can also show that this bound
is tight: once again, the proof of this lower-bound result relies on showing laminarity for
optimal witness trees.

▶ Theorem 6. For any ε > 0, there exists Steiner-Claw Free instance (Gε, Rε, cε) such that
γ(Gε,Rε,cε) >

991
732 − ε.

As a corollary of our results, we also get an improved bound on the integrality gap of the
bidirected cut relaxation for Steiner-Claw Free instances (this follows directly from combining
our upper bound with the results in [10]). Though these instances are quite specialized,
they serve the purpose of passing the message: exploiting the structure of optimal solutions
helps in choosing better witnesses, hopefully arriving at tight (upper and lower) bounds on
γ and ψ.

2 Laminarity

In this section, we prove some key structural properties of witness trees. We assume to
be given a Node (Edge) Witness Tree instance T = (V,E) with leaves R (and edge costs
c : E → R≥0), where R denotes the leaves of T , we will show that we can characterize witness
trees minimizing νT (W) (ν̄T (W)) using the following notion of laminarity. Given a witness
tree W = (R,EW), we say edges f1f2, f3f4 ∈ EW cross if the f1-f2 and f3-f4 paths in T

share an internal node but not an endpoint. We say that W is laminar if it has no crossing
edges. For nodes u, v ∈ V , we denote by Tuv the path in T between the nodes u and v.
Similarly, for e ∈ EW , we denote by Te the path in T between the endpoints of e.

The following Theorem shows that there is always a witness tree minimizing νT (W) that
is laminar.

▶ Theorem 7. Given an instance of the Node Witness Tree problem T = (V,E), let W be
the family of all witness trees for T . Then there exists a laminar witness tree W such that
νT (W) = minW ′∈W νT (W ′).

Proof. We first show that there is a witness tree W minimizing νT (W) such that the induced
subgraph of W on any maximal set of terminals that share a neighbour in V \R is a star. We
assume for the sake of contradiction that there is a maximal set of terminals S ⊆ R sharing
a neighbour v ∈ V \R, such that the induced subgraph of W on S is a set of connected
components W1, . . . ,Wi for i > 1. Without loss of generality, suppose the shortest path

ICALP 2023

79:6 Finding Almost Tight Witness Trees

between two components is from W1 to W2, and let e denote the edge of this path incident
to W2. We define W ′ := W ∪ {f}\{e}, where f is an arbitrary edge between W1 and W2.
Since {v} = Tf\R ⊊ Te\R, we have νT (W ′) < νT (W), contradicting the minimality of W .
Therefore, the induced subgraph on S is connected. We can rearrange the edges of this
subgraph to be a star as this will not affect νT (W), so we assume this holds on W for any
such S.

For a maximal set of terminals S ⊆ R that share a neighbour, by a slight abuse of
notation, we denote by S the induced star subgraph of W on S, and denote its center by
s ∈ S. We will assume without loss of generality that edges of W incident to S have endpoint
s. To see this, as S is a connected subgraph of W , any pair of edges incident to S cannot
share an endpoint outside of S, otherwise we have found a cycle in W . Furthermore, for any
edge of W incident to S where s is not an endpoint, we can change the endpoint in S of that
edge to be s and maintain the connectivity of W since S is connected. Edges changed in
this way will have the same interior nodes between their endpoints, so this does not increase
νT (W).

We assume for the sake of contradiction that the witness tree W minimizing νT (W) is not
a laminar witness tree. As W is not laminar, there exist distinct leaves r1, r2, r3, r4 ∈ R such
that e1 = r1r2, e2 = r3r4 ∈ EW are crossing. We denote the path Te1 ∩ Te2 by P . We denote
by Pi the (potentially empty) set of internal nodes of the shortest path from P to ri in T .

Since e1 and e2 are crossing edges, one of Tr1r3 or Tr1r4 contains exactly one node of P .
The same is true for r2. Without loss of generality, let us assume that the paths Tr1r3 and
Tr2r4 contain exactly one node of P . We consider by cases which component of W\{e1, e2}
contains two nodes among r1, r2, r3 and r4. See Figure 2 for an example.

Case: r1 and r3 (or similarly, r2 and r4) are in the same component of W\{e1, e2}. If
P1 = P3 = ∅, then r1 and r3 share a neighbour and thus, as shown above, e1 and e2 are
assumed to share an endpoint, and are thus not crossing.
Consider W ′ := W ∪ {r2r3}\{e1} and W ′′ := W ∪ {r1r4}\{e2}. If νT (W)− νT (W ′) > 0,
this contradicts the minimality of νT (W). Therefore, we can see

0 ≤ |V \R|(νT (W ′)− νT (W)) =
∑

u∈P3

1
w(u) + 1 −

∑
u∈P1

1
w(u)

<
∑

u∈P3

1
w(u) −

∑
u∈P1

1
w(u) + 1 = |V \R|(νT (W)− νT (W ′′))

Clearly, we have νT (W ′′) < νT (W), contradicting minimality of νT (W).
Case: r2 and r3 (or similarly, r1 and r4) are in the same component of W\{e1, e2}.
Without loss of generality we can assume that |V (P)| > 1, because if |V (P)| = 1 then we
can reduce to the previous case by relabelling the nodes r1, r2, r3 and r4. In this case,
consider W ′ := W ∪ {r1r3, r2r4} \ {e1, e2}. Therefore, we can see

|V \R| (νT (W ′)− νT (W)) ≤ −
∑
u∈P

1
w(u) < 0

Thus, we have νT (W ′) < νT (W), contradicting the minimality of νT (W). ◀

The following theorem, similar to Theorem 7, shows that there are laminar witness trees that
are optimal for the EWT problem. The proof is deferred to the full version of the paper.

▶ Theorem 8. Given an instance of the Edge Witness Tree problem T = (V,E) with edge
costs c, let W be the family of all witness trees for T . Then there exists a laminar witness
tree W such that ν̄T (W) = minW ′∈W ν̄T (W ′).

D. Hyatt-Denesik, A. Jabal Ameli, and L. Sanità 79:7

We now show that laminar witness trees are precisely the set of trees that one could
obtain with a marking-and-contraction approach. The proof of this Theorem can be found
in the full version of the paper.

▶ Theorem 9. Given a tree T = (V,E) with leaves R, a witness tree W = (R,EW) for T
can be found by marking-and-contraction if and only if W is laminar.

Incidentally, this has the following side implication. The authors of [13] gave a dynamic
program (that is also a bottom-up approach) to compute the best possible witness tree
obtainable with a marking-and-contraction scheme. Our structural results imply that their
dynamic program computes an optimal solution for the EWT problem (though for the
purpose of the approximation analysis, being able to compute the best witness tree is not
that relevant: being able to bound ψ and γ is what matters).

3 Improved approximation for CA-Node-Steiner Tree

The goal of this section is to prove Theorem 3. We will achieve this by showing ψ < 1.8596,
and by using Theorem 2. From now on, we assume we are given a tree T = (R ∪ S∗, E∗),
where each Steiner node is adjacent to at most two terminals.

3.1 Preprocessing
We first apply some preprocessing operations as in [2], that allow us to simplify our witness
tree construction. The first one is to remove the terminals from T , and then decompose T
into smaller components which will be held separately. We start by defining a final Steiner
node as a Steiner node that is adjacent to at least one terminal. We let F ⊆ S∗ denote
the set of final Steiner nodes. Since we remove the terminals from T , we will construct a
spanning tree W on F with edges in F × F . With a slight abuse of notation, we refer to
W as a witness tree: this is because [2, Section 4.1] showed that one can easily map W to
a witness tree for our initial tree T (with terminals put back), and the following can be
considered the vector imposed on S∗ by W :

w(v) := |{pq ∈ EW : v belongs to the p-q path in T [S∗]}|+ 1[v ∈ F] (1)

where 1[v ∈ F] denotes the indicator of the event “v ∈ F”, and T [S∗] is the subtree of T
induced by the Steiner nodes. See Figure 3.

So, from now on, we consider T = T [S∗]. The next step is to root T at an arbitrary
final node r ∈ F . Following [2] we can decompose T into a collection of rooted components
T1, . . . Tτ , where a component is a subtree whose leaves are final nodes and non-leaves are
non-final nodes. The decomposition will have the following properties: each Ti is rooted at a
final node ri that has degree one in Ti, r1 := r is the root of T1, ∪j<iTj is connected, and
T = ∪τ

i=1Ti. We will compute a witness tree Wi for each component Ti, and then show that
we can join these witness trees {Wi}i≥1 together to get a witness tree W for T .

3.2 Computing a witness tree Wi for a component Ti
Here we deal with a component Ti rooted at ri, and describe how to construct a witness tree
Wi. If Ti is a single edge e = riv, we simply let Wi = ({ri, v}, {riv}).

Now we assume that Ti is not a single edge. We will construct a witness tree with a
bottom-up procedure. At a high level, each node u ∈ Ti\ri looks at the subtree Qu of Ti

rooted at u, and constructs a portion of the witness tree: namely, a subtree Wu spanning

ICALP 2023

79:8 Finding Almost Tight Witness Trees

2
2

2
1

5

22 3
3 2

(a) (b)

Figure 3 Figure (a): A tree T is shown by black edges. The terminals are shown by grey squares.
The final Steiner nodes are shown by white squares, non-final Steiner nodes are shown by black dots.
Figure (b): The tree T after the terminals have been removed. The color edges indicate the three
components. A witness tree W is shown by the black dashed lines. The numbers indicate the values
of w imposed on T computed according to (1). Red dashed lines in Figure (a) show how W can be
mapped back.

the leaves of Qu (note that, in case the degree of u is 1 in Qu, we do not consider u to be a
leaf of Qu but just its root). Assume u has children u1, . . . , uk. Because of the bottom-up
procedure, each child uj has already constructed a subtree Wuj . That is, u has to decide
how to join these subtrees to get Wu.

To describe how this is done formally, we first need to introduce some more notation. For
every node u ∈ Ti\F , we select one of its children as the “marked child” of u (according to
some rule that we will define later). In this way, for every u ∈ Ti there is a unique path along
these marked children to a leaf. We denote this path by P (u), and we let ℓ(u) denote the
leaf descendent of this path. For final nodes u ∈ F , we define ℓ(u) := u and P (u) := u. For
a subtree Qu of Ti rooted at u and a witness tree Wu over the leaves of Qu, let wu be the
vector imposed on the nodes of Qu by Wu according to (1). Next, we define the following
quantity (which, roughly speaking, represents the cost-increase incurred after increasing
wu(v) for each v ∈ P (u)\ℓ(u) for the (j + 1)th time):

Cu
j :=

∑
v∈P (u)\ℓ(u)

(
Hwu(v)+j+1 −Hwu(v)+j

)
=

∑
v∈P (u)\ℓ(u)

1
wu(v) + j + 1

Algorithm 1 Computing the tree W
u.

1 u has Steiner node children u1, u2, . . . , uk, and W
uj have been defined

2 if u1, . . . , uk are all non-final, then
3 The marked child is um, minimizing Cum

1
4 else
5 Assume {u1, . . . , uk1}, 1 ≤ k1 ≤ k, are final node children of u
6 if k1 = k, or, for all j ∈ {k1 + 1, . . . , k}, Cuj

1 ≥ ϕ− δ −H2 then
7 The marked child of u is um for 1 ≤ m ≤ k1 such that Cum

1 is minimized.
8 if There is a j ∈ {k1 + 1, . . . , k} such that Cuj

1 < ϕ− δ −H2 then
9 The marked child of u is um for k1 < m ≤ k such that Cum

1 is minimized.

10 W
u ←

(⋃k
j=1 V [Quj

],
⋃k

j=1 W
uj ⋃

j ̸=m{ℓ(um)ℓ(uj)}
)

11 Return W
u

We can now describe the construction of the witness tree more formally. We begin
by considering the leaves of Ti; for a final node (leaf) u, we define a witness tree on the
(single) leaf of Qu as Wu = ({u}, ∅). For a non-final node u, with children u1, . . . , uk and

D. Hyatt-Denesik, A. Jabal Ameli, and L. Sanità 79:9

corresponding witness trees Wu1
, . . . ,W

uk , we select a marked child um for u as outlined
in Algorithm 1, setting ϕ = 1.86− 1

2100 and δ = 97
420 . With this choice, we compute Wu by

joining the subtrees Wu1
, . . . ,W

uk via the edges ℓ(um)ℓ(uj) for j ̸= m. Finally, let v be the
unique child of ri. We let Wi be equal to the tree W v plus the extra edge ℓ(v)ri, to account
for the fact that ri is also a final node.

3.3 Bounding the cost of Wi

It will be convenient to introduce the following definitions. For a component Ti and a node
u ∈ Ti \ ri, we let Wu be the tree Wu plus one extra edge eu, defined as follows. Let
a(u) be the first ancestor node of u with ℓ(a(u)) ̸= ℓ(u) (recall ℓ(ri) = ri). We then let
the edge eu := ℓ(u)ℓ(a(u)). We denote by wu the vector imposed on the nodes of Qu by
Wu := W

u + eu. Note that, with this definition, Wi = W v for v being the unique child of ri.
We now state two useful lemmas. The first one relates the functions wu and wuj for a

child uj of u. The statements (a)-(c) below can be proved similarly to Lemma 4 of [2]. We
defer its proof to the full version of the paper.

▶ Lemma 10. Let u ∈ Ti \ ri have children u1, . . . , uk, and u1 be its marked child. Then:
a wu(u) = k.
b For every j ∈ {2, . . . , k} and every node v ∈ Quj , wu(v) = wuj (v).
c For every v ∈ Qu1 \ P (u1), wu(v) = wu1(v).
d
∑

v∈P (u1)\ℓ(u1) Hwu(v) =
∑

v∈P (u1)\ℓ(u1) Hwu1 (v) +
∑k−1

j=1 C
u1
j .

Next lemma relates the “increase” of cost Cu
j to the degree of some nodes in Ti.

▶ Lemma 11. Let u ∈ Ti \ ri have children u1, . . . , uk, and u1 be its marked child. Then,
Cu

1 = Cu1
k + 1

k+1 . Furthermore, if u1 is non-final and has degree d in Ti, then:
1)
∑k

j=1(Cu1
j − C

uj

1) ≤
∑k−1

j=1

(
1

d+j −
1
d

)
; 2) Hwu(ℓ(u1)) −Hwu1 (ℓ(u1)) ≤

∑k−1
j=1

1
d+j

Proof.
1. First observe that since Cu1

1 = minj∈[k] C
uj

1 , we have Cu1
j − C

uj

1 ≤ C
u1
j − C

u1
1 . Consider

j ≥ 1, Cu1
j − C

u1
1 is equal to

=
∑

v∈P (u1)\ℓ(u)

(
Hwu1 (v)+j −Hwu1 (v)+j−1 −Hwu1 (v)+1 +Hwu1 (v)

)
=

∑
v∈P (u1)\ℓ(u)

(
1

wu1(v) + j
− 1
wu1(v) + 1

)
≤ 1
wu1(u1) + j

− 1
wu1(u1) + 1

Where the inequality follows since every term in the sum is negative. We know that
wu1(u1) = d− 1 by Lemma 10.(a), therefore, Cu1

j − C
u1
1 ≤ 1

d+j−1 −
1
d , and the claim is

proven by summing over j = 1, . . . , k.
2. To prove the second inequality, first observe that wu(ℓ(u1)) = wu1(ℓ(u1)) + k − 1.

This follows by recalling that Wu is equal to W
u1
, . . . ,W

uk plus the edges ℓ(u1)ℓ(uj)
for j ̸= 1, and eu. Thus, Hwu(ℓ(u1)) − Hwu1 (ℓ(u1)) = Hwu1 (ℓ(u1))+k−1 − Hwu1 (ℓ(u1)) =∑k−1

i=1
1

wu1 (ℓ(u1))+i . Recall u1 is not a final node, so wu1(ℓ(u1)) > d. Therefore,

k−1∑
i=1

1
wu1(ℓ(u1)) + i

≤
k−1∑
i=1

1
d+ i

. ◀

ICALP 2023

79:10 Finding Almost Tight Witness Trees

3.4 Key Lemma
To simplify our analysis, we define hW u(Qu) :=

∑
ℓ∈Qu

Hwu(ℓ), and we let |Qu| be the number
of nodes in Qu. The next lemma is the key ingredient to prove Theorem 3.

▶ Lemma 12. Let δ = 97
420 and ϕ = 1.86− 1

2100 . Let u ∈ Ti \ ri and k be the number of its
children. Let β(k) be equal to 0 for k = 0, . . . , 8 and 1

3 − δ for k ≥ 9. Then

hW u(Qu) + Cu
1 + δ + β(k) ≤ ϕ · |Qu|

Proof. The proof of Lemma 12 will be by induction on |Qu|. The base case is when |Qu| = 1,
and hence u is a leaf of Ti. Therefore, Wu is just the edge eu, and so by definition of wu we
have wu(u) = 2. We get hW u(Qu) = 1.5, Cu

1 = 0, β(k) = 0 and the claim is clear.
For the induction step: suppose that u has children u1, . . . , uk. We will distinguish 2

cases: (i) u has no children that are final nodes; (ii) u has some child that is a final node
(which is then again broken into subcases). We report here only the proof of case (i), and
defer the proof of the other case to the full version of the paper as the reasoning follows
similar arguments.

Case (i): No children of u are final

According to Algorithm 1, we mark the child um of u that minimizes Cuj

1 . Without loss of
generality, let um = u1. Furthermore, let ℓ := ℓ(u1). We note the following.

hW u(Qu) =
k∑

j=1
hW u(Quj

) +Hwu(u)

By applying Lemma 10.(a) we have Hwu(u) = Hk. By Lemma 10.(b) we see hW u(Quj) =
hW uj (Quj

) for j ≥ 2. Using Lemma 10.(c) and (d) we get hW u(Qu1) = hW u1 (Qu1) +∑k−1
j=1 C

u1
j +Hwu(ℓ) −Hwu1 (ℓ). Therefore:

hW u(Qu) =
k∑

j=1
hW uj (Quj

) +
k−1∑
j=1

Cu1
j +Hk +Hwu(ℓ) −Hwu1 (ℓ)

We apply our inductive hypothesis on Qu1 , . . . , Quk
, and use β(j) ≥ 0 for all j:

hW u(Qu) ≤
k∑

j=1

(
ϕ|Quj

| − δ − Cuj

1
)

+
k−1∑
j=1

Cu1
j +Hk +Hwu(ℓ) −Hwu1 (ℓ)

=ϕ(|Qu| − 1)− kδ − Cu1
k +

k∑
j=1

(
Cu1

j − C
uj

1
)

+Hk +Hwu(ℓ) −Hwu1 (ℓ)

Using Lemma 11, we get

≤ϕ(|Qu| − 1)− kδ − Cu
1 +

k−1∑
j=1

(
1

d+ j
− 1
d

)
+Hk+1 +

k−1∑
j=1

1
d+ j

≤ϕ|Qu| − δ − Cu
1 − β(k)

where the last inequality follows since one checks that for any k ≥ 1 and d ≥ 2 we have
−ϕ− (k− 1)δ+

∑k−1
j=1

(
1

d+j −
1
d

)
+Hk+1 +

∑k−1
j=1

1
d+j ≤ −β(k). We show this inequality the

full version of the paper. ◀

D. Hyatt-Denesik, A. Jabal Ameli, and L. Sanità 79:11

3.5 Merging and bounding the cost of W
Once the {Wi}i≥1 are computed for each component Ti, we let the final witness tree be
simply the union W = ∪iWi. Our goal now is to prove the following.

▶ Lemma 13. νT (W) ≤ ϕ = 1.86− 1
2100 .

Proof. Recall that we decomposed T into components {Ti}τ
i=1, such that ∪j≤iTj is connected

for all i ∈ [τ]. For a given i, define T ′ = ∪j<iTj , W ′ = ∪j<iWi, and let w′ be the vector
imposed on the nodes of T ′ by W ′ (for i = 1, set T ′ = ∅, W ′ = ∅, and w′ = 0). Finally,
define W ′′ = Wi ∪W ′ and let w′′ be the vector imposed on the nodes of T ′′ := T ′ ∪ Ti. By
induction on i, we will show that νT ′′(W ′′) ≤ ϕ. The statement will then follow by taking
i = τ . Recall that, for any i, ri is adjacent to a single node v in Ti, and Wi = W v.

First consider i = 1. Hence, W ′′ = W1 = W v and w′′(r1) = 2. By applying Lemma 12 to
the subtree Qv we get∑

u∈T ′′

Hw′′(u) = hW v (Qv) +Hw′′(ri) ≤ ϕ(|Qv|) +H2 ≤ ϕ(|Qv|+ 1)⇒ νT ′′(W ′′) ≤ ϕ

Now consider i > 1. In this case, w′′(ri) = w′(ri) + 1 ≥ 3. Therefore:∑
u∈T ′′

Hw′′(u) =
∑

u∈Ti\ri

Hwv(u) +
∑

u∈T ′

Hw′(u) −Hw′(ri) +Hw′(ri)+1

=
∑

u∈Ti\ri

Hwv(u) +
∑

u∈T ′

Hw′(u) + 1
w′(ri) + 1 ≤

∑
u∈Ti\ri

Hwv(u) +
∑

u∈T ′

Hw′(u) + 1
3

If v is a final node, then
∑

u∈Ti\ri
Hwv(u) = Hwv(v) = H2 and by induction∑

u∈T ′′

Hw′′(u) ≤ H3 +
∑

u∈T ′

Hw′(u) ≤ ϕ|T ′′| ⇒ νT ′′(W ′′) ≤ ϕ

If v is not a final node, then by induction on T ′ and by applying Lemma 12 to the subtree
Qv, assuming that v has k children, we can see∑

u∈T ′′

Hw′′(u) ≤ ϕ|T ′′| − Cv
1 − δ − β(k) + 1

3 ≤ ϕ|T
′′| − 1

k + 1 − δ − β(k) + 1
3

If 1 ≤ k ≤ 8, then β(k) = 0, but we have 1
3 < 431/1260 = 1

9 + δ ≤ 1
k+1 + δ. If k ≥ 9,

β(k) = 1
3 − δ and 1

3 − δ − β(k) = 0. In both cases, νT ′′(W ′′) ≤ ϕ. ◀

Note that we did not make any assumption on T , other than being a CA-Node-Steiner-Tree.
Hence, Lemma 13 yields the following corollary.

▶ Corollary 14. ψ ≤ 1.86− 1
2100 < 1.8596.

Combining Corollary 14 with Theorem 2 yields a proof of Theorem 3.

4 Improved Lower Bound on ψ

The goal of this section is to prove Theorem 4. For the sake of brevity, we will omit several
details. (see the full version of the paper for a completed proof).

ICALP 2023

79:12 Finding Almost Tight Witness Trees

Figure 4 Lower bound instance shown in black. The white squares are terminals and black circles
are Steiner nodes. Red edges form the laminar witness tree W ∗.

Sketch of Proof of Theorem 4

Consider a CA-Node-Steiner-Tree instance (G,R), where G consists of a path of Steiner
nodes s1, . . . , sq such that, for all i ∈ [q], si is adjacent to Steiner nodes ti1, ti2, ti3, and each
tij is adjacent to two terminals r1

ij and r2
ij . See Figure 4. We will refer to Bi as the subgraph

induced by si, tij , r
1
ij , r

2
ij (j = 1, 2, 3). Since G is a tree connecting the terminals, clearly the

optimal Steiner tree for this instance is T = G.
Let W ∗ be a witness tree that minimizes νT (W ∗). Recall that we can assume W ∗ to be

laminar by Theorem 7. We arrive at an explicit characterization of W ∗ in three steps. First,
we observe that, without loss of generality, we can assume that every pair of terminals r1

ij

and r2
ij are adjacent in W ∗ and that r2

ij is a leaf of W ∗. Second, using the latter of these
observations and laminarity, we show that for all i, the subgraph of W induced by r1

i1, r
1
i2, r

1
i3

can only be either (a) a star, or (b) three singletons, adjacent to a unique terminal f /∈ Bi.
We say that Bi is a center in W ∗ if (a) holds. Finally, we get rid of case (b), and essentially
arrive at the next lemma, whose proof can be found in the full version of the paper.

▶ Lemma 15. Let W be the family of all laminar witness trees over T , and let W ∗ be a
laminar witness tree such that for every i ∈ [q], Bi is a center in W ∗. Then νT (W ∗) =
minW ∈W νT (W).

Once we impose the condition that all Bi are centers, one notes that the tree W ∗ essentially
must look like the one shown in Figure 4. So it only remains to compute νT (W ∗). For every
Bi, we can compute

∑
v∈Bi

Hw∗(v), where w∗ is the vector imposed on the set S of Steiner
nodes by W ∗. For i ∈ {2, . . . , q− 1}, one notes that 1

4
∑

v∈Bi
Hw∗(v) = 1

4 (2H2 +H4 +H5) =
221/120 = 1.8416̄. Similarly, for i = 1 and q we have 1

4
∑

v∈B1
Hw∗(v) = 1

4
∑

v∈Bq
Hw∗(v) =

1
4 (2H2 +H3 +H4) = 83

48 = 1.72916̄. Therefore, we can see that νT (W ∗) =
∑

v∈S
Hw∗(v)

|S| =
1.8416̄q−2(1.8416̄−1.72916̄)

q . Thus, for q > 1
ε we have νT (W ∗) > 1.8416̄− 1

q .

5 Tight bound for Steiner-Claw Free Instances

We here prove Theorem 5. Our goal is to show that for any Steiner-Claw Free instance
(G,R, c), γ(G,R,c) ≤ 991

732 , improving over the known ln(4) bound that holds in general. From
now on, we assume that we are given an optimal solution T = (R ∪ S∗, E∗) to (G,R, c).

Simplifying Assumptions

As standard, note that T can be decomposed into components T1, . . . , Tτ , where each
component is a maximal subtree of T whose leaves are terminals and internal nodes are
Steiner nodes. Since components do not share edges of T , it is not difficult to see that one
can compute a witness tree Wi for each component Ti separately, and then take the union
of the {Wi}i≥1 to get a witness tree W whose objective function ν̄T (W) will be bounded

D. Hyatt-Denesik, A. Jabal Ameli, and L. Sanità 79:13

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11

Figure 5 Edges of T are shown in black. Red edges show W . Here, q = 11, tα = 5 and σ = 5.
Initially r5 and r10 are picked as the centers of stars in W . Since σ > ⌈ tα

2 ⌉, r1 is also the center of a
star. Since σ + tα⌊ q−σ

tα
⌋ > q − ⌈ tα

2 ⌉, rq is not the center of a star.

by the maximum among ν̄Ti
(Wi). Hence, from now on we assume that T is made by one

single component. Since T is a solution to a Steiner-claw free instance, each Steiner node
is adjacent to at most 2 Steiner nodes. In particular, the Steiner nodes induce a path in
T , which we enumerate as s1, . . . , sq. We will assume without loss of generality that each
sj is adjacent to exactly one terminal rj ∈ R: this can be achieved by replacing a Steiner
node incident to p terminals, with a path of length p made of 0-cost edges, if p > 1, and
with an edge of appropriate cost connecting its 2 Steiner neighbors, if p = 0. We will also
assume that q > 4. For q ≤ 4, it is not hard to compute that γ(G,R,c) ≤ 991

732 . (For sake of
completeness we explain this in the full version of the paper)

Witness tree computation and analysis

We denote by L ⊆ E∗ the edges of T incident to a terminal, and by O = E∗ \ L the edges of
the path s1, . . . , sq. Let α := c(O)/c(L). For a fixed value of α ≥ 0, we will fix a constant tα
as follows: If α ∈ [0, 32/90], then tα = 5, if α ∈ (32/90, 1), then tα = 3, and if α ≥ 1, then
tα = 1. Given α (and thus tα), we construct W using the randomized process outlined in
Algorithm 2. At a high level, starting from a random offset, Algorithm 2 adds sequential
stars of tα terminals to W , connecting the centers of these stars together in this sequence.
See Figure 5 for an example.

Algorithm 2 Computing the witness tree W .

1 Initialize W = (R,EW = ∅)
2 Sample uniformly at random σ from {1, . . . , tα}.
3 EW ← {rσrσ+k|1 ≤ |k| ≤

⌊
tα

2
⌋
, 1 ≤ σ + k ≤ q}

4 Initialize j=1
5 while j ≤ q−σ

tα
do

6 ℓ := σ + tαj

7 EW ← EW ∪ {rℓrℓ+k|1 ≤ |k| ≤
⌊

tα

2
⌋
, 1 ≤ ℓ+ k ≤ q}

8 EW ← EW ∪ {rσ+tα(j−1)rσ+tαj}
9 j ← j + tα

10 if σ > ⌈ tα

2 ⌉ then
11 EW ← EW ∪

{
r1rk|2 ≤ k ≤ σ − ⌈ tα

2 ⌉
}
∪ {r1rσ}

12 j ← ⌊ q−σ
tα
⌋

13 if σ + tαj ≤ q − ⌈ tα

2 ⌉ then
14 EW ← EW ∪ {rkrq|σ + tαj + ⌈ tα

2 ⌉ ≤ k ≤ q − 1} ∪ {rσ+tαjrq}
15 Return W

Under this random scheme, we define λL(tα) := maxe∈L E[Hw̄(e)], and λO(tα) :=
maxe∈O E[Hw̄(e)].

ICALP 2023

79:14 Finding Almost Tight Witness Trees

▶ Lemma 16. For any α ≥ 0, λL(tα) ≤ 1
tα
Htα+1 + tα−1

tα
, and λO(tα) ≤ 1

tα
+ 2

tα

∑⌈ tα
2 ⌉

i=2 Hi.

Proof. Let W = (R,EW) be a witness tree returned from running Algorithm 2 with α and
t := tα, and let w be the vector imposed on E∗ by W . If Algorithm 2 samples σ ∈ {1, . . . , t},
then we say that the terminals rσ+tj are marked by the algorithm. Moreover, if σ > ⌈ tα

2 ⌉
(resp. σ + tα⌊ q−σ

tα
⌋ ≤ q − ⌈ tα

2 ⌉) then r1 (resp. rq) is also considered marked.
1. Consider edge e = sjsj+1 ∈ O, with j ∈ {⌈ t

2⌉, . . . , q−⌈
t
2⌉}. Let m ∈ {j−⌊ t

2⌋, . . . , j+⌊ t
2⌋},

such that σ mod t = m mod t. Observe that in this case rm is marked. If m = j−x for
x ∈ {0, . . . , ⌊ t

2⌋}, then w(sjsj+1) = ⌈ t
2⌉ − x. Similarly if m = j + x for x ∈ {1, . . . , ⌊ t

2⌋},
then w(sjsj+1) = ⌈ t

2⌉ − x+ 1. Since m mod t = σ mod t with probability 1
t , we have

E[Hw(sjsj+1)] = 1
t + 2

t

∑⌈ t
2 ⌉

k=2 Hk.
Now assume j < ⌈ t

2⌉ (the case j > q − ⌈ t
2⌉ can be handled similarly). Recalling that

since t is odd it is not hard to determine the value of w(sjsj+1) by cases, depending on
the value of σ.
a. 1 ≤ σ ≤ j: Then w(sjsj+1) = ⌈ t

2⌉+ σ − j.
b. j + 1 ≤ σ ≤ ⌈ t

2⌉: Then w(sjsj+1) = j.
c. ⌈ t

2⌉+ 1 ≤ σ ≤ j + ⌊ t
2⌋: Then w(sjsj+1) = ⌈ t

2⌉ − σ + j + 1.
d. j + ⌈ t

2⌉ ≤ σ ≤ t: Then w(sjsj+1) = σ − j − ⌈ t
2⌉+ 1.

E[Hw(sjsj+1)] =

= 1
t

 j∑
σ=1

H⌈ t
2 ⌉+σ−j +

⌈ t
2 ⌉∑

σ=j+1
Hj +

j+⌊ t
2 ⌋∑

σ=⌈ t
2 ⌉+1

H⌈ t
2 ⌉−σ+j+1 +

t∑
σ=j+⌈ t

2 ⌉

Hσ−j−⌈ t
2 ⌉+1


= 1
t

 ⌈ t
2 ⌉∑

i=⌈ t
2 ⌉−j+1

Hi +
(⌈

t

2

⌉
− j
)
Hj +

j∑
i=2

Hi +
⌈ t

2 ⌉−j∑
i=1

Hi



= 1
t

⌈ t
2 ⌉∑

i=1
Hi +

(⌈
t

2

⌉
− j
)
Hj +

j∑
i=2

Hi

 <
1
t

1 + 2
⌈ t

2 ⌉∑
i=2

Hi

 .

2. Consider edge e = sjrj ∈ L. We first show the bound for j ∈ {1, . . . , q}. Algorithm 2
marks terminal ri with probability 1

t . If ri is marked, then w(e) ≤ t. If ri is not marked,
then w(e) = 1. Therefore, E[Hw(e)] ≤ 1

tHt+1 + t−1
t

Now consider edge e = s1r1 (the case e = sqrq can be handled similarly). We consider
specific values of σ ∈ {1, . . . , t} sampled by Algorithm 2. With probability 1

t , we have
σ = 1, so r1 is marked initially and w(e) = ⌈t/2⌉. For σ = 2, . . . , ⌈t/2⌉, r1 is unmarked
and w(e) = 1. If σ > ⌈t/2⌉, then r1 is marked by the algorithm and w(e) = σ − ⌈t/2⌉.
Therefore, we can see

E[Hw(r1s1)] = 1
t

H⌈t/2⌉ +
⌊
t

2

⌋
+

t−⌈t/2⌉∑
k=1

Hk


We let g(t) be equal to the equality above. It remains to show that g(t) ≤ 1

tHt+1 + t−1
t

:=
f(t) for t ∈ {1, 3, 5}.

g(1) = H1 = 1 < H2 = f(1)

g(3) = 1
3 (H2 + 1 +H1) = 1.16̄ < 1.361̄ = 1

3(H4 + 2) = f(3)

g(5) = 1
5 (H3 + 2 +H1 +H2) = 1.26̄ < 1.29 = 1

5(H6 + 4) = f(5)

Combining these two facts gives us the bound on λLi
(t), for t ∈ {1, 3, 5}. ◀

D. Hyatt-Denesik, A. Jabal Ameli, and L. Sanità 79:15

122

1 4 1

122

1 4 1

122

1 4 1

122

1 4 1 11

1

Figure 6 Lower bound instance shown in black with c(e) = 1 for all the edges in L and c(e) = α

for all the edges in O, for α = 32
90 . The white squares are terminals and black circles are Steiner

nodes. Red edges form the laminar witness tree W ∗, with the numbers next to each edge the value
of w imposed on T .

The following Lemma is proven in the full version of the paper.

▶ Lemma 17. For any α ≥ 0, the following bounds holds:

1
α+ 1

(
1
tα
Htα+1 + tα − 1

tα
+ α

(
1
tα

+ 2
tα

⌈ tα
2 ⌉∑

i=2
Hi

))
≤ 991

732

We are now ready to prove the following:

▶ Lemma 18. E[ν̄T (W)] ≤ 991
732 .

Proof. One observes:∑
e∈L∪O

c(e)E[Hw̄(e)] ≤
∑
e∈L

c(e)λL(tα) +
∑
e∈O

c(e)λO(tα) = (λL(tα) + αλO(tα))
∑
e∈L

c(e)

Therefore E[νT (W)] is bounded by:∑
e∈L∪O c(e)E[Hw̄(e)]∑

e∈L∪O c(e)
≤

(λL(tα) + αλO(tα))
∑

e∈L c(e)
(α+ 1)

∑
e∈L c(e)

= λL(tα) + αλO(tα)
α+ 1 ≤ 991

732 .

where the last inequality follows using Lemma 16 and 17. ◀

Now Theorem 5 follows by combining Lemma 18 with Theorem 1 in which γ is replaced by
the supremum taken over all Steiner-claw free instances (rather than over all Steiner Tree
instances).

Tightness of the bound

We conclude this section by spending a few words on Theorem 6. Our lower-bound instance is
obtained by taking a tree T on q Steiner nodes, each adjacent to one terminal, with c(e) = 1
for all the edges in L and c(e) = α for all the edges in O, for α = 32

90 . Similar to Section 3, a
crucial ingredient for our analysis is in utilizing Theorem 8 stating that there is an optimal
laminar witness tree. See Figure 6. We use this to show that there is an optimal witness
tree for our tree T , whose objective value is at least 991

732 − ε. Details can be found in the full
version of the paper.

References
1 David Adjiashvili. Beating approximation factor two for weighted tree augmentation with

bounded costs. ACM Trans. Algorithms, 15(2):19:1–19:26, 2019.
2 Haris Angelidakis, Dylan Hyatt-Denesik, and Laura Sanità. Node connectivity augmentation

via iterative randomized rounding. Mathematical Programming, pages 1–37, 2022.

ICALP 2023

79:16 Finding Almost Tight Witness Trees

3 Manu Basavaraju, Fedor V. Fomin, Petr A. Golovach, Pranabendu Misra, M. S. Ramanujan,
and Saket Saurabh. Parameterized algorithms to preserve connectivity. In Proceedings of the
41st International Colloquium on Automata, Languages, and Programming (ICALP), pages
800–811, 2014.

4 Jaroslaw Byrka, Fabrizio Grandoni, and Afrouz Jabal Ameli. Breaching the 2-approximation
barrier for connectivity augmentation: a reduction to Steiner tree. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 815–825, 2020.

5 Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner tree approx-
imation via iterative randomized rounding. J. ACM, 60(1):6:1–6:33, 2013.

6 Federica Cecchetto, Vera Traub, and Rico Zenklusen. Bridging the gap between tree and
connectivity augmentation: unified and stronger approaches. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing (STOC), pages 370–383. ACM, 2021.

7 Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via lift-
and-project, part I: stemless TAP. Algorithmica, 80(2):530–559, 2018.

8 Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via lift-
and-project, part II. Algorithmica, 80(2):608–651, 2018.

9 Efim A Dinitz, Alexander V Karzanov, and Michael V Lomonosov. On the structure of the
system of minimum edge cuts in a graph. Issledovaniya po Diskretnoi Optimizatsii, pages
290–306, 1976.

10 Andreas Emil Feldmann, Jochen Könemann, Neil Olver, and Laura Sanità. On the equivalence
of the bidirected and hypergraphic relaxations for steiner tree. Mathematical programming,
160(1):379–406, 2016.

11 Samuel Fiorini, Martin Groß, Jochen Könemann, and Laura Sanità. Approximating weighted
tree augmentation via chvátal-gomory cuts. In Proceedings of the 29th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 817–831. SIAM, 2018.

12 Greg N. Frederickson and Joseph JáJá. Approximation algorithms for several graph augment-
ation problems. SIAM J. Comput., 10(2):270–283, 1981.

13 Michel X. Goemans, Neil Olver, Thomas Rothvoß, and Rico Zenklusen. Matroids and integrality
gaps for hypergraphic steiner tree relaxations. In Proceedings of the Forty-Fourth Annual
ACM Symposium on Theory of Computing, STOC ’12, pages 1161–1176, New York, NY, USA,
2012. Association for Computing Machinery. doi:10.1145/2213977.2214081.

14 Fabrizio Grandoni, Christos Kalaitzis, and Rico Zenklusen. Improved approximation for
tree augmentation: saving by rewiring. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 632–645. ACM, 2018.

15 Dylan Hyatt-Denesik, Afrouz Jabal Ameli, and Laura Sanità. Finding almost tight witness
trees, 2023. arXiv:2211.12431.

16 Zeev Nutov. 2-node-connectivity network design. In Proceedings of the 18th International
Workshop on Approximation and Online Algorithms (WAOA), volume 12806 of Lecture Notes
in Computer Science, pages 220–235. Springer, 2020.

17 Zeev Nutov. Approximation algorithms for connectivity augmentation problems. In Proceedings
of the 16th International Computer Science Symposium in Russia (CSR), volume 12730, pages
321–338. Springer, 2021.

18 Vera Traub and Rico Zenklusen. A (1.5+ε)-approximation algorithm for weighted connectivity
augmentation, 2022. doi:10.48550/arXiv.2209.07860.

19 Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree augmentation.
In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages
1–12. IEEE, 2022.

20 Vera Traub and Rico Zenklusen. Local search for weighted tree augmentation and steiner tree.
In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 3253–3272. SIAM, 2022.

https://doi.org/10.1145/2213977.2214081
https://arxiv.org/abs/2211.12431
https://doi.org/10.48550/arXiv.2209.07860

	1 Introduction
	2 Laminarity
	3 Improved approximation for CA-Node-Steiner Tree
	3.1 Preprocessing
	3.2 Computing a witness tree for a component
	3.3 Bounding the cost of
	3.4 Key Lemma
	3.5 Merging and bounding the cost of

	4 Improved Lower Bound on
	5 Tight bound for Steiner-Claw Free Instances

