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Abstract
To guarantee all agents are matched in general, the classic Deferred Acceptance algorithm needs
complete preference lists. In practice, preference lists are short, yet stable matching still works well.
This raises two questions:

Why does it work well?
Which proposals should agents include in their preference lists?

We study these questions in a model, introduced by Lee [17], with preferences based on correlated
cardinal utilities: these utilities are based on common public ratings of each agent together with
individual private adjustments. Lee showed that for suitable utility functions, in large markets, with
high probability, for most agents, all stable matchings yield similar valued utilities. By means of a
new analysis, we strengthen Lee’s result, showing that in large markets, with high probability, for
all but the agents with the lowest public ratings, all stable matchings yield similar valued utilities.
We can then deduce that for all but the agents with the lowest public ratings, each agent has an
easily identified length O(log n) preference list that includes all of its stable matches, addressing the
second question above. We note that this identification uses an initial communication phase.

We extend these results to settings where the two sides have unequal numbers of agents, to
many-to-one settings, e.g. employers and workers, and we also show the existence of an ϵ-Bayes-Nash
equilibrium in which every agent makes relatively few proposals. These results all rely on a new
technique for sidestepping the conditioning between the tentative matching events that occur over
the course of a run of the Deferred Acceptance algorithm. We complement these theoretical results
with an experimental study.
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1 Introduction

Consider a doctor applying for residency positions. Where should she apply? To the very
top programs for her specialty? Or to those where she believes she has a reasonable chance
of success (if these differ)? And if the latter, how does she identify them? We study these
questions in the context of Gale and Shapley’s deferred acceptance (DA) algorithm [5]. It is
well-known that in DA the optimal strategy for the proposing side is to list their choices in
order of preference. However, this does not address which choices to list.
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8:2 Stable Matching: Choosing the Proposals

The DA algorithm is widely used to compute matchings in real-world applications: the
National Residency Matching Program (NRMP), which matches future residents to hospital
programs [25]; university admissions programs which match students to programs, e.g. in
Chile [24], school choice programs, e.g. for placement in New York City’s high schools [1],
the Israeli psychology Masters match [9], and no doubt many others (e.g. [7]).

Recall that each agent provides the mechanism a list of its possible matches in preference
order, including the possibility of “no match” as one of its preferences. These mechanisms
promise that the output will be a stable matching with respect to the submitted preference
lists. In practice, preference lists are relatively short. This may be directly imposed by
the mechanism or could be a reflection of the costs – for example, in time or money – of
determining these preferences. Note that a short preference list is implicitly stating that the
next preference after the listed ones is “no match”.

Thus it is important to understand the impact of short preference lists. Roth and
Peranson observed that the NRMP data showed that preference lists were short compared to
the number of programs and that these preferences yielded a single stable partner for most
participants; we note that this single stable partner could be the “no match” choice, and in
fact this is the outcome for a constant fraction of the participants. They also confirmed this
theoretically for the simplest model of uncorrelated random preferences; namely that with the
preference lists truncated to the top O(1) preferences, almost all agents have a unique stable
partner. Subsequently, in [10] the same result was obtained in the more general popularity
model which allows for correlations among different agents’ preferences; in their model, the
first side – men – can have arbitrary preferences; on the second side – women – preferences
are selected by weighted random choices, the weights representing the “popularity” of the
different choices. These results were further extended by Kojima and Parthak in [15].

The popularity model does not capture behavior in settings where bounds on the number
of proposals lead to proposals being made to plausible partners, i.e. partners with whom one
has a realistic chance of matching. One way to capture such settings is by way of tiers [2],
also known as block correlation [4]. Here agents on each side are partitioned into tiers, with
all agents in a higher tier preferred to agents in a lower tier, and with uniformly random
preferences within a tier. Tiers on the two sides may have different sizes. If we assign
tiers successive intervals of ranks equal to their size, then, in any stable matching, the only
matches will be between agents in tiers whose rank intervals overlap.

A more nuanced way of achieving these types of preferences bases agent preferences
on cardinal utilities; for each side, these utilities are functions of an underlying common
assessment of the other side, together with idiosyncratic individual adjustments for the
agents on the other side. These include the separable utilities defined by Ashlagi, Braverman,
Kanoria and Shi in [2], and another class of utilities introduced by Lee in [17]. This last
model will be the focus of our study.

To make this more concrete, we review a simple special case of Lee’s model, the linear
separable model. Suppose that there are n men and n women seeking to match with each
other. Each man m has a public rating rm, a uniform random draw from [0, 1]. These ratings
can be viewed as the women’s joint common assessment of the men. In addition, each woman
w has an individual adjustment, which we call a score, sw(m) for man m, again a uniform
random draw from [0, 1]. All the draws are independent. Woman w’s utility for man m is
given by 1

2 [rm + sw(m)]; her full preference list has the men in decreasing utility order. The
men’s utilities are defined similarly.

Lee stated that rather than being assumed, short preference lists should arise from the
model; this appears to have been a motivation for the model he introduced. A natural first
step would be to show that for some or all stable matchings, the utility of each agent can
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be well-predicted, for this would then allow the agents to limit themselves to the proposals
achieving such a utility. Lee proved an approximate version of this statement, namely that
with high probability (w.h.p., for short) most agents obtain utility within a small ϵ of an
easily-computed individual benchmark. However, this does not imply that agents can restrict
their proposals to a reduced utility range. (See the paragraph preceding Definition 5 for the
specification of the benchmarks.)

Our work seeks to resolve this issue. We obtain the following results. Note that in these
results, when we refer to the bottommost agents, we mean when ordered by decreasing public
rating. Also, we let the term loss mean the difference between an agent’s benchmark utility
and their achieved utility.
1. We show that in the linearly separable model, for any constant c > 0, with probability

1 − 1/nc, in every stable matching, apart from a sub-constant σ fraction of the bottom-
most agents, all the other agents obtain utility equal to an easily-computed individual
benchmark ±ϵ, where ϵ is also sub-constant.
We show that both σ, ϵ = Θ̃(n−1/3).1 As we will see, this implies, w.h.p., that for all
the agents other than the bottommost σ fraction, each agent has Θ(ln n) possible edges
(proposals) that could be in any stable matching, namely the proposals that provide both
agents utility within ϵ of their benchmark. Furthermore, we show our bound is tight:
with fairly high probability, there is no matching, let alone stable matching, providing
every agent a partner if the values of ϵ and σ are reduced by a suitable constant factor.
An interesting consequence of this lower bound on the agents’ utilities is that the agents
can readily identify a moderate sized subset of the edge set to which they can safely
restrict their applications. More precisely, any woman w outside the bottommost σ

fraction, knowing only her own public rating, the public ratings of the men, and her
own private score for each man, can determine a preference list of length Θ̃(n1/3) which,
w.h.p, will yield the same result as her true full-length list. Our analysis also shows that
if w obtained the men’s private scores for these proposals, then w.h.p. she could safely
limit herself to a length O(ln n) preference list.

2. The above bounds apply not only to the linearly separable model, but to a significantly
more general bounded derivative model (in which derivatives of the utility functions are
bounded).

3. The result also immediately extends to settings with unequal numbers of men and women.
Essentially, our analysis shows that the loss for an agent is small if there is a σ fraction
of agents of lower rank on the opposite side. Thus even on the longer side, w.h.p., the
topmost n(1 − σ) agents all obtain utility close to their benchmark, where n is the size
of the shorter side. This limits the “stark effect of competition” [3] – namely that the
agents on the longer side are significantly worse off – to a lower portion of the agents on
the longer side.

4. The result extends to the many-to-one setting, in which agents on one side seek multiple
matches. Our results are given w.r.t. a parameter d, the number of matches that each
agent on the “many” side desires. For simplicity, we assume this parameter is the same
for all these agents. In fact, we analyze a more general many-to-many setting.

5. A weaker result with arbitrarily small σ, ϵ = Θ(1) holds when there is no restriction on
the derivatives of the utility functions, which we call the general values model. Again, we
show this bound cannot be improved in general. This setting is essentially the general

1 The Θ̃(·) notation means up to a poly-logarithmic term; here σ, ϵ = Θ((n/ ln n)−1/3).
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8:4 Stable Matching: Choosing the Proposals

setting considered by Lee [17]. He had shown there was a σ fraction of agents who might
suffer larger losses; our bound identifies this σ fraction of agents as the bottommost
agents.

6. In the bounded derivative model, with slightly stronger constraints on the derivatives, we
also show the existence of an ϵ-Bayes-Nash equilibrium in which no agent proposes more
than O(ln2 n) times and all but the bottommost O((ln n/n)1/3) fraction of the agents
make only the O(ln n) proposals identified in (1) above. Here ϵ = Θ(ln n/n1/3).

These results all follow from a lemma showing that, w.h.p., each non-bottommost agent
has at most a small loss. In turn, the proof of this lemma relies on a new technique which
sidesteps the conditioning inherent to runs of DA in these settings.

Experimental results

Much prior work has been concerned with preference lists that have a constant bound on
their length. For moderate values of n, say n ∈ [103, 106], ln n is quite small, so our Θ(ln n)
bound may or may not be sufficiently small in practice for this range of n. What matters are
the actual constants hidden by the Θ notation, which our analysis does not fully determine.
To help resolve this, we conducted a variety of simulation experiments.

We have also considered how to select the agents to include in the preference lists, when
seeking to maintain a constant bound on their lengths, namely a bound that, for the values
of n we considered, was smaller than the Θ(ln n) bound determined by the above simulations;
again, our investigation was experimental.

Other Related work

The random preference model was introduced by Knuth [12] (for a version in English see [13]),
and subsequently extensively analyzed [20, 14, 21, 18, 23, 22, 16]. In this model, each agent’s
preferences are an independent uniform random permutation of the agents on the other side.
An important observation was that when running the DA algorithm, the proposing side
obtained a match of rank Θ(ln n) on the average, while on the other side the matches had
rank Θ(n/ ln n).

A recent and unexpected observation in [3] was the “stark effect of competition”: that
in the random preferences model the short side, whether it was the proposing side or not,
was the one to enjoy the Θ(ln n) rank matches. Subsequent work showed that this effect
disappeared with short preference lists in a natural modification of the random preferences
model [11]. Our work suggests yet another explanation for why this effect may not be present:
it does not require that short preference lists be imposed as an external constraint, but rather
that the preference model generates few edges that might ever be in a stable matching.

The number of edges present in any stable matching has also been examined for a
variety of settings. When preference lists are uniform the expected number of stable pairs
is Θ(n ln n) [21]; when they are arbitrary on one side and uniform on the other side, the
expected number is O(n ln n) [14]. This result continues to hold when preference lists are
arbitrary on the men’s side and are generated from general popularities on the women’s
side [6]. Our analysis shows that in the linear separable model (and more generally in the
bounded derivative setting) the expected number of stable pairs is also O(n ln n).

Another important issue is the amount of communication needed to identify who to place
on one’s preference lists when they have bounded length. In general, the cost is Ω(n) per
agent (in an n agent market) [8], but in the already-mentioned separable model of Ashlagi et
al. [2] this improves to Õ(

√
n) given some additional constraints, and further improves to
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O(ln4 n) in a tiered separable market [2]. We note that for the bounded derivatives setting,
with high probability, the communication cost will be O(n1/3 ln2/3 n) for all agents except
the bottommost Θ(n2/3 ln1/3 n), for whom the cost can reach O(n2/3 ln1/3 n).

Another approach to selecting which universities to apply to was considered by Shorrer
who devised a dynamic program to compute the optimal choices for students assuming
universities had a common ranking of students [26].

Roadmap

In Section 2 we review some standard material. In Section 3 we state our main result in two
parts: Theorem 6, which bounds the losses in the setting of the linear model, and Theorem 8,
which shows it suffices to limit preference lists to a small set of edges. We prove these
theorems in Sections 4 and 5, respectively. We also present some numerical simulations for
the linear separable model in Section 6 We conclude with a brief discussion of open problems
in Section 7.

In the appendices of the full version of the paper, we formally state and prove all the
other results alluded to in the introduction and we also present further numerical simulations
for the linear separable model. For the reader’s convenience, in the text that follows, we
provide pointers to these appendices, as appropriate. We note that Appendix A provides a
complete summary of the content in these appendices.

2 Preliminaries

2.1 Stable Matching and the Deferred Acceptance (DA) Algorithm
Let M be a set of n men and W a set of n women. Each man m has an ordered list of
women that represents his preferences, i.e. if a woman w comes before a woman w′ in m’s
list, then m would prefer matching with w rather than w′. The position of a woman w in
this list is called m’s ranking of w. Similarly each woman w has a ranking of her preferred
men2. The stable matching task is to pair (match) the men and women in such a way that
no two people prefer each other to their assigned partners. More formally:

▶ Definition 1 (Matching). A matching is a pairing of the agents in M with the agents in
W . It comprises a bijective function µ from M to W , and its inverse ν = µ−1, which is a
bijective function from W to M .

▶ Definition 2 (Blocking pair). A matching µ has a blocking pair (m, w) if and only if:
1. m and w are not matched: µ(m) ̸= w.
2. m prefers w to his current match µ(m).
3. w prefers m to her current match ν(w).

▶ Definition 3 (Stable matching). A matching µ is stable if it has no blocking pair.

Gale and Shapley [5] proposed the seminal deferred acceptance (DA) algorithm for the
stable matching problem. We present the woman-proposing DA algorithm (Algorithm 1);
the man-proposing DA is symmetric. The following facts about the DA algorithm are well
known. We state them here without proof and we shall use them freely in our analysis.

2 Throughout this paper, we assume that each man m (woman w) ranks all the possible women (men),
i.e. m’s (w’s) preference list is complete.

ICALP 2023



8:6 Stable Matching: Choosing the Proposals

Algorithm 1 Woman Proposing Deferred Acceptance (DA) Algorithm.

Initially, all the men and women are unmatched.
while some woman w with a non-empty preference list is unmatched do

let m be the first man on her preference list;
if m is currently unmatched then

tentatively match w to m.
end
if m is currently matched to w′, and m prefers w to w′ then

make w′ unmatched and tentatively match w to m.
else

remove m from w’s preference list.
end

end

▶ Observation 4.
1. DA terminates and outputs a stable matching.
2. The stable matching generated by DA is independent of the order in which the unmatched

agents on the proposing side are processed.
3. Woman-proposing DA is woman-optimal, i.e. each woman is matched with the best partner

she could be matched with in any stable matching.
4. Woman-proposing DA is man-pessimal, i.e. each man is matched with the worst partner

he could be matched with in any stable matching.

2.2 Useful notation and definitions
There are n men and n women. In all of our models, each man m has a utility Um,w for the
woman w, and each woman w has a utility Vm,w for the man m. These utilities are defined as

Um,w = U(rw, sm(w)), and
Vm,w = V (rm, sw(m)),

where rm and rw are common public ratings, sm(w) and sw(m) are private scores specific to
the pair (m, w), and U(·, ·) and V (·, ·) are continuous and strictly increasing functions from
R2

+ to R+. The ratings are independent uniform draws from [0, 1] as are the scores.
In the Linear Separable Model, each man m assigns each woman w a utility of Um,w =

λ · rw + (1 − λ) · sm(w), where 0 < λ < 1 is a constant. The women’s utilities for the men
are defined analogously as Vm,w = λ · rm + (1 − λ) · sw(m). All our experiments are for this
model.

We let {m1, m2, . . . , mn} be the men in descending order of their public ratings and
{w1, w2, . . . , wn} be a similar ordering of the women. We say that mi has public rank i, or
rank i for short, and similarly for wi. We also say that mi and wi are aligned. In addition,
we often want to identify the men or women in an interval of public ratings. Accordingly,
we define M(r, r′) to be the set of men with public ratings in the range (r, r′), and M [r, r′]
to be the set with public ratings in the range [r, r′]; we also use the notation M(r, r′] and
M [r, r′) to identify the men with ratings in the corresponding semi-open intervals. We use
an analogous notation, with W replacing M , to refer to the corresponding sets of women.

We will be comparing the achieved utilities in stable matchings to the following bench-
marks: the rank i man has as benchmark U(rwi

, 1), the utility he would obtain from the
combination of the rank i woman’s public rating and the highest possible private score; and
similarly for the women. Based on this we define the loss an agent faces as follows.
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▶ Definition 5 (Loss). Suppose man m and woman w both have rank i. The loss m sustains
from a match of utility u is defined to be U(rw, 1) − u. The loss for women is defined
analogously.

In our analysis we will consider a complete bipartite graph whose two sets of vertices
correspond to the men and women, respectively. For each man m and woman w, we view
the possible matched pair (m, w) as an edge in this graph. Thus, throughout this work, we
will often refer to edges being proposed, as well as edges satisfying various conditions.

3 Upper Bound in The Linear Separable Model

To illustrate our proof technique for deriving upper bounds, we begin by stating and proving
our upper bound result for the special case of the linear separable model with λ = 1

2 .

▶ Theorem 6. In the linear separable model with λ = 1/2, when there are n men and n

women, for any given constant c > 0, for large enough n, with probability at least 1 − n−c, in
every stable matching, for every i, with rwi

≥ σ ≜ 3L/2, agent mi suffers a loss of at most
L, where L = (16(c + 2) ln n/n)1/3, and similarly for the agents wi.

In words, w.h.p., all but the bottommost agents (those whose aligned agents have public
rating less than σ) suffer a loss of no more than L. This is a special case of our basic upper
bound for the bounded utilities model (Theorem 12).

One of our goals is to be able to limit the number of proposals the proposing side needs to
make. We identify the edges that could be in some stable matching, calling them acceptable
edges. Our definition is stated generally so that it covers all our results; accordingly we
replace the terms L and σ in Theorem 6 with parameters L and σ.

▶ Definition 7 (Acceptable edges). Let 0 < σ < 1 and 0 < L < 1 be two parameters. An edge
(mi, wj) is (L, σ)-man-acceptable either if it provides mi utility at least U(rwi

, 1) − L, or if
mi ∈ M [0, σ). The definition of (L, σ)-woman-acceptable is symmetric. Finally, (mi, wj) is
(L, σ)-acceptable if it is both (L, σ)-man and (L, σ)-woman-acceptable.

To prove our various results, we choose L and σ so that w.h.p. the edges in every stable
matching are (L, σ)-acceptable. We call this high probability event E . We will show that if E
occurs, then running DA on the set of acceptable edges, or any superset of the acceptable
edges obtained via loss thresholds, produces the same stable matching as running DA on the
full set of edges.

▶ Theorem 8. If E occurs, then running woman-proposing DA with the edge set restricted
to the acceptable edges or to any superset of the acceptable edges obtained via loss thresholds
(including the full edge set) result in the same stable matching.

The implication is that w.h.p. a woman can safely restrict her proposals to her acceptable
edges, or to any overestimate of this set of edges obtained by her setting an upper bound
on the loss she is willing to accept. There is a small probability – at most n−c – that this
may result in a less good outcome, which can happen only if E does not occur. Note that
Theorem 8 applies to every utility model we consider. Then, w.h.p., every stable matching
gives each woman w, whose aligned agent m has public rating rm ≥ σ = Ω((ln n/n)1/3), a
partner with public rating in the range [rm −2L, rm + 5

2 L] (see Theorem 25 in Appendix F.1).
The bound rm − 2L is a consequence of the bound on the woman’s loss; the bound rm + 5

2 L

is a consequence of the bound on the men’s losses. An analogous statement applies to the
men.

ICALP 2023



8:8 Stable Matching: Choosing the Proposals

This means that if we are running woman-proposing DA, each of these women might
as well limit her proposals to her woman-acceptable edges, which is at most the men with
public ratings in the range rm ± Θ(L) for whom she has private scores of at least 1 − Θ(L).
In expectation, this yields Θ(n1/3(ln n)2/3) men to whom it might be worth proposing. It
also implies that a woman can have a gain of at most Θ(L) compared to her target utility.

If, in addition, each man can inexpensively signal the women who are man-acceptable
to him, then the women can further limit their proposals to just those men providing them
with a signal; this reduces the expected number of proposals these women can usefully make
to just Θ(ln n).

4 Sketch of the Proof of Theorem 6

◦rating rmi , man mi ◦ woman wi

Mi = [rmi
− α, 1]

hi men, rating range α

ℓi women

men women

cutoff rmi − α

W̃i = W [rwi
, 1]

◦
woman wi = wi+ℓi

Figure 1 Illustrating Lemma 11.

We begin by outlining the main ideas used in our analysis. Our goal is to show that when
we run woman proposing DA, w.h.p. each man receives a proposal that gives him a loss of
at most L (except possibly for men among the bottommost Θ(nL)). As the outcome is the
man-pessimal stable matching, this means that w.h.p., in all stable matchings, these men
have a loss of at most L. By symmetry, the same bound holds for the women.

Next, we provide some intuition for the proof of this result. See Fig. 1. Our analysis uses
3 parameters α, β, γ = Θ(L). Let mi be a non-bottommost man. We consider the set of
men with public rank at least rmi

− α: Mi = M [rmi
− α, 1]. We consider a similar, slightly

larger set of women: W̃i = W [rwi
− 3α, 1]. Now we look at the best proposals by the women

in W̃i, i.e. the ones they make first. Specifically, we consider the proposals that give these
women utility at least V (rmi − α, 1), proposals that are therefore guaranteed to be to the
men in Mi. Let

∣∣Mi

∣∣ = i + hi and
∣∣Wi

∣∣ = i + ℓi. In expectation, ℓi − hi = 2αn. Necessarily,
at least ℓi − hi + 1 women in Mi cannot match with men in Mi \ {mi}. But, as we will see,
these women all have probability at least β of having a proposal to mi which gives them
utility at least V (rmi − α, 1). These are proposals these women must make before they make
any proposals to men with public rating less than rmi

− α. Furthermore, for each of these
proposals, mi has probability at least γ of having a loss of L or less. Thus, in expectation,
mi receives at least 2αβγn proposals which give him a loss of L or less.

We actually want a high-probability bound. So we choose α, β, γ so that αβγn ≥ c log n for
a suitable constant c > 0, and then apply a series of Chernoff bounds. There is one difficulty.
The Chernoff bounds requires the various proposals to be independent. Unfortunately, in
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general, this does not appear to be the case. However, we are able to show that the failure
probability for our setting is at most the failure probability in an artificial setting in which
the events are independent, which yields the desired bound.

We now embark on the actual proof.
We formalize the men’s rating cutoff with the notion of DA stopping at public rating r.

▶ Definition 9 (DA stops). The women stop at public rating r if, in each woman’s preference
list, all the edges with utility less than V (r, 1) are removed. The women stop at man m if, in
each woman’s preference list, all the edges following her edge to m are removed. The women
double cut at man m and public rating r, if they each stop at m or r, whichever comes first.
Men stopping and double cutting are defined similarly. Finally, an edge is said to survive the
cutoff if it is not removed by the stopping.

To obtain our bounds for man mi, we will have the women double cut at rating rmi − α

and at man mi, where α > 0 is a parameter we will specify later.
Our upper bounds in all of the utility models depend on a parameterized key lemma

(Lemma 11) stated shortly. This lemma concerns the losses the men face in the woman-
proposing DA; a symmetric result applies to the women. The individual theorems follow by
setting the parameters appropriately. Our key lemma uses three parameters: α, β, γ > 0. To
avoid rounding issues, we will choose α so that αn is an integer. The other parameters need
to satisfy the following constraints.

for r ≥ α: V (r − α, 1) ≤ V (r, 1 − β) (1)
for r ≥ 3α: U(r, 1) − U(r − 3α, 1 − γ) ≤ L (2)

Equation (1) relates the range of private values that will yield a woman an edge to mi

that survives the cut at rmi
− α, or equivalently the probability of having such an edge.

Observation 10 below, shows that Equation (2) identifies the range of mi’s private values for
proposals from W̃i that yield him a loss of at most L (for we will ensure the women in W̃i

have public rating at least rwi
− 3α).

▶ Observation 10. Consider the proposal from woman w to the rank i man mi. Suppose the
rank i woman wi has rating rwi

≥ 3α. If w has public rating r ≥ rwi
− 3α and mi’s private

score for w is at least 1−γ, then mi’s utility for w is at least U(rwi −3α, 1−γ) ≥ U(rwi , 1)−L.

In the linear separable model with λ = 1
2 , we set α = β = γ and L = 2α.

The next lemma determines the probability that man mi receives a proposal causing him
a loss of at most L. The lemma calculates this probability in terms of the parameters we
just defined. Note that the result does not depend on the utility functions U(·, ·) and V (·, ·)
being linear. In fact, the same lemma applies to much more general utility models which we
also study (see Appendix C) and it is the crucial tool we use in all our upper bound proofs.

In what follows, to avoid heavy-handed notation, by rmi
−α we will mean max{0, rmi

−α}.
In order to state our next result crisply, we define the following Event Ei. It concerns

a run of woman-proposing DA with double cut at the rank i man mi and at public rating
rmi

− α. Let hi =
∣∣M [rmi

− α, rmi
)
∣∣, ℓi =

∣∣W [rwi
− 3α, rwi

)
∣∣, and wi be the woman with

rank i + ℓi. See Figure 1 for an illustration of these definitions. Event Ei occurs if rwi ≥ 3α

and between them the i + ℓi women in W [rwi
− 3α, 1] make at least one proposal to mi that

causes him a loss of at most L.
Finally we define Event E : it happens if Ei occurs for all i such that rwi

≥ 3α.
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▶ Lemma 11. Let α > 0 and L > 0 be given, and suppose that β and γ satisfy (1) and
(2), respectively. Then, Event E occurs with probability at least 1 − pf , where the failure
probability

pf = n ·exp(−α(n − 1)/12)+n ·exp(−α(n − 1)/24)+n exp(−αβn/8)+n ·exp(−αβγn/2).

The following simple claim notes that the men’s loss when running the full DA is no larger
than when running double-cut DA.

▷ Claim 12. Suppose a woman-proposing double-cut DA at man mi and rating rmi
− α is

run, and suppose mi incurs a loss of L. Then in the full run of woman-proposing DA, mi

will incur a loss of at most L.

Proof. Recall that when running the women-proposing DA the order in which unmatched
women are processed does not affect the outcome. Also note that as the run proceeds,
whenever a man’s match is updated, the man obtains an improved utility. Thus, in the run
with the full edge set we can first use the edges used in the double-cut DA and then proceed
with the remaining edges. Therefore if in the double-cut DA mi has a loss of L, in the full
run mi will also have a loss of at most L. ◁

To illustrate how this lemma is applied, we now prove Theorem 6. Note that L is the
value of L used in this theorem. Our other results use other values of L.

Proof of Theorem 6. By Lemma 11, in the double-cut DA, for all i with rwi
≥ 3α, mi

obtains a match giving him loss at most L, with probability at least 1−n·exp(−α(n − 1)/12)−
n · exp(−αn/24) − n exp

(
−α2n/8

)
− n · exp

(
−α3n/2

)
.

By Claim 12, mi will incur a loss of at most L in the full run of woman-proposing DA
with at least as large a probability. But this is the man-pessimal match. Consequently, in
every stable match, mi has a loss of at most L. By symmetry, the same bound applies to
each woman wi such that rmi ≥ 3α.

We choose L = [16(c + 2) ln n/n]1/3. Recalling that α = L/2, we see that for large enough
n the probability bound, over all the men and women, is at most 1 − n−c. The bounds
rwi ≥ 3α and rmi ≥ 3α imply we can set σ = 3α = 3

2 L. ◀

Proof of Lemma 11. We run the double-cut DA in two phases, defined as follows. Recall
that hi =

∣∣M [rmi
− α, rmi

)
∣∣ and ℓi =

∣∣W [rwi
− 3α, rwi

)
∣∣. Note that women with rank at

most i + ℓi have public rating at least rwi − 3α.
Phase 1. Every unmatched woman with rank at most i + ℓi keeps proposing until her next
proposal is to mi, or she runs out of proposals.
Phase 2. Each unmatched women makes her next proposal, if any, which will be a proposal
to mi.

Our analysis is based on the following four claims. The first two are simply observations
that w.h.p. the number of agents with public ratings in a given interval is close to the
expected number. We defer the proofs to the appendix.

A critical issue in this analysis is to make sure the conditioning induced by the successive
steps of the analysis does not affect the independence needed for subsequent steps. To achieve
this, we use the Principle of Deferred Decisions, only instantiating random values as they are
used. Since each successive bound uses a different collection of random variables this does
not present a problem.
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▷ Claim 13. Let B1 be the event that for some i, hi ≥ 3
2 α(n − 1). B1 occurs with probability

at most n · exp(−α(n − 1)/12). The only randomness used in the proof are the choices of
the men’s public ratings. The same bound applies to the women.

Proof (Sketch). As E[hi] = α(n − 1), w.h.p., hi < 3
2 α(n − 1). This claim uses a Chernoff

bound with the randomness coming from the public ratings of the men. ◁

▷ Claim 14. Let B2 be the event that for some i, ℓi ≤ 5
2 α(n − 1). B2 occurs with probability

at most n · exp(−α(n − 1)/24). The only randomness used in the proof are the choices of
the women’s public ratings. The same bound applies to the men.

Proof. This is very similar to the proof of Claim 13. ◁

▷ Claim 15. Let B3 be the event that between them, the women with rank at most i + ℓi

make fewer than 1
2 αβn Step 2 proposals to mi. If events B1 and B2 do not occur, then B3

occurs with probability at most exp(−αβn/8). The only randomness used in the proof are
the choices of the women’s private scores.

This bound uses the private scores of the women and employs a novel argument given below
to sidestep the conditioning among these proposals.

▷ Claim 16. If none of the events B1, B2, or B3 occur, then at least one of the Step 2
proposals to mi will cause him a loss of at most L with probability at least 1− (1−γ)αβn/2 ≥
1 − exp(−αβγn/2). The only randomness used in the proof are the choices of the men’s
private scores.

Proof. Note that each Phase 2 proposal is from a woman w with rank at most i + ℓi. As
already observed, her public rating is at least rwi

− 3α. Recall that man mi’s utility for
w equals U(rw, smi(w)) ≥ U(rwi − 3α, smi(w)). To achieve utility at least U(rwi , 1) − L ≤
U(rwi

− 3α, 1 − γ) (using (2)) it suffices to have smi
(w) ≥ 1 − γ, which happens with

probability γ. Consequently, utility at least U(rwi , 1) − L is achieved with probability at
least γ.

For each Phase 2 proposal these probabilities are independent as they reflect mi’s private
scores for each of these proposals. Therefore the probability that there is no proposal
providing mi a loss of at most L is at most(

1 − γ
)αβn/2 ≤ exp(αβγn/2). ◁

Concluding the proof of Lemma 11: The overall failure probability summed over all n choices
of i is

n · exp(−α(n − 1)/12) + n · exp(−α(n − 1)/24) + n exp(−αβn/8) + n · exp(−αβγn/2).
◀

Proof of Claim 15. First, we simplify the action space by viewing the decisions as being made
on a discrete utility space, as specified in the next claim, proved in the appendix.

▷ Claim 17. For any δ > 0, there is a discrete utility space in which for each woman the
probability of selecting mi is only increased, and the probability of having any differences
in the sequence of actions in the original continuous setting and the discrete setting is at
most δ.
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We represent the possible computations of the double-cut DA in this discrete setting
using a tree T . Each woman will be going through her possible utility values in decreasing
order, with the possible actions of the various women being interleaved in the order given
by the DA processing. Each node u corresponds to a woman w processing her next utility
value. The possible choices at this utility are each represented by an edge descending from u.
These choices are:

i. Proposing to some man (among those men w has not yet proposed to); or
ii. “no action”. This corresponds to w making no proposal achieving the current utility.

We observe the following important structural feature of tree T . Let S be the subtree
descending from the edge corresponding to woman w proposing to mi; in S there are no
further actions of w, i.e. no nodes at which w makes a choice, because the double cut DA
cuts at the proposal to mi.

The assumption that B1 and B2 do not occur means that for all i, hi < 3
2 α(n − 1) and

ℓi > 5
2 α(n − 1), and therefore ℓi − hi > α(n − 1).

At each leaf of T , up to i + hi − 1 women will have been matched with someone other
than mi. The other women either finished with a proposal to mi or both failed to match
and did not propose to mi. Let w be a woman in the latter category. Then, on the path to
this leaf, w will have traversed edges corresponding to a choice at each discrete utility in the
range [V (rmi

− α, 1), V (1, 1)].
We now create an extended tree, Tx, by adding a subtree at each leaf; this subtree will

correspond to pretending there were no matches; the effect is that each women will take an
action at all their remaining utility values in the range [V (rmi − α, 1), V (1, 1)], except that
in the sub-subtrees descending from edges that correspond to some woman w selecting mi,
w has no further actions. For each leaf in the unextended tree, the probability of the path
to that leaf is left unchanged. The probabilities of the paths in the extended tree are then
calculated by multiplying the path probability in the unextended tree with the probabilities
of each woman’s choices in the extended portion of the tree.

Next, we create an artificial mechanism M that acts on tree Tx. The mechanism M is
allowed to put i + hi − 1 “blocks” on each path; blocks can be placed at internal nodes. A
block names a woman w and corresponds to her matching (but we no longer think of the
matches as corresponding to the outcome of the edge selection; they have no meaning beyond
making all subsequent choices by this woman be the “no action” choice).

DA can be seen as choosing to place up to i + hi − 1 blocks at each of the nodes
corresponding to a leaf of T . M will place its blocks so as to minimize the probability p of
paths with at least 1

2 αβn women choosing edges to mi. Clearly p is a lower bound on the
probability that the double-cut DA makes at least 1

2 αβn proposals in Step 2. Given a choice
of blocks we call the resulting probability of having fewer than 1

2 αβn women choosing edges
to mi the blocking probability.

▷ Claim 18. The probability that M makes at least 1
2 αβn proposals to mi is at least

1 − exp(−αβn/8).

▶ Corollary 19. The probability that the double-cut DA makes at least 1
2 αβn proposals to mi

is at least 1 − exp(−αβn/8).

Proof. For any fixed δ, by Claim 18, the probability that M makes at least 1
2 αβn proposals

to mi is at least 1 − exp(−αβn/8). By construction, the probability is only larger for the
double-cut DA in the discrete space.
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Therefore, by Claim 12, the probability that the double-cut DA makes at least 1
2 αβn

proposals to mi in the actual continuous space is at least 1−exp(−αβn/8)−δ, and this holds
for any δ > 0, however small. Consequently, this probability is at least 1 − exp(−αβn/8). ◀

Proof of Claim 18. We will show that the most effective blocking strategy is to block as many
women as possible before they have made any choices. This leaves at least (i+ℓi)−(i−1+hi) ≥
1 + α(n − 1) ≥ αn women unmatched. Then, as we argue next, each of these remaining
at least αn women w has independent probability at least β that their proposal to mi is
cutoff-surviving. To be cutoff-surviving, it suffices that V (rmi

, sw(mi)) ≥ V (rmi
− α, 1).

But we know by (1) that V (rmi − α, 1) ≤ V (rmi , 1 − β), and therefore it suffices that
sw(mi) ≥ 1 − β, which occurs with probability β.

Consequently, in expectation, there are at least αβn proposals to mi, and therefore, by a
Chernoff bound, at least 1

2 αβn proposals with probability at least exp(−αβn/8).
We consider the actual blocking choices made by M and modify them bottom-up in a

way that only reduces the probability of there being 1
2 αβn or more proposals to mi.

Clearly, M can choose to block the same maximum number of women on every path
as it never hurts to block more women (we allow the blocking of women who have already
proposed to mi even though it does not affect the number of proposals to mi).

Consider a deepest block at some node u in the tree, and suppose b women are blocked
at u. Let v be a sibling of u. As this is a deepest block, there will be no blocks at proper
descendants of u, and furthermore as there are the same number of blocks on every path, v

will also have b blocked women.
Observe that if there is no blocking in a subtree, then the probability that a woman

makes a proposal to mi is independent of the outcomes for the other women. Therefore the
correct blocking decision at node u is to block the b women with the highest probabilities of
otherwise making a proposal to mi, which we call their proposing probabilities; the same is
true at each of its siblings v.

Let x be u’s parent. Suppose the action at node x concerns woman w̃x. Note that the
proposing probability for any woman w ̸= w̃x is the same at u and v because the remaining
sequence of actions for woman w is the same at nodes u and v, and as they are independent
of the actions of the other women, they yield the same probability of selecting mi at some
point.

We need to consider a number of cases.
Case 1. w is blocked at every child of x.

Then we could equally well block w at node x.
Case 2. At least one woman other than w̃x is blocked at some child of x.

Each such blocked woman w has the same proposing probability at each child of x.
Therefore by choosing to block the women with the highest proposing probabilities, we
can ensure that at each node either w̃x plus the same b − 1 other women are blocked, or
these b − 1 woman plus the same additional woman w′ ̸= w̃x are blocked. In any event,
the blocking of the first b − 1 women can be moved to x.
Case 2.1. w̃x is not blocked at any child of x.

Then the remaining identical blocked woman at each child of x can be moved to x.
Case 2.2. w̃x is blocked at some child of x but not at all the children of x.

Notice that we can avoid blocking w̃x at the child u of x corresponding to selecting
mi, as the proposing probability for w̃x after it has selected mi is 0, so blocking any
other women would be at least as good. Suppose that w ̸= w̃x is blocked at node u.

Let v be another child of x at which w̃x is blocked. Necessarily, p
v,w̃x

, the proposing
probability for w̃x at node v, is at least the proposing probability pv,w for w at node v (for
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otherwise w would be blocked at node v); also, pv,w equals the proposing probability for w

at every child of x including u; in addition, p
v,w̃x

equals the proposing probability for w̃x at
every child of x other than u. It follows that w is blocked at u and w̃x can be blocked at
every other child of x. But then blocking w̃x at x only reduces the proposing probability.

Thus in every case one should move the bottommost blocking decisions at a collection of
sibling nodes to a single blocking decision at their parent. ◁

◁

5 Making Fewer Proposals

We identify a sufficient set of edges that contains all stable matchings, and on which the DA
algorithm produces the same outcome as when it runs on the full edge set.

▶ Definition 20 (Viable edges). An edge (m, w) is man-viable if, according to m’s preferences,
w is at least as good as the woman he is matched to in the man-pessimal stable match. Woman-
viable is defined symmetrically. An edge is viable if it is both man and woman-viable. Ev is
the set of all viable edges.

▶ Lemma 21. Running woman-proposing DA with the edge set restricted to Ev and with any
superset obtained via loss thresholds, including the full edge set, results in the same stable
matching.

Proof. Suppose a new stable matching, S, now exists in the restricted edge set: it could not
be present when using the full edge set, therefore there must be a blocking edge (m, w) in
the full edge set. But neither m nor w would have removed this edge when forming their
restricted edge set since for both of them it is better than an edge they did not remove (the
edge they are matched with in S).

It follows that w.h.p. the set of stable matchings is the same when using Ev (or any
super set of it generated by truncation with larger loss thresholds) and the whole set. Thus
woman-proposing DA run on the restricted edge set will yield the same stable matching as
on the full edge set. ◀

Proof of Theorem 8. If E occurs, the set of acceptable edges contains all the viable edges.
Furthermore, the acceptable edges are defined by means of loss thresholds. The result now
follows from Lemma 21. ◀

For some of the very bottommost agents, almost all edges may be acceptable. However,
in the bounded derivatives model, with slightly stronger constraints on the derivatives, we
also show (see Appendix H) the existence of an ϵ-Bayes-Nash equilibrium in which all but
a bottom Θ((ln n/n)1/3) fraction of agents use only Θ(ln n) edges, and all agents propose
using at most Θ(ln2 n) edges, with ϵ = O(ln n/n1/3).

6 Numerical Simulations

We present several simulation results which are complementary to our theoretical results.
Throughout this section, we focus on the linear separable model.
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6.1 NRMP Data
We used NRMP data to motivate some of our choices of parameters for our simulations. The
NRMP provides extensive summary data [19]. We begin by discussing this data.

Over time, the number of positions and applicants has been growing. We mention
some numbers for 2021. There were over 38,000 positions available and a little over 42,000
applicants. The main match using the DA algorithm (modified to allow for couples, who
comprise a little over 5% of the applicants) filled about 95% of the available positions.
The NRMP also ran an aftermarket, called SOAP, after which about 0.5% of the positions
remained unfilled.

The positions cover many different specialities. These specialities vary hugely in the
number of positions available, with the top 11, all of size at least 1,000, accounting for 75% of
the positions. In addition, about 75% of the doctors apply to only one speciality. We think
that as a first approximation, w.r.t. the model we are using, it is reasonable to view each
speciality as a separate market. Accordingly, we have focused our simulations on markets
with 1,000–2,000 positions (though the largest speciality in the NRMP data had over 9,000
positions).

On average, doctors listed 12.5 programs in their preference lists, hospital programs listed
88 doctors, and the average program size was 6.5 (all numbers are approximate). While
there is no detailed breakdown of the first two numbers, it is clear they vary considerably
over the individual doctors and hospitals. For our many-to-one simulations we chose to use a
fixed size for the hospital programs. Our simulations cause the other two numbers to vary
over the individual doctors and programs because the public ratings and private scores are
chosen by a random process.

6.2 Numbers of Available Edges
The first question we want to answer is how long do the preference lists need to be in order to
have a high probability of including all acceptable edges, for all but the bottommost agents?

We chose bottommost to mean the bottom 20% of the agents, based on where the needed
length of the preference lists started to increase in our experiments for n = 1,000–2,000.

We ran experiments with λ = 0.5, 0.67, 0.8, corresponding to the public rating having
respectively equal, twice, and four times the weight of the private scores in their contribution
to the utility. We report the results for λ = 0.8. The edge sets were larger for smaller values
of λ, but the results were qualitatively the same. We generated 100 random markets and
determined the smallest value of L that ensured all agents were matched in all 100 markets.
L = 0.12 sufficed. In Figure 2, we show results by decile of women’s rank (top 10%, second
10%, etc.), specifically the average length of the preference list and the average number of
edges proposed by a woman in woman-proposing DA, over these 100 randomly generated
markets. We also show the max and min values over the 100 runs; these can be quite far
from the average value. Note that the min values in Figure 2(a) are close to the max values
in Figure 2(b), which suggests that being on the proposing side does not significantly reduce
the value of L that the women could use compared to the value the men use. We also show
data for a typical single run in Figure 3.

We repeated the simulation for the many-to-one setting. In Figure 4, we show the results
for 2000 workers and 250 companies, each with 8 positions. Now, on average, a typical worker
(i.e. among the top 80%) has an average preference list length of 55 and makes 7 proposals.

The one-to-one results show that for non-bottommost agents, the preference lists have
length 150 on the average, while women make 30 proposals on the average (these numbers
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(a) Number of edges in the acceptable edge set,
per woman, by decile; average in blue with circles,
minimum in red with stars. (n = 2,000, λ = 0.8,
L = 0.12.)

(b) Number of edges in the acceptable edge set
proposed during the run of DA, per women, by
decile; average in blue with circles, maximum in
red with stars.

Figure 2 One-to-one case: summary statistics.

(a) Number of edges in the acceptable edge set for
each woman.

(b) Number of edges in the acceptable edge set
proposed by each woman.

Figure 3 One-to-one case: a typical run.

are slightly approximate). What is going on? We believe that the most common matches
provide a small loss or gain (Θ(n−1/3) in our theoretical bounds) as opposed to the maximum
loss possible (Θ(n−1/3 ln1/3 n) in our theoretical bounds), as is indicated by our distribution
bound on the losses (see item 4 in Appendix E.1). The question then is where do these edges
occur in the preference list, and the answer is about one fifth of the way through (for one
first has the edges providing a gain, which only go to higher up agents on the opposite side,
and then one has the edges providing a loss, and these go both up and down). However, a
few of the women will need to go through most of their list, as indicated by the fact that the
max and min lines (for example in Figure 4) roughly coincide.

This effect can also be seen in the many-to-one experiment but it is even more stark on
the worker’s side. The reason is that the number of companies with whom a worker w might
match which are above w, based on their public ratings alone, is Θ(Lcnc), while the number
below w is Θ(Lwnc), a noticeably larger number. (See Appendix F.1 for a proof of these
bounds.) The net effect is that there are few edges that provide w a gain, and so the low-loss
edges, which are the typical matches, are reached even sooner in this setting.

Now we turn to why the number of edges in the available edge set per woman changes at
the ends of the range. There are two factors at work. The first factor is due to an increasing
loss bound as we move toward the bottommost women, which increases the sizes of their
available edge sets. The second factor is due to public ratings. For a woman w the range of
men’s public ratings for its acceptable edges is [rm − Θ(L), rm + Θ(L)], where m is aligned
with w. But at the ends a portion of this range will be cut off, reducing the number of
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(a) Many to One Setting: Number of edges in the
acceptable edge set per worker, by decile; average
in blue with circles, minimum in red with stars.
(nw = 2,000, d = 8, λ = 0.8, Lc = 0.14, Lw =
0.24.)

(b) Number of edges in the acceptable edge set
proposed during the run of DA, per worker, by
decile; average in blue with circles, maximum in
red with stars.

Figure 4 Many to One Setting.

acceptable edges, with the effect more pronounced for low public ratings. Because λ = 0.8,
initially, as we move to lower ranked women, the gain due to increasing the loss bound
dominates the loss due to a reduced public rating range, but eventually this reverses. Both
effects can be clearly seen in Figure 3(a), for example.

6.3 Unique Stable Partners

Another interesting aspect of our simulations is that they showed that most agents have a
unique stable partner. This is similar to the situation in the popularity model when there
are short preference lists, but here this result appears to hold with full length preference
lists. In Figure 5, we show the outcome on a typical run and averaged over 100 runs, for
n = 2,000 in the one-to-one setting. We report the results for the men, but as the setting is
symmetric they will be similar for the women. On the average, among the top 90% of agents
by rank, 0.5% (10 of 1,800) had more than one stable partner, and among the remainder
another 2% had multiple stable partners (40 of 200).

Also, as suggested by the single run illustrated in Figure 5(a), the pair around public
rank 1,600 and the triple between 1,200 and 1,400 have multiple stable partners which
they can swap (or exchange via a small cycle of swaps) to switch between different stable
matchings. This pattern is typical for the very few men with multiple stable partners outside
the bottommost region.

6.4 Constant Number of Proposals

Our many-to-one experiments suggest that the length of the preference lists needed by our
model are larger than those observed in the NRMP data. In addition, even though there is a
simple rule for identifying these edges, in practice the communication that would be needed
to identify these edges may well be excessive. In light of this it is interesting to investigate
what can be done when the agents have shorter preference lists.

We simulated a strategy where the workers’ preference lists contain only a constant
number of edges. We construct an Interview Edge Set which contains the edges (w, c)
satisfying the following conditions:
1. Let rw and rc be the public ratings of w and c respectively. Then |rw − rc| ≤ p.
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(a) Public ranks of men with multiple stable part-
ners in a typical run.

(b) Average numbers of men with multiple stable
partners, by decile.

Figure 5 Unique stable partners, one-to-one setting.

2. The private score w has for c as well as the private score of c for w are both greater
than q.

We choose the parameters p and q so as to have 15 edges per agent on average. Many
combinations of p and q would work. We chose a pair that caused relatively few mismatches.
We then ran worker proposing DA on the Interview Edge Set.

One way of identifying these edges is with the following communication protocol: the
workers signal the companies which meet their criteria (the workers’ criteria); the companies
then reply to those workers who meet their criteria. In practice this would be a lot of com-
munication on the workers’s side, and therefore it may be that an unbalanced protocol where
the workers use a larger qw as their private score cutoff and the companies a correspondingly
smaller qc is more plausible. Clearly this will affect the losses each side incurs when there is a
match, but we think it will have no effect on the non-match probability, and as non-matches
are the main source of losses, we believe our simulation is indicative. We ran the above
experiment with p = 0.19 and q = 0.60, with the company capacity being 8. Figure 6(a)
shows the locations of unmatched workers in a typical run of this experiment while 6(b)
shows the average numbers of unmatched workers per quantile (of public ratings) over 100
runs. We observe that the number of unmatched workers is very low (about 1.5% of the
workers) and most of these are at the bottom of the public rating range.

Figure 6(c) compares the utility obtained by the workers in the match obtained by
running worker-proposing DA on the Interview Edge Set to the utility they obtain in the
worker-optimal stable match. We observe that only a small number of workers have a
significantly worse outcome when restricted to the Interview Edge Set.

(a) Public ranks of unmatched
workers in a typical run.

(b) Average numbers of un-
matched workers by public rat-
ing decile.

(c) Distribution of workers’
utilities with worker-proposing
DA: (full edge set result) –
(Interview edge set result).

Figure 6 Constant number of proposals.



I. Agarwal and R. Cole 8:19

7 Discussion and Open Problems

Our work shows that in the bounded derivatives model, apart from a sub-constant fraction
of the agents, each of the other agents has O(ln n) easily identified edges on their preference
list which cover all their stable matches w.h.p.

As described in Section 6, our experiments for the one-to-one setting yield a need for
what appear to be impractically large preference lists. While the results in the many-to-one
setting are more promising, even here the preference lists appear to be on the large side.
Also, while our rule for identifying the edges to include is simple, in practice it may well
require too much communication to identify these edges. At the same time, our outcome is
better than what is achieved in practice: we obtain a complete match with high probability,
whereas in the NRMP setting a small but significant percentage of positions are left unfilled.
Our conclusion is that it remains important to understand how to effectively select smaller
sets of edges.

In the popularity model, it is reasonable for each agent to simply select their favorite
partners. But in the current setting, which we consider to be more realistic, it would be an
ineffective strategy, as it would result in most agents remaining unmatched. Consequently,
we believe the main open issue is to characterize what happens when the number of edges k

that an agent can list is smaller than the size of the allowable edge set. We conjecture that
following a simple protocol for selecting edges to list, such as the one we use in our experiments
(see Section 6.4), will lead to an ϵ-Bayes-Nash equilibrium, where ϵ is a decreasing function
of k. Strictly speaking, as the identification of allowable edges requires communication, we
need to consider the possibility of strategic communication, and so one would need to define
a notion of ϵ-equilibrium akin to a Subgame Perfect equilibrium. We conjecture that even
with this, it would still be an ϵ-equilibrium.

Finally, it would be interesting to resolve whether the experimentally observed near
uniqueness of the stable matching for non-bottom agents is a property of the linear separable
model. We conjecture that in fact it also holds in the bounded derivatives model.
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