
Rerouting Planar Curves and Disjoint Paths
Takehiro Ito #

Graduate School of Information Sciences,
Tohoku University, Sendai, Japan

Yuni Iwamasa #

Graduate School of Informatics,
Kyoto University, Japan

Naonori Kakimura #

Faculty of Science and Technology,
Keio University, Yokohama, Japan

Yusuke Kobayashi #

Research Institute for Mathematical Sciences,
Kyoto University, Japan

Shun-ichi Maezawa #

Department of Mathematics,
Tokyo University of Science, Japan

Yuta Nozaki #

Faculty of Environment and Information Sciences,
Yokohama National University, Japan
SKCM2, Hiroshima University, Japan

Yoshio Okamoto #

Graduate School of Informatics and Engineer-
ing, The University of Electro-Communications,
Tokyo, Japan

Kenta Ozeki #

Faculty of Environment and Information Sciences,
Yokohama National University, Japan

Abstract
In this paper, we consider a transformation of k disjoint paths in a graph. For a graph and a
pair of k disjoint paths P and Q connecting the same set of terminal pairs, we aim to determine
whether P can be transformed to Q by repeatedly replacing one path with another path so that the
intermediates are also k disjoint paths. The problem is called Disjoint Paths Reconfiguration.
We first show that Disjoint Paths Reconfiguration is PSPACE-complete even when k = 2.
On the other hand, we prove that, when the graph is embedded on a plane and all paths in P
and Q connect the boundaries of two faces, Disjoint Paths Reconfiguration can be solved in
polynomial time. The algorithm is based on a topological characterization for rerouting curves on
a plane using the algebraic intersection number. We also consider a transformation of disjoint s-t
paths as a variant. We show that the disjoint s-t paths reconfiguration problem in planar graphs
can be determined in polynomial time, while the problem is PSPACE-complete in general.
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1 Introduction

1.1 Disjoint Paths and Reconfiguration
The disjoint paths problem is a classical and important problem in algorithmic graph theory
and combinatorial optimization. In the problem, the input consists of a graph G = (V, E)
and 2k distinct vertices s1, . . . , sk, t1, . . . , tk, called terminals, and the task is to find k

vertex-disjoint paths P1, . . . , Pk such that Pi connects si and ti for i = 1, . . . , k if they exist.
A tuple P = (P1, . . . , Pk) of paths satisfying this condition is called a linkage. The disjoint
paths problem has attracted attention since the 1970s because of its practical applications to
transportation networks, network routing [46], and VLSI-layout [16, 29]. When the number k

of terminal pairs is part of the input, the disjoint paths problem was shown to be NP-hard by
Karp [25], and it remains NP-hard even for planar graphs [30]. For the case when the graph
is undirected and k is a fixed constant, Robertson and Seymour [42] gave a polynomial-time
algorithm based on the graph minor theory, which is one of the biggest achievements in
this area. Although the setting of the disjoint paths problem is quite simple and easy to
understand, a deep theory in discrete mathematics is required to solve the problem, which is
a reason why this problem has attracted attention in the theoretical study of algorithms.

In this paper, we consider a transformation of linkages in a graph. Roughly, in a
transformation, we pick up one path among the k paths in a linkage and replace it with
another path to obtain a new linkage. To give a formal definition, suppose that G is a
graph and s1, . . . , sk, t1, . . . , tk are distinct terminals. For two linkages P = (P1, . . . , Pk)
and Q = (Q1, . . . , Qk), we say that P is adjacent to Q if there exists i ∈ {1, . . . , k} such
that Pj = Qj for j ∈ {1, . . . , k} \ {i} and Pi ≠ Qi. We say that a sequence ⟨P1, P2, . . . , Pℓ⟩
of linkages is a reconfiguration sequence from P1 to Pℓ if Pi and Pi+1 are adjacent for
i = 1, . . . , ℓ − 1. If such a sequence exists, we say that P1 is reconfigurable to Pℓ. In this
paper, we focus on the following reconfiguration problem, which we call Disjoint Paths
Reconfiguration.

Disjoint Paths Reconfiguration
Input. A graph G = (V, E), distinct terminals s1, . . . , sk, t1, . . . , tk, and two linkages P
and Q.
Question. Is P reconfigurable to Q?

The problem can be regarded as the problem of deciding the reachability between linkages
via rerouting paths. Such a problem falls in the area of combinatorial reconfiguration; see
Section 1.3 for prior work on combinatorial reconfiguration. Note that Disjoint Paths
Reconfiguration is a decision problem that just returns “YES” or “NO” and does not
necessarily find a reconfiguration sequence when the answer is YES1.

Although our study is motivated by a theoretical interest in the literature on combinatorial
reconfiguration, the problem can model a rerouting problem in a telecommunication network
as follows. Suppose that a linkage represents routing in a telecommunication network, and
we want to modify linkage P to another linkage Q which is better than P in some sense. If
we can change only one path in a step in the network for some technical reasons, and we have
to keep a linkage in the modification process, then this situation is modeled as Disjoint
Paths Reconfiguration.

1 Our positive results in this paper hold also for the problem of finding a reconfiguration sequence.
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We also study internally vertex-disjoint s-t paths instead of disjoint paths. In the disjoint
s-t paths problem, for a graph and two terminals s and t, we seek for k internally vertex-
disjoint paths connecting s and t. It is well-known that the disjoint s-t paths problem can be
solved in polynomial time. The study of disjoint s-t paths originated from Menger’s min-max
theorem [33] and the max-flow algorithm by Ford and Fulkerson [14]. Faster algorithms for
finding maximum disjoint s-t paths or a maximum s-t flow have been actively studied in
particular for planar graphs; see e.g. [12, 24, 26, 51].

In the same way as Disjoint Paths Reconfiguration, we consider a reconfiguration
of internally vertex-disjoint s-t paths. Let G = (V, E) be a graph with two distinct terminals
s and t. We say that a set P = {P1, . . . , Pk} of k paths in G is an s-t linkage if P1, . . . , Pk

are internally vertex-disjoint s-t paths. Note that P is not a tuple but a set, that is, we
ignore the ordering of the paths in P. We say that s-t linkages P and Q are adjacent if
Q = (P \ P ) ∪ {Q} for some s-t paths P and Q with P ̸= Q. We define the reconfigurability
of s-t linkages in the same way as linkages. We consider the following problem.

Disjoint s-t Paths Reconfiguration
Input. A graph G = (V, E), distinct terminals s and t, and two s-t linkages P and Q.
Question. Is P reconfigurable to Q?

1.2 Our Contributions
Since finding disjoint s-t paths is an easy combinatorial optimization problem, we may wonder
whether Disjoint s-t Paths Reconfiguration is also tractable. In this paper, we show
that Disjoint s-t Paths Reconfiguration is PSPACE-hard even when k = 2.

▶ Theorem 1. The Disjoint s-t Paths Reconfiguration is PSPACE-complete even when
k = 2 and the maximum degree of G is four.

Note that Disjoint s-t Paths Reconfiguration can be easily reduced to Disjoint
Paths Reconfiguration by splitting each of s and t into k terminals. Thus, this theorem
implies the PSPACE-hardness of Disjoint Paths Reconfiguration with k = 2.

In this paper, we mainly focus on the problems in planar graphs. To better understand
Disjoint Paths Reconfiguration in planar graphs, we show a topological necessary
condition.

Topological conditions play important roles in the disjoint paths problem. If there exist
disjoint paths connecting terminal pairs in a graph embedded on a surface Σ, then there must
exist disjoint curves on Σ connecting them. For example, when terminals s1, s2, t1 and t2 lie
on the outer face F in a plane graph G in this order, there exist no disjoint curves connecting
the terminal pairs in the disk Σ = R2 \ F , and hence we can conclude that G contains no
disjoint paths. Such a topological condition is used to design polynomial-time algorithms
for the disjoint paths problem with k = 2 [44, 45, 49], and to deal with the problem on a
disk or a cylinder [40]. When Σ is a plane (or a sphere), we can always connect terminal
pairs by disjoint curves on Σ, and hence nothing is derived from the above argument. Indeed,
Robertson and Seymour [41] showed that if the input graph is embedded on a surface and
the terminals are mutually “far apart,” then desired disjoint paths always exist.

In contrast, as we will show below in Theorem 2, there exists a topological necessary
condition for the reconfigurability of disjoint paths. Thus, even when the terminals are
mutually far apart, the reconfiguration of disjoint paths is not always possible. This shows a
difference between the disjoint paths problem and Disjoint Paths Reconfiguration.

ICALP 2023
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Figure 1 (Left) An example on the plane where (P1, P2) is not reconfigurable to (Q1, Q2). (Right)
An example in a graph where the condition in Theorem 2 holds but (P1, P2) is not reconfigurable to
(Q1, Q2).

To formally discuss the topological necessary condition, we consider the reconfiguration
of curves on a surface. Suppose that Σ is a surface and let s1, . . . , sk, t1, . . . , tk be distinct
points on Σ. By abuse of notation, we say that P = (P1, . . . , Pk) is a linkage if it is a
collection of disjoint simple curves on Σ such that Pi connects si and ti. We also define the
adjacency and reconfiguration sequences for linkages on Σ in the same way as linkages in
a graph. Then, the reconfigurability between two linkages on a plane can be characterized
with a word wj associated to Qj which is an element of the free group2 Fk generated by
x1, . . . , xk as follows; see Section 3 for the definition of wj .

▶ Theorem 2. Let P = (P1, . . . , Pk) and Q = (Q1, . . . , Qk) be linkages on a plane (or a
sphere). Then, P is reconfigurable to Q if and only if wj ∈ ⟨xj⟩ for any j ∈ {1, . . . , k}, where
⟨xj⟩ denotes the subgroup generated by xj.

See Figure 1 (left) for an example. It is worth noting that, if k = 2 and Σ is a connected
orientable closed surface of genus g ≥ 1, then such a topological necessary condition does not
exist, i.e., the reconfiguration is always possible; see the full version [20].

For a graph embedded on a plane, we can identify paths and curves. Then, Theorem 2 gives
a topological necessary condition for Disjoint Paths Reconfiguration in planar graphs.
However, the converse does not necessarily hold: even when the condition in Theorem 2
holds, an instance of Disjoint Paths Reconfiguration may have no reconfiguration
sequence. See Figure 1 (right) for a simple example. The polynomial solvability of Disjoint
Paths Reconfiguration in planar graphs is open even for the case of k = 2.

With the aid of the topological necessary condition, we design polynomial-time algorithms
for special cases, in which all the terminals are on a single face (called one-face instances), or
s1, . . . , sk are on some face and t1, . . . , tk are on another face (called two-face instances). Note
that one/two-face instances have attracted attention in the disjoint paths problem [40, 47, 48],
in the multicommodity flow problem [18, 35, 36], and in the shortest disjoint paths problem [8,
9, 11, 28]. We show that any one-face instance of Disjoint Paths Reconfiguration has a
reconfiguration sequence (Proposition 13). Moreover, we prove a topological characterization
for two-face instances of Disjoint Paths Reconfiguration with a certain condition
(Theorem 14), which leads to a polynomial-time algorithm in this case.

▶ Theorem 3. When the instances are restricted to two-face instances, Disjoint Paths
Reconfiguration can be solved in polynomial time.

2 Each element of the free group can be expressed as a word consisting of x1, x−1
1 , . . . , xk, x−1

k in which
xi and x−1

i are not adjacent.
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Based on this theorem, we give a polynomial-time algorithm for Disjoint s-t Paths
Reconfiguration in planar graphs.

▶ Theorem 4. There is a polynomial-time algorithm for Disjoint s-t Paths Reconfigur-
ation in planar graphs.

Note that the number k of paths in Theorems 3 and 4 can be part of the input.
It is well known that G has an s-t linkage of size k if and only if G has no s-t separator

of size k − 1 (Menger’s theorem). The characterization for two-face instances (Theorem 14)
implies the following theorem, which is interesting in the sense that one extra s-t connectivity
is sufficient to guarantee the existence of a reconfiguration sequence.

▶ Theorem 5. Let G = (V, E) be a planar graph with distinct vertices s and t, and let P
and Q be s-t linkages of size k. If there is no s-t separator of size k, then P is reconfigurable
to Q.

As mentioned above, the polynomial solvability of Disjoint Paths Reconfiguration
in planar graphs is open even for the case of k = 2. On the other hand, when k is not
bounded, Disjoint Paths Reconfiguration is PSPACE-complete as the next theorem
shows.

▶ Theorem 6. The Disjoint Paths Reconfiguration is PSPACE-complete when the
graph G is planar and of bounded bandwidth.

Here, we recall the definition of the bandwidth of a graph. Let G = (V, E) be an
undirected graph. Consider an injective map π : V → Z. Then, the bandwidth of π is
defined as max{|π(u) − π(v)| | {u, v} ∈ E}. The bandwidth of G is defined as the minimum
bandwidth of all injective maps π : V → Z.

1.3 Related Work
There are a lot of studies on the disjoint paths problem and its variant. For the case of k = 2,
polynomial-time algorithms were presented in [44, 45, 49], while the directed variant was
shown to be NP-hard [15]. In the early stages of the study of the disjoint paths problem,
for the case when G is embedded on a plane and all the terminals are on one face or two
faces, polynomial-time algorithms were given in [40, 47, 48]. For fixed k, Robertson and
Seymour [41] gave a polynomial time algorithm for the disjoint paths problem on a plane or
a fixed surface. By extending this result, for the case when the graph is undirected and k is
a fixed constant, Robertson and Seymour [42] gave a polynomial-time algorithm based on
the graph minor theory, which is one of the biggest achievements in this area. For the planar
case, faster algorithms were presented in [1, 38, 39]. The directed variant of the problem can
be solved in polynomial time if the input digraph is planar and k is a fixed constant; an XP
algorithm was given by Schrijver [43] and an FPT algorithm was given by Cygan et al. [10]
for the parameter k.

Combinatorial reconfiguration is an emerging field in discrete mathematics and theoretical
computer science. In typical problems of combinatorial reconfiguration, we consider two
discrete structures and ask whether one can be transformed to the other by a sequence of
local changes. See surveys of Nishimura [34] and van den Heuvel [50]. Refer to [22] for a
general solver.

Path reconfiguration problems have been studied in this framework. The first problem is
the shortest path reconfiguration, introduced by Kaminski et al. [23]. In this problem, we are
given an undirected graph with two designated vertices s, t and two s-t shortest paths P and

ICALP 2023
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Q. Then, we want to decide whether P can be transformed to Q by a sequence of one-vertex
changes in such a way that all the intermediate s-t paths remain the shortest. Bonsma [6]
proved that the shortest path reconfiguration is PSPACE-complete, but polynomial-time
solvable when the input graph is chordal or claw-free. Bonsma [7] further proved that the
problem is polynomial-time solvable for planar graphs. Wrochna [52] proved that the problem
is PSPACE-complete even for graphs of bounded bandwidth. Gajjar et al. [17] proved that
the problem is polynomial-time solvable for circle graphs, circular-arc graphs, permutation
graphs, and hypercubes. They also considered a variant where a change can involve k

successive vertices; in this variant, they proved that the problem is PSPACE-complete even
for line graphs. Properties of the adjacency relation in the shortest path reconfiguration have
also been studied [4, 5].

Another path reconfiguration problem has been introduced by Amiri et al. [3] who were
motivated by a problem in software-defined networks. In their setup, we are given a directed
graph with edge capacity and two designated vertices s, t. We are also given k pairs of
s-t paths (Pi, Qi), i = 1, 2, . . . , k, where the number of paths among P1, P2, . . . , Pk (and
among Q1, Q2, . . . , Qk respectively) traversing an edge is at most the capacity of the edge.
The problem is to determine whether one set of paths can be transformed into the other
set of paths by a sequence of the following type of changes: specify one vertex v and then
switch the usable outgoing edges at v from those in the Pi to those in the Qi. In each of the
intermediate situations, there must be a unique path through usable edges in Pi ∪ Qi for
each i. See [3] for the precise problem specification. Amiri et al. [3] proved that the problem
is NP-hard even when k = 2. For directed acyclic graphs, they also proved that the problem
is NP-hard (for unbounded k) but fixed-parameter tractable with respect to k. A subsequent
work [2] studied an optimization variant in which the number of steps is to be minimized
when a set of “disjoint” changes can be performed simultaneously.

Matching reconfiguration in bipartite graphs can be seen as a certain type of disjoint paths
reconfiguration problems. In matching reconfiguration, we are given two matchings (with
extra properties) and want to determine whether one matching can be transformed to the
other matching by a sequence of local changes. There are several choices for local changes.
One of the most studied local change rules is the token jumping rule, where we remove
one edge and add one edge at the same time. Ito et al. [19] proved that the matching
reconfiguration (under the token jumping rule) can be solved in polynomial time.3

To see a connection of matching reconfiguration with disjoint paths reconfiguration,
consider the matching reconfiguration problem in bipartite graphs G under the token jumping
rule, where we are given two matchings M, M ′ of G. Then, we add two extra vertices s, t to G,
and for each edge e ∈ M (and M ′) we construct a unique s-t path of length three that passes
through e. This way, we obtain two s-t linkages P and P ′ from M and M ′, respectively. It is
easy to observe that P can be reconfigured to P ′ in Disjoint s-t Paths Reconfiguration
if and only if M can be reconfigured to M ′ in the matching reconfiguration problem in G.

1.4 Organization
In Section 2, we introduce some notation and basic concepts in topology. Section 3 deals
with rerouting disjoint curves, giving the proof of Theorem 2. In Sections 4 and 5, we prove
Theorems 3, 4, and 5. Hardness results (Theorems 1 and 6) are proven in the full version [20].

3 The theorem by Ito et al. [19] only gave a polynomial-time algorithm for a different local change, the
so-called token addition and removal rule. However, their result can easily be adapted to the token
jumping rule, too. See [21].
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p C1

C2

p

Figure 2 Local intersection numbers of curves C1 and C2 at p.

2 Preliminaries

For a positive integer k, let [k] = {1, 2, . . . , k}.
Let G = (V, E) be a graph. For a subgraph H of G, the vertex set of H is denoted by

V (H). Similarly, for a path P , let V (P ) denote the set of vertices in P . For X ⊆ V , let
N(X) = {v ∈ V \ X | {u, v} ∈ E for some u ∈ X}. For a vertex set U ⊆ V , let G \ U denote
the graph obtained from G by removing all the vertices in U and the incident edges. For
a path P in G, we denote G \ V (P ) by G \ P to simplify the notation. For disjoint vertex
sets X, Y ⊆ V , we say that a vertex subset U ⊆ V \ (X ∪ Y ) separates X and Y if G \ U

contains no path between X and Y . For distinct vertices s, t ∈ V , U ⊆ V \ {s, t} is called an
s-t separator if U separates {s} and {t}.

For Disjoint Paths Reconfiguration (resp. Disjoint s-t Paths Reconfiguration),
an instance is denoted by a triplet (G, P, Q), where G is a graph and P and Q are linkages
(resp. s-t linkages). Note that we omit the terminals because they are determined by P and
Q. Since any instance has a trivial reconfiguration sequence when k = 1, we may assume
that k ≥ 2. For linkages (resp. s-t linkages) P and Q, we denote P ↔ Q if P and Q are
adjacent. Recall that P = (P1, . . . , Pk) is adjacent to Q = (Q1, . . . , Qk) if there exists i ∈ [k]
such that Pj = Qj for j ∈ [k] \ {i} and Pi ̸= Qi.

For a graph G embedded on a surface Σ, each connected region of Σ \ G is called a face of
G. For a face F , its boundary is denoted by ∂F . When a graph G is embedded on a surface
Σ, a path in G is sometimes identified with the corresponding curve in Σ. A graph embedded
on a plane is called a plane graph. A graph is said to be planar if it has a planar embedding.

The following notion is well-known in topology. See [13, Section 1.2.3] for instance.

▶ Definition 7. Let C1 and C2 be piecewise smooth oriented curves on an oriented surface and
let p ∈ C1 ∩ C2 be a transverse double point4. The local intersection number εp(C1, C2) of C1
and C2 at p is defined by εp(C1, C2) = 1 if C1 crosses C2 from left to right and εp(C1, C2) = −1
if C1 crosses C2 from right to left (see Figure 2). When ∂C1 ∩ C2 = C1 ∩ ∂C2 = ∅, the
algebraic intersection number µ(C1, C2) ∈ Z is defined to be the sum of εp(C1, C2) over all
p ∈ C1 ∩ C2 (after a small perturbation if necessary). Note that ∂Ci denotes the set of
endpoints of Ci.

When a graph is embedded on an oriented surface, paths in the graph are piecewise
smooth curves, and hence we can define the algebraic intersection number for a pair of paths
(see Figure 3).

4 Intuitively, a “transverse double point” means that at the intersection two curves are not tangent with
each other and no three segments of curves do not intersect simultaneously.

ICALP 2023
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Figure 3 Algebraic intersection numbers of paths C1 and C2 on a graph.
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3 Curves on a Plane

In this section, we consider the reconfiguration of curves on a plane and prove Theorem 2.
Suppose that we are given distinct points s1, . . . , sk, t1, . . . , tk on a plane and linkages P and
Q that consist of curves on the plane connecting si and ti.

Throughout this section, all intersections of curves are assumed to be transverse double
points. Fix j ∈ [k] and let

⋃
i∈[k] Pi ∩ Qj = {sj , p1, . . . , pn, tj}, where the n + 2 points are

aligned on Qj in this order. We now define wj ∈ Fk by

wj =
∏

ℓ∈[n]

x
εpℓ

(Piℓ
,Qj)

iℓ
,

where iℓ ∈ [k] satisfies pℓ ∈ Piℓ
∩ Qj . Recall that Fk denotes the free group generated by

x1, . . . , xk. We give an example in Figure 4.

▶ Remark 8. Let ab: Fk → Zk denote the abelianization, that is, the ℓth entry of ab(w) is
the sum of the exponents of xℓ’s in w. For distinct i, j ∈ [k], the ith entry of ab(wj) is equal
to the algebraic intersection number µ(Pi, Qj) ∈ Z of Pi and Qj . Thus, wj ∈ ⟨xj⟩ implies
that µ(Pi, Qj) = 0 for any i ∈ [k] \ {j}.

In the following two lemmas, we observe the behavior of wj under certain moves of curves.
For j ∈ [k], let w′

j denote the word defined by a linkage P ′ and the curve Qj .

▶ Lemma 9. Let i ∈ [k] and let P ′ = (P ′
1, . . . , P ′

k) be a linkage such that P ′
ℓ = Pℓ if ℓ ̸= i,

and P ′
i is isotopic5 to Pi relative to {si, ti} in R2 \

⋃
ℓ ̸=i Pℓ. Then, w′

j = wj for j ∈ [k] \ {i},
and w′

i = xe1
i wix

e2
i for some e1, e2 ∈ Z.

5 Intuitively, this means P ′
i can be obtained from Pi by a continuous deformation in the plane that fixes

the endpoints si and ti and avoids passing any point in
⋃

ℓ ̸=i
Pℓ.
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Figure 5 Local pictures of isotopies of Pi.
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Figure 6 (Left) A move of Pi along γ.
(Right) Intersections of P ′
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⋃

ℓ
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Pi

Qj∗

P ′
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Figure 7 A reconfiguration of Pi to P ′
i .

Proof. By the definition of an isotopy (see [13, Section 1.2.5]), P ′
i is obtained from Pi by a

finite sequence of the moves illustrated in Figure 5. By (I), one intersection of Pi and Qi is
created or eliminated, and thus (I) changes wi to wix

±1
i or x±1

i wi. In (II), two intersections
of Pi and Qℓ are created or eliminated for some ℓ ∈ [k]. Since x±1

i x∓1
i = 1, wj is unchanged

under (II) for any j ∈ [k]. ◀

Recall here that ⟨xℓ⟩ denotes the subgroup of Fk generated by xℓ.

▶ Lemma 10. Let γ be a simple curve connecting Pi and sj (i ̸= j) whose interior is disjoint
from

⋃
ℓ∈[k] Pℓ, and define P ′

i as illustrated in Figure 6. Let P ′ be the linkage obtained from
P by replacing Pi with P ′

i . For ℓ ∈ [k], if wℓ ∈ ⟨xℓ⟩, then w′
ℓ = wℓ.

Proof. Define a group homomorphism fij : Fk → Fk by fij(xℓ) = xℓ if ℓ ̸= j, and fij(xj) =
xixjx−1

i . Then, one can check that w′
ℓ = fij(wℓ) if ℓ ̸= j, and w′

j = x−1
i fij(wj)xi (see

Figure 6). Since wℓ = xeℓ

ℓ for some eℓ ∈ Z by the assumption, we have w′
ℓ = wℓ if ℓ ̸= j.

Also, one has

w′
j = x−1

i fij(wj)xi = x−1
i (xixjx−1

i )ej xi = wj .

This completes the proof. ◀

As a consequence of Lemmas 9 and 10, we obtain the following key lemma.

▶ Lemma 11. Suppose that P is reconfigurable to P ′. For j ∈ [k], if wj ∈ ⟨xj⟩, then
w′

j ∈ ⟨xj⟩.

Proof. It suffices to consider the case when there is i ∈ [k] such that P ′
ℓ = Pℓ if ℓ ̸= i, and

P ′
i ̸= Pi. Since Pi is isotopic to P ′

i (relative to {si, ti}) in R2, the curve P ′
i is obtained from

Pi by the moves in Lemmas 9 and 10. Therefore, these lemmas imply that if wj ∈ ⟨xj⟩ then
w′

j ∈ ⟨xj⟩. ◀

With this key lemma, we can prove Theorem 2 stating that P is reconfigurable to Q if
and only if wj ∈ ⟨xj⟩ for any j ∈ [k].

Proof of Theorem 2. First suppose that P is reconfigurable to Q, namely P is reconfigurable
to P ′ such that P ′

i ∩ Qi = {si, ti} and P ′
i ∩ Qj = ∅ for j ∈ [k] \ {i}. Then, w′

j = 1 for any
j ∈ [k]. Since P ′ is reconfigurable to P, Lemma 11 implies that wj ∈ ⟨xj⟩ for any j ∈ [k].

The converse is shown by induction on the number, say n, of intersections of P and
Q except their endpoints. The case n = 0 is obvious. Let us consider the case n ≥ 1.
If Pi ∩ Qj = ∅ for any pair of distinct i, j ∈ [k], then the reconfiguration is obviously
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possible. Otherwise, there exists xix
−1
i or x−1

i xi in the product of the definition of wj∗ for
some i, j∗ ∈ [k] (possibly i = j∗). This means that Pi can be reconfigured to a curve P ′

i

as illustrated in Figure 7. This process eliminates at least two intersections and we have
w′

j ∈ ⟨xj⟩ for any j ∈ [k] by Lemma 11. Thus, the induction hypothesis concludes that P ′ is
reconfigurable to Q. ◀

By Theorem 2 and Remark 8, we obtain the following corollary.

▶ Corollary 12. Let P = (P1, . . . , Pk) and Q = (Q1, . . . , Qk) be linkages on a plane (or a
sphere). If P is reconfigurable to Q, then µ(Pi, Qj) = 0 for any distinct i, j ∈ [k].

It is worth mentioning that the converse is not necessarily true as illustrated in Figure 4.
This means that a “non-commutative” tool such as the free group Fk is essential to describe
the complexity of the reconfiguration of curves on a plane.

4 Algorithms for Planar Graphs

In this section, we consider the reconfiguration in planar graphs and prove Theorems 3,
4, and 5. We deal with one-face instances and two-face instances of Disjoint Paths
Reconfiguration in Section 4.1. Then, we discuss Disjoint s-t Paths Reconfiguration
in Section 4.2. A proof of a key theorem (Theorem 14) is postponed to Section 5.

4.1 One-Face Instance and Two-Face Instance
We say that an instance (G, P, Q) of Disjoint Paths Reconfiguration is a one-face
instance if G is a plane graph and all the terminals are on the boundary of some face. We
show that P is always reconfigurable to Q in a one-face instance, whose proof is given in the
full version [20].

▶ Proposition 13. For any one-face instance (G, P, Q) of Disjoint Paths Reconfigura-
tion, P is reconfigurable to Q.

Let k ≥ 2. We say that an instance (G, P, Q) of Disjoint Paths Reconfiguration is
a two-face instance if G = (V, E) is a plane graph, s1, . . . , sk are on the boundary of some
face S, and t1, . . . , tk are on the boundary of another face T . The objective of this subsection
is to present a polynomial-time algorithm for two-face instances.

It suffices to consider the case when the graph is 2-connected since otherwise we can
easily reduce to the 2-connected case. Hence, we may assume that the boundary of each
face forms a cycle. For ease of explanation, without loss of generality, we assume that G is
embedded on R2 so that S is an inner face and T is the outer face. Furthermore, we may
assume that s1, . . . , sk lie on the boundary of S clockwise in this order and t1, . . . , tk lie on
the boundary of T clockwise in this order, because there is a linkage.

A vertex set U ⊆ V is called a terminal separator if U separates {s1, . . . , sk} and
{t1, . . . , tk}. For two curves (or paths) P and Q between ∂S and ∂T that share no endpoints,
define µ(P, Q) as in Definition 7. That is, µ(P, Q) is the number of times P crosses Q from
left to right minus the number of times P crosses Q from right to left, where we suppose
that P and Q are oriented from ∂S to ∂T . Since µ(Pi, Qj) takes the same value for distinct
i, j ∈ [k] (see the full version [20] for details), this value is denoted by µ(P, Q). Roughly,
µ(P, Q) indicates the difference in the numbers of rotations around S of the linkages.

The existence of a linkage shows that the graph has no terminal separator of size less
than k. If the graph has no terminal separator of size k, then we can characterize the
reconfigurability by using µ(P, Q). The following is a key theorem in our algorithm, whose
proof is given in Section 5.
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▶ Theorem 14. Let k ≥ 2. Suppose that a two-face instance (G, P, Q) of Disjoint Paths
Reconfiguration has no terminal separator of size k. Then, P is reconfigurable to Q if
and only if µ(P, Q) = 0.

By using this theorem, we can design a polynomial-time algorithm for two-face instances
of Disjoint Paths Reconfiguration and prove Theorem 3.

Proof of Theorem 3. Suppose that we are given a two-face instance I = (G, P, Q) of
Disjoint Paths Reconfiguration.

We first test whether I has a terminal separator of size k, which can be done in polynomial
time by a standard minimum cut algorithm. If there is no terminal separator of size k, then
Theorem 14 shows that we can easily solve Disjoint Paths Reconfiguration by checking
whether µ(P, Q) = 0 or not.

Suppose that we obtain a terminal separator U of size k. Then, we obtain subgraphs
G1 and G2 of G such that G = G1 ∪ G2, V (G1) ∩ V (G2) = U , {s1, . . . , sk} ⊆ V (G1), and
{t1, . . . , tk} ⊆ V (G2). We test whether V (Pi) ∩ U = V (Qi) ∩ U holds for any i ∈ [k] or
not, where we note that each of V (Pi) ∩ U and V (Qi) ∩ U consists of a single vertex. If
this does not hold, then we can immediately conclude that P is not reconfigurable to Q,
because V (Pi) ∩ U does not change in the reconfiguration. If V (Pi) ∩ U = V (Qi) ∩ U for
i ∈ [k], then we consider the instance Ii = (Gi, Pi, Qi) for i = 1, 2, where Pi and Qi are the
restrictions of P and Q to Gi. That is, Ii is the restriction of I to Gi. Then, we see that
P is reconfigurable to Q if and only if Pi is reconfigurable to Qi for i = 1, 2. Since I1 and
I2 are one-face or two-face instances, by solving them recursively, we can solve the original
instance I in polynomial time. ◀

4.2 Reconfiguration of s-t Paths
In this subsection, for Disjoint s-t Paths Reconfiguration in planar graphs, we show
results that are analogous to Theorems 14 and 3, which have been already stated in Section 1.2.

▶ Theorem 5. Let G = (V, E) be a planar graph with distinct vertices s and t, and let P
and Q be s-t linkages of size k. If there is no s-t separator of size k, then P is reconfigurable
to Q.

Proof. Suppose that G, s, t, P , and Q are as in the statement, and assume that there is no
s-t separator of size k. We fix an embedding of G on the plane. If there is an edge connecting
s and t, then s and t are on the boundary of some face, and hence P is reconfigurable to Q
in the same way as Proposition 13. Thus, it suffices to consider the case when there is no
edge connecting s and t.

We now construct an instance of Disjoint Paths Reconfiguration by replacing s

and t with large “grids” as follows. Let e1, e2, . . . , eℓ be the edges incident to s clockwise in
this order. Note that ℓ ≥ k + 1 holds, because G has no s-t separator of size k. For i ∈ [ℓ],
we subdivide ei by introducing p new vertices v1

i , v2
i , . . . , vp

i such that they are aligned in this
order and v1

i is closest to s, where p is a sufficiently large integer (e.g., p ≥ |V |2). For i ∈ [ℓ]
and for j ∈ [p], we introduce a new edge connecting vj

i and vj
i+1, where vj

ℓ+1 = vj
1. Define

si = v1
i for i ∈ [k] and remove s. Then, the graph is embedded on the plane and s1, . . . , sk

are on the boundary of some face clockwise in this order; see Figure 8. By applying a similar
procedure to t, we modify the graph around t and define t1, . . . , tk that are on the boundary
of some face counter-clockwise in this order. Let G′ be the obtained graph. Observe that G′

contains no terminal separator of size k, because G has no s-t separator of size k.
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s1s2
s3

s

e1

e2

e3

sk

Figure 8 (Left) Original graph G. (Right) Modification around s.

X WU Y

G2G1 G3

s
t

Figure 9 Construction of G1, G2, and G3.

By rerouting the given s-t linkages P and Q around s and t, we obtain linkages P ′

and Q′ from {s1, . . . , sk} to {t1, . . . , tk} in G′. Note that the restrictions of P and Q to
G \ {s, t} coincide with those of P ′ and Q′, respectively. Then, we can take P ′ and Q′ so
that |µ(P ′, Q′)| ≤ |V |. Furthermore, using at most |V | concentric cycles around s and t, we
can reroute the linkages so that the value µ(P ′, Q′) decreases or increases by one. Therefore,
using p ≥ |V |2 concentric cycles, we can reroute P ′ and Q′ so that µ(P ′, Q′) becomes zero.

By Theorem 14, P ′ is reconfigurable to Q′ in G′ (in terms of Disjoint Paths Reconfig-
uration). Then, the reconfiguration sequence from P ′ to Q′ corresponds to that from P to
Q in G (in terms of Disjoint s-t Paths Reconfiguration). Therefore, P is reconfigurable
to Q in G. ◀

▶ Theorem 4. There is a polynomial-time algorithm for Disjoint s-t Paths Reconfigur-
ation in planar graphs.

Proof. Suppose that we are given a planar graph G = (V, E) with s, t ∈ V and s-t linkages
P = {P1, . . . , Pk} and Q = {Q1, . . . , Qk} in G. We first test whether G has an s-t separator
of size k. If there is no such a separator, then we can immediately conclude that P is
reconfigurable to Q by Theorem 5.

Suppose that G has an s-t separator of size k. Let X be the inclusionwise minimal vertex
set subject to s ∈ X and N(X) is an s-t separator of size k. Note that such X is uniquely
determined by the submodularity of |N(X)| and it can be computed in polynomial time by a
standard minimum cut algorithm. Similarly, let Y be the unique inclusionwise minimal vertex
set subject to t ∈ Y and N(Y ) is an s-t separator of size k. Let U = N(X), W = N(Y ),
G1 = G[X ∪ U ], G2 = G \ (X ∪ Y ), and G3 = G[Y ∪ W ]; see Figure 9. Since V (Pi) ∩ U and
V (Pi) ∩ W do not change in the reconfiguration, we can consider the reconfiguration in G1,
G2, and G3, separately.
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We first consider the reconfiguration in G1. Observe that each path in P contains exactly
one vertex in U , and the restriction of P to G1 consists of k paths from s to U that are
vertex-disjoint except at s. The same for Q. By the minimality of X, G1 contains no vertex
set of size k that separates {s} and U . Therefore, by the same argument as Theorem 5, the
restriction of P to G1 is reconfigurable to that of Q.

If U ∩ W ≠ ∅, then G \ X contains no vertex set of size k that separates U and {t} by
the minimality of Y . In such a case, by applying the same argument as above, the restriction
of P to G \ X is reconfigurable to that of Q. By combining the reconfiguration in G1 and
that in G \ X, we obtain a reconfiguration sequence from P to Q.

Therefore, it suffices to consider the case when U ∩ W = ∅. In the same way as G1,
we see that the restriction of P to G3 is reconfigurable to that of Q. This shows that the
reconfigurability from P to Q in G is equivalent to that in G2. By changing the indices if
necessary, we may assume that Pi ∩ U = Qi ∩ U for i ∈ [k]. If Pi ∩ W ≠ Qi ∩ W for some
i ∈ [k], then we can conclude that P is not reconfigurable to Q. Otherwise, let P ′ and Q′ be
the restrictions of P and Q to G2, respectively. Since (G2, P ′, Q′) is a one-face or two-face
instance of Disjoint Paths Reconfiguration, we can solve it in polynomial time by
Proposition 13 and Theorem 3. Therefore, we can test the reconfigurability from P to Q in
polynomial time; ◀

5 Proof of Theorem 14

The necessity (“only if” part) in Theorem 14 is immediately derived from Corollary 12.
In what follows in this section, we show the sufficiency (“if” part) in Theorem 14, which

is one of the main technical contributions of this paper. Assume that µ(P, Q) = 0 and there
is no terminal separator of size k. The objective is to show that P is reconfigurable to Q.
Our proof is constructive, and based on topological arguments. A similar technique is used
in [27, 32, 31, 37].

5.1 Preliminaries for the Proof
Let C be a simple curve connecting the boundaries of S and T such that C contains no
vertex in G, C intersects the boundaries of S and T only at its endpoints, and µ(Pi, C) = 0
for i ∈ [k]. Note that such C always exists, because the last condition is satisfied if C is
disjoint from P. Note also that µ(Qi, C) = 0 holds for i ∈ [k], because µ(P, Q) = 0.

Since T is the outer face, R2 \ (S ∪ T ) forms an annulus (or a cylinder).6 Thus, by cutting
it along C, we obtain a rectangle whose boundary consists of ∂S, ∂T , and two copies of
C. We take infinite copies of this rectangle and glue them together to obtain an infinitely
long strip R. That is, for j ∈ Z, let Cj be a copy of C, let Rj be a copy of the rectangle
whose boundary contains Cj and Cj+1, and define R =

⋃
j∈Z Rj ; see Figure 10. By taking

C appropriately, we may assume that the copies of s1, . . . , sk lie on the boundary of Rj in
this order so that s1 is closest to Cj and sk is closest to Cj+1. The same for t1, . . . , tk. Note
that R is called the universal cover of R2 \ (S ∪ T ) in the terminology of topology.

Since G is embedded on R2 \ (S ∪ T ), this operation naturally defines an infinite periodic
graph Ĝ = (V̂ , Ê) on R that consists of copies of G. A path in Ĝ is identified with the
corresponding curve in R. For v ∈ V and j ∈ Z, let vj ∈ V̂ denote the unique vertex in Rj

6 More precisely, the annulus is degenerated when ∂S ∩ ∂T ≠ ∅, but the same argument works even for
this case.
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sk
S

T̂

Ŝ

Figure 10 (Left) Curve C in R2 \ (S ∪ T ). (Right) Construction of R.

T̂

Ŝ

P
L(P )

Figure 11 Definition of L(P ).

that corresponds to v. Since µ(Pi, C) = 0 for i ∈ [k], each path in Ĝ corresponding to Pi is
from sj

i to tj
i for some j ∈ Z, and we denote such a path by P j

i . We define Qj
i in the same

way. Since P and Q are linkages in G, {P j
i | i ∈ [k], j ∈ Z} and {Qj

i | i ∈ [k], j ∈ Z} are
sets of vertex-disjoint paths in Ĝ.

A path in Ĝ connecting the boundary of R corresponding to ∂S and that corresponding
to ∂T is called an Ŝ-T̂ path. For an Ŝ-T̂ path P , let L(P ) be the region of R \ P that is
on the “left-hand side” of P . Formally, let r be a point in Rj for sufficiently small j, and
define L(P ) as the set of points x ∈ R \ P such that any curve in R between r and x crosses
P an even number of times; see Figure 11. For two Ŝ-T̂ paths P and Q, we denote P ⪯ Q

if L(P ) ⊆ L(Q), and denote P ≺ Q if L(P ) ⊊ L(Q). For two linkages P = (P1, . . . , Pk)
and Q = (Q1, . . . , Qk) in G with µ(Pi, C) = µ(Qi, C) = 0 for i ∈ [k], we denote P ⪯ Q if
P j

i ⪯ Qj
i for any i ∈ [k] and j ∈ Z, and denote P ≺ Q if P ⪯ Q and P ≠ Q.

5.2 Case When P ⪯ Q
In this subsection, we consider the case when P ⪯ Q, and the general case will be dealt with
in Section 5.3. To show that P is reconfigurable to Q, we show the following lemma.

▶ Lemma 15. If P ≺ Q, then there exists a linkage P ′ such that P ↔ P ′ and P ≺ P ′ ⪯ Q.

Proof. Let Ŵ := {v̂ ∈ V̂ | v̂ ∈ P j
i \ Qj

i for some i ∈ [k] and j ∈ Z} and let W be the subset
of V corresponding to Ŵ . If W = ∅, then take an index i ∈ [k] such that Pi ̸= Qi and let
P ′ = (P ′

1, . . . , P ′
k) be the set of paths obtained from P by replacing Pi with Qi. Since Q is

a linkage and all the vertices in P ′
h are contained in Qh for h ∈ [k], P ′ is a desired linkage.

Thus, it suffices to consider the case when W ̸= ∅.
Let u ∈ W . Let û ∈ Ŵ be a vertex corresponding to u and let i ∈ [k] and j ∈ Z be the

indices such that û ∈ P j
i \ Qj

i . Since û ∈ P j
i \ Qj

i implies û ∈ L(Qj
i ) \ L(P j

i ), there exists
a face F̂ of Ĝ such that ∂F̂ contains an edge of P j

i incident to û and F̂ ⊆ L(Qj
i ) \ L(P j

i ).
Define (P j

i )′ as the sj
i -tj

i path in Ĝ with maximal L((P j
i )′) subject to (P j

i )′ ⊆ P j
i ∪ ∂F̂ ; see

Figure 12. Note that such a path is uniquely determined, it satisfies P j
i ≺ (P j

i )′ ⪯ Qj
i , and it

can be found in polynomial time.
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Figure 12 The blue thick paths are P j
i and

P j
i+1, and the red dashed path is (P j

i )′. There
exists a vertex v̂ ∈ ∂F̂ ∩ P j

i+1.
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Figure 13 Each blue path represents Pi.
The dotted curve is part of J and the red
dotted thick curve is C∗.

Let P ′
i be the si-ti path in G that corresponds to (P j

i )′. If P ′
i is disjoint from Ph for

any h ∈ [k] \ {i}, then we can obtain a desired linkage P ′ from P by replacing Pi with P ′
i .

Otherwise, P ′
i intersects Ph for some h ∈ [k] \ {i}. This together with P j

i ≺ (P j
i )′ shows that

(P j
i )′ intersects P j

i+1, where P j
k+1 means P j+1

1 . Since P j
i and P j

i+1 are vertex-disjoint, the
intersection of (P j

i )′ and P j
i+1 is contained in ∂F̂ , which implies that ∂F̂ ∩ P j

i+1 contains a
vertex v̂ ∈ V̂ ; see Figure 12 again. Since F̂ ⊆ L(Qj

i ), we obtain v̂ ∈ L(Qj
i ) ∪ Qj

i ⊆ L(Qj
i+1),

and hence v̂ ̸∈ Qj
i+1. Let v and F be the vertex and the face of G that correspond to v̂ and

F̂ , respectively. Then, v̂ ∈ P j
i+1 \ Qj

i+1 implies that v̂ ∈ Ŵ and v ∈ W . Note that there
exists a curve in F from u to v.

By the above argument, for any u ∈ W , we can obtain
(i) a desired linkage P ′, or
(ii) a vertex v ∈ W on Pi+1 and a curve from u to v contained in some face of G, where i

is the index with u ∈ V (Pi).
Therefore, it suffices to show that we obtain the outcome (i) for some u ∈ W . To derive a
contradiction, assume to the contrary that we obtain the outcome (ii) for any u ∈ W .

By using the outcome (ii) repeatedly and by shifting the indices of Pi if necessary, we
obtain vi and Ji for i = 1, 2, . . . such that vi ∈ W is on Pi (where the index is modulo k)
and Ji is a curve from vi to vi+1 contained in some face. We consider the curve J obtained
by concatenating J1, J2, . . . in this order. Since |W | is finite, this curve visits the same point
more than once, and hence it contains a simple closed curve C∗. Since C∗ is simple and visits
vertices on Pi, Pi+1, . . . in this order, C∗ surrounds S exactly once in the clockwise direction;
see Figure 13. In particular, C∗ contains exactly one vertex on Pi for each i ∈ [k]. Let U

be the set of vertices in V contained in C∗. Then, |U | = k and G \ U has no path between
{s1, . . . , sk} and {t1, . . . , tk} by the choice of C∗. Furthermore, U contains no terminals,
because U ⊆ W and W contains no terminals. Therefore, U is a terminal separator of size k,
which contradicts the assumption. ◀

As long as P ≠ Q, we apply this lemma and replace P with P ′, repeatedly. Then, this
procedure terminates when P = Q, and gives a reconfiguration sequence from P to Q. This
completes the proof for the case when P ⪯ Q.

We now give a remark on the length of the reconfiguration sequence. For Ŝ-T̂ paths
P and Q with the same endpoints, we see that L(Q) \ L(P ) contains O(|V |2) faces of Ĝ.
Therefore, in the reconfiguration sequence from P to Q obtained above, each path in P is
replaced with another path O(|V |2) times, which shows that the number of applications of
Lemma 15 is O(k|V |2) in total.
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Figure 14 Construction of P j
i ∨ Qj

i .

5.3 General Case
In this subsection, we consider the case when P ⪯ Q does not necessarily hold. For
i ∈ [k] and j ∈ Z, define P j

i ∨ Qj
i as the sj

i -tj
i path in Ĝ with maximal L(P j

i ∨ Qj
i ) subject

to P j
i ∨ Qj

i ⊆ P j
i ∪ Qj

i ; see Figure 14. Note that such a path is uniquely determined,
P j

i ⪯ P j
i ∨ Qj

i , and Qj
i ⪯ P j

i ∨ Qj
i . Since Ĝ is periodic, for any j ∈ Z, P j

i ∨ Qj
i corresponds

to a common si-ti walk Pi ∨ Qi in G. Actually, P ∨ Q := (P1 ∨ Q1, . . . , Pk ∨ Qk) is a linkage
in G.

▶ Lemma 16. P ∨ Q is a linkage in G.

Proof. We first show that Pi ∨ Qi is a path for each i ∈ [k]. Assume to the contrary that
Pi ∨ Qi visits a vertex v ∈ V more than once. Then, for j ∈ Z, there exist j1, j2 ∈ Z with
j1 < j2 such that P j

i ∨ Qj
i contains both vj1 and vj2 . Since the path P j

i ∨ Qj
i is contained in

the subgraph P j
i ∪ Qj

i , without loss of generality, we may assume that P j
i contains vj2 . This

shows that vj1 ∈ L(P j
i ) ⊆ L(P j

i ∨ Qj
i ), which contradicts that vj1 is contained in P j

i ∨ Qj
i .

We next show that P1 ∨ Q1, . . . , Pk ∨ Qk are pairwise vertex-disjoint. Assume to the
contrary that Pi ∨ Qi and Pi′ ∨ Qi′ contain a common vertex v ∈ V for distinct i, i′ ∈ [k].
Since Ĝ is periodic, there exist j, j′ ∈ Z such that P j

i ∨ Qj
i and P j′

i′ ∨ Qj′

i′ contain v0 (i.e.,
the copy of v in R0). We may assume that (j, i) is smaller than (j′, i′) in the lexicographical
ordering, that is, either j < j′ holds or j = j′ and i < i′ hold. Since P j

i ∨ Qj
i ⊆ P j

i ∪ Qj
i ,

we may also assume that v0 ∈ P j
i by changing the roles of P j

i and Qj
i if necessary. Then,

we obtain v0 ∈ P j
i ⊆ L(P j′

i′ ) ⊆ L(P j′

i′ ∨ Qj′

i′ ), which contradicts that v0 is contained in
P j′

i′ ∨ Qj′

i′ . ◀

We also see that µ(Pi ∨ Qi, C) = 0 for i ∈ [k] by definition, and hence µ(P, P ∨ Q) = 0.
Since P ⪯ P ∨Q and µ(P, P ∨Q) = 0, P is reconfigurable to P ∨Q as described in Section 5.2.
Similarly, Q is reconfigurable to P ∨ Q, which implies that P ∨ Q is reconfigurable to Q.
By combining them, we see that P is reconfigurable to Q, which completes the proof of the
sufficiency in Theorem 14.

Note that the reconfiguration sequence from P to Q can be constructed in polynomial
time by the discussion in Section 5.2.

6 Concluding Remarks

Although Disjoint Paths Reconfiguration and Disjoint s-t Paths Reconfiguration
are decision problems, the proofs for our positive results (Theorems 3, 4, 5, and 14) show
that we can find a reconfiguration sequence in polynomial time if it exists.

We leave several open problems for future research. We proved that Disjoint Paths
Reconfiguration can be solved in polynomial time when the problem is restricted to
the two-face instances. On the other hand, we do not know whether Disjoint Paths
Reconfiguration in planar graphs can be solved in polynomial time for fixed k, and even
when k = 2, if we drop the requirement that inputs are two-face instances.
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We did not try to minimize the number of reconfiguration steps when a reconfiguration
sequence exists. It is an open problem whether a shortest reconfiguration sequence can
be found in polynomial time for Disjoint Paths Reconfiguration restricted to planar
two-face instances.

A natural extension of our studies is to consider a higher-genus surface. As a preliminary
result, in the full version [20], we give a proof (sketch) to show that when the number k

of curves is two, the reconfiguration is always possible for any connected orientable closed
surface Σg of genus g ≥ 1. Note that this result does not refer to graphs embedded on Σg,
but only refers to the case when curves can pass through any points on the surface. It is not
clear what we can say for Disjoint Paths Reconfiguration for graphs embedded on Σg,
g ≥ 1.
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