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Abstract
Given a function f on Fn

2 , we study the following problem. What is the largest affine subspace U
such that when restricted to U , all the non-trivial Fourier coefficients of f are very small?

For the natural class of bounded Fourier degree d functions f : Fn
2 → [−1, 1], we show that there

exists an affine subspace of dimension at least Ω̃(n1/d!k−2), wherein all of f ’s nontrivial Fourier
coefficients become smaller than 2−k. To complement this result, we show the existence of degree d

functions with coefficients larger than 2−d log n when restricted to any affine subspace of dimension
larger than Ω(dn1/(d−1)). In addition, we give explicit examples of functions with analogous but
weaker properties.

Along the way, we provide multiple characterizations of the Fourier coefficients of functions
restricted to subspaces of Fn

2 that may be useful in other contexts. Finally, we highlight applications
and connections of our results to parity kill number and affine dispersers.
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1 Introduction

The search for structure within large objects is an old one that lies at the heart of Ramsey
theory. For example, a famous corollary of Ramsey’s theorem is that any graph on n vertices
must contain a clique or an independent set of size Ω(log n). Another example is Roth’s1

theorem [19] on 3-term arithmetic progressions, which essentially says that every subset of
{1, . . . , n} of density δ > Ω(1/ log log n) must contain a 3-term arithmetic progression.2

Szemerédi’s Regularity Lemma is also a well known example of this phenomenon. Roughly
speaking, it states that any graph G can be partitioned into k := M(δ) parts V1, . . . , Vk,
wherein most pairs of parts (Vi, Vj) are δ-regular. In this setting, the δ-regularity of (Vi, Vj)
roughly corresponds to saying that the bipartite graph induced across Vi and Vj appears as
though its edges were sampled randomly. This powerful statement has found applications

1 The related Hales-Jewett theorem [10] is also a classic result in Ramsey theory.
2 See also the recent quantitative improvement due to Kelley and Meka [13] which gives the same result

for all subsets of density at least Ω(2− log1/11(n)).
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83:2 Searching for Regularity in Bounded Functions

in both pure mathematics (e.g., Szemerédi’s [23] generalization of Roth’s result to k-term
arithmetic progressions) and theoretical computer science (to test triangle-freeness in dense
graphs [20, 1, 22]).

Similar to the definition of regular partitions in Szemerédi’s Regularity Lemma, one can
also define a notion of regularity for functions. In particular, for functions f : Fn

2 → R,
we follow Green [9] and O’Donnell [17] and define a function to be δ-regular if all its
nontrivial Fourier coefficients are at most δ in magnitude.3 This definition can be viewed as
a pseudorandomness condition; in particular, a randomly chosen Boolean function f : Fn

2 →
{±1} is δ-regular with very high probability, even for δ = 2−Ω(n).4

The prior works surrounding graph regularity [23, 7, 22] and function regularity [9, 12] have
been concerned with obtaining δ-regular partitions, which, roughly speaking, are partitions
of the object at hand into (mostly) pseudorandom parts. Often, these results have quite poor
dependencies on the parameter δ so as not to be practical for any reasonably small value of
δ (see Proposition 3 and Proposition 4 for detailed statements). Motivated by this, and by
applications in theoretical computer science, we relax our requirement and look to find just
one δ-regular part. Namely, we seek to understand the following quantity:

r(f, δ) := min{codim(U) : U is an affine subspace such that fU is δ-regular},

where here and throughout this work fU : U → R denotes the restriction of f to inputs
coming from U .

Before stating our main results as well as prior work, we make a few remarks about the
quantity r(f, δ). In the special case when δ = 0, the quantity r(f, 0) has been previously
studied in the literature, under the name of parity kill number [18]. This is the smallest
number of parities that need to be fixed in order to make f constant. The value r(f, 0) is also
a measure associated with affine dispersers, objects that have received significant attention in
the study of pseudorandomness, see e.g. [21, 14, 5, 6, 3]. An affine disperser of dimension k is
a coloring of Fn

2 such that no affine subspace of dimension k is monochromatic. If we view an
affine disperser as a function f : Fn

2 → {0, 1, . . . , C}, then its dimension is just n− r(f, 0) + 1.
Now, we briefly discuss the bounds on r(f, δ) most relevant to our work. For a general

function f : Fn
2 → [−1, 1], it is known that r(f, δ) ≤ 1/δ; this follows from a well-known

density-increment argument, see [15] (for a short proof of this, see Proposition 5). One
might ask if r(f, δ) is small when we assume f is structured, and a natural example of
such functions is the class of functions with low Fourier degree. For general degree d

functions f : Fn
2 → [−1, 1], the best bound on r(f, δ) until this work was just the above

mentioned bound of 1/δ. However, for the class of degree d Boolean functions, we know
that r(f, δ) ≤ r(f, 0) = O(d3); this follows from the polynomial relationship between Fourier
degree and decision tree depth, see [16], and [2, 4] for surveys. We emphasize that this result
relies crucially on Booleanity (and is independent of δ), and one can ask if the more general
class of degree d functions bounded in the interval [−1, 1] also have small r(f, δ) values. Our
main result answers exactly this question, and provides an upper bound for r(f, δ) in this
setting.

▶ Theorem 1. For any δ ∈ (0, 1) and any degree d function f : Fn
2 → [−1, 1], we have

r(f, δ) ≤ n− Ω
(
n1/d!(log(n/δ))−2) .

3 For a formal definition, see Definition 11, and for more background on Fourier analysis, see Section 2.
4 See for example [17], Exercise 1.7 and Proposition 6.1.
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Note that the general bound r(f, δ) ≤ 1/δ that we mentioned earlier, is only meaningful
when δ > 1/n, however, our theorem allows for δ to be much smaller. The regime of small δ

is particularly interesting from the perspective of pseudorandomness. Indeed, in a qualitative
sense, we see that by decreasing δ, we are asking for affine subspaces where the restricted
function looks increasingly like a random function. Using Theorem 1 together with our
connection between r(f, 0) and the dimension of affine disperse, we obtain the following
corollary which says that low degree polynomials cannot serve as good affine dispersers.

▶ Corollary 2. If f : Fn
2 → {0, . . . , C} has Fourier degree d, then f cannot be an affine

disperser of dimension k for any k ≥ Ω
(
n1/d!(d + log(nC))−2).

Lower Bounds on r(f, δ). To complement Theorem 1, we present in Table 1 several
examples of functions (bounded as well as Boolean) for which r(f, δ) is large. For each row
in the table, we exhibit a class of functions (whose degree and range is as specified), such
that for any δ′ ≤ δ, no affine subspace of dimension larger than n− r(f, δ) is δ′-regular.

Table 1 Table of functions with large r(f, δ) values.

δ ≤ r(f, δ) ≥ deg(f) range(f) Ref.

1/n n/2 − 1 1 [−1, 1] Lemma 26(
n
d

)−1
n − 2dn1/(d−1) d [−1, 1] Lemma 27

Θ(n−1/2) Θ(
√

n) n {±1} Lemma 32
1
2 · n−d (for d ≤ log n

log log n+1 ) n − 2dn1/(d−1) Ω(n) {±1} Corollary 30
1/22k+1 (for integer k) Ω

(
(log 1

δ
)log2(3)) 2k {±1} Lemma 31

Observe that Lemma 27 provides a somewhat of a converse to Theorem 1. However there
is a noticeable gap between the two results, and we conjecture that Lemma 27 is closer to
being tight, and that Theorem 1 could be improved. We also note that Lemma 27 and
Corollary 30 are not explicit – it would be interesting to find more explicit examples.

1.1 Related Work
To the best of our knowledge, r(f, δ) has not been explicitly studied before. However, it is
closely related to well-studied notions of function regularity as well as the concepts of parity
kill number and affine dispersers. In this section, we give a detailed description of both these
connections.

Parity Kill Number and Affine Dispersers. As we have already mentioned, r(f, 0) has been
studied under the name of parity kill number, denoted C⊕

min[f ] (see [18]). Parity kill number
can be considered as a further generalization of the minimum certificate complexity of f ,
denoted Cmin[f ], which is the minimum number of bits one must fix in order to make f

constant. In particular, for any δ ≥ 0, we have r(f, δ) ≤ r(f, 0) ≤ Cmin[f ]. The minimum
certificate complexity is one of several natural complexity measures that have been well
studied for Boolean functions f : Fn

2 → {±1} (see [4, 2] for surveys).
As we have already alluded to, the quantity r(f, 0) is also closely related to efficacy of

f : Fn
2 → {0, . . . , C} as an affine disperser. In the case of C = 1, Cohen and Tal [6] rule out

F2-polynomials of degree d as affine dispersers by showing that any such function satisfies
r(f, 0) ≤ n− Ω(d · n1/(d−1)). This result resembles our Corollary 2; however, the two results
are incomparable for two reasons. First, degree d functions over F2 can have very large

ICALP 2023



83:4 Searching for Regularity in Bounded Functions

Fourier degree; moreover, the corresponding result of [6] applies to functions whose range is
F2, while ours applies to functions that take values in the set {0, . . . , C}, which can have a
much larger size. Furthermore, for f : Fn

2 → {0, . . . , C}, a standard argument (analogous to
the one in [16]) shows that r(f, 0) ≤ O(Cd3), where d here is the Fourier degree. However,
this does not address the case where C = Ω(n), which is when Corollary 2 becomes useful.

Pseudorandom Partitions. As we have mentioned, much prior work on function regularity
has been focused on finding pseudorandom partitions of Fn

2 . To the best of our knowledge,
the earliest result in this direction is due to Green [9]; below, the notation twr(x) refers to

an exponential tower of 2’s 22. . .

of height x.

▶ Proposition 3 (Theorem 2.1 in [9]). For any f : Fn
2 → {0, 1} and δ > 0, there exists a

subspace V of co-dimension M(δ) ≤ twr(⌈1/δ3⌉) such that for all but a δ-fraction of the
affine subspaces U = α + V, fU is δ-regular.

In the same paper, Green showed that M(δ) ≥ twr(Ω(log(1/δ))) was necessary. Sub-
sequently, Hosseini et al. [12] exhibited a better counterexample showing co-dimension
M(δ) ≥ twr(⌈1/16δ⌉) is required.

In the above upper and lower bound of [9, 12], the partition of Fn
2 is of a specific form –

namely, it is every affine shift of a given subspace. Given this observation, one can ask if
there is a partition of Fn

2 into affine subspaces of smaller co-dimension so that in most parts
f is δ-regular. As the next proposition, due to Girish et al. [8] shows, this is indeed the case.

▶ Proposition 4 (Proposition A.1 in [8]). For any f : Fn
2 → [0, 1] and δ > 0, there exists a

partition Π of Fn
2 , where every π ∈ Π is an affine subspace of co-dimension at most 1

δ3 such
that for all but a δ-fraction of the parts, fπ is δ-regular.

The proof of Proposition 4 is based on a simple algorithm that greedily fixes the parit-
ies corresponding to the largest Fourier coefficients; it is included in Appendix A.1 for
completeness.

Although, both these results partition Fn
2 into several affine subspaces where f is δ-regular,

they are only meaningful when δ is relatively large. Indeed, Proposition 3 is trivial when
δ < (log∗(n))−1/3, and Proposition 4 when δ < n−1/3. As we mentioned earlier, if we relax
our requirement to finding just one affine subspace, there is a simple upper bound on r(f, δ)
based on a density-increment argument, which goes back to the works of Roth [19] and
Meshulam [15].

▶ Proposition 5 (Folklore). For any f : Fn
2 → [−1, 1], we have r(f, δ) ≤ 1

δ .

We provide a proof of Proposition 5 in Appendix A.1 for completeness.

1.2 Techniques
Upper bound on r(f, δ). We give a brief proof sketch of Theorem 1. The proof proceeds
by induction over the Fourier degree. The base case corresponds to degree one functions.
Our intuition is derived from the following fact. If we have any k real numbers a1, . . . , ak

such that the sum of any subset of them has magnitude at most one, then by the pigeonhole
principle, there is a non-empty subset S ⊆ [k], and a signing of the numbers in S so that the
signed sum has magnitude at most 2−Ω(k). In the degree one case, we partition {1, . . . , n}
into consecutive disjoint intervals of size k = O(log 1/δ). We apply the above intuition to
the k Fourier coefficients in each interval, to obtain signed sums that have small magnitude.
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Then, by appropriately choosing an affine subspace, U of dimension Ω(n/ log(1/δ)), we show
that these signed sums are exactly the Fourier coefficients of the function restricted to U
(see Proposition 13 for a more general statement). We give a more detailed description of
how this works in Section 3.

At a high level, we reduce the problem for degree d functions to degree d−1 by restricting
to an affine subspace of dimension Ω̃

(
n1/d

)
, where the function is degree d and all Fourier

coefficients at the d-th level are extremely small ≪ δ/nd. For a detailed statement, see
Lemma 19. When we use the inductive hypothesis for d− 1, the last constraint ensures that
the degree d coefficients cannot increase the new coefficients by more than O(δ), even if they
combine in the most constructive way possible.

Lemma 19 is also obtained by repeatedly applying the pigeonhole principle. However, the
key issue now is that several Fourier coefficients could be affected when we apply a restriction,
unlike the degree one case. To avoid this, we apply restrictions iteratively so that each one
preserves the small Fourier coefficients from past iterations while still ensuring that several
new Fourier coefficients are also small. The cost of this procedure is that, in each step, we
must apply the pigeonhole principle over larger and larger subsets of coordinates.

Lower Bounds. Here, we give a very high level overview of our lower bounds on r(f, δ).
The basic idea is to consider functions f with the property that their Fourier spectrum is
concentrated on a small number of Fourier coefficients. It turns out (see Proposition 13)
that when we restrict to an affine subspace, say U , the Fourier coefficients of fU are simply
signed sums of the Fourier coefficients of f . By our choice of f , if the restricted function
was δ-regular, then the large coefficients of f involved in the signed sums somehow cancelled
each other out. We show that by choosing the vectors corresponding to the large Fourier
coefficients in f appropriately, such a cancellation would imply that the co-dimension of U
must be large. For more detailed sketches of the entries in Table 1, see Appendix A.2.

2 Preliminaries

Notation. 1{·} denotes an indicator function that takes the value 1 if the clause is satisfied
and 0 otherwise. For a set J ⊆ [n], we use span(J) to denote the subspace spanned by the
standard basis vectors corresponding to the elements in J . We refer to the L1 norm of γ ∈ Fn

2
by ∥γ∥1. Given a subset S ⊆ Fn

2 , we denote S=t := S ∩ {u : ∥u∥1 = t}. Further, we define
the degree of a function f : Fn

2 → R to be max{∥γ∥1 : f̂(γ) ̸= 0}. We frequently interpret
a linear transformation M : Fn

2 → Fn
2 as a matrix and refer to the linear map obtained by

taking the transpose of the matrix as MT. At several points, we consider the compositions of
functions with linear maps. For a function f and a map M : Fn

2 → Fn
2 , we denote by f ◦M

the composition of the functions f with M . In particular, f ◦M(x) = f(M(x)).

Probability. The following basic facts from probability theory are useful for us.

▶ Fact 6 (Hoeffding, [11]). Suppose X1, . . . , Xn are such that a ≤ Xi ≤ b for all i. Let
M = X1+...Xn

n . Then,

Pr
[
|Mn −EMn| ≥ t

]
≤ 2 exp

(
−2t2n

|b− a|

)
.

ICALP 2023



83:6 Searching for Regularity in Bounded Functions

▶ Definition 7 (Statistical Distance). Let X and Y be two random variables taking values in
a set S. Then we define the statistical distance between X and Y as

|X − Y | := max
T ⊆S

∣∣∣Pr[X ∈ T ]− Pr[Y ∈ T ]
∣∣∣ = 1

2
∑
s∈S

∣∣∣Pr[X = s]− Pr[Y = s]
∣∣∣.

Linear Algebra. We recap two concepts from linear algebra, namely, orthogonal subspaces
and direct sum, since they become useful for studying the Fourier spectrum of functions
defined over subspaces of Fn

2 . For a subspace A of Fn
2 , we denote the orthogonal subspace

of A as A⊥ = {γ ∈ Fn
2 : ⟨γ, γ′⟩ = 0, ∀ γ′ ∈ A}. We denote by dim(A), the dimension of A

and codim(A) = n− dim(A).
We now define the notion of the direct sum of two subspaces.

▶ Definition 8 (Independence, Direct Sum). Two subspaces A,B are independent if a + b ̸= 0
for any non-trivial choice of a ∈ A and b ∈ B. In addition, if {a+b : a ∈ A and b ∈ B} = Fn

2 ,
we say that Fn

2 is a direct sum of A and B, written as A⊕ B = Fn
2 .5

If A⊕B = Fn
2 , then dim(A)+dim(B) = n. It is also well known that dim(A⊥)+dim(A) =

n. Note, however, that A⊥ and A need not be independent,6 and often in fact must not be.

▶ Fact 9. Let A,B be independent subspaces of Fn
2 . Then for all distinct b, b′ ∈ B, the affine

subspaces b +A and b′ +A are mutually disjoint.

Proof. If b + a = b′ + a′, then a non-trivial sum of a vector from each A and B equals zero,
contradicting the fact that A⊕ B = Fn

2 . ◀

Fourier Analysis. For f : Fn
2 → R, we can write f in the Fourier representation as

f(x) =
∑

γ∈Fn
2

f̂(γ)χγ(x),

where χγ(x) := (−1)⟨γ,x⟩ and f̂(γ) = Ex[f(x)χγ(x)]. We say f has degree d if
max

γ:f̂(γ) ̸=0 ∥γ∥1 = d, and we refer to the degree d part of f by f=d(x) :=
∑

∥γ∥1=d f̂(γ)χγ(x).
For more on this topic, see [17], which uses notation consistent with ours.

Restrictions. We are ultimately concerned with understanding the Fourier coefficients of a
function when it is restricted to some affine subspace of Fn

2 . In the special case where the
coordinates in a set J ⊆ [n] are fixed using the vector b ∈ FJ

2 , we denote the restriction of f

thus obtained as the function fJ b : span(J)→ R, which can be written as fJ b(x) = f(x+b).
Next, we recall the formula of the Fourier coefficients of the restricted function. Note that
{χγ(x) := (−1)⟨γ,x⟩ : γ ∈ span(J)} is a Fourier basis of the restricted function.

▶ Fact 10 (Fourier Coefficients of Restricted Functions (see [17], Proposition 3.21)). For every
γ ∈ span(J) and b ∈ span(J),

f̂J b(γ) =
∑

β∈span(J)

f̂(β + γ)χβ(b).

5 Such a subspace B is sometimes called a complement of A. However, this term can be confused with
the orthogonal subspace/complement, so we avoid using this terminology.

6 this might be unexpected at first for those used to working over the reals, but it is essentially because
the inner product over F2 allows self-orthogonal vectors in Fn

2 .
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2.1 Fourier Analysis on Subspaces
We move to the general setting of restricting functions to arbitrary affine subspaces.7 Let
U = V + α be an affine subspace of Fn

2 . By the restriction of f to U , we mean the function
fU : V → R defined as fU (x) = f(x + α).

For the remainder of this section (and paper), let W be such that W ⊕ V⊥ = Fn
2 . For

each element γ ∈ W, consider the function χγ : V → {±1} as χγ(x) = (−1)⟨γ,x⟩. It is easy
to verify that {χγ : γ ∈ W} form an orthonormal basis of real-valued functions defined over
V under the inner product given by ⟨p, q⟩ = Ex∈V [p(x)q(x)]. We can therefore uniquely
associate each vector γ ∈ W with the function χγ , and for U = α + V, we can write

fU (x) =
∑

γ∈W
f̂U (γ)(−1)⟨γ,x⟩. (1)

We now state the formal definition of δ-regularity.

▶ Definition 11 (δ-regularity). Let V be a subspace of Fn
2 and g : V → R. For δ ≥ 0, we say

g is δ-regular if maxγ ̸=0 |ĝ(γ)| ≤ δ.

In this section, we present three separate formulas (Fact 12, Proposition 13 and Proposi-
tion 16) for the Fourier coefficients of fU , each of which is useful in different contexts. With
the exception of Fact 12, which is direct, the proofs of the statements in this section can be
found in Appendix B.

First, using the above observations, we have the following simple formula for the Fourier
coefficients of fα+V , which follows from the orthogonality of the χγ we have defined.

▶ Fact 12. Let V,W be subspaces such that W ⊕V⊥ = Fn
2 and U = α + V. For any γ ∈ W,

we have that

f̂U (γ) = Ex∈V [f(x + α) · (−1)⟨γ,x⟩] = (−1)⟨γ,α⟩Ex∈U [f(x) · (−1)⟨γ,x⟩].

Fact 12 represents a simple and analogous formula for Fourier coefficients of functions
restricted to affine subspaces. It also highlights that the magnitude of the Fourier coefficients
of a restricted function are unaffected by the choice for shift α as long it corresponds to the
same affine subspace.

Our next formula, which shows how the Fourier coefficients of fU can be written in terms
of the Fourier coefficients of f , is an easy consequence of Fact 12.

▶ Proposition 13. Let V,W be subspaces such that W ⊕V⊥ = Fn
2 and U = α + V. For any

γ ∈ W, we have

f̂U (γ) =
∑

β∈γ+V⊥

f̂(β) · (−1)⟨β,α⟩.

For a proof of Proposition 13 as well as proofs for the rest of the statements in this
section, see Appendix B. We note that Proposition 13 gives a formula analogous to Fact 10
for restrictions to general affine subspaces. This fact will be useful to construct functions and
argue that they never become δ-regular when restricted to any sufficiently large subspace.
Before we give our final formula, we highlight one particular choice ofW such thatW⊕V⊥ =
Fn

2 .

7 For an arbitrary subspace V, there is no canonical mapping between vectors and characters when
V ≠ Fn

2 , and we cannot simply define the vectors χγ , for each γ ∈ V, as we did in the case of Fn
2 to be

the characters of V.

ICALP 2023



83:8 Searching for Regularity in Bounded Functions

▶ Definition 14 (M mapping V to span(J)). Given a k-dimensional subspace V, let B =
{β1, . . . , βn} be a basis for Fn

2 such that V = span({β1, . . . , βk}. For any subset J ⊆ [n] of
size k, let M : Fn

2 → Fn
2 be an invertible linear map such that {Mβi : i ∈ [k]} = {ej : j ∈ J}.

▶ Proposition 15 (Choice of W). Let V, M and J be defined as in Definition 14. The
subspaces W = {MTγ : γ ∈ span(J)} and V⊥ are independent, and W ⊕V⊥ = Fn

2 .

Finally, we show that the Fourier coefficients of a function restricted to an affine subspace
are the same as the Fourier coefficients of the function f ◦M under a suitable (normal)
restriction and for a particular choice of M .

▶ Proposition 16. Let V, M and J be defined as in Definition 14 and U = α + V. For any
γ ∈ span(J), we have

∣∣∣f̂U (MTγ)
∣∣∣ =

∣∣∣ĥU ′(γ)
∣∣∣ , where h = f ◦M−1 and U ′ = {Mu : u ∈ U} =

Mα + span(J) is a standard restriction.

Proposition 16 implies the following important corollary.

▶ Corollary 17. There exists an affine subspace U of dimension k such that fU is δ-regular
if and only if there exists an invertible linear map M : Fn

2 → Fn
2 , a set J ⊆ [n] of size k, and

a fixing of coordinates outside J given by b ∈ FJ
2 such that the function hJ b is δ-regular,

where h = f ◦M .

We use Corollary 17 crucially in the proof of Theorem 1, wherein we construct M and
b such that f ◦M [k] b

has small Fourier coefficients. In the proof of this theorem we must
understand the Fourier coefficients of f ◦M in terms of the Fourier coefficients of f . The
following fact gives an identity relating the Fourier coefficients of the two functions. For
completeness, we include the proof in Appendix B.

▶ Fact 18 ([17], Exercise 3.1). Let M be an invertible linear transformation, and consider
the function g = f ◦M−1 : Fn

2 → R. Then we have that ĝ(γ) = f̂(MTγ).

3 Upper Bound on r(f, δ)

Now we prove our main theorem, restated here for convenience.

▶ Theorem 1. For any δ ∈ (0, 1) and any degree d function f : Fn
2 → [−1, 1], we have

r(f, δ) ≤ n− Ω
(
n1/d!(log(n/δ))−2) .

First, we gain some intuition from degree one functions.

Base Case/Toy Example. Suppose f is a Fourier degree one function. In this case our
function has the form

f(x) = f̂(0) +
∑

i

f̂(ei)(−1)xi .

For a parameter t ≥ 1 and a subset S ⊆ [t], consider the sum gS = f̂(0) +
∑

i∈S f̂(ei).
Note that gS = E[f(x)|xi = 0 ∀i ∈ S] ∈ [−1, 1]. The pigeonhole principle implies that for
t = Ω(log 1/δ) there must exist two distinct sets S, S′ such that the difference |gS − gS′ | ≤ δ.
We can further write gS − gS′ =

∑
i∈S△S′ f̂(ei)(−1)|{i}∩S′|.

We now use the set S△S′ and the signs to construct an affine subspace where at least
one Fourier coefficient will have small magnitude. Assume without loss of generality that
1 ∈ S \ S′ and S△S′ = [t′] for some t′ ≤ t. Consider restricting f to the affine subspace U
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defined by the linear equations x1 + xi = bi for each i ∈ {2, . . . , t′}, where bi = |{i} ∩ S′|.
We can reason about the Fourier spectrum of fU by plugging in xi = bi + x1. Under this
restriction, we see that the Fourier coefficients of et′+1, . . . , en stay the same, and the new
Fourier coefficient of e1 is exactly equal to

f̂(e1) +
t′∑

i=2
f̂(ei)(−1)bi = gS − gS′ ,

which we observed has magnitude at most δ. Repeatedly applying this argument roughly
n(log(1/δ))−1 times for the remaining standard basis vectors and fixing remaining coordinates
arbitrarily, we obtain an affine subspace of dimension at least Ω

(
n

log(1/δ)

)
.

Theorem 1 is proved via induction using the following lemma.

▶ Lemma 19. For τ ∈ (0, 1) and any degree d function f : Fn
2 → [−1, 1], there exists an

invertible linear map M : Fn
2 → Fn

2 , a set J ⊆ [n] with size at least d
4e

(
n

log 5/τ

)1/d

, and
b ∈ span(J) such that h = f ◦M satisfies

∣∣∣ĥJ b(γ)
∣∣∣ ≤ {τ if ∥γ∥1 = d,

0 for all ∥γ∥1 > d.

We now prove Theorem 1 using Lemma 19.

Proof. The proof proceeds by induction over the degree. Our inductive hypothesis is that
for any δ > 0 and any degree d function f , there exists an invertible linear map M , a set
I ⊆ [n], and b ∈ span(I) such that the following two items hold:
1. hĪ b is δ-regular, where h = f ◦M , and
2. for Cd =

∑d
i=1(i!)−1, we have

|I| ≥ n1/d!

(8e)Cd−1 (log(n/δ))Cd
.

Note that Cd ≤ e− 1 < 2 for all d ≥ 1. The existence of the desired affine subspace is
then given by Corollary 17, and its dimension is equal to |I| ≥ Ω

(
n1/d! (log(n/δ))−2

)
.

The base case corresponds to the degree being one. Let us apply Lemma 19 for degree
one with τ = δ and denote g = f ◦M , where M is the linear map M promised by the lemma.
Additionally, we have a set J of size at least n

4e log 5/δ ≥ Ω
(

n
log n/δ

)
, and b ∈ span(J) such

that

∣∣ĝJ b(γ)
∣∣ ≤ {τ if ∥γ∥1 = 1,

0 for all ∥γ∥1 > 1.
=⇒

∣∣ĝJ b(γ)
∣∣ ≤ δ, for all γ ̸= 0.

Assuming both items hold for some degree d− 1, we show them for degree d. Applying
Lemma 19 with degree d and τ = n−dδ/3, we denote p := (f ◦M)J b, where M , J and b

are as promised by the lemma. Note that, by Lemma 19, p has degree at most d, and for
any γ with ∥γ∥1 = d, we have, |p̂(γ)| ≤ δ/(3nd). Consider the functions p<d and p=d, which
are the degree at most d− 1 part of p and the degree d part of p, respectively. We note that

p<d

(1+δ/3) is bounded in the interval [−1, 1] because for any x,

∣∣p<d(x)
∣∣ ≤ |p(x)|+

∣∣p=d(x)
∣∣ ≤ 1 +

∑
γ:∥γ∥1=d

|p̂(γ)| ≤ 1 + δ

3 .
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Applying the inductive hypothesis8 to p<d

1+δ/3 for the choice of δ/3, we get a linear map M ′, a

set I ⊆ J , and b′ ∈ span(J \ I) such that
(

q
1+δ/3

)
J\I b′

is δ/3-regular, where q := p<d ◦M ′.

Therefore, for any γ ̸= 0, we have
∣∣q̂J\I b′(γ)

∣∣ ≤ (1 + δ
3
)

δ
3 < 2δ

3 . Denoting p′ := p ◦M ′ and
r := p=d ◦M ′, we have for any γ ̸= 0 that∣∣∣ ̂p′

J\I b′(γ)
∣∣∣ ≤ ∣∣∣q̂J\I b′(γ)

∣∣∣+
∣∣∣r̂J\I b′(γ)

∣∣∣ < 2δ/3 +
∑

β:∥β∥1=d

|ĝ(β)| ≤ δ.

This shows that p′
J\I b′ is δ-regular. Moreover, if we extend M ′ to act as the identity map

on the coordinates in J , we can write

p′
J\I b′(x) = (p ◦M ′)J\I b′(x) = p(M ′(x + b′))

= (f ◦M)J b(M ′(x + b′)) = f(MM ′(x + b′ + b)),

which implies that item 1 of the inductive hypothesis is satisfied by applying the linear map
MM ′ and restricting to the set I by fixing the coordinates outside according to b + b′.

We now show that the size of I satisfies item 2 above. Note that Lemma 19 promises
that |J | ≥ d

4e

(
n

log(15nd/δ)

)1/d

. Moreover, we have

log(15nd/δ) ≤ d log n/δ + log 15 ≤ 4d log n/δ,

where the last inequality follows for sufficiently large n. Therefore, |J | ≥ 1
8e

(
n

log(n/δ)

)1/d

.
Moreover, we assume without loss of generality that 3|J | ≤ n because, if not, we can
arbitrarily fix coordinates in J until it is, which does not affect the crucial property that all
remaining degree d Fourier coefficients have small magnitude. Using the bounds on |J | and
applying item 2 of the inductive hypothesis for degree d− 1, we get

|I| ≥ |J |1/(d−1)!

(8e)Cd−2 (log(3|J |/δ))Cd−1
≥ n1/d!

(8e)Cd−1 log(n/δ)1/d! (log(3|J |/δ))Cd−1

≥ n1/d!

(8e)Cd−1 (log(n/δ))Cd
.

This shows item 2 of the inductive hypothesis as desired. ◀

To prove Lemma 19, we need the following claim, which ultimately lets us bound Fourier
coefficients in certain affine subspaces.

▷ Claim 20 (Pigeonhole Principle). Let f : Fn
2 → [−1, 1] be degree d. For every K ⊆ [n] of

size k such that n− k ≥
(

k
d−1
)

log(5/τ), there exists S ⊆ [n] \K and z ∈ {±1}S such that
1. ∀γ ∈ span(K) with ∥γ∥1 = d− 1, we have

∣∣∣∑j∈S f̂(γ + ej) · zj

∣∣∣ ≤ τ , and
2. 1 < |S| ≤

(
k

d−1
)

log(5/τ).

Proof. Consider any subset of T ⊆ K of size
(

k
d−1
)

log(5/τ). For any U ⊆ T , consider the
sum

aU (γ) := f̂(γ) +
∑
j∈U

f̂(γ + ej).

8 Technically, p<d

1+δ/3 : span(J) → [−1, 1]. However, we can abuse notation slightly and consider it as a
function from FJ

2 to [−1, 1] in order to apply the inductive hypothesis.
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We must have that aU (γ) ∈ [−1, 1] since it is exactly equal to the Fourier coefficient
corresponding to γ if we restricted everything in U to be one. This follows because f is
degree d.

Now, divide the interval [−1, 1] into 2/τ intervals of length τ . For a fixed U ⊆ T of even
size, consider putting the values of aU (γ) for all γ ∈ span(K)=d−1 into a vector vU of length(

k
d−1
)
. First, note that the number of even subsets of T is at least 2( k

d−1) log(5/τ)−1 > (2/τ)(
k

d−1).
Moreover, the number of possible interval vectors is at most (2/τ)(

k
d−1). Therefore, by the

pigeonhole principle, there must be two distinct sets U, U ′ ⊆ T such that ∥vU − vU ′∥∞ ≤ τ .
Thus, we have that

∥vU − vU ′∥∞ ≤ τ ⇐⇒
∑

i∈U△U ′

(−1)|{i}∩U ′|f̂(γ + ei) ≤ τ ∀ γ ∈ span(K)=d−1.

Since U, U ′ have even size and are not equal, U△U ′ has even size as well, so we can set our
S = U△U ′ ⊆ T and zi = (−1)|{i}∩U ′|, and the claim follows. ◁

We can now prove Lemma 19.

Proof of Lemma 19. We build the map M , the set J , and the vector b iteratively. Through-
out the iterations, we seek to maintain a set K of coordinates for which (under a suitable
linear transformation M) every Fourier coefficient corresponding to a vector of weight d

in span(K) has magnitude at most τ . We build K one coordinate at a time by repeatedly
invoking Claim 20 and arguing that the quantities guaranteed to be small by Claim 20 are
exactly the (new) Fourier coefficients. When we can no longer add more coordinates to K,
we fix any remaining coordinates (outside of K that are still alive), and we are left with a
function, over only the coordinates in K, that has the desired property.

Note that we can start with K being an arbitrary subset of size d − 1 (w.l.o.g. let it
be [d− 1]) since any such subset has no Fourier coefficients of degree d. Therefore, we can

assume without loss of generality that τ ≥ 5 · 2−n/(4e)d , since otherwise d
4e

(
n

log(5/τ)

)1/d

< d

and the lemma becomes trivial. In each iteration, we maintain the following invariant for
M , J and b. In iteration i, there exists some K ⊆ J of size d + i− 1 such that the function
g = (f ◦M)J b satisfies

|ĝ(γ)| ≤
{

τ if γ ∈ span(K) and ∥γ∥1 = d,

0 for all ∥γ∥1 > d.

Assume without loss of generality that J = [j] for some j ≤ n and K = [d + i− 1] ⊆ J .
Since g has degree d, we can apply Claim 20 to g and obtain a subset S ⊆ J \K of size at
most

(
d+i−1

d−1
)
(log(5/τ) and a sign vector z ∈ {±1}S so that∣∣∣∑

j∈S

ĝ(γ + ej) · zj

∣∣∣ ≤ τ, for all γ ∈ span([d + i− 1]) such that ∥γ∥1 = d− 1. (2)

We can also assume that d + i ∈ S and zd+i = 1. Now consider the invertible linear
transformation Mi : Fn

2 → Fn
2 that maps ed+i to

∑
j∈S ej and behaves as the identity map on

the remaining standard basis vectors. Further, denote Ji := S \ {d + i} and let bi ∈ span(Ji),
where (bi)j := (1 − zj)/2 for each j ∈ Ji. Intuitively, applying the linear transformation
Mi and then fixing the coordinates in Ji to bi corresponds to restricting the affine subspace
described by the equations xj + xd+i = (1− zj)/2 for all j ∈ Ji.
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After this iteration, we show that if we set M ′ ←MMi, J ′ ← J \ Ji and b′ ← b + bi, the
invariant holds with K ′ ← K ∪ {d + i}. For these choices, we have

(f ◦M ′)J′ b′(x) = f ◦M(Mi(x + b′)) = f ◦M(Mi(x + bi + b))
= f ◦M(Mi(x + bi) + b)
= g ◦Mi(x + bi) = (g ◦Mi)Ji bi

(x),

and it therefore suffices to show that (g ◦Mi)Ji bi
– denoted by h henceforth, for shorthand

– is degree d and
∣∣∣ĥ(γ)

∣∣∣ ≤ τ for all γ ∈ span([d + i]) with ∥γ∥1 = d. We start by analyzing
the Fourier coefficients of h, for which by Fact 10 we have

ĥ(γ) =
∑

β∈span(Ji)

ĝ ◦Mi(γ + β)(−1)⟨β,bi⟩. (3)

Next, we observe the following relation between the Fourier coefficients of g ◦Mi and
those of g, which we use to simplify Equation (3). Denoting v :=

∑
j∈Ji

ej , we claim that,
for any γ,

ĝ ◦Mi(γ) = ĝ(γ + ed+i⟨γ, v⟩). (4)

Before proving Equation (4), we use it to prove that h has the desired properties. Note
that since g is degree d, Equation (4) implies that if ĝ ◦Mi(γ) ̸= 0, then ∥γ +ed+i⟨γ, v⟩∥1 ≤ d,
which in turn implies that ∥γ∥1 ≤ d + 1. This immediately tells us that g ◦Mi has degree at
most d + 1; therefore, h also has degree at most d + 1 since the degree cannot increase under
restrictions. Now, for any γ, Equation (3) reduces to

ĥ(γ) =
∑

β∈span(Ji),
∥β∥1≤d+1−∥γ∥1

ĝ ◦Mi(γ + β)(−1)⟨β,bi⟩

= ĝ ◦Mi(γ) +
∑

β∈span(Ji),
0<∥β∥1≤d+1−∥γ∥1

ĝ ◦Mi(γ + β)(−1)⟨β,bi⟩

= ĝ(γ + ed+i⟨γ, v⟩) +
∑

β∈span(Ji),
0<∥β∥1≤d+1−∥γ∥1

ĝ(γ + β + ed+i⟨γ + β, v⟩)(−1)⟨β,bi⟩, (5)

where, in the first equality, we used the fact that if ∥β∥1 > d+1−∥γ∥1, then ∥β +γ∥1 > d+1
and the corresponding Fourier coefficient in g ◦Mi is just zero, and in the last equality, we
used Equation (4). Moreover, for any γ ∈ span(J \ Ji), we have ⟨γ, v⟩ = 0, which means
that ĝ(γ + ed+i⟨γ, v⟩) = ĝ(γ). We can now conclude that h has degree at most d. Indeed, if
∥γ∥1 ≥ d + 1, then Equation (5) implies that ĥ(γ) = ĝ(γ) = 0 since g has degree at most d.

Next, we show that for any γ ∈ span([d + i]) with ∥γ∥1 = d, it must be that |ĥ(γ)| ≤ τ .
Applying Equation (5) for such γ, we note that

ĥ(γ) = ĝ(γ) +
∑
j∈Ji

ĝ(γ + ej + ed+i⟨γ + ej , v⟩)(−1)⟨ej ,bi⟩

= ĝ(γ) +
∑
j∈Ji

ĝ(γ + ej + ed+i)zj .

We now consider two cases. First, when γd+i = 0, the above equation implies that ĥ(γ) = ĝ(γ)
since ∥γ + ed+i + ej∥1 = d + 2 for every j ∈ Ji, and g has degree at most d. Therefore, in
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this case,
∣∣∣ĥ(γ)

∣∣∣ = |ĝ(γ)| ≤ τ by the inductive hypothesis. Otherwise, γd+i = 1, and now
using both Equation (2) and the fact that γ + ed+i ∈ span({e1, . . . , ed+i−1}), we conclude
that

∣∣∣ĥ(γ)
∣∣∣ =

∣∣∣∑j∈S ĝ((γ + ed+i) + ej)zj

∣∣∣ ≤ τ .
It remains to show Equation (4). We start by observing that Mi = M−1

i , which can
be verified by noting that M−1

i ed+i = M−1
i (ed+i + v + v) = ed+i + v and M−1

i acts as
the identity map on the remaining standard basis vectors. From Fact 18, we know that
ĝ ◦Mi(γ) = ̂g ◦M−1

i (γ) = ĝ(MT
i γ). Since the rows of MT

i are the same as the columns of
Mi, we have

(MT
i γ)j =

{
⟨v + ed+i, γ⟩ if j = d + i,

γj otherwise.

Therefore, we can write MT
i γ =

∑
j ̸=d+i γjej + ed+i⟨v + ed+i, γ⟩ = γ + ed+i⟨v, γ⟩, as claimed.

We conclude the argument by calculating how many times we can repeat the above
procedure. Note that, in the i-th iteration, we fixed at most

(
d+i−1

d−1
)

log 5/τ − 1 coordinates
and we added exactly one coordinate to K. We can thus continue this process until iteration
t for the largest value of t such that

log(5/τ) ·
(

t∑
i=1

(
d + i− 1

d− 1

))
≤ n− d + 1.

Simplifying the binomial sum, we get

t∑
i=1

(
d + i− 1

d− 1

)
=

t∑
i=1

(
d + i− 1

i

)
=

t∑
i=1

(
d + i− 1

i

)
+
(

d

0

)
− 1

=
(

d + t

t

)
− 1 <

(
e(d + t)

d

)d

,

where the last equality follows by repeatedly using the identity
(

a
i

)
+
(

a
i−1
)

=
(

a+1
i

)
. Thus,

we can set t = d
e

(
n−d+1
log 5/τ

)1/d

− d. Adding in the initial d− 1 coordinates, at the end of the t

iterations, we can bound |K| as,

|K| = d

e

(
n− d + 1
log 5/τ

)1/d

− d + d− 1

≥ d

e

(
n

log 5/τ

(
1− d− 1

n

))1/d

− 1

≥ d

e

(
n

log 5/τ
· 1

d

)1/d

− 1

≥ d

2e

(
n

log 5/τ

)1/d

− 1 (d1/d ≤ 2 ∀d ≥ 1)

= d

4e

(
n

log 5/τ

)1/d

+ d

4e

(
n

log 5/τ

)1/d

− 1

≥ d

4e

(
n

log 5/τ

)1/d

+ d− 1 (since τ ≥ 5 · 2−n/(4e)d)

≥ d

4e

(
n

log 5/τ

)1/d

. (d ≥ 1)
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At the end of t iterations, we can fix any coordinates outside the set K arbitrarily to
ensure that the only non-zero Fourier coefficients with L1 norm d in the resulting function
must correspond to vectors in span(K), which do not change under the restriction. ◀

4 Applications

We now present an application of Theorem 1 that shows a tradeoff between the dimension
of a disperser and its Fourier degree, and a connection to extractors, as well. First, we
introduce a definition that generalizes Boolean functions and helps us reason about the
Fourier spectrum of dispersers.

▶ Definition 21. We say a function f : Fn
2 → R is G-granular if for every x ∈ Fn

2 , we have
that f(x) is an integer multiple of G.

▷ Claim 22. If a degree d function f : Fn
2 → R is G-granular, then for every γ ∈ Fn

2 , we
have that f̂(γ) is an integer multiple of 2−d ·G.

We defer the proof of Claim 22 to the full version. Assuming the claim, we now show
that low degree granular functions cannot have a large parity kill number. As a consequence,
we get that low-degree affine dispersers cannot have small dimension (Corollary 2).

▶ Lemma 23. Every degree d function f : Fn
2 → [−1, 1] that is G-granular satisfies

C⊕
min[f ] ≤ n− Ω

(
n1/d!(d + log n/G)−2

)
.

Proof. If f is G-granular and degree d, then from Claim 22 we know that all its Fourier
coefficients must be integer multiples of 2−d ·G. Moreover, a Fourier coefficient of f in any
affine subspace is simply a signed sum of the Fourier coefficients of f and therefore it must
also be an integer multiple of 2−d ·G. This shows that if f is δ-regular in some affine subspace
U with δ < 2−d ·G, then fU must be constant. The lemma follows by using Theorem 1 for
δ = 2−d−1 ·G. ◀

Proof of Corollary 2. Using f , we can construct a degree d function h : Fn
2 → [−1, 1] as

h(x) = 1− 2f(x)
C . Noting that h is 2/C-granular and using the above lemma, it follows that

C⊕
min[f ] = C⊕

min[h] ≤ n− Ω
(

n1/d!(d + log(nC))−2
)

,

which shows that there is some affine subspace of dimension at least Ω
(
n1/d!(2d + log(nC))−2)

where f is constant. ◀

▶ Remark 24. Affine dispersers can be viewed as a relaxation of affine extractors, objects
that have been well studied in the pseudorandomness literature. In a similar vein, we observe
a connection between the notion of δ-regularity and affine extractors. In particular, we note
that affine extractors can be viewed as functions that are δ-regular in all affine subspaces of
sufficiently large dimension. We detail this connection in the full version of this work.

5 Lower Bounds on r(f, δ)

In this section, we prove lower bounds on r(f, δ). With the exception of Lemma 26, we defer
the proofs of all the statements to the appendices. We start with lower bounds for functions
f that are bounded in the interval [−1, 1]; in the subsequent section, we give lower bounds for
Boolean functions. For detailed sketches of all the results in this section, see Appendix A.2.
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5.1 Bounded Functions
We begin with a simple bound on the number of standard basis vectors in low-dimensional
affine subspaces, which is crucial in the analysis of the lower bounds.

▶ Observation 25. For a subspace V ⊆ Fn
2 of co-dimension C, andW such thatW⊕V⊥ = Fn

2 ,
there exists a set S ⊆ W of size at least n− C such that for every u ∈ S,

|
(
u + V⊥)=1 | ≥ 1.

Moreover, there exists a subset S1 ⊆ S of size at least n − 2C whose corresponding shifts
contain exactly one standard basis vector.

The proof of Observation 25 can be found in Appendix C. Using this observation, we
provide an example of a degree one function f that witnesses large values for r(f, δ).

▶ Lemma 26. There is a degree one function f : Fn
2 → [−1, 1] for which r(f, δ) ≥ n/2, for

all δ < 1/n.

Proof. The counterexample is given by the function f(x) = 1
n ·
∑

i(−1)ei·x. Let V be a
subspace of Fn

2 of co-dimension C, and suppose we restrict the function to the affine subspace
U = α + V. By Observation 25, if C ≤ n/2− 1, there exists at least two vectors γ, γ′ ∈ W
(where W is such that W ⊕V⊥ = Fn

2 ) such that |(γ + V⊥)=1| = |(γ′ + V⊥)=1| = 1. Assume
without loss of generality that γ ̸= 0. Then, by Proposition 13, we have that

|f̂U (γ)| =
∣∣∣ ∑
η∈u+V⊥

f̂(η)(−1)⟨η,α⟩
∣∣∣ = 1

n
> δ,

which follows by observing that exactly one of the summands in the last sum corresponds to
a weight one vector and is non-zero. Therefore, r(f, δ) ≥ n/2. ◀

We next show that Lemma 26 can be generalized to degree d bounded functions.

▶ Lemma 27. For d > 2 and δ <
(

n
d

)−1, there exists a degree d function f : Fn
2 → [−1, 1]

for which r(f, δ) ≥ n− 2dn1/(d−1).

The proof of Lemma 27 can also be found in Appendix C. We note that unlike the
degree one case, the functions achieving the lower bound in the above lemma are not explicit.
Additionally, when d = 2, we see that Lemma 27 is trivial; it would be interesting to obtain
a tighter result in this case.

5.2 Boolean Functions
This section has two parts. The first gives non-explicit lower bounds on r(f, δ) for Boolean
functions, and the second gives explicit lower bounds.

5.2.1 Non-explicit Lower Bounds on r(f, δ)

We can turn our lower bounds on r(f, δ) for bounded functions into (non-explicit) lower
bounds for Boolean functions. To do so, we use the following simple but powerful lemma of
[12], which states that given a bounded function with a large r(f, δ), there must exist some
Boolean function g with similarly a large r(g, 2δ).
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▶ Proposition 28 ([12], Claim 1.2). Let τ > 0 and f : Fn
2 → [−1, 1]. There exists a Boolean

function g : Fn
2 → {±1} satisfying, for every affine subspace U such that |U| ≥ 4n2

τ2 and any
γ ∈ Fn

2 , that
∣∣∣f̂U (γ)− ĝU (γ)

∣∣∣ ≤ τ.

Using Proposition 28, we have the following lemma.

▶ Lemma 29. For all d ≥ 3 and δ < 1
2 ·
(

n
d

)−1, there exists a Boolean function f with

r(f, δ) ≥ n−max
{

2d · n1/(d−1), log
(
16n2/δ2)} .

Proof. By Lemma 27, there exists a bounded f that is not δ-regular in any affine subspace
of dimension at least 2dn1/(d−1) for all δ <

(
n
d

)−1. Proposition 28 tells us that there exists
a Boolean function g whose Fourier coefficients agree up to an additive error δ/2 with the
Fourier coefficients of f on all affine subspaces of dimension at least log

(
16n2/δ2). Therefore,

if f is not δ-regular on all of these affine subspaces, then g is also not δ/2-regular on any of
these subspaces. ◀

We can plug some parameters into Lemma 29 and achieve the following more parsable
corollary.

▶ Corollary 30. For every 3 ≤ d ≤ log n
log log n+1 and δ = 1

2 ·n
−d, there exists a Boolean function

f with r(f, δ) ≥ n− 2d · n1/(d−1).

We include the proofs of Proposition 28 and Corollary 30 in Appendix C.

5.2.2 Explicit Lower Bounds on r(f, δ)
We now turn to lower bounds on r(f, δ) given by explicit Boolean functions. Our first example
comes from analyzing certain Boolean functions studied by [18] that provide lower bounds
for r(f, 0).

▶ Lemma 31 (Related to Corollary 1.1 in [18]). For each δ > 0, there exists an explicit
Boolean function f : Fn

2 → {0, 1} with r(f, δ) = Ω
(
(log 1

δ )log2(3)).
Our second example is the majority function; we show that the majority function, denoted

by MAJn, has a large r(f, δ) value when δ = O(1/
√

n). This in particular rules out the
possibility of proving a bound of the form r(f, δ) ≤ poly(log(1/δ)) for Boolean f .

▶ Lemma 32. There is an absolute constant C > 0, such that for all sufficiently large n,
r(MAJn, δ) ≥ Ω(n1/2) for any δ ≤ C/

√
n.

The proofs of Lemma 31 and Lemma 32 can be found in the full version of this work.
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A Section 1 Omissions

A.1 Omitted Proofs
In this section we provide the proofs of Proposition 4 and Proposition 5. We first begin with
a corollary of Proposition 13 which will be useful in the analysis of the claims.

▶ Corollary 33. If V has dimension n − 1 and V⊥ = span({γ}), we have that f̂α+V(0) =
f̂(0)± f̂(γ). Moreover, there exists a choice of α such that |f̂α+V(0)| = |f̂(0)|+ |f̂(γ)|.
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Proof. By Proposition 13, we have

f̂α+V(0) = (−1)⟨0,α⟩f̂(0) + (−1)⟨γ,α⟩f̂(γ) = f̂(0) + (−1)⟨γ,α⟩f̂(γ).

This immediately implies both parts of the corollary. ◀

Proof of Proposition 4. Given some f : Fn
2 → [−1, 1], consider the following simple proced-

ure:
While at least δ fraction of π ∈ Π have some γπ such that |f̂π(γπ)| > δ, further partition
each π into π ∩ {x : ⟨γπ, x⟩ = 0} and π ∩ {x : ⟨γπ, x⟩ = 1}.

We would like to show that we cannot perform the above partitioning action more that 1
δ3 times.

Towards this end, define the potential function Φ(Π) := Eπ∈Πf̂π(0)2 = Eπ∈Π[(Efπ)2] ∈
[0, 1]. Whenever we partition further, by Corollary 33 each |f̂π(0)| is updated to either
|f̂π(0) + f̂π(γπ)| or |f̂π(0)− f̂π(γπ)|. Therefore, the contribution of π to Φ in one step of the
partitioning process is

1
2

(
(f̂π(0) + f̂π(γπ))2 + (f̂π(0)− f̂π(γπ))2

)
− f̂π(0)2 = f̂π(γπ)2.

Since we assume at least δ fraction of π ∈ Π had some γπ such that |f̂π(γπ)| > δ, at each
step of the refinement Φ must increase by at least δ3, completing the proof. ◀

Proof of Proposition 5. Suppose without loss of generality, Ef ≥ 0. Start with the trivial
subspace, π0 = Fn

2 . While there exists γ such that |f̂πt
(γ)| > δ, by Corollary 33 we can fix the

parity corresponding to γ in such a way that ensures that |f̂πt+1(0)| =
∣∣∣f̂πt

(0) + |f̂πt
(γ)|

∣∣∣ >

f̂πt
(γ) + δ. Since f̂π(0) ≤ 1 for all π, this process can happen at most 1

δ times. ◀

A.2 Omitted Sketches
We give the main ideas behind the lower bounds in Table 1.

Sketch of Lemma 26. The proof of this claim is based on the homogeneous degree-one
function f(x) = 1

n

∑
i(−1)xi . Its key idea comes from Observation 25, which we use to

show that if the dimension of codim(V) < n/2, then at least one shift of V⊥ must contain
exactly one standard basis vector. By the preceding discussion, this implies that fα+V has a
non-trivial Fourier coefficient with magnitude exactly 1/n > δ.

We remark that Lemma 26 is tight. The function f is symmetric, and for any such
function, we can fix n/2 parities to obtain an affine subspace where every vector has weight
n/2, which in turn fixes the function.

Sketch of Lemma 27 and Corollary 30. To achieve Lemma 27, one might expect to extend
the above argument to the homogeneous degree d function f(x) =

(
n
d

)−1∑
γ:∥γ∥1=d(−1)⟨γ,x⟩.

Unfortunately, this function is symmetric, and we have r(f, 0) ≤ n/2. We therefore consider
a random homogeneous degree d function fz(x) =

(
n
d

)−1∑
γ:∥γ∥1=d zγ · (−1)⟨γ,x⟩, where each

zγ is a random sign. A simple argument, again utilizing Observation 25, shows that there
must be at least

(
k
d

)
affine subspaces of V⊥ with at least one vector of weight d. By our

earlier reasoning, each of those subspaces must in fact contain at least two vectors of weight
d so that the restricted function would have a non-trivial Fourier coefficient with magnitude(

n
d

)−1
> δ. Moreover, the probability (over the signs zγ ’s) that each of the

(
k
d

)
signed sums

cancels is at most 2−(k
d), and a union bound over all the possible affine subspaces of dimension

k = Θ(dn1/(d−1)) completes the argument.
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If we restrict our attention to Boolean functions, we might hope to obtain strong upper
bounds for r(f, δ); however, Corollary 30 rules this out. The proof of this claim is based on
a simple lemma of [12] (Proposition 28), which uses the probabilistic method to convert a
bounded function that is not δ-regular in large affine subspaces to a Boolean function with
the same property. Applying this lemma to the lower bound from Lemma 27 achieves the
result.

Sketch of Lemma 32. This lower bound is based on the majority function. Its key idea is
that there exists a non-trivial affine subspace of V⊥ containing exactly one weight-1 vector
and relatively few vectors of higher weight (see the full version of the work for details on
this). Then, we use properties of the Fourier spectrum of the majority function to show
that the signed sum of the Fourier coefficients of majority corresponding to vectors in this
affine subspace, is on the order of

∣∣∣f̂(e1)
∣∣∣ = Ω(n−1/2). Specifically, we argue that even if the

coefficients coming from higher weight vectors in the aforementioned sum combined in the
most constructive way possible, they cannot combine to more than

∣∣∣f̂(e1)
∣∣∣/2. We also note

that Lemma 32 is tight up to constant factors via Proposition 5. Conversely, Lemma 32
implies that for δ ≥ n−1/2, the majority function on O(1/δ2) variables is an explicit Boolean
function for which r(f, δ) ≥ Ω(1/δ).

Rationale for Lemma 31. The last entry in the table corresponds to Lemma 31 and is
based on a simple function f on 4 inputs that is composed with itself k times. We use key
properties of the composition of Boolean functions (from [24, 18]) to achieve the bound. The
function itself is the same one considered in [18], and we use their main theorem crucially to
obtain our lower bound. We present a slightly generalized version of the main theorem of
[18], so we include a proof this in the full version of this work.

We make some final comments about the lower bounds from Corollary 30. The Boolean
functions that achieve the lower bounds share the property that the magnitudes of their
Fourier coefficients are extremely close to their bounded counterparts in Lemma 27. However,
even though the bounded functions themselves have low degree, the Boolean functions are
very far from being low-degree functions; in fact, almost all their Fourier mass comes from
the high-degree terms. Notably, these functions are also non-explicit affine dispersers with
small dimension, and it would be interesting to find explicit Boolean functions with similar
strong lower bounds on the r(f, δ).

B Section 2 Omitted Proofs

Proof of Proposition 13. Using Fact 12, we can write

f̂U (γ) = Ex∈V [f(x + α) · (−1)⟨γ,x⟩] = Ex∈V
∑

β

f̂(β)(−1)⟨β,x+α⟩(−1)⟨γ,x⟩

=
∑

β

f̂(β)(−1)⟨β,α⟩Ex∈V [(−1)⟨β+γ,x⟩]

=
∑

β∈γ+V⊥

f̂(β)(−1)⟨β,α⟩,

where the last equality follows by observing that Ex∈V
[
(−1)⟨γ+β,x⟩] = 1 if β ∈ γ + V⊥, and

zero otherwise. ◀

ICALP 2023
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Proof of Proposition 15. We first show that W and V⊥ are independent. Suppose that
MTγ + u = 0, where γ ∈ span(J) and u ∈ V⊥. For any v ∈ V such that v ̸= 0, we have

0 = ⟨v, MTγ + u⟩ = ⟨v, MTγ⟩ = ⟨Mv, γ⟩,

which is impossible unless γ = 0 since this implies Mv ∈ span(J)⊥ = span(J) and Mv ̸= 0.
This in turn implies that u = 0 and therefore that W and V⊥ are independent. The claim
follows by noting that dim(W ⊕V⊥) = dim(W) + dim(V⊥) = k + n− k = n. ◀

Proof of Proposition 16. Repeatedly using Fact 12, we have that∣∣∣f̂U (MTγ)
∣∣∣ =

∣∣∣Ex∈U

[
f(x)(−1)⟨MTγ,x⟩

]∣∣∣ =
∣∣∣Ex∈U

[
f(x)(−1)⟨γ,Mx⟩

]∣∣∣
=
∣∣∣Ez∈U ′

[
f(M−1z)(−1)⟨γ,z⟩

]∣∣∣ = |ĝU ′(γ)| . ◀

Proof of Fact 18. We have that

ĝ(γ) = Ex[g(x)χγ(x)] = E[f(Mx)χγ(x)]
= Ey[f(y)χγ(M−1y)]

= Ey[f(y)χM−Tγ(y)] = f̂(M−Tγ),

where we have used the fact that χγ(M−1y) = (−1)⟨γ,M−1y⟩ = (−1)⟨M−Tγ,y⟩. ◀

C Proofs from Section 5

C.1 Proofs from Section 5.1
Proof of Observation 25. Let S = {u : u ∈ W and |(u+V⊥)=1| ≥ 1}. Since every standard
basis vector can be expressed as u+v for some u ∈ S and v ∈ V⊥, we have that dim(span(S∪
V⊥)) = n. However, we also know that dim(span(S ∪ V⊥)) ≤ |S|+ C, and rearranging we
get |S| ≥ n−C. Next, let S1 = {u ∈ S : |(u + V⊥)=1| = 1}. By Fact 9, for any u, u′ ∈ S, we
have u + V⊥ ̸= u′ + V⊥. Therefore,

n =
∑
u∈S

|(u + V⊥)=1| =
∑

u∈S1

|(u + V⊥)=1|+
∑

u∈S\S1

|(u + V⊥)=1| ≥ |S1|+ 2(|S| − |S1|),

and rearranging, we get |S1| ≥ 2|S| − n ≥ n− 2C. ◀
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