
Fully Dynamic Shortest Paths and Reachability in
Sparse Digraphs
Adam Karczmarz #

University of Warsaw, Poland
IDEAS NCBR, Warsaw, Poland

Piotr Sankowski #

University of Warsaw, Poland
IDEAS NCBR, Warsaw, Poland

Abstract
We study the exact fully dynamic shortest paths problem. For real-weighted directed graphs, we
show a deterministic fully dynamic data structure with Õ(mn4/5) worst-case update time processing
arbitrary s, t-distance queries in Õ(n4/5) time. This constitutes the first non-trivial update/query
tradeoff for this problem in the regime of sparse weighted directed graphs.

Moreover, we give a Monte Carlo randomized fully dynamic reachability data structure processing
single-edge updates in Õ(n

√
m) worst-case time and queries in O(

√
m) time. For sparse digraphs,

such a tradeoff has only been previously described with amortized update time [Roditty and Zwick,
SIAM J. Comp. 2008].

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms; Theory of
computation → Shortest paths

Keywords and phrases dynamic shortest paths, dynamic reachability, dynamic transitive closure

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.84

Category Track A: Algorithms, Complexity and Games

Funding Adam Karczmarz: Partially supported by the ERC CoG grant TUgbOAT no 772346.
Piotr Sankowski: Partially supported by the ERC CoG grant TUgbOAT no 772346 and National
Science Center (NCN) grant no. 2020/37/B/ST6/04179.

1 Introduction

Computing all-pairs shortest paths (APSP) is among the most fundamental algorithmic
problems on directed graphs. This classical problem is often generalized into a data structure
“oracle” variant: given a graph G, preprocess G so that efficient point-to-point distance
or shortest paths queries are supported. Computing APSP can be viewed as an extreme
solution to the oracle variant; if one precomputes the answers to all the n2 possible queries
in Õ(nm) time, the queries can be answered in constant time. The other extreme solution is
to not preprocess G at all and run near-linear-time Dijkstra’s algorithm upon each query.
Interestingly, for general directed weighted graphs, no other tradeoffs for the exact oracle
variant of static APSP beyond these trivial ones are known.

In this paper, we consider the exact APSP problem, and its easier relative all-pairs
reachability (or, in other words, transitive closure), in the fully dynamic setting, where the
input graph G evolves by both edge insertions and deletions.

1.1 Prior work
There has been extensive previous work on APSP and transitive closure in the fully dynamic
setting. Notably, Demetrescu and Italiano [16] showed that APSP in a real-weighted
digraph can be maintained deterministically in Õ(n2) amortized time per vertex update

EA
T
C
S

© Adam Karczmarz and Piotr Sankowski;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 84; pp. 84:1–84:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.karczmarz@mimuw.edu.pl
https://orcid.org/0000-0002-2693-8713
mailto:sank@mimuw.edu.pl
https://orcid.org/0000-0002-0907-3754
https://doi.org/10.4230/LIPIcs.ICALP.2023.84
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

84:2 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

(changing all edges incident to a single vertex). Thorup [36] later slightly improved and
simplified their result. These data structures maintain an explicit distance matrix and the
corresponding collection of shortest paths, and thus allow querying distances and shortest
paths in optimal time. Similar amortized bounds have been earlier obtained for transitive
closure [17, 30, 32] albeit using different combinatorial techniques. Polynomially worse (but
nevertheless subcubic) worst-case update bounds for real-weighted fully dynamic APSP are
also known: randomized Õ(n2+2/3) [2, 24] and slightly worse deterministic Õ(n2+41/61) [13].

For dense unweighted digraphs, non-trivial fully dynamic data structures for all-pairs
reachability and APSP can be obtained using algebraic techniques. Via a reduction to
dynamic matrix inverse, Sankowski [35] obtained O(n2) worst-case update bound for explicitly
maintaining the transitive closure, and also gave update/query tradeoffs. In particular, he
showed a reachability data structure with subquadratic O(n1.529) update time and sublinear
O(n0.529) query time. Using the same general algebraic framework, van den Brand, Nanongkai,
and Saranurak [40] showed O(n1.407) worst-case update bound for st-reachability (that is,
fixed single-pair reachability), whereas van den Brand, Forster, and Nazari [38] gave an
O(n1.704) worst-case update bound for maintaining exact st-distance in unweighted digraphs.1
That framework, however, inherently leads to Monte Carlo randomized solutions and does
not generally allow reporting (shortest) paths within the stated query bounds.2

Interestingly, neither the known fully dynamic APSP data structures for real-weighted
digraphs (or even for integer weights between 1 and n) nor the algebraic data structures
tailored to dense graphs yield any improvement over the extreme recompute-from-scratch
approaches for sparse graphs with m = Õ(n). This is especially unfortunate as such graphs are
ubiquitous in real-world applications. Indeed, for m = Õ(n), recomputing APSP from scratch
takes Õ(n2) worst-case update time and O(1) query time (which matches the amortized
bound in [17, 36]), whereas naively running Dijkstra’s algorithm upon query costs Õ(n) time
(which already improves upon the update bound of the algebraic st-distance data structure
of [38]). The only non-trivial fully dynamic APSP data structure in the sparse regime has
been described by Roditty and Zwick [34]. Their randomized data structure has Õ(m

√
n)

amortized update time and O(n3/4) query time. Unfortunately, it works only for unweighted
digraphs. To the best of our knowledge, no non-trivial update/query tradeoffs for fully
dynamic APSP in sparse weighted digraphs have been described to date. A step towards
this direction has been made by Karczmarz [27] who showed that some fixed – in a crucial
way – m distance pairs can be maintained in Õ(mn2/3) worst-case time per update.

For the simpler fully dynamic reachability problem, the O(n1.529) update time and
O(n0.529) query time algebraic tradeoff of [35] is already non-trivial for all graph densi-
ties. However, specifically for sparse graphs, a deterministic and combinatorial tradeoff
of Roditty and Zwick [33] is more efficient; they showed a data structure with O(m

√
n)

amortized update time and O(
√

n) query time. Moreover, the data structure of [35] requires
fast matrix multiplication algorithms [3, 21] and these are considered impractical. That
being said, the downside of [33] is that the update bound holds only in the amortized sense.

1 The single-pair data structures [40, 38] can be easily extended to support arbitrary-pair queries. Then,
the query time matches the update time.

2 As shown quite recently, reporting (shortest) paths in subquadratic time can be possible via a combination
of algebraic and combinatorial techniques [8, 28]. However, this comes with a polynomial time overhead.

A. Karczmarz and P. Sankowski 84:3

1.2 Our results

Dynamic shortest paths. Most importantly, we show the first fully dynamic APSP data
structure with non-trivial update and query bounds for sparse weighted digraphs.

▶ Theorem 1. Let G be a real-weighted directed graph. There exists a deterministic data
structure maintaining G under fully dynamic vertex updates and answering arbitrary s, t-
distance queries with Õ(mn4/5) worst-case update time and Õ(n4/5) query time and using
Õ(n2) space. The queries are supported only when G has no negative cycles. After answering a
distance query, some corresponding shortest path P = s → t can be reported in O(|P |) time.

Compared to the data structure of Roditty and Zwick [34] for the unweighted case, our
obtained update/query bounds are polynomially higher. However, our data structure has
some very significant advantages. It is deterministic, handles real-edge-weighted graphs
(possibly with negative edge weights and negative cycles), and the update time bounds holds
in the worst case, as opposed to only in the amortized sense in [34]. Moreover, if path
reporting is required, then the bounds in [34] hold only against an oblivious adversary. We
also remark that a slightly more efficient variant of Theorem 1, with Õ(mn3/4) worst-case
update time and Õ(n3/4) query time, can be obtained for the unweighted case.

The near-quadratic space requirement in Theorem 1 is clearly undesirable in the sparse
setting, but also applies to all the other known fully dynamic reachability and shortest paths
data structures. Moreover, this phenomenon is not specific to the dynamic setting. To the
best of our knowledge, even for the static transitive closure problem, it is not known whether
one can preprocess a general sparse directed graph into a data structure of size O(n2−ϵ)
supporting arbitrary reachability queries in O(n1−ϵ) time.3

Dynamic reachability. For fully dynamic all-pairs reachability in sparse digraphs, we show
that the amortized update bound of Roditty and Zwick [33] can also hold in the worst case.

▶ Theorem 2. Let G be a directed graph. Let t ∈ [1,
√

m]. There exist a Monte Carlo
randomized data structure maintaining G subject to fully dynamic single-edge updates with
Õ(mn/t) worst-case update time and supporting arbitrary-pair reachability queries in O(t)
time. The answers produced are correct with high probability4.

Note that for t =
√

m, Theorem 2 yields O(n2−ϵ) update time and O(n1−ϵ) for some
ϵ > 0 for all but dense graphs. The data structure of Roditty and Zwick [33], on the other
hand, has amortized update time at least Θ(m

√
n), which is o(n2) only if m = o(n3/2).

However, the downsides of Theorem 2 compared to [33] are: supporting more restricted single
edge (as opposed to vertex-) updates, using randomization, and not being able to report the
underlying path efficiently.

Our data structure should also be compared with the O(n1.529)/O(n0.529) worst-case
update/query bounds obtained in [35]. Theorem 2 gives polynomially better bounds for very
sparse graphs, with m = O(n1.057). Moreover, although it is also algebraic in nature, it does
not rely on fast matrix multiplication [3, 21], thus avoiding this potential practical efficiency
bottleneck.

3 Such a tradeoff is possible, for example, if the graph has a sublinear minimum path cover, see, e.g., [31].
4 That is, with probability at least 1 − 1/nc, where the constant c ≥ 1 can be set arbitrarily. We will also

use the standard abbreviation w.h.p.

ICALP 2023

84:4 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

1.3 Technical overview
Shortest paths. In order to obtain a basic randomized variant of Theorem 1, we combine
ideas from the known data structures for fully dynamic APSP with subcubic worst-case
update bound [2, 24, 27]. These data structures all build upon hitting set arguments (dating
back to the work of Ullman and Yannakakis [37]) yielding a sublinear Õ(n/h)-sized set of
vertices of the graph that lie on the shortest paths whose number of edges (hops) is at
least h = poly n. With this in hand, the main challenge is to recompute pairwise small-hop
shortest paths, i.e., those with at most h hops, under edge deletions. As usual, edge insertions
are rather easy to handle since the potential new paths created by insertions necessarily pass
through the inserted edges’ endpoints.

For efficient recomputation of small-hop paths, our data structure once in a while chooses a
collection Π of n2 pairwise ≤ h-hop paths in G, and a set C ⊆ V of congested vertices of truly
sublinear (in n) size, so that the chosen paths are at least as short as shortest ≤ h-hop paths
in G − C (i.e., the graph G with edges incident to the vertices C removed). The congested
vertices are picked in such a way that no individual vertex v ∈ V appears on the chosen paths
too often. As a result, the number of precomputed paths destroyed by a vertex deletion that
have to be restored is bounded. This idea is due to Probst Gutenberg and Wulff-Nilsen [24].
However, as opposed to [24], we cannot afford to recompute shortest ≤ h-hop paths upon
update in a hierarchical way which is inherently quadratic in n (albeit advantageous in
the case of dense graphs). Instead, recomputation upon deletions is performed using a
Dijkstra-like procedure (as in [2]), crucially with the sparsity-aware enhancements of [27]
(such as the degree-weighted congestion scheme). These techniques, combined with the
standard random hitting set argument [37] are enough to get the stated bounds, albeit Monte
Carlo randomized.

Derandomization. Randomization above is only required for the sake of the hitting set
argument. Curiously, we do not (and do not know how to) exploit the often-used property
that a random hitting set, once sampled, is valid through multiple versions of the evolving
graph as long as the adversary is oblivious to the hitting set. Therefore, we may as well
sample the hitting set from scratch after each update. This is as opposed to [2, 27], where
avoiding that leads to polynomially better bounds. If a fresh hitting set can be used upon
each update, the standard derandomization method is to use a folklore greedy algorithm (see
Lemma 8) for constructing a minimum hitting set that is O(log n)-approximate, first used in
the context of static and dynamic APSP algorithms in [30, 42]. The greedy algorithm runs
in linear time in the input size. For constructing a hitting set of explicitly given pairwise
≤ h-hop paths, this gives an O(n2h) time bound per update. This is enough for deterministic
variants of [2] and [42]. However, the incurred cost is prohibitive in the sparse case.

Derandomization of our data structure without a polynomial slowdown turns out to be
non-trivial and requires some new tools. First, when precomputing ≤ h-hop paths Π, we
construct a hitting set H0 of those paths in Π that have Θ(h) hops. When G is subject to
deletions, H0 hits the precomputed paths in Π that are not destroyed as a result of deletions.
Hence, in order to lift H0 into a hitting set after an update, it is enough to extend it so
that it hits all the restored paths. If we wanted to run the greedy algorithm on the restored
paths, the data structure would suffer from a factor-h polynomial slowdown. This is because
the representation of the restored paths (constructed using Dijkstra’s algorithm) can be
computed more efficiently that their total hop-length and encoded using a collection of
shortest paths trees Z. The goal can be thus achieved by finding a hitting set of all Θ(h)-hop
root-leaf paths in Z. King [30] gave a variant of the aforementioned deterministic greedy

A. Karczmarz and P. Sankowski 84:5

algorithm precisely for this task. The algorithm of [30] runs in O(min(Nh, |Z|n)) time, where
N denotes the total size of trees in Z. While this is optimal when Z contains Θ(n) trees of
size Θ(n) (as required in [30]), for small enough N and large enough |Z|, this is not better
than the standard greedy algorithm which could also solve the task in O(Nh) time.

We deal with this problem by designing a novel near-optimal deterministic algorithm
computing an Õ(n/h)-sized hitting set of h-hop root-leaf path in a collection of trees that
runs in O(N log2 N) time independent of h (see Theorem 9). We believe that this algorithm
might be of independent interest. The main idea here is to simulate the greedy algorithm
only approximately, which enables taking advantage of dynamic tree data structures [4].

Reachability and sparse matrix inverse. Our improved worst-case bounds for fully dynamic
reachability in sparse digraphs are obtained via a small change in the subquadratic update-
sublinear query tradeoff of [35] based on dynamic matrix inverse. That algorithm once in a
while explicitly recomputes the inverse of a certain matrix associated with the graph using
fast rectangular matrix multiplication. That inverse encodes the transitive closure of the
graph G. We observe that for sparse graphs, it is beneficial to recompute the inverse in a
more naive way, entirely from scratch. This is because for large enough finite fields (with
more than n2 elements), it is in fact possible to compute the inverse of a sparse matrix with
m = Θ̃(n) non-zero elements in near-optimal Õ(mn) time without fast Strassen-style matrix
multiplication algorithms (see Theorem 13). This is a relatively easy consequence of the
classical work of Kaltofen and Pan [26], and has been, to the best of our knowledge, overlooked
and not explicitly stated before. Sparse matrix inversion has been recently viewed (see,
e.g., [12, 18]) mainly through the lens of black-box matrix computations, i.e., parameterized
by the cost ϕ(n) of multiplying the input matrix (or its transpose) by a vector. For sparse
matrices, we clearly have ϕ(n) = Õ(n), but the best described bound for sparse matrix
inversion in finite fields in that literature seems to be O(n2.214) [12]. However, ϕ(n) = Õ(n)
holds for sparse matrices even in a less general so-called straight-line program computation
model (also called the algebraic circuit model) which allows employing powerful tools such
as the Baur-Strassen theorem [7].

1.4 Further related work
Exact all-pairs shortest paths in unweighted graphs have been studied also in partially
dynamic settings: incremental [5] and decremental [6, 19]. Fully dynamic data structures are
also known for (1+ ϵ)-approximate distances in weighted directed graphs [9, 39]. A significant
research effort has been devoted to finding fully- and partially dynamic (approximate) all-pairs
shortest paths data structures for undirected graphs, e.g., [10, 14, 15, 20, 38].

Dynamic reachability and shortest paths problems have also been studied from the
perspective of conditional lower bounds [1, 23, 25, 34, 40].

2 Preliminaries

We work with directed graphs G = (V, E). We denote by wG(e) ∈ R the weight of an edge
uv = e ∈ E. The graph G is called unweighted if wG(e) = 1 for all e ∈ E. If the graph
whose edge we refer to is clear from the context, we may sometimes skip the subscript
and write w(e). For simplicity, we do not allow parallel directed edges between the same
endpoints of G, as those with non-minimum weights can be effectively ignored in reachability
and shortest paths problems we study. As a result, we sometimes write wG(uv) or w(uv).

ICALP 2023

84:6 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

For u, v ∈ V , an u → v path P in G is formally a sequence of vertices v1 . . . vk ∈ V , where
k ≥ 1, u = v1, v = vk, such that vivi+1 ∈ E for all i = 1, . . . , k − 1. The hop-length |P | of P

equals k − 1. The length ℓ(P) of P is defined as
∑k−1

i=1 wG(vivi+1). P is a simple path if
|V (P)| = |E(P)| + 1. We sometimes view P as a subgraph of G with vertices {v1, . . . , vk}
and edges (hops) {v1v2, . . . , vk−1vk}.

For any k ≥ 0, δk
G(s, t) is the minimum length of an s → t path in G with at most k

hops. A shortest k-hop-bounded s → t path in G is an s → t path with length δk
G(s, t) and

at most k hops. We define the s, t-distance δG(s, t) as infk≥0 δk
G(s, t). For s, t ∈ V , we say

that t is reachable from s in G if there exists an s → t path in G, that is, δG(s, t) < ∞. If
δG(s, t) is finite, there exists a simple s → t path of length δG(s, t). Then, we call any s → t

path of length δG(s, t) a shortest s, t-path.
If G contains no negative cycles, then δG(s, t) = δn−1

G (s, t) for all s, t ∈ V . Moreover,
in such a case there exists a feasible price function p : V → R such that reduced weight
wp(e) := w(e) + p(u) − p(v) ≥ 0 for all uv = e ∈ E. For any path s → t = P ⊆ G, the
reduced length ℓp(P) (i.e., length wrt. weights wp) is non-negative and differs from the
original length ℓ(P) by the value p(s) − p(t) which does not depend on the shape of P .

For any S ⊆ V , we denote by G−S the subgraph of G on V obtained from G by removing
all edges incident to vertices S.

We sometimes talk about rooted out-trees T with all edges directed from a parent to a
child. In such a tree T with root s, a root path T [s → t] is the unique path from the root to
the vertex t of T . A subtree of T rooted in some of its vertices v is denoted by T [v].

3 Fully dynamic shortest paths data structure

This section is devoted to proving the main theorem of this paper.

▶ Theorem 1. Let G be a real-weighted directed graph. There exists a deterministic data
structure maintaining G under fully dynamic vertex updates and answering arbitrary s, t-
distance queries with Õ(mn4/5) worst-case update time and Õ(n4/5) query time and using
Õ(n2) space. The queries are supported only when G has no negative cycles. After answering a
distance query, some corresponding shortest path P = s → t can be reported in O(|P |) time.

First, let us assume that all the edge weights are non-negative. Let us also make a
simplifying assumption that any shortest k-hop-bounded s → t path in G always has a
minimum possible number of hops and is simple. If there are no negative cycles, this is easy
to guarantee by replacing each edge weight w(e) in G with a pair (w(e), 1), adding weights
coordinate-wise, and comparing them lexicographically. We discuss how to extend the data
structure to also handle negative edge weights and negative cycles later in Section 3.7.

We will first present a simple Monte Carlo randomized data structure, and show how to
make it deterministic with no asymptotic time penalty (wrt. Õ(·) notation) in Section 3.5.

Some further variants of the data structure are sketched in the Appendix. A variant
for unweighted digraphs is given in Section A.1. In the weighted case, one can also achieve
polynomially faster update at the cost of polynomially slower query and randomization. For
details, see Section A.2.

The data structure operates in phases of ∆ vertex updates. At the beginning of each
phase, we apply a rather costly preprocessing described in the next subsection.

3.1 Preprocessing at the beginning of a phase
The preprocessing follows the general approach of [24] adjusted with some ideas from [27].

A. Karczmarz and P. Sankowski 84:7

Let h ∈ [2, n], and let τ be a congestion threshold, to be set later. We compute a certain
collection of paths Π in G containing, for every pair s, t ∈ V , at most one s → t path πs,t,
satisfying |πs,t| = O(h), and a subset C ⊆ V of congested vertices.

First of all, the collection Π and the set C satisfy:

δh
G(s, t) ≤ ℓ(πs,t) ≤ δh

G−C(s, t), for all s, t ∈ V. (1)

Above, we abuse the notation a bit and set ℓ(πs,t) := ∞ if there is no path πs,t in Π.
Moreover, for any v ∈ V , let us define:

Π(v) := {πs,t ∈ Π : v ∈ V (πs,t)},

α(v) :=
∑

πs,t∈Π(v)

deg(t).

Crucially, Π additionally satisfies:

α(v) ≤ τ, for all v ∈ V. (2)

▶ Lemma 3. Let h ∈ [1, n]. For any τ ≥ 2m, in O(nmh) time one can compute the congested
set C ⊆ V and a set of paths Π satisfying conditions (1) and (2) so that |C| = O(nmh/τ).

Proof. We start with empty sets C and Π. Note that (2) is satisfied initially since all values
α(·) are zero. We will gradually add new paths to Π while maintaining (2) and ensuring
that (1) holds for more and more pairs s, t. While introducing new paths to Π, we will also
maintain the values α(v) (as defined above) for all v ∈ V .

We process source vertices s ∈ V one by one, in arbitrary order. For each such s, we first
move to C all the vertices v ∈ V \ C with α(v) > τ/2. Next, we compute, for all t ∈ V , a
shortest h-hop-bounded path πs,t = s → t in G − C (if such a path exists). For a fixed s, all
the paths πs,t can be computed in O(mh) time using a variant of Bellman-Ford algorithm.
We add the newly computed paths to Π. Afterwards, (1) clearly holds for s and all t ∈ V .
Moreover, (1) also holds for all πs′,t′ ∈ Π that have been added for a source s′ processed
earlier than s. Indeed, extending the set C only weakens the upper bound in (1). The values
α(v) can be updated easily in O(nh) time. Observe that for any v ∈ V \ C, α(v) grows
by at most

∑
t∈V deg(t) = m when processing s. As a result, after processing s, we have

α(v) ≤ τ/2 + m ≤ τ/2 + τ/2 = τ and hence (2) is satisfied. At the same time, since we use
paths from G − C, for any y ∈ C, α(y) does not increase and thus we still have α(y) ≤ τ .

Finally, note that for any πs,t added to Π, since |πs,t| ≤ h, α(v) grows by deg(t) for at
most h distinct vertices v. As a result, we have

∑
v∈V α(v) ≤

∑
t∈V deg(t)·

(∑
s∈V h

)
≤ m·nh.

But for each y ∈ C, we have α(y) > τ/2, so there is at most 2nmh/τ such vertices y. ◀

Applying Lemma 3 constitutes the only preprocessing that we apply at the beginning
of a phase in the Monte Carlo randomized variant. The computed paths Π are stored
explicitly and thus the used space might be Θ(n2h). Note that with the help of additional
O
(∑

πs,t∈Π |πs,t|
)

= O(n2h) vertex-path pointers, we can report the elements of any Π(v),

v ∈ V , in constant time per element. We will discuss how to improve the space to Õ(n2)
using a trick due to Probst Gutenberg and Wulff-Nilsen [24] in Section 3.6.

3.2 Update
When a phase proceeds, let D be the set of at most ∆ affected vertices in the current phase,
that is, D contains every v such that a vertex update around v has been issued in this phase.

ICALP 2023

84:8 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

In the query procedure, we will separately consider paths going through C ∪ D, and those
lying entirely in G − (C ∪ D). To handle the former, upon each update we simply compute
single-source shortest-path trees from and to each s ∈ C ∪ D in the current graph G. This
takes Õ(|C ∪ D|m) worst-case time using Dijkstra’s algorithm.

As a matter of fact, we will not quite compute shortest paths in G − (C ∪ D), but instead,
we will find paths in G−D that are not longer than the distances between their corresponding
endpoints in G − (C ∪ D). This is acceptable since G − D ⊆ G.

To prepare for queries about the paths in G − (C ∪ D), we do the following. We will
separately handle short ≤ h-hop shortest paths, and long > h-hop shortest paths.

Short paths. Denote by G0 the graph at the beginning of the phase. Recall that we use G

to refer to the current graph. Clearly, we have G − D ⊆ G0. Fix some s ∈ V . First of all,
note that if for some t ∈ V , V (πs,t) ∩ D = ∅, then πs,t ⊆ G − D, so by (1):

δG−D(s, t) ≤ ℓ(πs,t) ≤ δh
G0−C(s, t) ≤ δh

G−(C∪D)(s, t).

The paths πs,t going through D are not preserved in G − (C ∪ D) and thus we cannot use
them. We replace them with other paths π′

s,t constructed using the following lemma.

▶ Lemma 4. For s ∈ V , let Qs contain all t such that V (πs,t)∩D ̸= ∅. In Õ
(∑

t∈Qs
deg(t)

)
time we can compute a representation of paths π′

s,t ⊆ G − D (where t ∈ Qs), each with
possibly Θ(n) hops, satisfying:

δG−D(s, t) ≤ ℓ(π′
s,t) ≤ δh

G−(C∪D)(s, t).

The representation is a tree Ts rooted at s such that:
(1) some edges sv ∈ E(Ts) represent paths πs,v ⊆ G − D from Π and have corresponding

weights ℓ(πs,v),
(2) all other edges of Ts come from E(G − D),
(3) for all t ∈ Qs, π′

s,t equals Ts[s → t] with possibly the first edge sw of that path uncom-
pressed into the corresponding path πs,w ∈ Π.

Proof. Let Y be an edge-induced directed graph obtained as follows. For all t ∈ Qs, and
every of at most deg(t) edges vt ∈ E(G − D), we add to Y the following:

the edge vt itself (with the same weight),
if V (πs,v) ∩ D = ∅, an edge sv of weight ℓ(πs,v) corresponding to the path πs,v ∈ Π.

The algorithm is to simply compute a shortest paths tree Ts from s in Y in
Õ(|E(Y)|) = Õ

(∑
t∈Qs

deg(t)
)

time using Dijkstra’s algorithm. Clearly, any path Ts[s → t]
corresponds to an s → t path in G − D. It is thus sufficient to prove that for all t ∈ Qs, we
have ℓ(Ts[s → t]) ≤ δh

G−(C∪D)(s, t).
If t is unreachable in G − (C ∪ D) from s using a path with at most h hops, there is

nothing to prove. Otherwise, let a simple path P be a shortest h-hop-bounded s → t path
in G − (C ∪ D). Let p be the last vertex on P such that V (πs,p) ∩ D = ∅, that is, p /∈ Qs.
Note that p exists since δh

G−C(s, v) ̸= ∞ for all v ∈ V (P) (which implies πs,v ∈ Π) and p ̸= t.
Let P ′ be the s → p subpath of P . Let e1, . . . , ek ∈ E(G − (C ∪ D)) be the edges following p
on P . Here, p is the tail of e1. By the definition of Y and p, we have ei ∈ E(Y) for all
i = 1, . . . , k since the head of each ei is in Qs. Moreover, there is an edge sp of weight ℓ(πs,p)
in Y . Now, since πs,p is a path in G − D of length at most δh

G0−C(s, p), whereas the path
P ′ ⊆ G − (C ∪ D) = G0 − (C ∪ D) has less than h hops, we obtain ℓ(πs,p) ≤ ℓ(P ′) and hence:

ℓ(Ts[s → t]) = δY (s, t) ≤ ℓ(πs,p) +
k∑

i=1

w(ei) ≤ ℓ(P ′) +
k∑

i=1

w(ei) = ℓ(P) = δh
G−(C∪D)(s, t). ◀

A. Karczmarz and P. Sankowski 84:9

We compute the paths π′
s,t from Lemma 4 for all s ∈ V , t ∈ Qs. Recall that t ∈ Qs

implies that V (πs,t) ∩ D ̸= ∅ and thus πs,t ∈ Π(d) for some d ∈ D. Therefore, the time
needed for computing the paths π′

s,t can be bounded as follows:

Õ

∑
s∈V

∑
t∈Qs

deg(t)

 = Õ

∑
d∈D

∑
πs,t∈Π(d)

deg(t)

 = Õ

(∑
d∈D

α(d)
)

= Õ(|D|τ) = Õ(∆τ).

Note that the sets Qs can also be constructed within this bound, since they can be read
from

⋃
d∈D Π(d) which also has size Õ(∆τ) and the paths from any Π(v) can be reported in

O(1) time per path.
For all s ∈ V and t /∈ Qs, let us simply set π′

s,t := πs,t and put Π′ = {π′
s,t : s, t ∈ V }.

To summarize, in Õ(∆τ) time we can find, for all s, t ∈ V , a representation of paths π′
s,t in

G − D that are at least as short as the corresponding shortest h-hop-bounded s → t paths in
G − (C ∪ D). Storing a representation of the paths Π′ \ Π requires Õ(min(∆τ, n2)) additional
space since, by the construction of Lemma 4, each of these paths can be encoded using its
last edge and a pointer to another path in Π′ with less hops.

Long paths. In order to handle long paths, we use the following standard hitting set trick
from [37].

▶ Lemma 5. Let G = (V, E) be a directed graph with no negative cycles. For any s, t ∈ V ,
fix some simple shortest s → t path ps,t in G. Let H ⊆ V be obtained by sampling, uniformly
and independently (also from the choice of paths ps,t), c · (n/h) log n elements of V , where
c ≥ 1 is a constant. Then, with high probability (controlled by the constant c), for all s, t ∈ V ,
if |ps,t| ≥ h, then V (ps,t) ∩ H ̸= ∅.

On update, we simply apply Lemma 5 to the graph G − (C ∪ D) and an arbitrary choice
of pairwise shortest paths therein. This way, with high probability, we obtain an Õ(n/h)-
sized hitting set H of shortest paths in G − (C ∪ D) that have at least h hops. Finally,
we simply compute shortest paths trees from and to the vertices H in G − (C ∪ D) in
Õ(|H|m) = Õ(mn/h) worst-case time using Dijkstra’s algorithm.

3.3 Query

To answer a query about s, t distance in the current graph, we simply return:

min
(

min
v∈C∪D

{δG(s, v) + δG(v, t)} , min
v∈H

{
δG−(C∪D)(s, v) + δG−(C∪D)(v, t)

}
, ℓ(π′

s,t)
)

. (3)

The first term above is responsible for considering all s, t paths in G going through C ∪ D.
If all shortest s, t paths in G do not pass through C ∪ D, then the second term captures
(with high probability) one of such paths provided that it has at least h hops. Finally, if
every shortest s, t path in G does not go through C ∪ D and has less than h hops, then
δG(s, t) = δG−D(s, t) = δh

G−(C∪D)(s, t). Moreover, by Lemma 4, π′
s,t belongs to G − D ⊆ G

and δG(s, t) = δG−D(s, t) ≤ ℓ(π′
s,t) ≤ δh

G−(C∪D)(s, t) = δG(s, t), so indeed δG(s, t) = ℓ(π′
s,t).

Finally, note that finding the minimizer in (3) allows for reconstruction of some shortest
s, t path P in G in O(|P |) time using the stored data structures.

ICALP 2023

84:10 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

3.4 Time analysis
The total time spent handling a single update is:

Õ ((|D| + |C| + |H|)m + ∆τ) = Õ(m∆ + nm2h/τ + mn/h + ∆τ).

There is also an O(mnh) preprocessing cost spent every ∆ updates which yields an amortized
cost of Õ(mnh/∆) per update. Since τ ≥ 2m, the term m∆ is negligible above.

Balancing the terms mnh/∆ and mn/h yields ∆ = h2. Next, balancing with ∆τ yields
τ = mn/h3 under the assumption h = O(n1/3). Finally, balancing mn/h and nm2h/τ = mh4

yields h = n1/5, ∆ = n2/5, and τ = mn2/5. For such a choice of parameters, the amortized
update time is Õ(mn4/5). Since the only source of amortization here is a costly preprocessing
step happening in a coordinated way every ∆ updates, the bounds can be made worst-case
using a standard technique, see, e.g., [2, 40].

The query time is O(|C| + |D| + |H| + 1). For the obtained parameters, the bound
becomes Õ(∆ + nmh/τ + n/h) = Õ(h4 + n/h) = Õ(n4/5).

▶ Remark 6. In the above analysis, we have silently assumed that the “current” number
of edges m does not decrease significantly (say, by more than a constant factor) during a
phase due to vertex deletions, so that m = Ω(m0) holds at all times, where m0 = |E(G0)|.
Since the preprocessing of Lemma 3 is applied to G0, for the chosen parameters h, ∆, and
τ = m0n2/5, the update bound should more precisely be bounded by Õ(max(m, m0) · n4/5).
In general, it might happen that m becomes polynomially smaller that m0 while the phase
proceeds, e.g., if m0 = O(n∆). This could make the update bound higher than Õ(mn4/5).

There is a simple fix to this shortcoming, described in [27]: when a phase starts, it is
enough to put aside a set B ⊆ V of ∆ vertices with largest degrees in G0 and preprocess
the graph G0 − B instead. The edges incident to vertices B can be viewed as added during
the first ∆ “auxiliary” updates in the phase, and effectively included in the affected set D

from the beginning of the phase. One can easily prove that this guarantees that m = Ω(m0)
throughout the phase, where m0 is now defined as |E(G0 − B)|.

3.5 Derandomization
The only source of randomization so far was sampling a subset of vertices that hits shortest
paths in G − (C ∪ D) with at least h hops. To derandomize the data structure, we will
construct a hitting set H of size Õ(n/h) such that H hits all the paths in Π′ = {π′

s,t : s, t ∈ V }
(constructed during update) with at least h distinct vertices. Recall that the paths Π′ have
been used to handle short paths so far. We first show that a hitting set H defined this way
can serve the same purpose as the randomly sampled hitting set.

▶ Lemma 7. Let H ⊆ V be such that for all s, t ∈ V satisfying |V (π′
s,t)| ≥ h, V (π′

s,t)∩H ̸= ∅
holds. Let a, b ∈ V be such that every shortest a → b path in G has more than h hops and
does not go through C ∪ D. Then there exists a shortest a → b path in G that goes through a
vertex of H.

Proof. Let Q be the shortest a → b path in G that has the minimum number of hops. By
the assumption, |Q| > h and V (Q) ∩ (C ∪ D) = ∅. Let Q = RS, where R = a → c is the
h-hop prefix of Q. We have R ⊆ G − (C ∪ D) and, since Q is a shortest path in G, R is also
shortest in G and

ℓ(R) = δG(a, c) = δh
G(a, c) = δh

G−(C∪D)(a, c).

A. Karczmarz and P. Sankowski 84:11

Since δh
G−(C∪D)(a, c) is finite, the path π′

a,c ⊆ G − D ⊆ G satisfies

δG(a, c) ≤ δG−D(a, c) ≤ ℓ(π′
a,c) ≤ δh

G−(C∪D)(a, c) = δG(a, c).

We conclude that the path Q′ = π′
a,c · S satisfies ℓ(Q′) = ℓ(Q) and thus Q′ is also a shortest

a → b path in G. Since G has no negative cycles, one can obtain a simple a → c path
π′′

a,c from π′
a,c by eliminating zero-weight cycles, so that ℓ(π′′

a,c) = ℓ(π′
a,c) = δG(a, c) and

V (π′′
a,c) ⊆ V (π′

a,c). By the definition of Q, |V (π′
a,c)| ≥ |π′′

a,c| ≥ |R| ≥ h, since otherwise Q

would not have a minimum number of hops. By the assumption we have V (π′
a,c) ∩ H ̸= ∅,

so Q′ is a shortest a → b path in G going through a vertex of H. ◀

Additional preprocessing. When a phase starts, we additionally do the following. Let Π0
be a set of paths obtained as follows. For all πs,t ∈ Π, if |πs,t| ≥ h/2, we add πs,t to Π0.

Let us now recall a folklore greedy algorithm (used, e.g., in [42]) for computing a hitting
set of a collection of sufficiently large sets over a common ground set, summarized by the
following lemma.

▶ Lemma 8. Let X be a ground set of size n and let Y be a family of subsets of X, each
with at least k elements. Then, in O

(∑
Y ∈Y |Y |

)
time one can deterministically compute a

hitting set H ⊆ X of size O(n/k · log n) such that H ∩ Y ̸= ∅ for all Y ∈ Y.

We skip the proof of Lemma 8 since we later prove a more general result in Theorem 9. Using
Lemma 8 we can compute a hitting set H0 ⊆ V of Π0 in O(n2h) time. H0 has size Õ(n/h).

Computing a hitting set upon update. To compute a hitting set H ⊆ V \ D as required
by Lemma 7, we perform the following additional steps upon update. Recall that the
precomputed set H0 ⊆ V hits all (simple) paths in Π ∩ Π′ with at least h/2 hops, and thus
also those that have at least h distinct vertices. We will augment H0 into H so that it also
hits all the paths in Π′ \ Π with at least h distinct vertices.

Recall from Lemma 4 that for a fixed s ∈ V , all the paths π′
s,t, where t ∈ Qs, are encoded

using a tree Ts. By construction, for each edge e of Ts, we have that the tail of e is s,
or the head of e is in Qs. Consider a subtree Ts[u] rooted at some child u of s in Ts. If
the edge su in Ts corresponds to the path πs,u with |πs,u| ≥ h/2 then H0 hits πs,u. As a
result, for all t ∈ Qs ∩ V (Ts[u]), V (πs,u) ⊆ V (π′

s,t) and hence if |V (π′
s,t)| ≥ h then H0 hits

V (π′
s,t). Otherwise either su is a single edge from G − D, or it corresponds to a path πs,u

with |πs,u| < h/2. In either of these cases, if some t is at depth less than h/2 − 1 in Ts[u],
then |V (π′

s,t)| < h/2 + 1 + (h/2 − 1) = h, so the path π′
s,t does not need to be hit by H.

Consequently, observe that it is enough for H to hit all the (h/2 − 1)-hop root paths in Ts[u]
in order to have V (π′

s,t) ∩ H ̸= ∅ for each t ∈ Ts[u] with |V (π′
s,t)| ≥ h.

Let Z be the collection of all the subtrees Ts[u], where s ∈ V and su ∈ E(Ts). It is now
enough to compute an Õ(n/h)-sized hitting set H1 of each of the (h/2 − 1)-hop root paths
in all trees in Z. Then, H0 ∪ H1 will form a desired hitting set H of all the paths in Π′

with at least h distinct vertices. To this end, we could use a well-known variant of Lemma 8
due to King [30, Lemma 5.2]. However, the running time of that algorithm cannot be easily
bounded with the total size N of Z (i.e., N =

∑
T ∈Z |T |) exclusively; its running time is

O
(
N +

∑
T ∈Z min(n log n, |T |k)

)
= O(min(Nk, |Z|n log n)) if one desires to hit k-hop root

paths. Though, for some important cases, e.g., when Z contains n trees with Θ(n) vertices
each, the running time is near-linear in N for any k. Unfortunately, this might not be the
case in our scenario. Instead, we present a more sophisticated near-linear (independent of k)
time algorithm for this task.

ICALP 2023

84:12 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

▶ Theorem 9. Let V be a vertex set of size n and let Z be a family of trees on V . Let
N =

∑
T ∈Z |T |. For any k ∈ [1, n], in O(N log2 n) time one can deterministically compute

an O(n/k · log n)-sized hitting set H ⊆ V of all the k-hop root paths in all the trees in Z.

Proof. We first iteratively prune the trees in Z of all the leaves at depths not equal to k:
this does not alter the set of subpaths required to be hit. Afterwards, the task is to hit all
the root-leaf paths in the collection Z, each of exactly k hops.

Similarly as in [30], we would like to simulate the greedy algorithm behind Lemma 8,
that is, repeatedly pick a vertex v ∈ V hitting the largest number of paths not yet hit, and
add it to the constructed set H. However, we cannot afford to follow this approach directly.
Instead, when L ≥ 1 paths are remaining to be hit, and there is n′ ≥ k + 1 vertices V \ H

that have not yet been chosen, we pick a vertex hitting at least L(k+1)
2n′ remaining paths. Note

that there always exists a vertex hitting at least L(k+1)
n′ remaining paths, since otherwise

some of the remaining paths would contain a vertex from outside V \ H, a contradiction.
A single step in our approach reduces L to at most

(
1 − k+1

2n′

)
L, so ⌈2n′/(k + 1)⌉ = O(n/k)

steps reduce L to at most L/e. Hence, since L is an integer, after O
(

n
k ln L

)
= O

(
n
k ln N

)
steps L will drop to 0, i.e., all required paths will be hit.

Our strategy can be also rephrased as follows: maintain 2-approximate counters
{cv : v ∈ V } such that the vertex v hits between cv and 2cv of the remaining paths, and
repeatedly pick a vertex z with the maximum value of cz. By the above discussion, the
picked z will always satisfy cz ≥ L(k + 1)/2n′, as desired. To implement this strategy, we
proceed as follows.

For each T ∈ Z, and v ∈ V (T), let dv,T be the exact number of previously not hit root-leaf
paths in T that v hits. Note that through the entire collection, v hits Dv :=

∑
T ∈Z dv,T

paths not yet hit. Observe that when a root-leaf path to the leaf l in T is hit for the first
time, the value dv,T of all the ancestors v of l gets decreased by one. In fact, the algorithm
of [30] can be seen to maintain such values dv,T and Dv explicitly. However, this is too costly
for us; we will instead maintain the exact values dv,T only implicitly, in a data structure.

For each T ∈ Z, we keep V (T) (explicitly) partitioned into subsets VT,0, . . . , VT,ℓ, where
ℓ = O(log |V (T)|), so that v ∈ VT,i iff dv,T ∈ [2i, 2i+1). Throughout the process, the values
dv,T will only decrease, so a vertex v ∈ V (T) can only move O(log n) times to a subset VT,j

with a lower value j. Let us first argue that maintaining such partitions yields the desired
2-approximate counters rather straightforwardly.

For v ∈ V , let us define cv =
∑

T,j:v∈VT,j
2j . Then, we have:

Dv =
∑
T ∈Z

dv,T ≥
∑

T,j:v∈VT,j

2j = cv =
∑

T,j:v∈VT,j

2j = 1
2

∑
T,j:v∈VT,j

2j+1 >
1
2
∑
T ∈Z

dv,T = 1
2Dv.

As a result, the counters cv indeed 2-approximate the values Dv and can be maintained subject
to changes in the partitions VT,i, for all T, i, in O

(∑
T ∈Z |T | log n

)
= O(N log n) time.

Fix some T ∈ Z. To maintain the partition VT,0, . . . , VT,ℓ, we maintain the values dv,T

using ℓ data structures ST,0, . . . , ST,ℓ. The data structure ST,i associates (implicitly) the
following vertex weights to the individual vertices v of T . If dv,T ≥ 2i, then v has weight dv,T

in ST,i. Otherwise, if dv,T < 2i, then v has weight ∞ in ST,i. In particular, ST,0 associates
the exact values dv,T to the vertices of T .

Fix some i = 0, . . . , ℓ. ST,i is implemented using, e.g., a top-tree [4, Theorem 2.4] that
allows performing the following operations, both in O(log n) time5:

5 As a matter of fact, in [4] this is shown for edge weights. However, vertex weights can be simulated
easily using edge weights by assigning each vertex its parent edge, and explicitly maintaining the weight
of the root.

A. Karczmarz and P. Sankowski 84:13

(1) adding the same δ ∈ R to the weights of vertices on some specified path in the tree, and
(2) querying for a vertex of the tree with minimum weight.
Clearly, ST,i can be initialized at the beginning of the process in O(|T | log n) time. When a
new vertex z is added to H, and z ∈ V (T), we iterate through all the (previously unvisited)
descendants of z to identify the (original) leaves y at depth k such that the root-to-y path
in T has not been previously hit. For each such y, we decrease the weights of all the ancestors
of y in T (all lying on a single path in T) by 1. This requires a single top-tree operation
on ST,i. Afterwards, for all w ∈ V (T) whose value dw,T was at least 2i before adding z to H,
ST,i contains (in an implicit way) the correctly updated exact value dw,T . Some of these
values in ST,i might drop below 2i, though. To deal with this, we repeatedly attempt to
extract the minimum-valued vertex x ∈ V (T) from ST,i. If the value of x is less than 2i, we
reset the value of x in ST,i to ∞. Otherwise, we stop; at this point all the values in ST,i are
at least 2i; the invariant posed on ST,i is fixed.

The above update procedure is performed for each i. Observe that v ∈ VT,i iff i is the
maximum index such that v has assigned a finite value in ST,i. Since for all i we can explicitly
track which vertices in ST,i are assigned ∞ while performing updates, the time needed to
maintain the partition VT,0, . . . , VT,ℓ can be charged to the cost of maintaining the data
structures ST,0, . . . , ST,ℓ.

Let us now analyze the time cost of this algorithm. For each T ∈ Z, we iterate through
every vertex of T at most O(1) times. For i = 0, . . . , ℓ, at most O(|V (T)| + |H ∩ V (T)|) =
O(|V (T)|) top-tree operations are performed on ST,i. Hence, the cost of maintaining all ST,i

for all i = 0, . . . , O(log n) is O(|T | log2 n). Through all T ∈ Z, this is O(N log2 n).
To implement finding a next vertex z ∈ H with the largest cz, one may simply store the

counters cz in a priority queue. Since the counters are updated O(N log n) times in total,
the priority queue operations cost is O(N log2 n) as well. ◀

Observe that through all s, the total number of edges in trees added to Z can be
bounded by the number of edges in the (compressed) trees Ts of Lemma 4, and thus also by
Õ(min(τ∆, n2)). As a result, by Theorem 9, the desired set H hitting all paths π′

s,t with
at least h distinct vertices can be computed in Õ(τ∆) time, using at most quadratic space.
This does not increase the running time of the update procedure in the asymptotic sense.

3.6 Reducing the space usage
So far, the space used by the preprocessing phase could only be bounded by O(n2h) as we
have explicitly stored the O(n2) preprocessed paths πs,t ∈ Π, each with O(h) hops.

We do not, however, need to store the paths πs,t ∈ Π explicitly. For performing updates
and answering distance queries, we only require storing the values ℓ(πs,t), |πs,t|, and being
able to efficiently access the sets Π(v), for any v ∈ V . If we want to also support path
queries, then constant-time reporting of the subsequent edges of πs,t is also needed. Probst
Gutenberg and Wulff-Nilsen [24, Section 4.2] showed an elegant way of achieving that in a
slightly relaxed way using only Õ(n2 log h) space.

▶ Lemma 10 ([24]). Let G = (V, E) be a real-weighted digraph with no negative cycles. Let
s ∈ V and let h ∈ [1, n]. Using O(mh) time and O(nh) space, one can build an Õ(n)-space
data structure representing a collection {πt : t ∈ V } of (not necessarily simple) O(h)-hop
paths from s to all other vertices in G such that for any t, ℓ(πt) ≤ δh

G(s, t).
For any v ∈ V , the data structure allows:
accessing ℓ(πv) and |πv| in O(1) time,
reporting the set Pv = {t ∈ V : v ∈ V (πt)} in Õ(|Pv|) time,
reporting the edges of πv in O(|πv|) time.

ICALP 2023

84:14 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

Proof sketch. Suppose we compute shortest h-hop-bounded s → t paths pt from s to all
t ∈ V . This takes O(mh) time, but storing the computed paths explicitly would require
Θ(nh) space. Recall that if G has no negative cycles, then we may wlog. assume that the
paths pt are all simple. As a result, one can deterministically compute an Õ(n/h)-sized
hitting set H of the ⌈h/3⌉-hop infixes starting at the (⌈h/3⌉ + 2)-th hop of those of the
computed pt that satisfy |pt| ≥ ⌈2h/3⌉. We explicitly store the paths py for all y ∈ H which
costs only Õ(|H| · h) = Õ(n) space.

Let G′ be obtained from G be adding shortcut edges ey = sy of weight w(ey) = ℓ(py) for
all y ∈ H. Note that for all v ∈ V , δ

⌈2h/3⌉
G′ (s, v) ≤ δh

G(s, v) = ℓ(pv) and every ≤ ⌈2h/3⌉-hop
path in G′ corresponds to a path in G with at most h + ⌈h/3⌉ hops.

We recursively solve the problem on the graph G′ with hop-bound h′ = ⌈2h/3⌉. Let
{π′

t : t ∈ V } be the obtained set of paths. For every t ∈ V , we define πt to be π′
t with possibly

the first shortcut edge ez expanded to the corresponding path pz. One can easily prove by
induction that |πt| = O(h) and ℓ(πt) ≤ δh

G(s, t). The recursion depth is clearly O(log h).
Finally, each of the explicitly stored Õ(n/h) paths pt at some level of the recursion can

be imagined to point to at most one path of the previous level (corresponding to a shortcut
edge) and some O(h) distinct vertices of G. By keeping only the nodes reachable from the
paths at the last level of the recursion in this pointer system, and storing reverse pointers, we
can report the elements of each Pv so that every element gets reported O(log n) times. ◀

To reduce the space to Õ(n2), we simply replace the Bellman-Ford like procedure run
on G − C in the preprocessing of Lemma 3 with the construction of Lemma 10. The total
congestion of all the vertices can increase only by a constant factor then. In Section 3.5 we
have assumed that the preprocessed paths πs,t were simple when hitting all πs,t satisfying
|πs,t| ≥ h/2 with H0. But we can as well assume that H0 hits all πs,t with |V (πs,t)| ≥ h/2
instead. Even though the paths represented by the data structure of Lemma 10 might be
non-simple, we can compute the sizes |V (πv)| within the same bound easily. Moreover, the
algorithm behind Lemma 8 can be implemented so that it requires only O(n) additional
space if it is possible to (1) iterate through the elements of individual sets of Y in O(1) time
per element, and (2) report the sets Y ∈ Y containing a given x ∈ X in near-linear time in
the number of reported sets. This is precisely what Lemma 10 enables.

3.7 Negative edges and cycles
In this section we briefly describe the modifications to the data structure needed to handle
negative edge weights and possibly negative cycles.

First of all, we run in parallel a deterministic fully dynamic negative cycle detection
algorithm with Õ(m) worst-case update time (see, e.g., [27]). That algorithm also maintains a
feasible price function p of the current graph G. With this in hand, whenever G has a negative
cycle, we refrain from running the update procedure and forbid issuing queries. Otherwise, p

is also a feasible price function of G − D, and thus the Dijkstra-based update procedure can
simply use p to ensure that all the edge and path lengths accessed are non-negative.

In the basic randomized variant of our data structure we don’t need to alter the prepro-
cessing at the beginning of a phase at all. Indeed, our analysis did not require that the paths
π′

s,t are simple or with no negative cycles, and h-hop-bounded shortest paths are well-defined
even in presence of negative cycles. In the O(n2h)-space deterministic variant (Section 3.5),
similarly as in Section 3.6, we may compute the hitting set H0 only for those πs,t that satisfy
|V (πs,t)| ≥ h/2. Recall that if the update procedure is run, then G − D has no negative
cycle and hence no path πs,t containing a negative cycle survives in G − D anyway.

A. Karczmarz and P. Sankowski 84:15

Finally, the preprocessing algorithm behind Lemma 10 internally uses hitting-set argu-
ments (valid for simple paths) and requires, out-of-the-box, that there are no negative cycles.
We now sketch how to deal with negative cycles while using the space-saving Lemma 10.

Whenever the preprocessing in Lemma 10 for source s encounters a path pt containing a
negative cycle, we use it as the desired path πt, but discard it when computing a hitting set
and thus also in the recursive preprocessing in Lemma 10 – effectively making reporting πt

(in any way) during update or query impossible. Similarly, such a path is included as πs,t ∈ Π
in Lemma 3 only implicitly and marked as negative, but nevertheless used for updating the
congestion counters α(·) during the preprocessing. Note that during the update procedure,
if G has no negative cycles, then for each “negative” path πs,t, we have V (πs,t) ∩ D ̸= ∅.
The used charging scheme ensures that we can afford reconstructing the path π′

s,t within the
Õ(τ∆) bound even though we do not know which vertices of D lie on πs,t.

4 Algebraic fully dynamic reachability in sparse digraphs

In this section we show how the algebraic approach to dynamic reachability [35] can be applied
in the case of sparse graphs, even without resorting to fast matrix multiplication [3, 21].

Assume for simplicity that m = |E(G)| ≥ n at all times. We prove the following.

▶ Theorem 2. Let G be a directed graph. Let t ∈ [1,
√

m]. There exist a Monte Carlo
randomized data structure maintaining G subject to fully dynamic single-edge updates with
Õ(mn/t) worst-case update time and supporting arbitrary-pair reachability queries in O(t)
time. The answers produced are correct with high probability.

Let us first review the approach of [35]. Identify the vertices of G = (V, E) with {1, . . . , n}.
Assume G has a self-loop at every vertex, i.e., vv ∈ E for all v ∈ V ; self-loops do not change
the reachability relation in G. Let A(G) be an adjacency matrix of G, that is, an n × n

matrix with the entry A(G)ij equal to 1 if ij ∈ E(G), and 0 otherwise.
Let us choose a field F = Z/pZ, for a prime number p = Θ(nc), where c ≥ 3 is a constant.

Let the matrix Ã(G) be obtained from A(G) by replacing each 1 with a random element
from F. Sankowski [35, Theorem 6] showed the following.

▶ Theorem 11. [35] With high probability (controlled by the constant c), the matrix Ã(G)
is invertible over F and for all u, v ∈ V , (Ã(G)−1)u,v ̸= 0 holds if and only if there exists a
u → v path in G.

Theorem 11 reduces fully dynamic reachability to the dynamic matrix inverse problem. Note
that a single-edge update to G translates to a single-entry matrix update on Ã(G), whereas
a reachability query corresponds to an element query on the inverse Ã(G)−1.

Sankowski [35] studied update/query tradeoffs for the dynamic matrix inverse problem.
One tradeoff, summarized by the following theorem, is of our particular interest.

▶ Theorem 12. [35] Suppose a matrix A ∈ Fn×n is subject to single-element updates that
keep A non-singular at all times.

Let δ ∈ (0, 1). There exists a data structure maintaining A−1 with Õ(nω(1,δ,1)−δ + n1+δ)
worst-case update time and supporting element queries on A−1 in O(nδ) time.

Above, ω(1, δ, 1) ≥ 2 denotes the rectangular matrix multiplication exponent (see [21]), i.e.,
a value such that one can multiply an n × nδ matrix by an nδ × n matrix in Õ

(
nω(1,δ,1))

time. Here, the time is measured in field operations. By applying Theorem 12 with δ ≈ 0.529
such that ω(1, δ, 1) = 1 + 2δ to the matrix Ã(G) (whose inverse correctly encodes the

ICALP 2023

84:16 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

transitive closure of G throughout poly n updates, w.h.p. against an adaptive adversary),
Sankowski [35] obtains a Monte Carlo randomized fully dynamic reachability algorithm with
Õ(n1.529) worst-case update and O(n0.529) query time.

To continue, we need to discuss some of the internals of the data structure of Theo-
rem 12 [35, Section 6]. That data structures operates in phases of nδ updates. At the end of
each phase, the inverse A−1 is explicitly recomputed from (1) the explicitly stored inverse
(A0)−1 of the matrix A0 from the beginning of the phase, and (2) the nδ updates in the
current phase, via rectangular matrix multiplication. This is the sole reason why the term
nω(1,δ,1)−δ appears in the update bound. In particular, at the beginning of each phase, we
could also recompute the inverse of the current matrix A from scratch in O(nω) time and
thus obtain a slightly worse update bound of Õ(nω−δ + n1+δ), which in turn leads to the
Õ(n(ω+1)/2) = O(n1.687) update bound if optimized wrt. δ. The query time is proportional
to the phase length nδ.

Speaking more generally, if we could compute the inverse of the maintained matrix at
any time in T time, then by following the approach behind Theorem 12, for any parameter
t ∈ [1, n] (denoting the phase length) we could obtain a data structure with Õ(T/t + nt)
worst-case update time and O(t) query time. For T = Ω(n), it only makes sense to use
t ∈

[
1,
√

T/n
]
, and the update bound then simplifies to Õ(T/t). To obtain our fully dynamic

reachability algorithm for sparse digraphs, we use this observation combined with the below
theorem following from a classical result on solving linear systems in parallel [26].

▶ Theorem 13. Let A ∈ Fn×n be a non-singular matrix with m = Ω(n) non-zero entries.
Assume the finite field F has at least n2+c elements, where c ≥ 1 is a constant.

There is a Las Vegas randomized algorithm that computes A−1 in Õ(nm) time. The
success probability is at least 1 − O(n−c).

Proof sketch. Kaltofen and Pan [26, Theorem 4] show, using techniques of [41], that finding
the determinant of A can be reduced, in Õ(n2) time, to solving the following subproblems:
(a) For a given vector v ∈ Fn×1, computing vectors Ãi · v, for i = 0, . . . , 2n − 1, where

Ã = A · H · D, H ∈ Fn×n is a Hankel matrix, and D ∈ Fn×n is a diagonal matrix.
(b) For a given vector v ∈ Fn×1, computing vectors T i ·v for i = 0, . . . , n−1, where T ∈ Fn×n

is a Toeplitz matrix.
Then, in [26, Section 4] it is proven that if the determinant algorithm is realized using a
randomized algebraic circuit, or, in other words, a straight-line program with no conditional
branches, loops, etc., that possibly can divide by zero with low probability, then the Baur-
Strassen theorem [7] implies that the matrix inverse can be computed within the same
asymptotic bound as the determinant, even in parallel.

The subproblems (a) and (b) for general dense n × n matrices can be solved within this
model in Õ(nω) time using a folklore combination of repeated squaring and fast matrix
multiplication (see, e.g., [29]). In our case, to obtain a desired Õ(mn)-time sparse matrix
inverse algorithm, it is enough to argue that the subproblems (a) and (b) admit Õ(mn) time
straight-line program (SLP) solutions for matrices with m non-zero entries.

Consider the subproblem (a), since (b) is very similar. We compute each subsequent
vector Ãi+1 · v as A · (H · (D · (Ãiv))). Multiplying a vector by a matrix with m = Ω(n)
non-zero entries can clearly be realized in O(m) time using an SLP with no conditional
statements. This justifies that multiplications by the matrices A and D can be realized in
the required model. It is also well-known that multiplying a vector by a Hankel/Toeplitz
matrix reduces to polynomial multiplication (see, e.g., [22]), and thus also can be realized

A. Karczmarz and P. Sankowski 84:17

using an Õ(n)-gate straight-line program (see, e.g., [11]). This proves that each Ãi+1v can
be obtained from Ãiv in Õ(m) time in the SLP model. This implies the desired Õ(nm) SLP
time bound for subproblem (a). The theorem follows. ◀

▶ Corollary 14. Suppose a matrix A ∈ Fn×n is subject to single-element updates that keep A

non-singular at all times and the number of non-zero elements in A is always O(m), where
m ≥ n. Let t ∈ [1,

√
m]. There exists a data structure maintaining A−1 with Õ(mn/t)

worst-case update time and supporting element queries on A−1 in O(t) time.

The above corollary applied to the matrix Ã(G) combined with Theorem 11 implies Theorem 2.

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, pages 434–443. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.
53.

2 Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. Fully dynamic all-pairs shortest
paths with worst-case update-time revisited. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 440–452. SIAM, 2017.
doi:10.1137/1.9781611974782.28.

3 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, pages 522–539. SIAM, 2021. doi:10.1137/1.9781611976465.32.

4 Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Maintaining
information in fully dynamic trees with top trees. ACM Trans. Algorithms, 1(2):243–264, 2005.
doi:10.1145/1103963.1103966.

5 Giorgio Ausiello, Giuseppe F. Italiano, Alberto Marchetti-Spaccamela, and Umberto Nanni.
Incremental algorithms for minimal length paths. J. Algorithms, 12(4):615–638, 1991. doi:
10.1016/0196-6774(91)90036-X.

6 Surender Baswana, Ramesh Hariharan, and Sandeep Sen. Improved decremental algorithms
for maintaining transitive closure and all-pairs shortest paths. J. Algorithms, 62(2):74–92,
2007. doi:10.1016/j.jalgor.2004.08.004.

7 Walter Baur and Volker Strassen. The complexity of partial derivatives. Theor. Comput. Sci.,
22:317–330, 1983. doi:10.1016/0304-3975(83)90110-X.

8 Thiago Bergamaschi, Monika Henzinger, Maximilian Probst Gutenberg, Virginia Vassilevska
Williams, and Nicole Wein. New techniques and fine-grained hardness for dynamic near-
additive spanners. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, pages 1836–1855. SIAM, 2021. doi:10.1137/1.9781611976465.110.

9 Aaron Bernstein. Maintaining shortest paths under deletions in weighted directed graphs.
SIAM J. Comput., 45(2):548–574, 2016. doi:10.1137/130938670.

10 Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic
decremental SSSP and approximate min-cost flow in almost-linear time. In 62nd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2021, pages 1000–1008. IEEE, 2021.
doi:10.1109/FOCS52979.2021.00100.

11 David G. Cantor and Erich Kaltofen. On fast multiplication of polynomials over arbitrary
algebras. Acta Informatica, 28(7):693–701, 1991. doi:10.1007/BF01178683.

12 Sílvia Casacuberta and Rasmus Kyng. Faster sparse matrix inversion and rank computation
in finite fields. In 13th Innovations in Theoretical Computer Science Conference, ITCS 2022,
volume 215 of LIPIcs, pages 33:1–33:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.ITCS.2022.33.

ICALP 2023

https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1137/1.9781611974782.28
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1145/1103963.1103966
https://doi.org/10.1016/0196-6774(91)90036-X
https://doi.org/10.1016/0196-6774(91)90036-X
https://doi.org/10.1016/j.jalgor.2004.08.004
https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/10.1137/1.9781611976465.110
https://doi.org/10.1137/130938670
https://doi.org/10.1109/FOCS52979.2021.00100
https://doi.org/10.1007/BF01178683
https://doi.org/10.4230/LIPIcs.ITCS.2022.33

84:18 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

13 Shiri Chechik and Tianyi Zhang. Faster deterministic worst-case fully dynamic all-pairs
shortest paths via decremental hop-restricted shortest paths. In Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, pages 87–99. SIAM, 2023.
doi:10.1137/1.9781611977554.ch4.

14 Li Chen, Gramoz Goranci, Monika Henzinger, Richard Peng, and Thatchaphol Saranurak.
Fast dynamic cuts, distances and effective resistances via vertex sparsifiers. In 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, pages 1135–1146. IEEE,
2020. doi:10.1109/FOCS46700.2020.00109.

15 Julia Chuzhoy. Decremental all-pairs shortest paths in deterministic near-linear time. In
STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 626–639.
ACM, 2021. doi:10.1145/3406325.3451025.

16 Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51(6):968–992, 2004. doi:10.1145/1039488.1039492.

17 Camil Demetrescu and Giuseppe F. Italiano. Trade-offs for fully dynamic transitive closure
on dags: breaking through the O(n2) barrier. J. ACM, 52(2):147–156, 2005. doi:10.1145/
1059513.1059514.

18 Wayne Eberly, Mark Giesbrecht, Pascal Giorgi, Arne Storjohann, and Gilles Villard. Faster
inversion and other black box matrix computations using efficient block projections. In
Symbolic and Algebraic Computation, International Symposium, ISSAC 2007, Proceedings,
pages 143–150. ACM, 2007. doi:10.1145/1277548.1277569.

19 Jacob Evald, Viktor Fredslund-Hansen, Maximilian Probst Gutenberg, and Christian Wulff-
Nilsen. Decremental APSP in unweighted digraphs versus an adaptive adversary. In 48th
International Colloquium on Automata, Languages, and Programming, ICALP 2021, volume
198 of LIPIcs, pages 64:1–64:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ICALP.2021.64.

20 Sebastian Forster, Yasamin Nazari, and Maximilian Probst Gutenberg. Deterministic incre-
mental APSP with polylogarithmic update time and stretch. CoRR, abs/2211.04217, 2022.
doi:10.48550/arXiv.2211.04217.

21 Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the coppersmith-winograd tensor. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pages 1029–1046. SIAM, 2018.
doi:10.1137/1.9781611975031.67.

22 Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.
23 Maximilian Probst Gutenberg, Virginia Vassilevska Williams, and Nicole Wein. New algorithms

and hardness for incremental single-source shortest paths in directed graphs. In Proccedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages
153–166. ACM, 2020. doi:10.1145/3357713.3384236.

24 Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Fully-dynamic all-pairs shortest
paths: Improved worst-case time and space bounds. In Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, pages 2562–2574. SIAM, 2020. doi:
10.1137/1.9781611975994.156.

25 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC 2015, pages 21–30. ACM, 2015. doi:10.1145/2746539.2746609.

26 Erich Kaltofen and Victor Y. Pan. Processor efficient parallel solution of linear systems over
an abstract field. In Proceedings of the 3rd Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’91, pages 180–191. ACM, 1991. doi:10.1145/113379.113396.

27 Adam Karczmarz. Fully dynamic algorithms for minimum weight cycle and related problems.
In 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021,
volume 198 of LIPIcs, pages 83:1–83:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ICALP.2021.83.

https://doi.org/10.1137/1.9781611977554.ch4
https://doi.org/10.1109/FOCS46700.2020.00109
https://doi.org/10.1145/3406325.3451025
https://doi.org/10.1145/1039488.1039492
https://doi.org/10.1145/1059513.1059514
https://doi.org/10.1145/1059513.1059514
https://doi.org/10.1145/1277548.1277569
https://doi.org/10.4230/LIPIcs.ICALP.2021.64
https://doi.org/10.48550/arXiv.2211.04217
https://doi.org/10.1137/1.9781611975031.67
https://doi.org/10.1145/3357713.3384236
https://doi.org/10.1137/1.9781611975994.156
https://doi.org/10.1137/1.9781611975994.156
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.1145/113379.113396
https://doi.org/10.4230/LIPIcs.ICALP.2021.83

A. Karczmarz and P. Sankowski 84:19

28 Adam Karczmarz, Anish Mukherjee, and Piotr Sankowski. Subquadratic dynamic path
reporting in directed graphs against an adaptive adversary. In STOC ’22: 54th Annual
ACM SIGACT Symposium on Theory of Computing, pages 1643–1656. ACM, 2022. doi:
10.1145/3519935.3520058.

29 Walter Keller-Gehrig. Fast algorithms for the characteristic polynomial. Theor. Comput. Sci.,
36:309–317, 1985. doi:10.1016/0304-3975(85)90049-0.

30 Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive
closure in digraphs. In 40th Annual Symposium on Foundations of Computer Science, FOCS
1999, pages 81–91. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.814580.

31 Veli Mäkinen, Alexandru I. Tomescu, Anna Kuosmanen, Topi Paavilainen, Travis Gagie,
and Rayan Chikhi. Sparse dynamic programming on dags with small width. ACM Trans.
Algorithms, 15(2):29:1–29:21, 2019. doi:10.1145/3301312.

32 Liam Roditty. A faster and simpler fully dynamic transitive closure. ACM Trans. Algorithms,
4(1):6:1–6:16, 2008. doi:10.1145/1328911.1328917.

33 Liam Roditty and Uri Zwick. Improved dynamic reachability algorithms for directed graphs.
SIAM J. Comput., 37(5):1455–1471, 2008. doi:10.1137/060650271.

34 Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389–
401, 2011. doi:10.1007/s00453-010-9401-5.

35 Piotr Sankowski. Dynamic transitive closure via dynamic matrix inverse (extended abstract).
In 45th Symposium on Foundations of Computer Science FOCS 2004, pages 509–517. IEEE
Computer Society, 2004. doi:10.1109/FOCS.2004.25.

36 Mikkel Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles. In
Algorithm Theory – SWAT 2004, 9th Scandinavian Workshop on Algorithm Theory, Proceedings,
volume 3111 of Lecture Notes in Computer Science, pages 384–396. Springer, 2004. doi:
10.1007/978-3-540-27810-8_33.

37 Jeffrey D. Ullman and Mihalis Yannakakis. High-probability parallel transitive-closure algo-
rithms. SIAM J. Comput., 20(1):100–125, 1991. doi:10.1137/0220006.

38 Jan van den Brand, Sebastian Forster, and Yasamin Nazari. Fast deterministic fully dynamic
distance approximation. In 63rd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2022, pages 1011–1022. IEEE, 2022. doi:10.1109/FOCS54457.2022.00099.

39 Jan van den Brand and Danupon Nanongkai. Dynamic approximate shortest paths and
beyond: Subquadratic and worst-case update time. In 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, pages 436–455. IEEE Computer Society, 2019.
doi:10.1109/FOCS.2019.00035.

40 Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic matrix
inverse: Improved algorithms and matching conditional lower bounds. In 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2019, pages 456–480. IEEE Computer
Society, 2019. doi:10.1109/FOCS.2019.00036.

41 Douglas H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans. Inf.
Theory, 32(1):54–62, 1986. doi:10.1109/TIT.1986.1057137.

42 Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
J. ACM, 49(3):289–317, 2002. doi:10.1145/567112.567114.

A Further variants of the fully dynamic shortest paths data structure

A.1 Unweighted digraphs
Similarly as in the case of previous fully dynamic APSP data structures [2, 24], improved
bounds can be obtained if the graph G is unweighted. This is simply because the preprocessing
of Lemma 3 can be completed in O(mn) time instead of O(mnh) time. Indeed, in an
unweighted graph, the shortest h-hop-bounded s, t path, if exists, coincides with the (globally)
shortest s, t path. As a result, the Bellman-Ford-based computation can be replaced with
breadth-first search. Similarly, the collection of paths Π can be represented using n BFS
trees and thus one can achieve quadratic space without resorting to Lemma 10.

ICALP 2023

https://doi.org/10.1145/3519935.3520058
https://doi.org/10.1145/3519935.3520058
https://doi.org/10.1016/0304-3975(85)90049-0
https://doi.org/10.1109/SFFCS.1999.814580
https://doi.org/10.1145/3301312
https://doi.org/10.1145/1328911.1328917
https://doi.org/10.1137/060650271
https://doi.org/10.1007/s00453-010-9401-5
https://doi.org/10.1109/FOCS.2004.25
https://doi.org/10.1007/978-3-540-27810-8_33
https://doi.org/10.1007/978-3-540-27810-8_33
https://doi.org/10.1137/0220006
https://doi.org/10.1109/FOCS54457.2022.00099
https://doi.org/10.1109/FOCS.2019.00035
https://doi.org/10.1109/FOCS.2019.00036
https://doi.org/10.1109/TIT.1986.1057137
https://doi.org/10.1145/567112.567114

84:20 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

For unweighted graphs, the update bound becomes Õ(m∆+mn/∆+mn/h+nm2h/τ+∆τ),
whereas the query time remains Õ(∆ + nmh/τ + n/h). For ∆ = h = n1/4 and τ = mn1/2

the update and query time bounds become Õ(mn3/4) and Õ(n3/4), respectively.

A.2 A slight tradeoff
In the basic variant of the data structure, it is not clear whether pushing the update time
below Õ(n4/5) is possible even at the cost of increasing the query time. Here, we sketch that
a slight tradeoff is indeed possible with another trick of [24, Section 4.1]: to delegate handling
paths through the congested set to the data structure of [2, Section 3]. For simplicity, assume
again that the edge weights are non-negative. Since that data structure, in turn, is tailored
to dense graphs, we instead use the following sparse variant implicit in [27].

▶ Lemma 15. [2, 27] Let G = (V, E) be a directed graph and let C ⊆ V . Let h ∈ [1, n]. In
Õ(|C|mh) time one can build a data structure supporting the following.

For any query set D ⊆ V , update the data structure so that it supports queries computing
the length of some s → t path of length at most minc∈C{δh

G−D(s, c) + δh
G−D(c, t)} for any

s, t ∈ V . The worst-case update time is Õ(|D|mh) and the query time is O(|C|).

Proof sketch. For at most 2|C| centers c1, . . . , cℓ, repeatedly find shortest 2h-hop-bounded
paths from/to ci in G − {c1, . . . , ci−1}. While this computation proceeds, maintain vertex
congestions α(·) as in Lemma 3. When choosing the subsequent centers ci, alternate between
picking an unused vertex from C and the most congested vertex of V \ {c1, . . . , ci−1}, until
all vertices of C are used. This preprocessing costs O(ℓmh) = O(|C|mh) time.

Given the above preprocessing, one can prove that by proceeding as in Lemma 4, in
Õ(|D|mh) time one can recompute a representation of paths s → ci of length at most
δ2h

G−(D∪{c1,...,ci−1})(s, ci) and analogous paths ci → t, for all i and s, t ∈ V .
Upon a query (s, t), in O(ℓ) = O(|C|) time we can find an s → t path of length at most

y∗ = minℓ
i=1{yi}, where yi := δ2h

G−(D∪{c1,...,ci−1})(s, ci) + δ2h
G−(D∪{c1,...,ci−1})(ci, t). To see

that this is enough, let c∗ ∈ C be such that δh
G−D(s, c∗) + δh

G−D(c∗, t) is minimum. Let j be
minimum index such that the corresponding ≤ 2h-hop path Q = s → c∗ → t contains the
center cj . Then we have Q ⊆ G − (D ∪ {c1, . . . , cj−1}) and thus y∗ ≤ yj ≤ ℓ(Q). ◀

Note that by computing shortest-paths trees from and to a randomly sampled Õ(n/h)-
sized hitting set H we can in fact handle “long” shortest paths in the current graph G, and
not only in G − (C ∪ D). As a result, we don’t need to recompute full shortest paths trees
from C – instead, it would be enough to consider short paths in G − D through C upon
query. This is what we use Lemma 15 for. Every ∆ updates, when a new phase starts, a
fresh congested set C is computed. We additionally initialize the data structure of Lemma 15
for the current graph G and the congested set C. This way, that data structure is always
off from the current G by at most ∆ updates, and thus can be updated in Õ(∆mh) time.
Again, the data structure of Lemma 15 can be reinitialized in such a way that the additional
worst-case cost incurred is Õ(|C|mh/∆). The full worst-case update time becomes:

Õ(m∆ + mnh/∆ + mn/h + ∆τ + m2nh2/(τ∆) + ∆hm).

Balancing as before, for ∆ = h2 and τ = mn/h3, we obtain the update bound Õ(mn/h+mh3).
Note that this bound is Ω(mn3/4) for any h.

The query bound unfortunately remains Õ(∆ + |H| + mnh/τ) = Õ(n/h + h4). If we aim
at serving Θ(n) queries per update and the graph is sparse, then we get no improvement
over the basic approach. However, for a desired query time of Õ(t), where t ∈ [n4/5, n], we
can achieve Õ(mn/t1/4) worst-case update time this way.

	1 Introduction
	1.1 Prior work
	1.2 Our results
	1.3 Technical overview
	1.4 Further related work

	2 Preliminaries
	3 Fully dynamic shortest paths data structure
	3.1 Preprocessing at the beginning of a phase
	3.2 Update
	3.3 Query
	3.4 Time analysis
	3.5 Derandomization
	3.6 Reducing the space usage
	3.7 Negative edges and cycles

	4 Algebraic fully dynamic reachability in sparse digraphs
	A Further variants of the fully dynamic shortest paths data structure
	A.1 Unweighted digraphs
	A.2 A slight tradeoff

