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Abstract
We study the problem of solving linear program in the streaming model. Given a constraint matrix
A ∈ Rm×n and vectors b ∈ Rm, c ∈ Rn, we develop a space-efficient interior point method that
optimizes solely on the dual program. To this end, we obtain efficient algorithms for various different
problems:

For general linear programs, we can solve them in Õ(
√

n log(1/ϵ)) passes and Õ(n2) space for
an ϵ-approximate solution. To the best of our knowledge, this is the most efficient LP solver in
streaming with no polynomial dependence on m for both space and passes.
For bipartite graphs, we can solve the minimum vertex cover and maximum weight matching
problem in Õ(

√
m) passes and Õ(n) space.

In addition to our space-efficient IPM, we also give algorithms for solving SDD systems and
isolation lemma in Õ(n) spaces, which are the cornerstones for our graph results.
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1 Introduction

Given a constraint matrix A ∈ Rm×n, vectors b ∈ Rm and c ∈ Rn, the linear program
problem asks us to solve the primal program (P ) or its dual (D):

(P ) = max
A⊤y≤c,y≥0

b⊤y and (D) = min
Ax≥b

c⊤x (1)
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is one of the most fundamental problems in computer science and operational research.
Many efforts have been dedicated to develop time-efficient linear program solvers in the
past half a century, such as the simplex method [23], ellipsoid method [44] and interior
point method [41]. In the last few years, speeding up linear program solve via interior point
method (IPM) has been heavily studied [20, 55, 13, 35, 65, 25, 71]. The state-of-the-art
IPM has the runtime of O(m2+1/18 + mω) when m ≈ n and O(mn + n3) when m≫ n. To
achieve these impressive improvements, most of these algorithms utilize randomized and
dynamic data structures to maintain the primal and dual solutions simultaneously. While
these algorithms are time-efficient, it is highly unlikely that they can be implemented in a
space-efficient manner: maintaining the primal-dual formulation requires Ω(m + n2) space,
which is particularly unsatisfactory when m≫ n.

In this paper, we study the problem of solving a linear program in the streaming model:
At each pass, we can query the i-th row of A and the corresponding of the b. The goal is to
design an LP solver that is both space and pass-efficient. By efficient, our objective is to
obtain an algorithm with no polynomial dependence on m, or more concretely, we present a
robust IPM framework that uses only Õ(n2) space and Õ(

√
n log(1/ϵ)) passes.1 To the best

of our knowledge, this is the most efficient streaming LP algorithm that achieves a space
and pass independent of m. Current best streaming algorithms for LP either require Ω(n)
passes or Ω(n2 + m2) space for O(

√
n) passes. For the regime of tall dense LP (m≫ n), our

algorithm achieves the best space and passes.
The key ingredient for obtaining these LP algorithms is a paradigm shift from the time-

efficient primal-dual IPM to a less time-efficient dual-only IPM [64]. From a time perspective,
dual-only IPM requires Õ(

√
n log(1/ϵ)) iterations, with each iteration can be computed in

Õ(mn + poly(n)) time. However, it is much more space-efficient than that of primal-dual
approach. Specifically, we show that per iteration, it suffices to maintain an n× n Hessian
matrix in place. To obtain Õ(

√
n log(1/ϵ)) passes, we show that non-trivial quantities such

as the Lewis weights [56, 21] can be computed recursively, in an in-place fashion with only
Õ(n2) space.

Now that we have a space and pass-efficient IPM for general LP in the streaming model,
we instantiate it with applications for graph problems in the semi-streaming model. In the
semi-streaming model, each edge is revealed along with its weight in an online fashion and
might subject to an adversarial order, and the algorithm is allowed to make multiples passes
over the stream in Õ(n) space.2 We particularly focus on the maximum weight bipartite
matching problem, in which the edges with weights are streamed to us, and the goal is to
find a matching that maximizes the total weights in it. While there is a long line of research
([2, 36, 24, 3, 9] to name a few) on this problem, most algorithms can only compute an
approximate matching, meaning that the weight is at least (1− ϵ) of the maximum weight.
For the case of exact matching, a recent work [6] provides an algorithm that takes n4/3+o(1)

passes in Õ(n) space for computing a maximum cardinality matching. It remains an open
question to compute an exact maximum weight bipartite matching in semi-streaming model,
with o(n) passes.

We answer this question by presenting a semi-streaming algorithm that uses Õ(n) space
and Õ(

√
m) passes, this means that as long as the graph is relatively sparse, i.e., m = o(n2),

we achieve o(n) passes. To obtain an Õ(n) space algorithm for any graph, we require

1 We use Õ(·) notation to hide polylogarithmic dependence on n and m.
2 Some authors define the space in the streaming model to be the number of cells, where each cell can

hold O(log n) bits or even a number with infinite precision. Our bounds remain unchanged even if each
cell only holds O(1) bits, i.e., when arithmetic only applies to O(1)-bits operands.
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additional machinery; more specifically, for each iteration of our dual-only IPM, we need to
compute the Newton step via a symmetric diagonal dominant (SDD) solve in Õ(n) space.
Since the seminal work of Spielman and Teng [67], many efforts have been dedicated in
designing a time-efficient SDD system solver [45, 46, 43, 19]. This solvers run in Õ(m)
time with improved dependence on the logarithmic terms. However, all of them require
Θ̃(m) space. To achieve Õ(n) space, we make use of small-space spectral sparsifiers [38] as
preconditioners to solve the system in a space and pass-efficient manner.

Finally, we note that with Õ(n) space, we essentially solve the dual problem, which is
the generalized minimum vertex cover on bipartite graph. To turn a solution on vertices to a
solution on edges, we utilize the isolation lemma [60] and implement it in Õ(n) bits via a
construction due to [17].

1.1 Our contribution
In this section, we showcase three main results of this paper and discuss their consequences.

The first result regards solving a general linear program in the streaming model with
Õ(n2) space and Õ(

√
n log(1/ϵ)) passes.

▶ Theorem 1 (General LP, informal version of Theorem 7.4 in Full version [57]). Given a linear
program with m constraints and n variables and m ≥ n in the streaming model, there exists
an algorithm that outputs an ϵ-approximate solution to the dual program (Eq. (1)) in Õ(n2)
space and Õ(

√
n log(1/ϵ)) passes.

By ϵ-approximate solution, we mean that the algorithm finds x ∈ Rn such that c⊤x−
c⊤x∗ ≤ ϵ, where x∗ is the optimal solution. The key to obtain our result is a small space
implementation of leverage score and Lewis weights, so that we can utilize the Lee-Sidford
barrier [51], with the number of passes depending on the smaller dimension.

In conjunction with an SDD solver in Õ(n) space, our next result shows that in the
semi-streaming model, we can solve the minimum vertex cover problem on a bipartite graph
with Õ(

√
m) passes.

▶ Theorem 2 (Minimum vertex cover, informal version of Theorem 9.7 in Full version [57]).
Given a bipartite graph G with n vertices and m edges, there exists a streaming algorithm that
computes a minimum vertex cover of G in Õ(

√
m) passes and Õ(n) space with probability

1− 1/ poly(n).3

The reason we end up with Õ(
√

m) passes instead of Õ(
√

n) passes is that to compute
some fundamental quantities such as leverage scores or Lewis weights, we need to solve Θ(m)
SDD systems and result in a total of Õ(m

√
n) passes. By using the logarithmic barrier, we

only need to solve O(1) SDD systems per iteration, which gives the Õ(
√

m) passes.
We are now ready to present our result for bipartite matching in Õ(

√
m) passes, which

solves the longstanding problem of whether maximum weight matching can be solved in o(n)
passes for any m = n2−c with c > 0.

▶ Theorem 3 (Maximum weight bipartite matching, informal version of Theorem 10.1 in Full
version [57]). Given a bipartite graph G with n vertices and m edges, there exists a streaming
algorithm that computes an (exact) maximum weight matching of G in Õ(

√
m) passes and

Õ(n) space with probability 1− 1/ poly(n).

3 We can actually solve a generalized version of the minimum vertex cover problem in bipartite graph:
each edge e needs to be covered for at least be ∈ Z+ times, where the case of b = 1m is the classic
minimum vertex cover.

ICALP 2023
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Our matching result relies on turning the solution to the dual minimum vertex cover
problem, to a primal solution for the maximum weight matching. We achieve so by an Õ(n)
space implementation of the isolation lemma [60, 17].

1.2 Related work
Interior point method for solving LP. The interior point method was originally proposed
by Karmarkar [41] for solving linear program. Since then, there is a long line of work on
speeding up interior point method for solving classical optimization problems, e.g., linear
program [68, 64, 69, 61, 22, 50, 51, 52, 20, 55, 53, 12, 13, 71, 35, 25, 65, 33]. In 1987, the
running time of LP solver becomes O(n3) [68, 64]. In 1989, Vaidya proposed an O(n2.5)
LP solver based on a specific implementation of IPMs, known as the central path algorithm
[68, 69]. Lee and Sidford show how to solve LP in

√
n(nnz(A) + nω) time [49, 50, 51], where

ω is the exponent of matrix multiplication [70, 48, 4]4 (the first
√

n-iteration IPM). In 2019,
[20] show how to solve LP in nω + n2.5−α + n2+1/6, where α is the dual exponent of matrix
multiplication [31]5. This is the first breakthrough result improving O(n2.5) from 30 years
ago. Later, [35] improved that running time to nω + n2.5−α + n2+1/18 by maintaining two
layers of data-structure instead of one layer of data-structure as [20]’s algorithm. In 2020, [13]
improved the running time of LP solver on tall matrices to mn when m ≥ poly(n). Another
line of work focuses on solving linear program with small treewidth [25, 71] in time Õ(mτ2).

Small space algorithms for solving LP. Simplex algorithm is another popular approach
to solve linear programs. It has an even better compatibility with streaming algorithms.
For instance, [15] shows that the non-recursive implementation of Clarkson’s algorithm [18]
gives a streaming LP solver that uses O(n) passes and Õ(n

√
m) space. They also show

that the recursive implementation gives a streaming LP solver that uses nO(1/δ) passes and
(n2 + mδ) poly(1/δ) space. [7] proposes a streaming algorithm for solving n-dimensional LP
that uses O(nr) pass and O(m1/r) poly(n, log m) space, where r ≥ 1 is a parameter. All
above algorithms needs space depending on m.

Streaming algorithms for approximate matching. Maximum matching has been extensively
studied in the streaming model for decades, where almost all of them fall into the category
of approximation algorithms. For algorithms that only make one pass over the edges
stream, researchers make continuous progress on pushing the constant approximation ratio
above 1/2, which is under the assumption that the edges are arrived in a uniform random
order [37, 5, 27, 11]. The random-order assumption makes the problem easier (at least
algorithmically). A more general setting is multi-pass streaming with adversarial edge arriving.
Under this setting, the first streaming algorithm that beats the 1/2-approximation of bipartite
cardinality matching is [29], giving a 2/3 · (1− ϵ)-approximation in 1/ϵ · log(1/ϵ) passes. The
first to achieve a (1− ϵ)-approximation is [59], which takes (1/ϵ)1/ϵ passes.6 Since then, there
is a long line of research in proving upper bounds and lower bounds on the number of passes
to compute a maximum matching in the streaming model [2, 26, 32, 26, 36, 24, 3, 8, 10, 9]
(see next subsection for more details). Notably, [2, 3] use linear programming and duality
theory (see the next subsection for more details).

4 Currently, ω ≈ 2.37.
5 Currently, α ≈ 0.31.
6 For the weighted case, there is a (1/2 − ϵ)-approximation algorithm that only takes one pass [62].
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However, all the algorithms above can only compute an approximate maximum matching:
to compute a matching whose size is at least (1− ϵ) times the optimal, one needs to spend
poly(1/ϵ) passes (see [24, 3] and the references therein). For readers who are interested in
the previous techniques for solving matching, we refer to Section A in full version [57] which
contains a brief summary.

Recent developments for exact matching. Recently, [6] proposes an algorithm that
computes a (1− ϵ)-approximate maximum cardinality matching in O(ϵ−1 log n log ϵ−1) passes
and Õ(n) space. Their method leverages recent advances in ℓ1-regression with several ideas
for implementing it in small space, leading to a streaming algorithm with no dependence on
ϵ in the space usage, and thus improving over [3]. The resulted semi-streaming algorithm
computes an exact maximum cardinality matching (not for weighted) in n3/4+o(1) passes.

Streaming spectral sparsifer. Initialized by the study of cut sparsifier in the streaming
model [1], a simple one-pass semi-streaming algorithm for computing a spectral sparsifier of
any weighted graph is given in [42], which suffices for our applications in this paper. The
problem becomes more challenging in a dynamic setting, i.e., both insertion and deletion
of edges from the graph are allowed. Using the idea of linear sketching, [38] gives a single-
pass semi-streaming algorithm for computing the spectral sparsifier in the dynamic setting.
However, their brute-force approach to recover the sparsifier from the sketching uses Ω(n2)
time. An improved recover time is given in [39] but requires more spaces, e.g., ϵ−2n1.5 logO(1) n.
Finally, [40] proposes a single-pass semi-streaming algorithm that uses ϵ−2n logO(1) n space
and ϵ−2n logO(1) n recover time to compute an ϵ-spectral sparsifier which has O(ϵ−2n log n)
edges. Note that Ω(ϵ−2n log n) space is necessary for this problem [14].

SDD solver. There is a long line of work focusing on fast SDD solvers [66, 45, 46, 43,
19, 63, 47]. Spielman and Teng give the first nearly-linear time SDD solver, which is
simplified with a better running time in later works. The current fastest SDD solver runs in
O(m log1/2 n poly(log log n) log(1/ϵ)) time [19]. All of them require Θ̃(m) space.

2 Technical overview

We start with an overview of our IPM framework. We first note that many recent fast IPM
algorithms do not fit into Õ(n2) space. Algorithms such as [51, 35, 13] need to maintain
both primal and dual solutions, thus require Ω(m) space. In fact, any algorithms that
rely on the primal formulation will need Ω(m) space to maintain the solution. To bypass
this issue, we draw inspiration from the state-of-the-art SDP solver [34]: in their setting,
m = Ω(n2), which means any operation on the dimension m will be too expensive to perform.
They instead resort to the dual-only formulation. The dual formulation provides a more
straightforward optimization framework on small dimension and makes it harder to maintain
key quantities. This is exactly what we want: an algorithm that operates on the smaller
dimension, removing the polynomial dependence on m. While efficient maintenance is the
key to design time-efficient IPM, it is less a concern for us since our constraining resource is
space, not time. To this end, we show that Renegar’s IPM algorithm [64] can be implemented
in a streaming fashion with only Õ(n2) space. As the number of passes of an IPM crucially
depends on the barrier function being used, the [64] algorithm only gives a pass bound
of Õ(

√
m log(1/ϵ)). To further improve the number of passes required, we show that the

nearly-universal barrier of Lee and Sidford [51, 53] can also be implemented in Õ(n2) space.

ICALP 2023
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This involves computing Lewis weights in an extremely space-efficient manner. We present a
recursive algorithm with Õ(1) depth, based on [28], that uses only Õ(n2) space. This gives
the desired Õ(

√
n log(1/ϵ)) passes.

We now turn to our graph results, which is a novel combination of the space-efficient
IPM, SDD solvers, duality and the isolation lemma. Note that for both graph problems only
allow Õ(n) space, so it won’t suffice to directly apply our IPM algorithms .

To give a better illustration of the Õ(n) space constraint, note that storing a matching
already takes Θ̃(n) space, meaning that we have only a polylogarithmic space overhead per
vertex to store auxiliary information. The conventional way of solving maximum bipartite
matching using an IPM solver would get stuck at the very beginning - maintaining the
solution of the relaxed linear program, which is a fractional matching, already requires Ω(m)
space for storing all LP constraints, which seems inevitable.

Our key insight is to show that solving the dual form of the above LP, which corresponds
to the generalized (fractional) minimum vertex cover problem, is sufficient, and therefore
only Õ(n) space is needed for maintaining a fractional solution. We use several techniques
to establish this argument. The first idea is to use complementary slackness for the dual
solution to learn which n edges will be in the final maximum matching and therefore reduce
the size of the graph from m to n. However, this is not always the case: For instance, in
a bipartite graph that admits a perfect matching, all left vertices form a minimum vertex
cover, but the complementary slackness theorem gives no information on which edges are in
the perfect matching. To circumvent this problem, we need to slightly perturb the weight on
every edge, so that the minimum vertex cover (which is now unique) indeed provides enough
information. We use the isolation lemma [60] to realize this objective.

It is then instructive to implement the isolation lemma in limited space. Perturbing the
weight on every edge requires storing Õ(m) bits of randomness, since the perturbation should
remain identical across two different passes. We bypass this issue by using the generalized
isolation lemma proposed by [17], in which only O(log(Z)) bits of randomness is needed,
where Z is the number of candidates. In our case, Z ≤ nn is the number of all possible
matchings. So Õ(n) space usage perfectly fits into the semi-streaming model. We design an
oracle that stores Õ(n) random bits and outputs the same perturbations for all edges in all
passes.

Now that we can focus on solving the minimum vertex cover problem in Õ(n) space. When
the constraint matrix is an incidence matrix, each iteration of our IPM can be implemented
as an SDD (or Laplacian) solver, so it suffices to show how to solve SDD system in the
semi-streaming model, which, to the best of our knowledge, has not been done prior to our
work.

In the following subsections we elaborate on each of the above components:

In Section 2.1, we provide a high-level picture of how our dual-only interior point method
works.

In Section 2.2, we show evidences that our interior point method can run in space
independent of m for all of the three different barriers.

In Section 2.3, we describe our contribution on our implementations of SDD solver, IPM,
and the isolation lemma in the streaming model. We show a novel application of the
isolation lemma to turn dual into primal.
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2.1 Dual-only robust IPM

The cornerstone of our results is to design a robust IPM framework that works only on
the dual formulation of the linear program. The framework fits in barriers including the
logarithmic barrier, hybrid barrier and Lee-Sidford barrier. It is also robust enough as it can
tolerate approximation errors in many quantities, while preserving the convergence behavior.

Algorithm 1 is a simplified version of our dual-only IPM. The earlier works of Renegar’s
algorithm [64] require the Newton’s direction be computed exactly as ∆x = −H(x)−1∇ft(x),
in order to get double exponential convergence rate of Newton’s method. To strengthen its
guarantee, we develop a more robust framework for this IPM. Specifically, we show that
the Hessian of the barrier functions, the gradient and the Newton’s direction can all be
approximated. This requires a much more refined error analysis. Below, we carefully bound
the compound errors caused by three layers of approximations.

First, from ∆x to δx (Line 9), we allow our Hessian to be spectrally approximated within
any small constant factor. This provides us enough leeway to implement the Hessian of
barrier functions in a space-efficient manner. For example, the Hessian of the volumetric
barrier is H(x) = A⊤

x (3Σx − 2P
(2)
x )Ax, where Σx is a diagonal matrix and P

(2)
x is taking

entry-wise square of a dense projection matrix. But H̃(x) = A⊤
x ΣxAx is a 5-approximation

of H(x) and we can compute it in the same space as computing leverage scores.
Second, from δx (Line 9) to δ′

x (Line 11), we allow approximation on the gradient in
the sense that it has small local norm with respect to the true gradient, i.e., ∥∇ft(x) −
∇̃ft(x)∥H(x)−1 ≤ 0.1.7 To give a concrete example, let σ ∈ Rm denote the leverage score
vector, and suppose the Hessian matrix is in the form of H(x) = A⊤ΣA and the gradient
is ∇f(x) = A⊤σ. The leverage score σ can then be approximated in an entry-wise fashion:
each entry can tolerate a multiplicative (1±O(1/

√
n)) error. This is because

∥∇ft(x)− ∇̃ft(x)∥2
H(x)−1 = 1⊤

m(∆Σ)A(A⊤ΣA)−1A⊤(∆Σ)1m

= 1⊤
m(∆Σ)Σ−1/2Σ1/2A(A⊤ΣA)−1A⊤Σ1/2Σ−1/2(∆Σ)1m

≤ 1⊤
m(∆Σ)Σ−1(∆Σ)1m

=
m∑

i=1

(σi − σ̃i)2

σi

≤ 0.01
n
· n = 0.01,

where the first inequality follows from property of projection matrix (for any projection
matrix P , we have P ⪯ I. Then we know x⊤Px ≤ x⊤x for all vector x), the last inequality
follows from

∑m
i=1 σi = n.

Third, from δ′
x (Line 11) to δ̃ (Line 12), we can tolerate the approximation error on the

Newton’s direction ∥δ̃ − δ′
x∥H(x) ≤ 0.1. This is crucial for our graph applications, since we

need to use small space SDD solver to approximate the Newton’s direction.

2.2 Solve LP in small space

In this section, we show how to implement our IPM in space not polynomially dependent on
m for different barrier functions.

7 For a vector y and a positive semidefinite matrix A, we define ∥y∥A :=
√

y⊤Ay.

ICALP 2023
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Algorithm 1 A simplified version of our algorithm.

1: procedure OurAlgorithm(A ∈ Rm×n, b ∈ Rm, c ∈ Rn)
2: Choose F (x) ∈ Rn → R to be any θ2-self concordant barrier function
3: Let ft(x) := t · c +∇F (x) ∈ Rn

4: Let H(x) := ∇2F (x) ∈ Rn×n

5: Let T be the number of iterations
6: Initialize x, t

7: for k ← 1 to T do
8: Let H̃(x) be any PSD matrix that 1

log m H̃(x) ⪯ H(x) ⪯ H̃(x)
9: Let δx := −H̃(x)−1 · ∇ft(x)

10: Let ∇̃ft(x) be that ∥∇̃ft(x)−∇ft(x)∥H(x)−1 ≤ 0.1
11: Let δ′

x := −H̃(x)−1 · ∇̃ft(x)
12: Let δ̃x be any vector that ∥δ̃x − δ′

x∥H(x) ≤ 0.1
13: x← x + δ̃x

14: t← t · (1 + θ−1)
15: end for
16: Output x

17: end procedure

For three barriers (logarithmic, hybrid and Lee-Sidford), all of their Hessians take the
form of A⊤HA ∈ Rn×n for an m ×m non-negative diagonal matrix H. For logarithmic
barrier, Hi,i = si(x)−2, as si(x) can be computed in O(1) space, it is not hard to see that
the Gram matrix can be computed as

∑
i∈[m] Hi,i · aia

⊤
i in O(n2) space.

The more interesting case is to consider the hybrid barrier and Lee-Sidford barrier. The
gradient and Hessian of the hybrid barrier requires us to compute m leverage scores defined as
diag(

√
HA(A⊤HA)−1A⊤

√
H). Forming this projection matrix will require a prohibitive m2

space. To implement it in n2 space, we rely on an observation that σi = Hi,i ·a⊤
i (A⊤HA)−1ai,

thus, if we can manage to maintain (A⊤HA)−1 in O(n2) space, then we can compute the
leverage score. Similar to the logarithmic barrier scenario, A⊤HA can be computed in 1 pass
and O(n2) space, then the inverse can be computed in O(n2) space. Thus, we can supply
the i-th leverage score in O(n2) space, and compute the gradient and Hessian in designated
space constraint.

Given an oracle that can compute the i-th leverage score in O(n2) space, we can even
implement the ℓlog m Lewis weights in Õ(n2) space. To do so, we rely on an iterative scheme
introduced in [28]. Unfortunately, as we are only allowed a space budget of O(n2), we
cannot store the intermediate Lewis weights. To circumvent this issue, we develop a recursive
algorithm to query Lewis weights from prior iterations. Each recursion takes O(n2) space,
and the algorithm uses at most O(poly(log m)) iterations, therefore, we can compute the
Lewis weights in Õ(

√
n) space.

2.3 Semi-streaming maximum weight bipartite matching in Õ(
√

m)
passes

Recall that in the semi-streaming model, we are only allowed with Õ(n) space. For the IPMs
we’ve developed before, we can not meet such space constraint. For general graphs, we have
to invent more machinery to realize the Õ(n) space.
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For matching, we start by noting that the constraint matrix A ∈ Rm×n is a graph
incidence matrix. This means that for logarithmic barrier, the Hessian matrix A⊤S−2A can
be treated as a Laplacian matrix with edge weight s−2

i . Therefore, computing the Newton
direction reduces to perform an SDD solve in Õ(n) space.

SDD solver in the semi-streaming model. Though solving SDD system can be done in an
extremely time-efficient manner, it is unclear how to compute them when only Õ(n) space is
allowed. To circumvent this problem, we rely on two crucial observations. Let LG denote
the SDD matrix corresponding to the Hessian.

Solving a system LG · x = b will require Ω̃(m) space, but multiplying LG with a vector
v ∈ Rn can be done in O(n) space: as LG =

∑
i∈[m]

aia⊤
i

s2
i

, LG · v can be computed as
ai(a⊤

i v)/s2
i in O(n) space, and accumulate the sum over a pass of the graph.

Suppose we have a sparse graph H with only Õ(n) edges, then the system LH · x = b can
be solved in Õ(n) space.

It turns out that these two observations are enough for us to solve a general SDD system
in Õ(n) space. Given the graph G, we first compute a (1 ± δ)-spectral sparsifier with
only Õ(δ−2n logO(1) n) edges in a single pass [40]. Let H denote this sparsifier, we then
use L−1

H as a preconditioner for solving our designated SDD system. More concretely, let
rt := b− LG · xt denote the residual at t-th iteration, we solve the system LH · yt = rt. As
yt = L−1

H · b− L−1
H LG · xt, we can then update the solution via the preconditioned-solution

xt+1 = xt + yt. The residual is then rt+1 = b−LG ·xt+1 = b−LG ·xt−LG · yt = rt−LG · yt,
i.e., we only need to implement one matrix-vector product with LG. After Õ(1) iterations,
we have refined an accurate enough solution for the SDD system.

From dual to primal. Though we can solve the dual in Õ(n) space, it only produces a
solution to the minimum vertex cover and we need to transform it to a solution to maximum
weight matching.

Turning an optimal dual solution to an optimal primal solution for general LP requires
at least solving a linear system, which takes O(nω) time and O(mn) space (Lee, Sidford
and Wong [54]), which is unknown to be implemented in the semi-streaming model even for
bipartite matching LP.8 We bypass this issue by using the complementary slackness theorem
to highlight n tight dual constraints and therefore sparsify the original graph from m edges
to n edges without losing the optimal matching. However, this is only true if the solution to
the primal LP is unique.

To give a better illustration, let us consider a simple example. Suppose the graph has a
(maximum weight) perfect matching (see Figure 1 for example). Then the following trivial
solution is optimal to the dual LP: choosing all vertices in VL. Let us show what happens
when applying the complementary slackness theorem. The complementary slackness theorem
says that when y is a feasible primal solution and x is a feasible dual solution, then y is
optimal to the primal and x is optimal to the dual if and only if

⟨y, Ax− 1m⟩ = 0 and ⟨x, 1n −A⊤y⟩ = 0. (2)

From the above case, we have Ax− 1m = 0, so the first equality ⟨y, Ax− 1m⟩ = 0 puts no
constraint on y. Therefore, any solution y ≥ 0m to the linear system a⊤

i yi = 1, ∀i ∈ VL is
an optimal solution, where ai is the i-th column of A. Note that this linear system has m

variables and |VL| equations, which is still hard to find a solution in Õ(n) space.

8 In general, the inverse of a sparse matrix can be dense, which means the standard Gaussian elimination
method for linear system solving does not apply in the semi-streaming model.
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Figure 1 The red circle is a minimum vertex cover, which is an optimal dual solution. The blue
edge is a maximum matching, which is an optimal primal solution. In both examples, the primal
and dual satisfy complementary slackness Eq. (2).

Now consider perturbing the primal objective function by some vector b ∈ Rm such that
the optimal solution to the following primal LP is unique:

Primal max
y∈Rm

b⊤y, s.t. A⊤y ≤ 1n and y ≥ 0m.

Suppose we find the optimal solution x in the dual LP and we want to recover the optimal
solution y in the primal LP. Again by plugging in the complementary slackness theorem,
we get at most n equations from the second part ⟨x, 1n −A⊤y⟩ = 0. Since the optimal y is
unique and y has dimension m, the first part ⟨y, Ax− 1m⟩ must contribute to at least m− n

equations. Note that these equations have the form

yi = 0, ∀i ∈ [m] s.t. (Ax)i − 1 > 0.

This means that the corresponding edges are unnecessary in order to get one maximum
matching. As a result, we can reduce the number of edges from m to n, then compute a
maximum matching in Õ(n) space without reading the stream.

Isolation lemma in the semi-streaming model. It remains to show how to perturb the
objective so that the primal solution is unique. As the perturbation is over all edges, one
natural idea is to randomly perturb them using Õ(m) bits of randomness. This becomes
troublesome when the random bits need to be stored since the perturbation should remain
consistent across different passes. We resolve this problem via the isolation lemma.

Let us recall the definition of the isolation lemma (see Section C in full version [57] for
details).

▶ Definition 4 (Isolation lemma). Given a set system (S,F) where F ⊆ {0, 1}S. Given
weight wi to each element i in S, the weight of a set F in F is defined as

∑
i∈F wi. The

isolation lemma says there exists a scheme that can assign weight oblivious to F , such that
there is a unique set in F that has the minimum (maximum) weight under this assignment.

The isolation lemma says that if we randomly choose weights, then with a good probability
the uniqueness is ensured. However, this does not apply to the streaming setting since the
weight vector is over all edges, which require Ω(m) space.

To apply isolation lemma for bipartite matching, we note that the set S is all the edges
and the family F contains all possible matchings. The total number of possible matchings
is at most (n + 1)n, as each vertex can choose none or one of the vertices to match. We
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leverage this parameterization and make use of [17], which requires log(|F |) random bits.
For matching, we only need O(n log n) bits, which suits in our space budget. To the best of
our knowledge, this is the first use of isolation lemma in the streaming model.

2.4 Discussions
For matching, improving

√
m passes to

√
n passes will require us to compute fundamental

quantities such as leverage scores and Lewis weights by solving Õ(1) SDD systems. As
reachability [58] and single source shortest path [30, 16] can be solved in n1/2+o(1) passes
in the semi-streaming model, we believe it is an important open problem to close the gap
between bipartite matching and these problems.
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