
A Tight (1.5 + ϵ)-Approximation for
Unsplittable Capacitated Vehicle Routing on Trees
Claire Mathieu # Ñ

CNRS Paris, France

Hang Zhou # Ñ

École Polytechnique, Institut Polytechnique de Paris, France

Abstract
In the unsplittable capacitated vehicle routing problem (UCVRP) on trees, we are given a rooted tree
with edge weights and a subset of vertices of the tree called terminals. Each terminal is associated
with a positive demand between 0 and 1. The goal is to find a minimum length collection of tours
starting and ending at the root of the tree such that the demand of each terminal is covered by a
single tour (i.e., the demand cannot be split), and the total demand of the terminals in each tour
does not exceed the capacity of 1.

For the special case when all terminals have equal demands, a long line of research culminated
in a quasi-polynomial time approximation scheme [Jayaprakash and Salavatipour, TALG 2023] and
a polynomial time approximation scheme [Mathieu and Zhou, TALG 2023].

In this work, we study the general case when the terminals have arbitrary demands. Our
main contribution is a polynomial time (1.5 + ϵ)-approximation algorithm for the UCVRP on trees.
This is the first improvement upon the 2-approximation algorithm more than 30 years ago. Our
approximation ratio is essentially best possible, since it is NP-hard to approximate the UCVRP on
trees to better than a 1.5 factor.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases approximation algorithms, capacitated vehicle routing, graph algorithms,
combinatorial optimization

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.91

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2202.05691

Funding This work was partially funded by the grant ANR-19-CE48-0016 from the French National
Research Agency (ANR).

1 Introduction

In the unsplittable capacitated vehicle routing problem (UCVRP) on trees, we are given a
rooted tree with edge weights and a subset of vertices of the tree called terminals. Each
terminal is associated with a positive demand between 0 and 1. The root of the tree is called
the depot. The goal is to find a minimum length collection of tours starting and ending at the
depot such that the demand of each terminal is covered by a single tour (i.e., the demand
cannot be split), and the total demand of the terminals in each tour does not exceed the
capacity of 1.

The UCVRP on trees has been well studied in the special setting when all terminals have
equal demands:1 Hamaguchi and Katoh [17] gave a polynomial time 1.5-approximation; the
approximation ratio was improved to 1.35078 by Asano, Katoh, and Kawashima [3] and

1 Up to scaling, the equal demand setting is equivalent to the unit demand version of the capacitated
vehicle routing problem in which each terminal has unit demand, and the capacity of each tour is a
positive integer k.

EA
T

C
S

© Claire Mathieu and Hang Zhou;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 91; pp. 91:1–91:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:claire.mathieu@irif.fr
https://www.irif.fr/~claire/
mailto:hzhou@lix.polytechnique.fr
http://www.normalesup.org/~zhou/
https://doi.org/10.4230/LIPIcs.ICALP.2023.91
https://arxiv.org/abs/2202.05691
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

91:2 Unsplittable Capacitated Vehicle Routing on Trees

was further reduced to 4/3 by Becker [4]; Becker and Paul [5] gave a bicriteria polynomial
time approximation scheme; and very recently, Jayaprakash and Salavatipour [18] gave
a quasi-polynomial time approximation scheme, based on which Mathieu and Zhou [21]
designed a polynomial time approximation scheme.

In this work, we study the UCVRP on trees in the general setting when the terminals
have arbitrary demands. Our main contribution is a polynomial time (1.5 + ϵ)-approximation
algorithm (Theorem 1). This is the first improvement upon the 2-approximation algorithm
of Labbé, Laporte, and Mercure [20] more than 30 years ago. Our approximation ratio is
essentially best possible, since it is NP-hard to approximate the UCVRP on trees to better
than a 1.5 factor [14].

▶ Theorem 1. For any ϵ > 0, there is a polynomial time (1.5 + ϵ)-approximation algorithm
for the unsplittable capacitated vehicle routing problem on trees.

The UCVRP on trees generalizes the UCVRP on paths. The latter problem has been
studied extensively due to its applications in scheduling, see Section 1.1. As an immediate
corollary of Theorem 1, we obtain the first polynomial time (1.5+ϵ)-approximation algorithm
for the UCVRP on paths. This ratio is essentially best possible, since it is NP-hard to
approximate the UCVRP on paths to better than a 1.5 factor.

1.1 Related Work
Originally introduced by Dantzig and Ramser in 1959 [10], the UCVRP generalizes the
traveling salesman problem, and is one of the most basic problems in Operations Research.

UCVRP on general metrics

The classical tour partitioning algorithm [16] introduced by Haimovich and Rinnooy Kan in
1985 was proved to be a constant-factor approximation on general metrics [2]. Very recently,
Blauth, Traub, and Vygen [6] achieved the first improvement upon the tour partitioning
algorithm. The best-to-date approximation ratio for general metrics stands at roughly 3.194
due to Friggstad, Mousavi, Rahgoshay, and Salavatipour [13].

UCVRP on paths

The UCVRP on paths is equivalent to the scheduling problem of minimizing the makespan
on a single batch processing machine with non-identical job sizes [26]. Many heuristics have
been proposed and evaluated empirically, e.g., [26, 12, 22, 9, 19, 24, 7, 1, 23]. Prior to our
work, the best approximation ratio for the UCVRP on paths was 1.6 due to Wu and Lu [27].

The UCVRP on paths has also been studied in special cases. For example, when the
optimal value is at least Ω(1/ϵ6) times the maximum distance between any terminal and
the depot, asymptotic polynomial time approximation schemes are known [11, 25, 8].2 In
contrast, the algorithm in Theorem 1 applies to any path instance.

UCVRP in the Euclidean plane

In the two-dimensional Euclidean plane, the UCVRP admits a (2 + ϵ)-approximation [15].

2 The UCVRP on paths is called the train delivery problem in [11, 25, 8].

C. Mathieu and H. Zhou 91:3

2 Overview of Techniques

To prove Theorem 1, at a high level, our approach is to modify the problem and add enough
structural constraints so that the structured problem contains a (1.5 + O(ϵ))-approximate
solution and can be solved in polynomial time by dynamic programming.

2.1 Preprocessing
We start by some preprocessing as in [21]. We assume without loss of generality that
every vertex in the tree has two children, and the terminals are the leaf vertices of the
tree [21]. Furthermore, we assume that the tree has bounded distances (Section 3.2). Next,
we decompose the tree into components (Figure 1 and Section 3.3).

root of the tree

Figure 1 Decomposition of the tree into components. Figure extracted from [21]. Each brown
triangle represents a component. Each component has a root vertex and at most one exit vertex.

2.2 Solutions Within Each Component
A significant difficulty is to compute solutions within each component. It would be natural to
attempt to extend the approach in the setting when all terminals have equal demands [21]. In
that setting, the demands of the subtours3 in each component are among a polynomial number
of values; since the component is visited by a constant number of tours in a near-optimal
solution, that solution inside the component can be computed exactly in polynomial time
using a simple dynamic program. However, when the terminals have arbitrary demands,
the demands of the subtours in each component might be among an exponential number of
values.4 Indeed, unless P = NP , we cannot compute in polynomial time a better-than-1.5
approximate solution inside a component, since that problem generalizes the bin packing
problem.

To compute in polynomial time good approximate solutions within each component, at a
high level, we simplify the solution structure in each component, so that the demands of the
subtours in that component are among a constant Oϵ(1) number of values,5 while increasing
the cost of the solution by at most a multiplicative factor 1.5 + O(ϵ).

Where does the 1.5 factor come from? Intuitively, our construction creates an additional
subtour to cover a selected subset of terminals, charging each edge on that subtour to two
existing subtours using that edge, thus adding a 0.5 factor to the cost.

In the rest of this section, we explain our approach in more details.

3 The demand of a subtour is the total demand of the terminals visited by that subtour.
4 For example, consider a component that is a star graph with Θ(n) leaves, where the ith leaf has demand

1/2i.
5 The notation Oϵ(1) stands for O(f(ϵ)) where f(ϵ) is any function on ϵ.

ICALP 2023

91:4 Unsplittable Capacitated Vehicle Routing on Trees

root of the component

exit of the component

(a) Decomposition of a component into blocks. The orange nodes represent the big terminals in the
component. The black nodes represent the root and the exit vertices of the component (defined in
Lemma 6). The gray nodes are the branching vertices in the subtree spanning the orange and the black
nodes. Splitting the component at the orange, the black, and the gray nodes results in a set of blocks,
represented by green triangles. Each block has a root vertex and at most one exit vertex. See Section 4.1.

root of the block

exit of the block

(b) Decomposition of a block into clusters. The green triangle represents a block. Each blue triangle
represents a cluster. Each cluster has a root vertex and at most one exit vertex. A cluster is passing if it
has an exit vertex, and is ending otherwise. Each passing cluster has a spine (dashed). See Section 4.2.

root of the cluster

exit of the cluster

(c) Decomposition of a passing cluster into cells. The blue triangle represents a passing cluster. Removing
the thick edges from the cluster results in a set of at most 1/ϵ cells. Each red triangle represents a cell.
Each of those cells has a root vertex, an exit vertex, and a spine (dashed). See Section 4.3.

Figure 2 Three-level decomposition of a component.

C. Mathieu and H. Zhou 91:5

2.2.1 Multi-Level Decomposition (Section 4)
We partition each component into Oϵ(1) parts using a multi-level decomposition.

In the first level, the component is decomposed into Oϵ(1) blocks so that all terminals
strictly inside a block are small (we distinguish big and small terminals depending on their
demands). See Figure 2a and Section 4.1.

In the second level, each block is decomposed into Oϵ(1) clusters so that the overall
demand of each cluster is roughly an ϵ fraction of the demand of a component. See Figure 2b
and Section 4.2.

In the third level, each cluster is decomposed into Oϵ(1) cells so that the spine of each
cell is roughly an ϵ fraction of the spine of the cluster, where the spine of a cell (resp. a
cluster) is the path traversing that cell (resp. that cluster). See Figure 2c and Section 4.3.

component
block
cluster
cell

Figure 3 Relation of the multiple levels in the decomposition.

Comparison with the decomposition in [21]

The distinction between big and small terminals plays an important role in UCVRP. This
distinction does not exist in the equal demand setting in [21]. In the current paper, the
decomposition into blocks is new and enables us to deal with big and small terminals
separately; the decomposition into clusters is similar to the decomposition in [21]; the
decomposition into cells is a main novelty (see the usage of cells in Section 2.2.2).

2.2.2 Simplifying the Local Solution (Section 5)
The main technical contribution in this paper is the Local Theorem (Theorem 13), which
simplifies a local solution inside a component so that, in each cell, a single subtour visits all
small terminals, while increasing the cost of the local solution by at most a multiplicative
factor 1.5 + O(ϵ). The Local Theorem builds upon techniques from [5, 21] together with
substantial new ideas.

A first attempt is to reassign all small terminals of each cluster to a single subtour.
However, there are two obstacles. First, in order to maintain the connectivity of the resulting
subtours, we need to pay for an extra copy of the spines of the clusters, which is expensive.
Secondly, using a lemma of Becker and Paul [5], the resulting subtours exceed their capacities
slightly. To reduce the demands of the subtours exceeding capacities, an extra cost of only
an ϵ fraction of the solution cost is sufficient in the equal demand setting [21], but this is no
longer achievable in the arbitrary demand setting.

To overcome those obstacles, we decompose each cluster into cells and we reassign all
small terminals of each cell to a single subtour. In the analysis, we introduce the technical
concept of threshold cells (Figure 4a), and we ensure that each cluster contains at most

ICALP 2023

91:6 Unsplittable Capacitated Vehicle Routing on Trees

one threshold cell. In order to maintain the connectivity of the resulting subtours, we only
need to pay for an extra copy of the spines of the threshold cells (Figure 4b), whose cost is
negligible.

To reduce the demand of each resulting subtour exceeding capacity, we select some cells
from that subtour, and we remove all pieces in that subtour belonging to those cells. We
show that each removed piece is connected to the root through at least two subtours in the
solution (Lemma 20). That property is a main technical novelty in this paper. It enables
us to reconnect all removed pieces with an extra cost of at most half of the solution cost
(Lemma 21), hence an approximation ratio of 1.5 + O(ϵ).

2.3 Postprocessing
We modify the tree of components using the techniques in [21] so that the new tree has only
Oϵ(1) levels of components. Consider a near-optimal solution in the new tree. We apply
the Local Theorem (Theorem 13) to simplify the local solutions in all components. Then
we combine the simplified local solutions into a global solution. The combination requires
particular care to deal with the additional subtour in each component created in the Local
Theorem.

Next, we apply the adaptive rounding technique to the resulting global solution. The
adaptive rounding technique for capacitated vehicle routing was first used by Jayaprakash
and Salavatipour [18] in their design of a QPTAS in the equal demand setting. This technique
enables us reduce the number of subtour demands in each subtree to a constant Oϵ(1).

Finally, we design a polynomial time dynamic program to compute the best solution
that satisfies the structural constraints established previously. The computed solution is a
(1.5 + O(ϵ))-approximation.

This completes the proof of Theorem 1. See the full version of the paper for more details.

▶ Remark 2. When the overall cost of all edges in the tree is fixed, letting W denote this cost,
it is possible to adapt our analysis to obtain an asymptotic polynomial time approximation
scheme. To that end, we observe that in the proof of the Local Theorem (Theorem 13), the
extra cost to connect all removed pieces in a component is at most twice the overall cost of
all edges in that component, so the overall extra cost over all components is at most 2W .
Thus the cost of the computed solution is at most 1 + O(ϵ) times the optimal cost plus 2W .

3 Preliminaries

3.1 Formal Problem Description and Notations
Let T be a rooted tree (V, E) with edge weights w(u, v) ≥ 0 for all (u, v) ∈ E. Let n denote
the number of vertices in V . The cost of a tour (resp. a subtour) t, denoted by cost(t), is the
overall weight of the edges on t. For a set S of tours (resp. subtours), the cost of S, denoted
by cost(S), is

∑
t∈S cost(t).

▶ Definition 3 (UCVRP on trees). An instance of the unsplittable capacitated vehicle routing
problem (UCVRP) on trees consists of

an edge weighted tree T = (V, E) with root r ∈ V representing the depot,
a set V ′ ⊆ V of terminals,
for each terminal v ∈ V ′, a demand of v, denoted by demand(v), which belongs to (0, 1].

A feasible solution is a set of tours such that
each tour starts and ends at r,

C. Mathieu and H. Zhou 91:7

the demand of each terminal is covered by a single tour, i.e., the demand cannot be split,
the total demand of the terminals covered by each tour does not exceed the capacity of 1.

The goal is to find a feasible solution of minimum cost.

For any two vertices u, v ∈ V , let dist(u, v) denote the distance between u and v in the
tree T .

We say that a tour (resp. a subtour) visits a terminal if it covers the demand of that
terminal. For technical reasons, we allow dummy terminals of appropriate demands to be
included. The demand of a tour (resp. a subtour) t, denoted by demand(t), is defined to be
the total demand of all terminals (including dummy terminals) visited by t.

3.2 Reduction to Instances of Bounded Distances
▶ Definition 4 (bounded distances, Definition 2.1 in [21]). Let Dmin (resp. Dmax) denote the
minimum (resp. maximum) distance between the depot and any terminal in the tree T . We
say that T has bounded distances if Dmax < (1/ϵ)(1/ϵ)−1 · Dmin.

The next theorem (Theorem 5) enables us to assume without loss of generality that the
tree T has bounded distances.

▶ Theorem 5 (Theorem 2.3 and Section 9 in [21]). For any ρ ≥ 1, if there is a polynomial
time ρ-approximation algorithm for the UCVRP on trees with bounded distances, then there
is a polynomial time (1 + 5ϵ)ρ-approximation algorithm for the UCVRP on trees with general
distances.

3.3 Decomposition Into Components
The next lemma decomposes the tree T into components.

▶ Lemma 6 (Lemma 4.2 in [21]). Let Γ = 12/ϵ. There is a polynomial time algorithm to
compute a partition of the edges of the tree T into a set C of components (see Figure 1),
such that all of the following properties are satisfied:
1. Every component c ∈ C is a connected subgraph of T ; the root vertex of the component c,

denoted by rc, is the vertex in c that is closest to the depot.
2. A component c shares vertices with other components at vertex rc and possibly at one

other vertex, called the exit vertex of the component c and denoted by ec. We say that c

is an internal component if c has an exit vertex, and is a leaf component otherwise.
3. The total demand of the terminals in each component c ∈ C is at most 2Γ.
4. The number of components in C is at most max{1, 3 · demand(T)/Γ}, where demand(T)

denotes the total demand of the terminals in the tree T .

▶ Definition 7 (Definition 4.4 in [21]). Let c ∈ C be any component. A subtour in component c

is a path t that starts and ends at the root rc of component c, and such that every vertex on
t is in component c. We say that a subtour t is a passing subtour if c has an exit vertex and
that vertex belongs to t, and is an ending subtour otherwise.

4 Multi-Level Decomposition in a Component

Let c ∈ C be any component. We partition c using a multi-level decomposition: first,
c is decomposed into blocks (Section 4.1); next, each block is decomposed into clusters
(Section 4.2); and finally, each cluster is decomposed into cells (Section 4.3).

ICALP 2023

91:8 Unsplittable Capacitated Vehicle Routing on Trees

We introduce some notations. Let z denote any block (resp. any cluster or any cell).
Then z has a root vertex and at most one exit vertex. We say that a terminal v is strictly
inside z if v belongs to z and v is different from the root vertex and the exit vertex of z. The
demand of z is defined as the total demand of all terminals strictly inside z. If z has no exit
vertex, then z is called ending; otherwise z is called passing, and the path between the root
vertex and the exit vertex of z is called the spine of z.

We distinguish big and small terminals depending on their demands.

▶ Definition 8 (big and small terminals). Let α = ϵ(1/ϵ)+1. Let Γ′ = ϵ · α/Γ, where Γ is
defined in Lemma 6. We say that a terminal v is big if demand(v) > Γ′ and small otherwise.

4.1 Decomposition of a Component Into Blocks (Figure 2a)
Let c be a component. Let U ⊆ V denote the set of vertices consisting of the big terminals
in c, the root vertex of c, and possibly the exit vertex of c if c is an internal component (see
Lemma 6 for definitions). Let TU denote the subtree of c spanning the vertices in U . We
say that a vertex in TU is a key vertex if either it belongs to U or it has two children in
TU . We define a block to be a maximally connected subgraph of component c in which any
key vertex has degree 1; in other words, blocks are obtained by splitting the component at
the key vertices. Note that any terminal strictly inside a block is small. The blocks form a
partition of the edges of component c.

4.2 Decomposition of a Block Into Clusters (Figure 2b)
As an adaptation from Lemma 6, we decompose a block into clusters in Lemma 9.

▶ Lemma 9. Let b be any block. There is a polynomial time algorithm to compute a partition
of the edges of the block b into a set of clusters, such that all of the following properties are
satisfied:
1. Every cluster x is a connected subgraph of b; the root vertex of the cluster x, denoted by

rx, is the vertex in x that is closest to the depot.
2. A cluster x shares vertices with other clusters at vertex rx and possibly at one other vertex,

called the exit vertex of the cluster x and denoted by ex. If block b has an exit vertex eb,
then there is a cluster x in b such that ex = eb.

3. The demand of each cluster in b is at most 2Γ′.
4. The number of clusters in b is at most 3 · (demand(b)/Γ′ + 1).

4.3 Decomposition of a Cluster Into Cells (Figure 2c)
Let x be any cluster.
Case 1: x is an ending cluster. The decomposition of x consists of a single cell, which is

the entire cluster x.
Case 2: x is a passing cluster. Let ℓ denote the cost of the spine of cluster x. If ℓ = 0, the

decomposition of x consists of a single cell, which is the entire cluster x. Next, we assume
that ℓ > 0. For each integer i ∈ [1, (1/ϵ)−1], there exists a unique edge (u, v) on the spine
of cluster x satisfying min(dist(rx, u), dist(rx, v)) ≤ i · ϵ · ℓ < max(dist(rx, u), dist(rx, v));
let ei denote that edge. Removing the edges e1, e2, . . . , e(1/ϵ)−1 from cluster x results in
at most 1/ϵ connected subgraphs; each subgraph is called a cell. Observe that those cells
form a partition of the vertices of cluster x.

C. Mathieu and H. Zhou 91:9

The (unique) cell inside an ending cluster is an ending cell, and any cell inside a passing
cluster is a passing cell. Fact 10 follows directly from the construction.

▶ Fact 10. Let x be a passing cluster. The cost of the spine of any cell in x is at most an ϵ

fraction of the cost of the spine of x.

▶ Fact 11. In any component c, the number of cells and the number of big terminals are
both Oϵ(1).

Proof. By Lemma 6, the total demand of the terminals in component c is at most 2Γ. Since
the demand of a big terminal is at least Γ′, there are at most 2Γ/Γ′ = Oϵ(1) big terminals
in c.

From the construction in Section 4.1, the set U consists of at most 2 + 2Γ/Γ′ vertices.
Since each vertex in c has at most two children, the number of blocks in c is at most
2|U | ≤ 4 + 4Γ/Γ′. From the construction in Section 4.2, each block b is partitioned into
at most 3 · (demand(b)/Γ′ + 1) clusters, where demand(b) is at most the total demand of
the terminals in component c, which is at most 2Γ. From the construction in Section 4.3,
each cluster is partitioned into at most 1/ϵ cells. So the number of cells in c is at most
(4 + 4Γ/Γ′) · (3 · (2Γ/Γ′ + 1)) · (1/ϵ) = Oϵ(1). ◀

▶ Definition 12 (Adaptation from Definition 7). A subtour in a cluster (resp. cell) is a path t

that starts and ends at the root of that cluster (resp. cell), and such that every vertex on t is
in that cluster (resp. cell). We say that a subtour t is a passing subtour if that cluster (resp.
cell) has an exit vertex and that vertex belongs to t, and is an ending subtour otherwise. The
spine subtour in a passing cluster (resp. passing cell) consists of the spine of that cluster
(resp. cell) in both directions.

5 Simplifying the Local Solution

In this section, we prove the Local Theorem (Theorem 13).

▶ Theorem 13 (Local Theorem). Let c be any component. Let Sc denote a set of at most
(2Γ/α) + 1 subtours in component c visiting all terminals in c. Then there exists a set S∗

c of
subtours in component c visiting all terminals in c, such that all of the following properties
hold:
1. For each cell in c, a single subtour in S∗

c visits all small terminals in that cell;
2. S∗

c contains one particular subtour t̄ of demand at most 1, and the subtours in S∗
c \ {t̄}

are in one-to-one correspondence with the subtours in Sc, such that for every subtour t in
Sc and its corresponding subtour t∗ in S∗

c \ {t̄}, the demand of t∗ is at most the demand
of t, and in addition, if t is a passing subtour in c, then t∗ is also a passing subtour in c;

3. The cost of S∗
c is at most 1.5 + 2ϵ times the cost of Sc.

▶ Remark 14. Note that the cost to connect the newly generated subtour t̄ to the depot is
negligible thanks to the properties of the components.

5.1 Construction of S∗
c

The construction of S∗
c starts from Sc and proceeds in 5 steps. In particular, Step 2 uses a

new concept of threshold cells and is the main novelty in the construction.
The following lemma due to Becker and Paul [5] will be used in Step 1 and Step 3.

ICALP 2023

91:10 Unsplittable Capacitated Vehicle Routing on Trees

▶ Lemma 15 (Assignment Lemma, Lemma 1 in [5]). Let G = (V [G], E[G]) be an edge-weighted
bipartite graph with vertex set V [G] = A ⊎ B and edge set E[G] ⊆ A × B, such that each edge
(a, b) ∈ E[G] has a weight w(a, b) ≥ 0. For each vertex b ∈ B, let N(b) denote the set of
vertices a ∈ A such that (a, b) ∈ E[G]. We assume that N(b) ̸= ∅ and the weight w(b) of the
vertex b satisfies 0 ≤ w(b) ≤

∑
a∈N(b) w(a, b). Then there exists a function f : B → A such

that each vertex b ∈ B is assigned to a vertex a ∈ N(b) and, for each vertex a ∈ A, we have∑
b∈B|f(b)=a

w(b) −
∑

b∈B|(a,b)∈E[G]

w(a, b) ≤ max
b∈B

{
w(b)

}
.

Step 1: Combining ending subtours within each cluster

Let A0 denote Sc. We define a weighted bipartite graph G in which the vertices in one part
represent the subtours in A0 and the vertices in the other part represent the clusters in c.6
There is an edge in G between a subtour a ∈ A0 and a cluster x in c if and only if a contains
an ending subtour t in x; the weight of the edge is defined to be demand(t). For each cluster
x in c, we define the weight of x in G to be the sum of the weights of its incident edges in G.
We apply the Assignment Lemma (Lemma 15) to the graph G (deprived of the vertices of
degree 0) and obtain a function f that maps each cluster x in c to some subtour a ∈ A0 such
that (a, x) is an edge in G.

We construct a set of subtours A1 as follows: for every cluster x in c and for every subtour
a ∈ A0 containing an ending subtour t in x, the subtour t is removed from a and added
to the subtour f(x). Observe that each resulting subtour in A1 is connected. From the
construction, for each cluster x, at most one subtour in A1 has an ending subtour in x. In
particular, for any ending cell, which is equivalent to an ending cluster, a single subtour in
A1 visits all small terminals in that cell.

Step 2: Extending ending subtours within threshold cells

Let x be any passing cluster in c such that there is a subtour in A1 containing an ending
subtour in x. From Step 1 of the construction, such a subtour in A1 is unique; let te denote
the corresponding ending subtour in x.

We define the threshold cell of cluster x to be the deepest cell in x containing vertices
of te. See Figure 4a.

Then we add to te the part of the spine subtour in the threshold cell of x that does not
belong to te, resulting in a subtour t̃e; see Figure 4b.

Let A2 denote the resulting set of subtours in c after the extension within all threshold
cells. From the construction, for each passing cell s, all subtours in s that are contained in
A2 are passing subtours in s.

Step 3: Combining passing subtours within each passing cell

We define a weighted bipartite graph G′ in which the vertices in one part represent the
subtours in A2 and the vertices in the other part represent the passing cells in c.7 There is
an edge in G′ between a subtour a ∈ A2 and a passing cell s in c if and only if a contains a
non-spine passing subtour t in s; the weight of the edge is defined to be the total demand
of the small terminals on t. For each passing cell s in c, we define the weight of s in G′ to

6 With a slight abuse, we identify a vertex in G with either a subtour in A0 or a cluster in c.
7 With a slight abuse, we identify a vertex in G′ with either a subtour in A2 or a passing cell in c.

C. Mathieu and H. Zhou 91:11

threshold cell

(a) Subtour before extension. (b) Subtour after extension.

Figure 4 The threshold cell and the extension of an ending subtour. The outermost triangle in
blue represents a cluster x. In Figure 4a, the black segments represent the ending subtour te in
x. The threshold cell of cluster x is the deepest cell visited by te and is represented by the yellow
triangle. In Figure 4b, subtour te is extended within the threshold cell: the green segment represents
the part of the spine subtour of the threshold cell that is added to te, resulting in a subtour t̃e.

be the sum of the weights of its incident edges in G′. We apply the Assignment Lemma
(Lemma 15) to the graph G′ (deprived of the vertices of degree 0) and obtain a function f ′

that maps each passing cell s in c to some subtour a ∈ A2 such that (a, s) is an edge in G′.
We construct a set of subtours A3 as follows: for every passing cell s in c and for every

subtour a ∈ A2 containing a non-spine passing subtour t in s, the subtour t is removed from
a except for the spine subtour of s; the removed part is added to the subtour f ′(s). Observe
that each resulting subtour in A3 is connected. From the construction, for each passing cell
s, a single subtour in A3 visits all small terminals in s.

Step 4: Correcting subtour capacities

For each subtour t3 in A3, let t0 denote the corresponding subtour in A0. As soon as the
demand of t3 is greater than the demand of t0, we repeatedly modify t3 as follows: find a
terminal v that is visited by t3 but not visited by t0; let s denote the cell containing v and let
ts denote the subtour of t3 in cell s; if s is an ending cell, then remove ts from t3; and if s is
a passing cell, then remove ts from t3 except for the spine subtour of s.

Let A4 denote the resulting set of modified subtours. Observe that each subtour in A4 is
connected. From the construction, the demand of each subtour in A4 is at most the demand
of the corresponding subtour in A0. Note that the big terminals in each subtour in A4 are
the same as the big terminals in the corresponding subtour in A0.8

Let R denote the set of the removed pieces. We claim that the total demand of the pieces
in R is at most 1 (Lemma 22).

Step 5: Creating an additional subtour

We connect all pieces in R by a single subtour t̄, which is the minimal subtour in component c

that connects all pieces in R to the root of component c.

Finally, let S∗
c denote A4 ∪ {t̄ }.

8 Any big terminal cannot be removed, since it is the exit vertex of some cell, thus belongs to the spine of
that cell.

ICALP 2023

91:12 Unsplittable Capacitated Vehicle Routing on Trees

5.2 Analysis on the Cost of S∗
c

From the construction of S∗
c , we observe that the cost of S∗

c equals the cost of Sc plus the
extra costs in Step 2 and in Step 5 of the construction, denoted by W2 and W5, respectively.

To analyze the extra costs, first, in a preliminary lemma (Lemma 16), we bound the
overall cost of the spines of the threshold cells. Lemma 16 will be used to analyze both W2
(Corollary 17) and W5 (Lemma 21).

▶ Lemma 16. The overall cost of the spines of all threshold cells in the component c is at
most (ϵ/2) · cost(Sc).

Proof. Consider any threshold cell s. Let x be the passing cluster that contains s. By
Fact 10, the cost of the spine of cell s is at most an ϵ fraction of the cost of the spine of x.
Since x is a passing cluster, at least one subtour in Sc contains a passing subtour in x; let tx

denote that passing subtour in x. Observe that tx contains each edge of the spine of cluster
x in both directions (Definition 12), so the cost of the spine of x is at most cost(tx)/2. Thus
the cost of the spine of s is at most (ϵ/2) · cost(tx). We charge the cost of the spine of s to tx.

From the construction, each cluster contains at most one threshold cell. Thus the costs
of the spines of all threshold cells are charged to disjoint parts of Sc. The claim follows. ◀

Observe that the extra cost in Step 2 of the construction is at most the overall cost of
the spine subtours in all threshold cells in the component c, which equals twice the overall
cost of the spines of those cells by Definition 12.

▶ Corollary 17. The extra cost W2 in Step 2 of the construction is at most ϵ · cost(Sc).

Next, we bound the extra cost in Step 5 of the construction.

▶ Fact 18. Let t denote any subtour in Sc. Let x denote any cluster in c. Let rc and rx

denote the root vertices of component c and of cluster x, respectively; let ex denote the exit
vertex of cluster x. If the rc-to-rx path (resp. the rc-to-ex path) belongs to t, then that path
belongs to the corresponding subtour of t throughout the construction in Section 5.1.

▶ Definition 19 (nice edges). We say that an edge e in component c is nice if e belongs to at
least two subtours in A2.

The next Lemma (Lemma 20) is the main novelty in the analysis.

▶ Lemma 20. Any piece in R is connected to the root rc of component c through nice edges
in c.

Proof. Consider any piece q ∈ R. Let s be the cell containing q. Let x be the cluster
containing q. See Figure 5. Let rs and rx denote the root vertices of cell s and of cluster
x, respectively. Observe that the terminals in x are visited by at least two subtours in Sc.
This is because, if all terminals in cluster x are visited by a single subtour in Sc, then those
terminals belong to the corresponding subtour throughout the construction, thus none of
those terminals belongs to a piece in R, contradiction. Thus the rc-to-rx path belongs to at
least two subtours in Sc. By Fact 18, the rc-to-rx path belongs to at least two subtours in
A2, thus every edge on the rc-to-rx path is nice. It suffices to show the following Claim:

Piece q is connected to vertex rx through nice edges in c. (*)

There are two cases:

C. Mathieu and H. Zhou 91:13

rx

rc

(a) Case 1.

rx

rc

(b) Subcase 2(i).

rx

rc

es

(c) Subsubcase 2(ii)(α).

es

rx

rc

(d) Subsubcase 2(ii)(β).

Figure 5 Illustrations for the different cases in the proof of Lemma 20. A piece q ∈ R is in brown.
The cell s containing that piece is represented by the triangle in red; the cluster x containing that
piece is represented by the outermost triangle in blue. The black node rc is the root of component
c. In Figure 5a, x is an ending cluster. In Figure 5b, x is a passing cluster, and the solution Sc

contains two passing subtours in x. In Figures 5c and 5d, x is a passing cluster, and the solution Sc

contains a unique passing subtour in x; the yellow triangle represents the threshold cell of x. In
the case when q belongs to the threshold cell (Figure 5d), q is connected to rc through at least two
subtours, thanks to the extension of the ending subtour within the threshold cell.

Case 1: x is an ending cluster. See Figure 5a. From the decomposition in Section 4.3, s is
an ending cell and s equals x. Piece q is an ending subtour in x and in particular contains
rx. Claim (*) follows trivially.

Case 2: x is a passing cluster. Let es and ex denote the exit vertices of cell s and of cluster
x, respectively. Observe that at least one subtour in Sc contains a passing subtour in x.
There are two subcases.
Subcase 2(i): At least two subtours in Sc contain passing subtours in x.

See Figure 5b. Then the rc-to-ex path belongs to at least two subtours in Sc. By
Fact 18, the rc-to-ex path belongs to at least two subtours in A2, thus each edge on
the spine of x is nice. Since piece q contains a vertex on the spine of x, Claim (*)
follows.

Subcase 2(ii): Exactly one subtour in Sc contains a passing subtour in x.
See Figures 5c and 5d. Let tp denote that passing subtour in x. As observed previously,
at least two subtours in Sc visit terminals in x, so there must be at least one subtour
in Sc that contains an ending subtour in x. Let t1

e, . . . , tm
e (for some m ≥ 1) denote the

ending subtours in x contained in the subtours in Sc. In Step 1 of the construction, the
m ending subtours are combined into a single ending subtour, denoted by te (recall that
the threshold cell of x is defined with respect to te); and in Step 2 of the construction,
subtour te is extended to a subtour t̃e (Figure 4). Note that the passing subtour tp

remains unchanged in Steps 1 and 2 of the construction. We observe that cell s is
either above or equal to the threshold cell of x. This is because, if cell s is below the
threshold cell of x, then all terminals in s are visited by a single subtour in Sc, i.e., the
subtour tp, so those terminals belong to the corresponding subtour of tp throughout
the construction, thus none of those terminals belongs to a piece in R, contradiction.
Hence the following two subsubcases.
Subsubcase 2(ii)(α): s is above the threshold cell of x. See Figure 5c. Each edge

on the rx-to-es path belongs to both subtours tp and te, hence is nice. Since q

contains some vertex on the spine of s, Claim (*) follows.

ICALP 2023

91:14 Unsplittable Capacitated Vehicle Routing on Trees

Subsubcase 2(ii)(β): s equals the threshold cell of x. See Figure 5d. Observe that
each edge on the rx-to-es path belongs to t̃e due to the extension of the ending
subtour te within the threshold cell (Step 2 of the construction). Thus each edge on
the rx-to-es path belongs to both subtours tp and t̃e, hence is nice. Since q contains
some vertex on the spine of s, Claim (*) follows. ◀

▶ Lemma 21. The extra cost W5 in Step 5 of the construction is at most (0.5 + ϵ) · cost(Sc).

Proof. Let Wnice denote the overall cost of the nice edges in c. We show that W5 ≤ 2 · Wnice.
Let H be the multi-subgraph in c that consists of the pieces in R and two copies of each
nice edge in c (one copy for each direction). Since any piece in R is connected to the root rc

of component c through nice edges (Lemma 20), H induces a connected subtour in c. So
W5 ≤ 2 · Wnice.

Next, we analyze Wnice. From the construction, any nice edge e in c is of at least one of
the two cases:
Case 1: e belongs to at least two subtours in Sc. Then e has at least 4 copies in Sc, since

each subtour to which e belongs contains 2 copies of e (one for each direction). Thus the
overall cost of the edges e in this case is at most 0.25 · cost(Sc).

Case 2: e belongs to the spine of a threshold cell in component c. By Lemma 16, the
overall cost of the edges e in this case is at most (ϵ/2) · cost(Sc).

Hence the overall cost Wnice of the nice edges is at most (0.25 + ϵ/2) · cost(Sc).
Therefore, W5 ≤ 2 · Wnice ≤ (0.5 + ϵ) · cost(Sc). ◀

From Corollary 17 and Lemma 21, we conclude that

cost(S∗
c) = cost(Sc) + W2 + W5 ≤ (1.5 + 2ϵ) · cost(Sc).

Hence the third property of the claim in the Local Theorem (Theorem 13).

5.3 Feasibility
From the construction, S∗

c is a set of subtours in c visiting all terminals in c. The first
property of the claim in the Local Theorem (Theorem 13) follows from the construction.
The second property of the claim follows from the construction, Fact 18, and the following
Lemma 22.

▶ Lemma 22. The total demand of the pieces in R is at most 1.

Proof. Observe that the pieces in R are removed from subtours in A3. Let t3 denote any
subtour in A3. Let t0, t1, t2, and t4 denote the corresponding subtours of t3 in A0, A1,
A2, and A4, respectively. Let ∆ denote the overall demand of the pieces that are removed
from t3 in Step 4 of the construction. Observe that ∆ = demand(t3) − demand(t4). To
bound ∆, first, by Step 1 of the construction and the Assignment Lemma (Lemma 15),
the demand of each subtour in A0 is increased by at most the maximum demand of a
cluster. Thus demand(t1) − demand(t0) is at most the maximum demand of a cluster, which
is at most 2Γ′ by the definition of clusters (Section 4.2). By Step 2 of the construction,
demand(t2) = demand(t1). By Step 3 of the construction and the Assignment Lemma
(Lemma 15), the demand of each subtour in A2 is increased by at most the maximum
demand of a cell. Thus demand(t3) − demand(t2) is at most the maximum demand of a cell,
which is at most 2Γ′ by the definition of cells (Section 4.3). By Step 4 of the construction,
demand(t0) − demand(t4) is at most the maximum demand of a cell, which is at most 2Γ′.
Combining, we have ∆ = demand(t3) − demand(t4) ≤ 6Γ′.

C. Mathieu and H. Zhou 91:15

The number of subtours in A3 equals the number of subtours in Sc, which is at most
(2Γ/α)+1 by assumption. Thus total demand of the pieces in R is at most 6Γ′ ·((2Γ/α)+1) <

13ϵ < 1, assuming ϵ < 1/13. ◀

This completes the proof of the Local Theorem (Theorem 13).

References
1 Muhammad Al-Salamah. Constrained binary artificial bee colony to minimize the makespan

for single machine batch processing with non-identical job sizes. Applied Soft Computing,
29:379–385, 2015.

2 Kemal Altinkemer and Bezalel Gavish. Heuristics for unequal weight delivery problems with a
fixed error guarantee. Operations Research Letters, 6(4):149–158, 1987.

3 Tetsuo Asano, Naoki Katoh, and Kazuhiro Kawashima. A new approximation algorithm for
the capacitated vehicle routing problem on a tree. Journal of Combinatorial Optimization,
5(2):213–231, 2001.

4 Amariah Becker. A tight 4/3 approximation for capacitated vehicle routing in trees. In Inter-
national Conference on Approximation Algorithms for Combinatorial Optimization Problems,
volume 116, pages 3:1–3:15, 2018.

5 Amariah Becker and Alice Paul. A framework for vehicle routing approximation schemes in
trees. In Workshop on Algorithms and Data Structures, pages 112–125. Springer, 2019.

6 Jannis Blauth, Vera Traub, and Jens Vygen. Improving the approximation ratio for capacitated
vehicle routing. Mathematical Programming, pages 1–47, 2022.

7 Huaping Chen, Bing Du, and George Q. Huang. Scheduling a batch processing machine with
non-identical job sizes: a clustering perspective. International Journal of Production Research,
49(19):5755–5778, 2011.

8 Jing Chen, He Guo, Xin Han, and Kazuo Iwama. The train delivery problem revisited. In
International Symposium on Algorithms and Computation, pages 601–611. Springer, 2013.

9 Purushothaman Damodaran, Praveen Kumar Manjeshwar, and Krishnaswami Srihari. Min-
imizing makespan on a batch-processing machine with non-identical job sizes using genetic
algorithms. International Journal of Production Economics, 103(2):882–891, 2006.

10 George B. Dantzig and John H. Ramser. The truck dispatching problem. Management Science,
6(1):80–91, 1959.

11 Aparna Das, Claire Mathieu, and Shay Mozes. The train delivery problem-vehicle routing
meets bin packing. In International Workshop on Approximation and Online Algorithms, pages
94–105. Springer, 2010.

12 Lionel Dupont and Clarisse Dhaenens-Flipo. Minimizing the makespan on a batch machine with
non-identical job sizes: an exact procedure. Computers & Operations Research, 29(7):807–819,
2002.

13 Zachary Friggstad, Ramin Mousavi, Mirmahdi Rahgoshay, and Mohammad R. Salavatipour.
Improved approximations for capacitated vehicle routing with unsplittable client demands.
In International Conference on Integer Programming and Combinatorial Optimization, pages
251–261. Springer, 2022.

14 Bruce L. Golden and Richard T. Wong. Capacitated arc routing problems. Networks, 11(3):305–
315, 1981.

15 Fabrizio Grandoni, Claire Mathieu, and Hang Zhou. Unsplittable Euclidean Capacitated
Vehicle Routing: A (2 + ϵ)-Approximation Algorithm. In Innovations in Theoretical Computer
Science (ITCS), volume 251 of LIPIcs, pages 63:1–63:13, 2023.

16 Mordecai Haimovich and Alexander H. G. Rinnooy Kan. Bounds and heuristics for capacitated
routing problems. Mathematics of Operations Research, 10(4):527–542, 1985.

17 Shin-ya Hamaguchi and Naoki Katoh. A capacitated vehicle routing problem on a tree. In
International Symposium on Algorithms and Computation, pages 399–407. Springer, 1998.

ICALP 2023

91:16 Unsplittable Capacitated Vehicle Routing on Trees

18 Aditya Jayaprakash and Mohammad R. Salavatipour. Approximation schemes for capacitated
vehicle routing on graphs of bounded treewidth, bounded doubling, or highway dimension.
ACM Transactions on Algorithms (TALG), 19(2), 2023.

19 Ali Husseinzadeh Kashan, Behrooz Karimi, and Fariborz Jolai. Effective hybrid genetic
algorithm for minimizing makespan on a single-batch-processing machine with non-identical
job sizes. International Journal of Production Research, 44(12):2337–2360, 2006.

20 Martine Labbé, Gilbert Laporte, and Hélene Mercure. Capacitated vehicle routing on trees.
Operations Research, 39(4):616–622, 1991.

21 Claire Mathieu and Hang Zhou. A PTAS for capacitated vehicle routing on trees. ACM
Transactions on Algorithms (TALG), 19(2), 2023.

22 Sharif Melouk, Purushothaman Damodaran, and Ping-Yu Chang. Minimizing makespan
for single machine batch processing with non-identical job sizes using simulated annealing.
International Journal of Production Economics, 87(2):141–147, 2004.

23 İbrahim Muter. Exact algorithms to minimize makespan on single and parallel batch processing
machines. European Journal of Operational Research, 285(2):470–483, 2020.

24 N. Rafiee Parsa, Behrooz Karimi, and Ali Husseinzadeh Kashan. A branch and price algorithm
to minimize makespan on a single batch processing machine with non-identical job sizes.
Computers & Operations Research, 37(10):1720–1730, 2010.

25 Thomas Rothvoß. The entropy rounding method in approximation algorithms. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 356–372. SIAM, 2012.

26 Reha Uzsoy. Scheduling a single batch processing machine with non-identical job sizes. The
International Journal of Production Research, 32(7):1615–1635, 1994.

27 Yuanxiao Wu and Xiwen Lu. Capacitated vehicle routing problem on line with unsplittable
demands. Journal of Combinatorial Optimization, pages 1–11, 2020.

	1 Introduction
	1.1 Related Work

	2 Overview of Techniques
	2.1 Preprocessing
	2.2 Solutions Within Each Component
	2.2.1 Multi-Level Decomposition (Section 4)
	2.2.2 Simplifying the Local Solution (Section 5)

	2.3 Postprocessing

	3 Preliminaries
	3.1 Formal Problem Description and Notations
	3.2 Reduction to Instances of Bounded Distances
	3.3 Decomposition Into Components

	4 Multi-Level Decomposition in a Component
	4.1 Decomposition of a Component Into Blocks (Figure 2a)
	4.2 Decomposition of a Block Into Clusters (Figure 2b)
	4.3 Decomposition of a Cluster Into Cells (Figure 2c)

	5 Simplifying the Local Solution
	5.1 Construction of S*_c
	5.2 Analysis on the Cost of S*_c
	5.3 Feasibility

