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Abstract
Motivated by cloud computing applications, we study the problem of how to optimally deploy
new hardware subject to both power and robustness constraints. To model the situation observed
in large-scale data centers, we introduce the Online Demand Scheduling with Failover problem.
There are m identical devices with capacity constraints. Demands come one-by-one and, to be
robust against a device failure, need to be assigned to a pair of devices. When a device fails (in a
failover scenario), each demand assigned to it is rerouted to its paired device (which may now run at
increased capacity). The goal is to assign demands to the devices to maximize the total utilization
subject to both the normal capacity constraints as well as these novel failover constraints. These
latter constraints introduce new decision tradeoffs not present in classic assignment problems such
as the Multiple Knapsack problem and AdWords.

In the worst-case model, we design a deterministic ≈ 1
2 -competitive algorithm, and show this is

essentially tight. To circumvent this constant-factor loss, which represents substantial capital losses
for big cloud providers, we consider the stochastic arrival model, where all demands come i.i.d. from
an unknown distribution. In this model we design an algorithm that achieves sub-linear additive
regret (i.e. as OPT or m increases, the multiplicative competitive ratio goes to 1). This requires a
combination of different techniques, including a configuration LP with a non-trivial post-processing
step and an online monotone matching procedure introduced by Rhee and Talagrand.
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1 Introduction

A critical challenge faced by cloud providers is how to deploy new hardware to satisfy the
increasing demand for cloud resources, and the main bottleneck in this process is power. Data
centers consist of power devices with limited capacity and each demand for hardware (e.g.

1 Work performed as intern at Microsoft Research, Redmond.
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92:2 Online Demand Scheduling with Failovers

rack of servers) has a power requirement. The goal is to assign demands to power devices
to fulfill their requirements while using the available power in the data centers efficiently.
This allows cloud providers to maximize return on investment on existing data centers before
incurring large capital expenses for new data centers to accommodate additional demand.

An important consideration that sets this demand assignment process apart from other
applications is reliability. Cloud users are promised a high availability of service which
mandates that cloud capacity can only be unavailable for very short durations (between a
few minutes and a few hours per year). As a result, assigning each demand to a single power
device leads to an unacceptable level of risk; if that device fails, the capacity for the demand
becomes unavailable, leading to potentially millions of dollars in costs for the provider and
jeopardizing the cloud business model that is highly dependent on users’ trust. To this end,
power redundancy is built into the assignment process.

We consider a specific model of redundancy used by large cloud providers [19]. In this
model, each demand gets assigned to two power devices. In normal operations (no device
failure), the demand obtains half of its required power from each device. If one of the devices
fails, the remaining device must provide the full power amount to the demand (see Figure 1
for an example). In these failover scenarios, the remaining devices may run at an increased
capacity temporarily to accommodate their increased load. The provider uses this time to
take ad-hoc corrective actions, for instance, shut down certain workloads and reduce the
power of others in order to bring the power utilization of each device back within its normal
limits. As in [19] we consider a single device failure at a time.

This architecture is favored in practice because it provides strong reliability guarantees
with a small increase in overhead and complexity. One could consider more complex
architectures, where demands could be assigned with a power split other than half-half to
each device or to more than two devices, but this comes at an increased cost in hardware
and operational complexity. Further, a common goal of large cloud providers is to provide
statistical guarantees for high service availability, e.g., 99.99% availability for certain cloud
resources or services; cloud operators have determined that accounting for a single device
failure with the described architecture provides such target guarantees.
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Figure 1 In normal operations (left), each demand (denoted with a different pattern) is assigned
to two devices and gets half of its required power from each device. In the failover scenario where
device c has failed (right), the demands that were assigned to c now get their full power from the
remaining devices that may run at increased capacity.

We introduce the Online Demand Scheduling with Failover problem (Failover) to model
this issue of assigning demands to power devices with redundancy. Formally, in this problem
there are m identical devices (or machines) and n demands. Each device has two capacities:
a nominal capacity that is normalized to 1 and a failover capacity B ≥ 1. Each demand j has
some size sj ≥ 0, which for convenience is defined as its per-device power requirement (so the
total power requirement of the demand is 2sj). The demands arrive online one-by-one and
there is no knowledge about future demands. The goal is to irrevocably assign the arriving
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Figure 2 Illustration of Example 1.
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Figure 3 Illustration of Example 2.

demands to pairs of devices (or edges, where we consider each device as a node) satisfying:
1. (Nominal Constraints) For every device u, its total load has to be at most 1, namely

Lu :=
∑

v ̸=u Luv ≤ 1, where we define Luv =
∑

j→uv sj to be the total load on edge uv

(i.e., all demands assigned to the pair of devices uv).
2. (Failover Constraints) For every device u, we have Lu + maxv ̸=u Luv ≤ B (i.e., if a device

v ̸= u fails, all demands assigned to uv have to be supplied solely by u, which sees its
load increased by the amount Luv that was formerly supplied to them by device v; the
increased load has to fit the failover capacity B).

We assume that each demand size sj fits on a pair of devices by itself, so sj ∈
[0, min(1, B/2)]. We are not allowed to reject demands, so the algorithm assigns arriv-
ing demands to the available devices until a demand cannot be scheduled, in which case the
algorithm terminates. Our objective is to maximize the total size of all assigned demands (i.e.,
the utilization). We compare the algorithm against the optimal offline strategy that knows
the demand sequence in advance (but still subject to the same no-rejection requirement).
We use OPT to denote the total utilization of this optimal offline strategy.

This problem has similarities with several classical packing problems. For example, in
the Multiple Knapsack problem (and related problems such as Generalized Assignment [18],
AdWords [14], etc.) we are given a set of items each with a weight and size, and the goal is
to select a subset of the items to pack in capacitated bins in order to maximize the total
weight. However, one fundamental difference in our setting, besides the need to assign each
demand to a pair of devices instead of a single device, is the failover constraint. Unlike in
previously studied resource allocation problems, here the capacity constraints are not just
determined by the total demand incident to a node, but rather they depend also on how the
demands are arranged across its edges. See the next example.

▶ Example 1. Consider an instance with 4 power devices a, b, c, d with failover capacity
B = 1. There are 6 demands of size 1

4 that arrive sequentially; suppose 4 demands have
arrived so far. One possible assignment has placed 2 demands on each of the pairs ab and cd

(see Figure 2a), while a different one may place each of the 4 demands on a different pair (see
Figure 2b, in solid lines). While in the second option all remaining demands can be placed
(dashed lines in Figure 2b), the first option cannot accommodate more demands due to the
Failover capacity. To see this, suppose we assign another demand to device a, say. If device
b fails, then the total load on a will become at least 5

4 violating its Failover capacity.

The above example suggests that due to the Failover constraints we should “spread out”
the demands by not putting too many demands on one edge, because if one of its endpoints
fails then this edge can have a large contribution to the Failover constraint of the other
endpoint. However, there is a danger in spreading out the demands too much and not leaving
enough devices free.

ICALP 2023



92:4 Online Demand Scheduling with Failovers

▶ Example 2. Consider again the same 4 power devices a, b, c, d with failover capacity
B = 1. Now, there are 7 demands; the first 6 have a small size ε > 0 and the last demand has
size 0.5. Assume the first 6 demands have arrived. A first option is to assign one demand of
size ϵ per device pair (see Figure 3a). In this case, the remaining demand of size 0.5 cannot
be placed, as the Failover capacities would be exceeded. The second option groups the first
6 demands on a single edge (see Figure 3b); in this case, all demands can be fulfilled by
assigning the last demand on a disjoint edge (dashed edge of Figure 3b).

Taking these two examples together, there is a delicate balance between spreading demands
out across edges to minimize their impact in failover scenarios and leaving enough devices
open for future demands, as to not prematurely end up with an unassignable demand.

1.1 Our results
We first consider the Failover problem in the worst-case and design a deterministic algorithm
with competitive ratio ≈ 1

2 . Since no deterministic algorithm can be better than 1
2 -competitive

(see the full version of the paper for upper bound), this result is almost best possible.

▶ Theorem 3. There is a deterministic poly-time online algorithm for Failover in the
worst-case model with competitive ratio 1

2 − O( 1
m1/3 ),2 where m is the number of devices.

A 1
2 -competitive solution may, roughly speaking, underutilize by a factor of 1

2 the available
power; in the context of big cloud providers, this inefficiency translates to substantial capital
expenses due to the extra data centers required to accommodate the demands. Since
such losses are unavoidable in the worst-case model, we consider the Failover problem
in the stochastic arrival model. Here the demand sizes are drawn i.i.d. from an unknown
distribution µ supported on [0, min(1, B/2)].

We show that in this stochastic model it is possible to obtain sublinear additive regret.

▶ Theorem 4. For the Failover problem in the stochastic arrival model, there is a poly-time
algorithm that achieves utilization OPT − O(OPT5/6 log OPT) with probability 1 − O( 1

m ).

We remark that since OPT grows like Θ(ξ), where ξ := min{n, m} (see Lemma 9), this
guarantee implies the multiplicative approximation (1 − O(log ξ / ξ1/6)) · OPT. So as the
number of demands and devices grow, the competitive ratio of this algorithm goes to 1.

As a subroutine of this algorithm, we need to solve the natural offline minimization variant
of demand scheduling with failover: Given a collection of demands, minimize the number of
devices needed to assign all demands satisfying the Nominal and Failover constraints. We
also design an (offline) algorithm with sublinear additive regret for this problem (Section 4).

1.2 Technical Overview
We illustrate the main technical challenges in the Failover problem in both the worst-case
and stochastic models, as well as in the offline minimization subproblem needed for the latter.

Online Worst-Case (Section 2). The examples from Figure 2 and 3 show that the main
difficulty is dealing with the trade-off between spreading out the demands, which allows for
a better use of the failover budgets, and co-locating demands on fewer edges, keeping some
edges free for future big demands.

2 Throughout the paper we use O(x) to mean “≤ cst · x” for some constant cst independent of x.
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To effectively strike this balance and get near optimal guarantees, the main idea is to
group demands based on their sizes using intervals Ik and schedule each group separately on
cliques of size k. That is, we will “open” a set of k unused devices and assign the demands in
Ik only to the edges between these devices (opening new k-cliques as needed). Interestingly,
we assign at most one demand per edge of the clique (other than for tiny demands, which
are handled separately). This means the algorithm tries to co-locate demands in controlled
regions, which allows for the right use of the failover budgets.

Online Stochastic Arrivals (Section 3). First, note that because demands are i.i.d. from
a distribution with bounded support, the total utilization of the first ℓ demands grows as
ℓ · ES∼µS. Thus, it suffices to show that our algorithm “survives” for as many demand
arrivals as possible without needing to reject one due to lack of space. Our approach is to try
and assign prefixes of arrivals to the (approximately) minimum number of devices possible.
This ensures that if our algorithm fails due to needing more than m devices to feasibly assign
another demand, then OPT will fail shorty after.

Our algorithm is based on a learn-and-pack framework, where we use knowledge of the
first ℓ arrivals to compute a good template assignment for the next ℓ arrivals. To compute
this template, we need a subroutine that (approximately) solves the offline minimization
subproblem mentioned above. Concretely, we run the subroutine on the realized sizes of
the first ℓ arrivals, which gives a possible assignment of these demands into, say m′ unused
devices. We use the “slots” of this possible assignment as a template to assign the future ℓ

demands by employing the online monotone matching process of Rhee-Talgrand [16]: For
each future arrival, we assign it to a (carefully-chosen) open slot in the template that has
a larger size – if we cannot find such an open slot, then we assign this demand to its own
disjoint edge (using 2 more devices).

It is known that this matching process leaves o(ℓ) unmatched demands with high prob-
ability. Further, our offline minimization subroutine has sublinear additive regret, that is,
it uses only o(ℓ) more devices than the optimal offline assignment. Since these losses are
sublinear in the prefix size, it seems that by repeating this process together with doubling
the prefix size we should obtain a final sublinear regret guarantee.

But there is still a major issue: This strategy uses disjoint sets of devices to fulfill the
first ℓ demands and the next ℓ demands (for each doubling ℓ). But this is possibly very
wasteful: even using the optimal assignment for each of these ℓ demands separately may
require many more devices (up to double) compared to reusing the leftover space from the
first batch of ℓ demands for the next batch (i.e. assigning the batches to a common set
of devices). Wasting a constant fraction of devices would lead to the unwanted constant-
competitive loss. To overcome this, we show that Mℓ, the minimum number of devices to
assign ℓ i.i.d. demands, is approximately linear in ℓ (Theorem 8), e.g. Mℓ + Mℓ (assigning
batches separately) is approximately M2ℓ (assigning them together). This is a non-trivial
task (another Rhee-Talagrand paper [15] is entirely devoted to doing this for the simpler
Bin Packing problem). Perhaps surprisingly, our proof relies on our algorithm for the offline
device minimization problem, which is LP-based. The crucial property is that the optimal
LP value doubles if we duplicate the items on its input, which (with additional probabilistic
arguments) translates into the additivity of Mℓ.

Offline Minimization (Section 4). Our algorithm for offline minimization of the number
of devices needed to fulfill a set of demands is based on a configuration LP inspired by the
classic Gomory-Gilmore LP for the Bin Packing problem. Consider a fixed assignment of

ICALP 2023
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demands to some number of devices. We want to interpret each device as a configuration,
which captures the arrangement of demands on this device’s edges. Our LP will minimize
the number of configurations needed in order to assign all demands.

There is a tension between two issues in this approach. First, the Failover constraint
depends not only on the subset of demands on this device’s edges, but also how they are
arranged within these edges (because the most-loaded edge contributes to the Failover
constraint). This suggests that a configuration should not only specify a subset of demands,
but also have enough information about the edge assignment to control the most-loaded edge.
Second, each demand must be assigned to a pair of devices rather than a single device, so our
configurations are not “independent” of each other. Thus, we need to “match” configurations
to ensure that a collection of configurations can be realized in an edge assignment. In
summary, our configurations should be expressive enough to capture the Failover constraints,
but also simple enough so that we can actually realize them in an actual assignment.

Our solution to this is to define a configuration to be a subcollection, say C, of demands
satisfying

∑
s∈C s ≤ 1 (the Nominal constraint) and

∑
s∈C s + maxs∈C s ≤ B (a relaxed

Failover constraint). Note that this notion of configuration does not capture the arrangement
of the demands C across a device’s edges – we assume the best case that every demand is on
its own edge to minimize their impact in failover scenarios. It is not clear that there even
exists a near-optimal assignment that assigns at most one demand per edge, let alone that
we can obtain one from the LP solution. However, our LP post-processing procedure will
show that – by opening slightly more devices – we can match configurations of this form to
realize them in a near-optimal assignment.

1.3 Related work

Despite a vast literature on assignment-type problems, none of the ones considered addresses
the main issue of redundancy, modeled in the Failover problem. Arguably the Coupled
Placement [11] problem is the closest to Failover. Given a bipartite graph with capacities
at the nodes and a set of jobs, the goal is to assign a subset of the jobs to the edges of the
graph to maximize the total value (each assigned job gives a value that also depends on
its assigned edge), while respecting the capacity of the nodes (each assigned job consumes
capacity from its edge’s endpoints). [11] gives a 1

15 -approximation to the offline version of this
problem (see also [1]). While this problem involves the allocation of jobs to a pair of nodes
(albeit on a bipartite graph) and has the additional difficulty that the value and consumption
of a job depends on which pair of nodes it is assigned, it does not have any Failover type
constraints, a crucial component of our problem.

As already mentioned, several classic assignment problems are related to ours, such as the
Multiple Knapsack [4], Generalized Assignment (GAP) [18], and AdWords problem [14, 7].
The latter is the closest to our problem: there are m bins (i.e. advertisers) of different
capacities, and jobs (i.e. keyword searches) that come one-by-one and need to be assigned to
the bins; each assignment consumes some of the bin’s capacity and incurs an equal amount
of value (i.e. bid). The goal is maximize total value subject to bin capacities. Despite the
similarities, this problem does not consider critical aspects of our problem, namely the need
to assign a job/demand to a pair of bins/devices and the Failover constraints.

There is also a large literature on survivable network design problems, where failures in
the network are explicitly considered [6], but the nature of the problems is quite different
from our assignment problem, as the focus there is typically on routing flows.
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Finally, a problem related to our device minimization problem, and from which we borrow
some tools and techniques, is Bin Packing. Here jobs of different sizes need to be assigned to a
minimum number of bins of size 1. Results are known in both offline [9] and online settings [2,
16]. In the online stochastic setting, [16] obtains an additive +O(

√
OPT·log3/4 OPT) sublinear

approximation (see [5, 8, 13] for improvements under different assumptions).

2 FAILOVER Problem in the Online Worst-Case Model

In this section we consider the Failover in the online worst-case model. We design an
algorithm that achieves competitive ratio ≈ 1

2 in this setting (restated from the introduction).

▶ Theorem 3. There is a deterministic poly-time online algorithm for Failover in the
worst-case model with competitive ratio 1

2 − O( 1
m1/3 ),3 where m is the number of devices.

Recall that in the full version of the paper, we also show the almost matching upper
bound of 1

2 on such competitive ratio, and design another algorithm whose competitive ratio
approaches 1 as the size of the largest demand goes to 0. To convey the main ideas more
clearly, here we focus only on Theorem 3.

2.1 Algorithm
As suggested in the technical overview, our algorithm will group demands by size, and assign
each group of demands to sub-cliques of an appropriate size. To make this precise, set in
hindsight L := m1/3 and for k = 2, . . . , L − 1 define the interval

Ik :=
(

min
{

1
k

,
B

k + 1

}
, min

{
1

k − 1 ,
B

k

}]
.

(Notice there is no k = 1, because the upper limit of I2 is the max size of a demand.) This
definition ensures that it is feasible to assign one demand of such size to each edge of a
k-clique, as we argue in the next subsection. Also define the interval of small sizes

I≥L :=
[
0, min

{
1

L − 1 ,
B

L

}]
.

The algorithm is then the following:

Algorithm 1 FailoverWostCase.

1: When a demand arrives, determine the interval Ik (or I≥L) that it belongs to based on its size.

2: If it belongs to an interval Ik with k ∈ {2, . . . , L − 1}, assign the demand to any “empty” edge
(i.e. that has not received any demands) of a k-clique opened for Ik. If no such edge exists, then
open a new k-clique for Ik.

3: Otherwise it belongs to I≥L, so assign it to an edge of one of its L-cliques using first-fit (so here
we can assign multiple demands to the same edge) making sure that the total load on
each edge is at most min{ 1

L−1 , B
L

}. By first-fit we mean that the edges of the I≥L cliques are
arbitrarily ordered and the demand is assigned to the first possible edge. Open a new L-clique
for I≥L if need be.

4: If the demand cannot fit in the appropriate clique and it is not possible to open a new clique
(i.e. there are not enough unused machines to form a clique of the desired size), then stop.

3 Throughout the paper we use O(x) to mean “≤ cst · x” for some constant cst independent of x.
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2.2 Analysis
We first quickly verify that the assignment done by the algorithm is feasible, i.e. satisfies the
Nominal and Failover constraints. Consider a node/machine u on an Ik clique opened by
the algorithm (for machines in an I≥L clique the argument is analogous). For the Nominal
capacity constraint: Every demand assigned to u is actually assigned to one of the k − 1
edges in this clique incident on u; each such edge receives at most 1 demand from Ik (and no
other demands), so using the upper limit of this interval we see that u receives total size at
most (k − 1) · min{ 1

k−1 , B
k } ≤ 1, so within its Nominal capacity. For the Failover capacity:

in a failover scenario one of these (k − 1) demands has “both ends” assigned to u, so the
total size it receives is now k · min{ 1

k−1 , B
k } ≤ B, so within the Failover capacity. Hence the

algorithm produces a feasible assignment.
Now we show that the value obtained by the algorithm is at least

( 1
2 − O( 1

m1/3 )
)
OPT.

The idea is to show that for (essentially) each clique opened by the algorithm, we get on
average value at least ≈ 1

4 per vertex. Since each node has Nominal capacity 1 and each
demand must be scheduled on two nodes, OPT can only get at most 1

2 value from each node
on average, showing that our algorithm is a ≈ 1

2 -approximation. However, there are two
exceptions where we may get less than ≈ 1

4 per vertex on average. The first is the last clique
for each Ik, which may not be “fully used” (but by setting L appropriately there are not too
many nodes involved in this loss). More importantly, the second exception is the “big items”
I2, which may not allow us to get average value 1

4 per node (e.g. when the failover is B = 1,
a demand of size 1

3 + ε falls in the group I2 and is put by itself on an edge, giving value
1
6 + ε

2 ≪ 1
4 per node used). However, in this case we show that we can obtain a stronger

upper bound for these demands for OPT.
We now make this precise. Assume throughout that the algorithm has stopped before

the end of the input (else it scheduled everything, so it is OPT). We account for the value
obtained on each type of clique separately.

Cliques for I≥L. We will use two observations: (i) when the algorithm opens a new I≥L

clique, every edge of the previous I≥L cliques has some demand assigned to it, and (ii) across
all I≥L cliques, out of all edges with some demand assigned to them, at most one can have
total size assigned to it less than α := 1

2 min
{ 1

L−1 , B
L

}
(i.e. half of its “capacity”).

Both observations stem from the first-fit strategy used to assign these demands. In
particular, the algorithm will only open a new clique when a demand in I≥L does not fit in
the edges of the existing cliques, implying that all of these edges already have some demand
assigned; this shows the first statement. For the second statement, by contradiction assume
that at some point there are at least two edges on I≥L cliques with total load less than α.
Then the first demand that was assigned to the last such edge has size less than α. But this
means that it could have been assigned to an earlier edge with load less than α, contradicting
the first-fit procedure.

Let c≥L be the total number of I≥L cliques that the algorithm opened, and m≥L := c≥L ·L
the number of nodes associated with those cliques. Combining the above two observations,
at the end of the execution either: (i) every edge of the first c≥L − 1 of these cliques has load
at least α or; (ii) all but one edge in the first c≥L − 1 cliques has load at least α and some
edge of the last c≥L-th (e.g., the one that “opened” it) has load at least α. In both cases,
the total size of demands assigned by the algorithm to the edges of these cliques is at least

(c≥L − 1) ·
(

L

2

)
· α = (c≥L − 1) · L

4 · min
{

1,
(L − 1)B

L

}
≥ m≥L · 1

4

(
1 − 1

L

)
− O(L), (1)

yielding roughly average value 1
4 from each node of these cliques, as claimed.
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Cliques for Ik, for k ≥ 3. Consider any clique for Ik except the last one to be opened. All
edges of this clique have some demand from Ik assigned to it; given the lower limit for this
interval, this means that the algorithm has assigned to each such clique total size at least(

k

2

)
· min

{
1
k

,
B

k + 1

}
= k

2 · min
{

k − 1
k

,
B(k − 1)

k + 1

}
.

Since k ≥ 3 and B ≥ 1, the right-hand side is at least k
4 . Letting again ck denote the

number of cliques for Ik that the algorithm opens and mk the corresponding number of
nodes/machines, we can count the total value of all but the last Ik clique and we see that
the algorithm has assigned to them total size at least (ck − 1) · k

4 = mk · 1
4 − O(k).

Cliques for I2. (Recall that there is no k = 1, so this is the last case to consider.) Given
the lower limit of the interval I2, each I2 clique (which being a 2-clique is just an edge) has a
demand of size at least min{ 1

2 , B
3 } assigned to it. So the algorithm assigns total size at least

m2 · min{ 1
4 , B

6 } to these I2 cliques, where m2 is the number of nodes in these cliques.

Total value of Alg. Since we assumed that the algorithm stops at some point, it means
that it could not open more cliques. This means that all but at most L − 1 nodes belong
to one such clique (the worst case is that it tried to open an L-clique but could not), so
m≥L +

∑L−1
k=3 mk + m2 ≥ m − L. Then adding the above estimates for the values obtained

on each type of clique, we see that the algorithm gets total value at least

Alg ≥ 1
4

(
1 − 1

L

)
·
(

m − m2 − L

)
− O(L2) + m2 · min

{
1
4 ,

B

6

}
= 1

4 ·
(
m − m2

)
+ m2 · min

{
1
4 ,

B

6

}
− O(m2/3)

where the last inequality uses the fact that L = m1/3.
If the minimum in the last line is 1

4 , then we obtain Alg ≥
( 1

2 − O( 1
m1/3 )

)
OPT as desired

(recall OPT ≤ m
2 since each machine has Nominal capacity 1 and each demand is assigned to

two machines). So assume this is not the case, namely B < 3
2 . Under this assumption

Alg
with ass.

≥ 1
4 ·

(
m − m2

)
+ B

6 · m2 − O(m2/3) (2)

Value of OPT. We analyze OPT again under the assumption B < 3
2 . The Failover

constraints also ensure that in order to accommodate the demand from I2 in case of
failure, any node that receives a demand from I2 can have total size assigned to it a most
B − min

{ 1
2 , B

3
} with ass.= 2B

3 , due to the assumption B < 3
2 . For all other nodes, OPT can

assign at most size 1 per node due to the Nominal capacity constraint. Let mOPT
2 be the

number of nodes where OPT schedules a demand from I2. Again, since the size of each
demand is counted towards the Nominal capacity of two nodes, the total size scheduled by
OPT is

OPT ≤ 1
2

(
mOPT

2 · 2B

3 + (m − mOPT
2 ) · 1

)
= 1

2 · (m − mOPT
2 ) + B

3 · mOPT
2 (3)

Notice that since every demand in I2 has size > min{ 1
2 , B

3 } ≥ 1
3 , the Failover constraints

ensure that in OPT (as well as in our algorithm) the demands from I2 that are scheduled
form a matching, i.e. no 2 such demands can share a node/machine. So mOPT

2 (resp. m2) is
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just twice the number of I2 demands scheduled by OPT (resp. our algorithm). Moreover,
both Alg and OPT schedule a prefix of the instance. Since OPT gets at least as much value
as Alg, it means that it scheduled a prefix that is at least as long; in particular it schedules
at least as many I2 demands as our algorithm. Together these observations imply that that
mOPT

2 ≥ m2. Then given inequalities (2) and (3), under the assumption B < 3
2 we obtain

that Alg ≥
( 1

2 − O( 1
m1/3 )

)
OPT as desired. This concludes the proof of Theorem 3.

3 Sublinear Additive Regret in the Stochastic Model

We now consider Failover in the online stochastic model, where, instead of being adversarial,
the size St of each demand now comes independently from an unknown distribution µ over
[0, min{1, B

2 }]. Again, at time t the algorithm observes the size St of the current demand
and irrevocably assigns it to two of the m machines. We still use OPT = OPT(S1, . . . , Sn)
to denote the value of (sum of the sizes scheduled by) the optimal strategy, which is now a
random quantity. Our main result is algorithm FailoverStochastic that achieves a sublinear
additive loss compared to OPT in this model (restated from the introduction for convenience).

▶ Theorem 4. For the Failover problem in the stochastic arrival model, there is a poly-time
algorithm that achieves utilization OPT − O(OPT5/6 log OPT) with probability 1 − O( 1

m ).

The algorithm relies on a learn-and-pack approach that uses previously seen items to
compute a template for packing the next items. This process is performed in rounds. Each
round starts by assigning the first demand of the round on a pair of (empty) machines. Then,
we iteratively create a template based on the first nk := 2k items of the round, which we use
to schedule the next nk items. When the number of machines needed for the template (along
with some slack) exceeds the number of available machines, the current round terminates and
the next round begins. The next round maintains no knowledge of the previous demands; it
only takes as input the number of empty machines m̃ which it is allowed to use.

Before describing the algorithm in more detail, an important question that arises is how
to use the templates to schedule the future demands. A crucial component in this process are
monotone matchings, which only match two values if the second is at least as big as the first.

▶ Definition 5 (Monotone matching). Given two sequences x1, . . . , xn ∈ R and y1, . . . , yn ∈ R,
a monotone matching π from the xt’s to the yt’s is an injective function from a subset
I ∈ {1, . . . , n} to {1, . . . , n} such that xi ≤ yπ(i) for all i ∈ I. We say that xi is matched to
yπ(i) if i ∈ I, and xi is unmatched otherwise.

Monotone matchings will allow us to match future demands (xi’s) to the demands that
are part of a template (yπ(i)’s) and put the former in the place of the latter (since xt ≤ yπ(i)).
A surprising result of Rhee and Talagrand [16] is that if the two sequences are sampled i.i.d.
from the same distribution, then almost all items can be matched, and moreover such a
matching can be found online (see the paper for a more general result where the sequences
may come form different distributions).

▶ Theorem 6 (Monotone Matching Theorem [16]). Suppose the random variables A1, . . . , An

and B1, . . . , Bn are all sampled independently from a distribution µ. Then there is a constant
cst such that with probability at least 1 − e−cst·log3/2 n there is a monotone matching π of the
Ai’s to the Bi’s where at most cst ·

√
n log3/4 n of the Ai’s are unmatched. Moreover, this

matching can be computed even if the sequence A1, . . . , An is revealed online.
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3.1 Algorithm
We are now ready to present the details of the FailoverStochastic algorithm.

FailoverStochastic. The algorithm just repeatedly calls the procedure OneRound below,
passing to it the number of machines that are still available/unopened (e.g. initially it calls
OneRound(m)); it does this for log m

log 4/3 rounds.

OneRound(m̃). This procedure receives as input the number m̃ of machines that it is
allowed to open. It is convenient to rename the demands and use Yt to denote the t-
th demand seen by OneRound (which are still sampled i.i.d. from µ). Similar to the
work of Rhee and Talagrand [16], this algorithm works in phases: As mentioned earlier,
each phase k sees the previous nk = 2k items and creates a template based on them,
which will then be used to schedule the next nk items. To create this template, we define
the offline problem OffMinFailover of minimizing the number of machines that are
required to schedule these nk items. To solve this problem, we design an approximation
algorithm OffMinFailoverAlg achieving a sublinear approximation guarantee (more on this
soon). Specifically, let OPTmach(x1, . . . , xn) be the number of machines that OffMinFailoverAlg
(with ε = 1/n

1/6
k ) uses to schedule the demands x1, . . . , xn. OneRound is then as follows:

Algorithm 2 OneRound: Given a number of available machines m̃.

1: Assign the first demand Y1 to an empty edge by itself, opening 2 machines.

2: For phases k = 0, 1, 2, . . .

(a) See the first nk items Y1, . . . , Ynk . Run the algorithm OffMinFailoverAlg from Section 4 (with
ε = 1/n

1/6
k ) to find a solution for them that uses OPTmach(Y1, . . . , Ynk ) machines; let templ(t)

denote the pair of machines that Yt is assigned to. This solution is our template.
(b) STOP if

#{already open machines}+OPTmach(Y1, . . . , Ynk )︸ ︷︷ ︸
machines from template

+ cst1 ·
√

nk log3/4 nk︸ ︷︷ ︸
predicted unmatched demand

+2m5/6 > m̃.

(c) Else, open a clique of OPTmach(Y1, . . . , Ynk ) machines. Upon the arrival of each of the next
nk demands Ynk+1, . . . , Y2nk , assign them to machines based on the template. More precisely,
find the Rhee-Talagrand monotone matching π guaranteed by Theorem 6 from the new to the
old demands (as the new ones arrive online). Schedule each matched new demand Yt to the
pair of machines that Yπ(t) occupied in the template, namely the machine pair templ(π(t)).
For each unmatched new demand, schedule it on an edge by itself (opening two more machines
for each). If at any point the execution tries to open more than m̃ machines, declare FAIL.

3.2 Analysis
We next discuss the main ideas for the analysis of the algorithm FailoverStochastic, leading
to the proof of Theorem 4. We assume throughout that m is at least a sufficiently large
constant, else the success probability 1 − O( 1

m ) trivially holds. Due to space constraints, we
mostly state and discuss at a high-level the main components of the proof and show how
they imply Theorem 4, deferring details to the full version of the paper.

First, we need to develop two important and complex components. Let OPTmach(J)
denote the minimum number of devices needed to assign all demands from a set of demands
J , satisfying the Nominal and Failover constraints.
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First component. The first component is the aforementioned algorithm OffMinFailoverAlg
that is called within OneRound. It relies on a novel configuration LP, (LPmach), and a
post-processing algorithm to realize a rounded LP solution as a feasible assignment. It has
the following guarantee:

▶ Theorem 7. There exists a poly-time algorithm, OffMinFailoverAlg, that given ε ∈ (0, 1),
finds a solution for OffMinFailover with at most

(
1 + O(ε)

)
LPmach + O( 1

ε5 ) ≤
(
1 +

O(ε)
)
OPTmach + O( 1

ε5 ) machines.

Choosing ε appropriately, we can create a template using at most
EOPTmach(Y1, . . . , Ynk

) + o(nk) devices in expectation for the next nk arrivals. This result
is proved in Section 4.

Second component. Recall from the technical overview that a worrisome aspect of Failover-
Stochastic is that each call to OneRound does not re-use machines from previous rounds. To
show that this is not too wasteful, we prove that EOPTmach(X1, . . . , XT ) is approximately lin-
ear in T . We do so by giving a quantitative convergence theorem of EOPTmach(X1, . . . , XT )
to T · c(µ), where c(µ) is a constant that characterizes the “average number of devices needed
per demand.” Furthermore, we use the bounded-differences inequality [3] to show that the
number of machines OPTmach(X1, . . . , XT ) is concentrated around this mean. That is, in
the full version of the paper we show the following:

▶ Theorem 8. Let µ be a distribution supported on [0, min{1, B
2 }]. Then there exists a scalar

c(µ) such that for every T ∈ N and λ > 0, we have

OPTmach(X1, . . . , XT ) ∈ T · c(µ) ± O(T 5/6) ± λ
√

T

with probability at least 1 − 2e− λ2
2 , where X1, . . . , XT are i.i.d. samples from µ.

Thus splitting the first 2nk demands into two rounds of nk demands each costs us only
an extra o(nk) devices.

With those two results in hand, the core of the analysis is that OneRound gets good
value density, i.e., the ratio of value over number of machines m. We use ES0 to denote the
expected value of the size of a demand (which is the same as ESt for any t).

Specifically, according to Theorem 8, there is a scalar c(µ) such that OPT is able to
fit roughly 1

c(µ) demands per machine. Each such demand gives value roughly ES0; so the
intuition is that the best possible density value/machine should be around ES0

c(µ) . We first
make this formal in the next lemma.

▶ Lemma 9. With probability at least 1 − 2
m2 we have

OPT ≤ m· ES0

c(µ) +O(m5/6) and OPT ≥ min
{

n·ES0 −
√

n log m , m· ES0

c(µ) −O(m5/6)
}

.

Crucially, the next lemma says that OneRound almost achieves this density.

▶ Lemma 10. Let Open be the number of machines opened by OneRound(m̃) (which is a
random variable). Then with probability at least 1 − 1

m2 , the total value of the demands
scheduled by OneRound(m̃) is at least

value of OneRound(m̃) ≥ ES0

c(µ) · Open − O(m5/6).
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Given this lemma, we see that the total value of the FailoverStochastic algorithm (which
repeatedly calls OneRound) is approximately ES0

c(µ) times the total machines opened during
the execution. By showing that the number of machines FailoverStochastic opens is ≈ m, we
then almost match the upper bound on OPT from Lemma 9.

▶ Lemma 11. There is a constant cst5 such that with probability 1−O( 1
m ), FailoverStochastic

opens at least m − 5cst5 · m5/6 machines.

These lemmas quickly lead to the proof of Theorem 4.

Proof of Theorem 4. Let L := log m
log 4/3 denote the number of calls to OneRound that Failover-

Stochastic makes, and let vali and Openi be the value obtained and number of machines
opened by the i-th call. Employing Lemma 10 on these L calls, we have that with probability
at least 1 − L

m2 the total value of FailoverStochastic is

algo value = val1 + . . . + valL ≥ ES0

c(µ) ·
∑
i≤L

Openi − O(m5/6 log m).

Moreover, from Lemma 11, with probability at least 1 − O( 1
m ) the total number of machines

open
∑

i≤L Openi is at least m − 5cst5 · m5/6, in which case we get

algo value ≥ m · ES0

c(µ) − O(m5/6 log m). (4)

Furthermore, from Lemma 9 we have that OPT ≤ m · ES0
c(µ) + O(m5/6) with probability at

least 1 − 2
m2 . So by taking a union bound and combining this with the above lower bound

on the algorithm’s value, we get that with probability 1 − O( 1
m )

algo value ≥ OPT − O(m5/6 log m).

Since (4) also implies that OPT ≥ Ω(m), the previous bound is at least OPT −
O(OPT5/6 log OPT). This concludes the proof of Theorem 4. ◀

We conclude this section by proving the lower bound on the value density of OneRound
from Lemma 10. We defer the proofs of Lemma 9 and 11 to the full version of the paper.

3.2.1 Proof of Lemma 10
First, we control in high-probability the number of phases that OneRound(m̃) executes before
stopping or failing; this is important to avoid dependencies on the total number of demands
n in the instance, which can be arbitrarily bigger than the scale of the effective instance.

▷ Claim 12. With probability 1 − 1
m3 , the number of phases within OneRound is at most

k̄ := log
(

m̃

c(µ) + O(m̃5/6) + 3 log
3
2 m

)
. (5)

Proof. Recall that the demand sizes Y1, Y2, . . . that OneRound sees are still i.i.d. samples from
the original distribution µ. Using Theorem 8, it is not hard to show that with probability
at least 1 − 1

m3 OneRound can schedule at most m̃
c(µ) + O(m̃5/6) + 3 log

3
2 m many of these

demands (for intuition, Theorem 8 indicates that even OPT requires more than m̃ machines
to schedule these many demands). Since this quantity is exactly nk̄, OneRound cannot
complete phase k̄ (there are 2nk̄ demands by the end of it) and the claim holds. ◁
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Next, we need to bound how many machines are opened by OneRound, which in particular
affects the probability of it failing. For a phase k, let Mk := OPTmach(Y1, . . . , Ynk

) denote the
number of machines in the template solution, and let Uk be the number of additional machines
that had to be open to accommodate the unmatched demands among Ynk+1, . . . , Y2nk

, namely
twice the number of unmatched items. Notice that these quantities are well defined even
for phases that the algorithm did not execute. The quantity Mk + Uk is then the number
machines that the algorithm OneRound opens in phase k (if it executes it). We have the
following bounds for the number of machines open, at least for a phase k where the number
of items nk is sufficiently large (but still sublinear in m).

▷ Claim 13. Let k0 := ( 2
cst2

log m)2/3 for a sufficiently small constant cst2. Then there is a
constant cst1 such that:
1. For k ≥ k0, we have Mk ∈ nk · c(µ) ± cst1 · n

5/6
k with probability ≥ 1 − 1

m3

2. For k ≥ k0, we have Uk ≤ cst1 · √
nk log3/4 nk with probability ≥ 1 − 1

m3

3. nk0 ≤ m5/6.

Proof. Consider a phase k ≥ k0. Since the demand sizes Y1, . . . , Y2nk
seen in this phase

are i.i.d. samples from the original distribution µ, we can bound the minimum number of
machines OPTmach(Y1, . . . , Ynk

) (using Theorem 8 with λ = n
1/3
k ) as

OPTmach(Y1, . . . , Ynk
) ∈ nk · c(µ) ± O(n5/6

k )

with probability at least 1 − 2e−
n

2/3
k
2 . Moreover, employing the guarantee of the algorithm

OffMinFailoverAlg used to build the template (Theorem 7 with ε = 1/n
1/6
k ), we get that Mk

is in the range nk · c(µ) ± cst1 · n
5/6
k with probability at least 1 − 2 exp(− n

2/3
k

2 ) for some
constant cst1. But since nk = 2k ≥ 2k0 , a quick calculation shows that this probability is at
least 1 − 1

m3 , proving the first item of the claim.
To control Uk, we can use the Monotone Matching Theorem (Theorem 6) with the first

sequence of sizes being the demands from the template, i.e., (B1, . . . , Bnk
) = (Y1, . . . , Ynk

),
and the second one being the demands that we attempted to match to them, namely
(A1, . . . , Ank

) = (Ynk+1, . . . , Y2nk
) to obtain that the number of unmatched demands is at

most cst · √
nk log3/4 nk with probability at least 1 − e−cst·log3/2 nk , and hence with this

probability Uk ≤ 2cst · √
nk log3/4 nk. Again because k ≥ k0, we get that this probability is

at least 1 − 1
m3 , proving Item 2 of the claim (by taking cst1 ≥ 2cst we can just replace the

latter by the former).
The last item nk0 ≤ m5/6 of the claim can be directly verified using the fact that we

assumed m is at least a sufficiently large constant. ◁

Recall that OneRound only fails when the number of machines Mk + Uk actually opened
in a phase is bigger than it “predicted” in Line 2.b, and this prediction is exactly Mk plus
the upper bound Uk from Claim 13 plus a slack of 2m5/6. By considering all phases, it is
now easy to upper bound the probability that OneRound fails (k̄ is defined in (5)).

▷ Claim 14. The probability that OneRound fails is at most k̄+1
m3 .

Proof. Fix any phase k, and we claim that the probability that OneRound fails on this phase
is at most 1

m3 . If OneRound fails on phase k, then it did not STOP in Line 2.b, so

# [machines open before phase k] + OPTmach(Y1, . . . , Ynk ) + cst1 ·
√

nk log3/4 nk + 2m5/6 ≤ m̃,

but it ran out of machines during phase k, namely

# [machines open before phase k] + (Mk + Uk) > m̃.
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Since Mk = OPTmach(Y1, . . . , Ynk
), these observations imply that Uk > cst1 ·√nk log3/4 nk +

2m5/6. This is impossible if nk ≤ m5/6, because the number of machines Uk opened for
the unmatched demands is at most twice the number nk of demands considered for the
matching. So we must have nk > m5/6 (and so from Claim 13 k ≥ k0) and at least
Uk > cst1 · √

nk log3/4 nk; but again by Claim 13 the latter happens with probability at most
1

m3 . Thus, the probability that OneRound fails on phase k is at most 1
m3 .

Moreover, by Claim 12, with probability at least 1 − 1
m3 OneRound has at most k̄ phases.

Then taking a union bound, we see that the event that OneRound has at most k̄ phases and
in all of them it does not fail holds with probability at least 1 − k̄+1

m3 ; in particular, with at
least this much probability the algorithm does not fail in its execution, proving the claim.

◁

We now finally lower bound the value that OneRound gets. Let τ be the (random) index
of the last phase attempted by OneRound, namely where Line 2.c is executed. As long as it
does not fail on the last phase τ (which by the previous claim happens with probability at
least 1 − k̄+1

m3 ) OneRound gets the value of all items up until this phase, that is

value of OneRound ≥ Y1 + . . . + Y2nτ ≥ Y1 + . . . + Y2nmin{τ,k̄}
. (6)

Recall that the Yi’s are independent and each has mean ES0. Then employing the Chernoff
bound (Theorem 2.8 of [3]), for any fixed t ≤ nk̄ we have that

Y1 + . . . + Yt ≥ t · ES0 −
√

nk̄ log(m3 · nk̄) with probability at least 1 − 1
m3 · nk̄

.

Then taking a union bound over (6), the previous displayed inequality for all t ≤ nk̄, and
over the event that OneRound has at most k̄ phases (which holds with probability at least
1 − 1

m3 ) we get that

value of OneRound ≥ 2nmin{τ,k̄} · ES0 −
√

nk̄ log(m3 · nk̄)

= 2nτ · ES0 −
√

nk̄ log(m3 · nk̄)

≥ 2nτ · ES0 − O(m5/6) with probability ≥ 1 − k̄ + 3
m3 . (7)

To conclude the proof of Lemma 10 we just need to relate this quantity to the number
of machines opened by OneRound. Let Openℓ be the number of machines opened until
(including) phase ℓ, and recall that Open is the number of machines opened over all phases.
Since the number of machines opened on phase k is Mk + Uk (plus two machines for the first
demand Y1), we have

Openℓ = 2 + (M1 + U1) + . . . + (Mℓ + Uℓ) (8)

To upper bound the right-hand side, for the phases k < k0 we just use the fact that
Mk + Uk ≤ 2nk + 2nk = 4nk, since both in the template and for the unmatched demands we
never open more than 2 machines per demand considered (and nk demands are considered
in each part). For each phase k = k0, . . . , k̄ we can use Claim 13 to upper bound Mk + Uk

with probability at least 1 − 2
m3 by

Mk + Uk ≤ nk · c(µ) + cst1 · n
5/6
k + cst1 ·

√
nk log3/4 nk ≤ nk · c(µ) + cst3 · n

5/6
k

for some constant cst3. Together these bounds give that with probability at least 1 − 2ℓ
m3

Openℓ ≤ 2 +
∑

k<k0

4nk +
ℓ∑

k=k0

(
nk · c(µ) + cst3 · n

5/6
k

)
.
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To further upper bound the first summation on the right-hand side, because of the exponential
relationship nk = 2k, we have

∑
k<k0

4nk ≤ 8nk0−1 ≤ O(m5/6), the last inequality coming
from Claim 13; for the second summation, we analogously have

∑ℓ
k=k0

nk ≤ 2nℓ and∑ℓ
k=k0

n
5/6
k ≤ O(n5/6

ℓ ). Therefore,

Openℓ ≤ 2nℓ · c(µ) + O(n5/6
ℓ ) + O(m5/6) with probability at least 1 − 2ℓ

m3 . (9)

Finally, since by Claim 12 the number of phases τ performed by OneRound is at most k̄ with
probability at least 1 − 1

m3 , the total number of machines open can be upper bounded

Open ≤ Openmin{τ,k̄} ≤ 2nτ · c(µ) + O(n5/6
k̄

) + O(m5/6) ≤ 2nτ · c(µ) + O(m5/6)

with probability at least 1 − 2k̄+1
m3 .

Finally, taking a union bound to combine this inequality with (7), we get that

value of OneRound ≥ ES0

c(µ) · Open − O(m5/6)

with probability at least 1 − 3k̄+4
m3 . Since m is at least a sufficiently large constant, we have

m ≥ 3k̄ + 4, and the bound from the displayed inequality holds with probability at least
1 − 1

m2 . This finally concludes the proof of Lemma 10.

4 Offline Machine Minimization

In this section we consider the aforementioned (offline) minimization version of Failover,
which we call OffMinFailover: Given a failover capacity B ≥ 1 and a collection of demands
such that demand j has size sj ∈ [0, min{1, B

2 }], we need to assign all demands to pairs of
machines while satisfying the Nominal and Failover constraints, and the goal is to minimize
the number of machines used. As before, we use OPTmach = OPTmach(s1, . . . , sn) to denote
the cost of (i.e. number of machines in) the optimal solution.

The main result of this section (Theorem 7, restated) is an efficient algorithm with a
sublinear additive regret for this problem (when ε is set appropriately). We remark that
a sublinear regret (compared to, say, a constant approximation) is necessary due to its
use in Section 3. In fact, the algorithm compares against the stronger optimum of an LP
relaxation for the problem (denoted by (LPmach), and defined below). We let LPmach denote
the optimal value of this LP.

▶ Theorem 7. There exists a poly-time algorithm, OffMinFailoverAlg, that given ε ∈ (0, 1),
finds a solution for OffMinFailover with at most

(
1 + O(ε)

)
LPmach + O( 1

ε5 ) ≤
(
1 +

O(ε)
)
OPTmach + O( 1

ε5 ) machines.

As hinted above, our algorithm is based on converting a solution of a configuration LP into
a good assignment of demands to pairs of machines. But crucially, while the configuration of
each machine controls the total size of demands serviced by it, it has no information how
these demands are distributed over the “edges” incident to the machine, which is important
for adequately handling the Failover constraints. The post-processing of the LP solution is
the one in charge of creating a feasible (and low-cost) assignment from this limited control
offered by the LP.
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4.1 Configuration LP
Consider an assignment of the demands into some number of machines. We can view the
collection of demands assigned to (the edges incident to) a given machine as a configuration.
Precisely, we define a configuration C to be a subset of the demands such that

∑
s∈C s ≤ 1

and
∑

s∈C s+maxs∈C s ≤ B. Note that the first constraint is exactly the Nominal constraint,
while the second is a relaxation of the Failover constraint, because the most-loaded edge
incident on some machine can be larger than the single largest demand assigned to that
machine. Thus, our notion of configuration does not take in to account how the demands are
assigned to the respective edges incident on each machine.

To define our configuration LP, we suppose the input collection of demands is partitioned
into T demand types such that type t consists of nt-many demands each with size st. Thus
each configuration C can be represented by a number nt(C) ∈ N of demands for each type t

such that
∑

t nt(C) · st ≤ 1 and
∑

t nt(C) · st + maxt| nt(C)>0 st ≤ B. We are ready to define
our configuration LP:

min
∑

C xC

s.t.
∑

C nt(C) · xC ≥ 2nt ∀t

x ≥ 0
(LPmach)

Note that the definition of (LPmach) depends on how the demands are partitioned into
types. We show in the full version of the paper that the optimal value of (LPmach) does
not depend on the particular type partition. Thus, throughout the analysis, we will use
whichever type partition is convenient (unless a particular one is specified).

It is immediate that (LPmach) is a relaxation of OffMinFailover by taking the natural
setting of the x-variables defined by a feasible assignment to machines: just let xC be the
number of machines whose collection of demand sizes assigned to its edges are exactly those
in C. In particular, we have that LPmach ≤ OPTmach.

Although (LPmach) has exponentially many variables in general, we can approximately
solve it via column generation similar to the standard bin packing configuration LP [10, 17]
(proof in the full version of the paper).

▶ Lemma 15. We can find in poly-time an extreme point solution of (LPmach) with objective
value at most LPmach + 1.

Further, observe that (LPmach) only has T non-trivial constraints, so by the standard
rank argument (see for example Lemma 2.1.3 of [12]) any extreme point solution of (LPmach)
has at most T non-zero variables. Thus, the next lemma follows immediately by rounding
up all the fractional variable of an extreme point solution.

▶ Lemma 16. Given an extreme point of (LPmach) with objective value Val, rounding up
all fractional variables to the next largest integer gives an integral solution to (LPmach) with
objective value at most Val + T .

To summarize this section, we can efficiently obtain a collection of configurations, each
corresponding to a machine, that “covers” all the demands. However, these configurations do
not specify how to actually assign the demands to the edges incident on the corresponding
machine. This is the goal of the next section.

4.2 Matching configurations
We say that a collection C of configurations is feasible if it comes from an integer solution for
(LPmach), i.e. setting xC to be the number of times C appears in C gives a feasible solution
for (LPmach). Our goal in this section is to realize such collection by actually assigning
demands to edges. The main challenge is satisfying the actual Failover constraints.

ICALP 2023



92:18 Online Demand Scheduling with Failovers

For simplicity assume
∑

C∈C nt(C) = 2nt for all types t, i.e. each demand appears on
exactly 2 configurations (drop from the configurations what is extra). We can think of C
(with, say, N configurations) as a graph on N nodes/machines, where node/machine C ∈ C
has nt(C) “slots” for demands of type t. While this gives the right number of slots 2nt to
accommodate the demands of each type t, we still need to specify to which edge (pair of
machines) each of the nt demands of type t is assigned in a way that satisfies the Nominal
and Failover constraints. (We can alternatively see this as a graph realization problem: each
node C as having a requirement nt(C) of “edges of type t” (which we call its t-degree) and
we want to create edges of different types (i.e., assignment of demands to pairs of nodes) to
satisfy these requirements while also satisfying the Nominal and Failover constraints.)

To see the challenge, consider a fixed node/configuration C. Regardless of how we assign
demands to edges (as long as it is consistent with the slots of the configurations), the Nominal
constraint of C is satisfied: it will receive total size

∑
t nt(C) · st =

∑
s∈C s, which is at most

1 by definition of a configuration. This is not the case for the Failover constraint. This is
again because the definition of configuration only gives us the relaxed version of the Failover
constraint

∑
s∈C s + maxs∈C s ≤ B, In particular, the blue term only considers the largest

demand assigned to machine C instead of the most-loaded edge incident to C. However,
these two quantities are the same if we are able to assign at most one demand per edge. (In
the graph realization perspective, it means that it suffices to construct a simple graph with
the desired t-degrees.) But it is not clear that such an assignment should even exist, let
alone be found efficiently.

The main result of this section is that – by opening slightly more machines – we can find
such an assignment that realizes any given collection of configurations satisfying both the
Nominal and Failover constraints.

▶ Theorem 17. Consider an instance of OffMinFailover with T demand types. Given
a collection C of N configurations that is feasible for (LPmach), we can find in poly-time a
feasible solution for OffMinFailover that uses at most N + O(DT ) machines, where D is
the maximum number of demands in any configuration in C.

For that, we will need the following subroutine to assign some demands outside of their
respective configurations. This result easily follows by opening disjoint edges as needed, and
assigning demands arbitrarily to an already-opened edge is possible.

▶ Lemma 18. There is a poly-time algorithm for OffMinFailover that uses at most
8 · S + 2 machines, where S is the sum of the size of the demands in the instance.

The algorithm guaranteed by Theorem 17 is the following. In order to simplify the
notation, as before we assume without loss of generality that C has

∑
C∈C nt(C) = 2nt for

all types t.

Proof of Theorem 17. It is clear that MatchConfigs runs in polynomial time, and assigns
all demands to edges. Further, this assignment satisfies both the Nominal and Failover
constraints, because we assign at most one demand per edge in Step 4 (see discussion in the
beginning of this section), and Step 5 guarantees a feasible assignment for the remaining
demands.

It remains to show that it opens N + O(DT ) machines. In particular, by Lemma 18 it
suffices to show that the total size of all unassigned demands that reach Step 5 is O(DT ).
When considering demand type t, there are two possibilities:
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Algorithm 3 MatchConfigs: Given a collection C of N configurations.

1: Open N machines – one corresponding to each configuration in C.

2: Consider demand types in arbitrary order t = 1, . . . , T .

3: When considering demand type t, partition the collection C into two collections Lt and Rt such
that their total t-degrees

∑
C∈Lt

nt(C) and
∑

C∈Rt
nt(C) differ by at most Dt, where Dt is

the maximum number of type t demands in any configuration. (This can be achieved, e.g., by
initializing Lt, Rt = ∅, and adding configurations one-by-one to the set with minimum total
t-degree.)

4: Given this partition, as long as there exists a configuration C ∈ Lt that is currently assigned
less than nt(C) demands of type t, we pick such a configuration and assign a demand of type
t to an arbitrary edge (C, C′) (for C′ ∈ Rt) that has not yet been assigned a demand of any
type and such that C′ is currently assigned less than nt(C′) demands of type t. If no such edge
exists, then we stop and move on to the next demand type.

5: Once we are done considering all demand types, assign all the currently unassigned demands to
new machines using Lemma 18.

Case 1: Step 4 assigns nt(C) type t demands to each C ∈ Lt. In this case it assigns∑
C∈Lt

nt(C) type t demands to edges between Lt and Rt, while the total number of
type t demands is

nt = 1
2

( ∑
C∈Lt

nt(C) +
∑

C∈Rt

nt(C)
)

≤
∑

C∈Lt

nt(C) + Dt

2 , (10)

where the inequality uses the fact that the t-degree of Rt is at most that of Lt plus Dt.
Thus, at most Dt

2 demands of type t remain unassigned and reach Step 5. The total size
of these demands it at most 1

2 , since Dt demands of type t are in a valid configuration.
Hence the total size of the unassigned demands of all types is at most T

2 ≤ O(DT ).
Case 2: Step 4 fails to assign nt(C̄) to a configuration C̄ ∈ Lt. In this case, for each C ′ ∈ Rt,

either the edge (C̄, C ′) is already assigned some demand (call such C ′ blocked) or C ′ has
already been assigned nt(C ′) demands of type t. But there are at most D blocked C ′’s,
since the configuration C̄ has at most D slots to receive demands. Thus the total number
of type-t demands assigned is at least∑

C′∈Rt\blocked

nt(C′) ≥
∑

C′∈Rt

nt(C′) − D · max
C′∈blocked

nt(C′) ≥
∑

C′∈Rt

nt(C′) − D · Dt.

Moreover, exchanging the roles of Lt and Rt in the argument from (10) we get that∑
C′∈Rt

nt(C ′) ≥ nt − Dt

2 , and thus at least nt − D · Dt − Dt

2 demands of type t are
assigned by Step 4. Thus at most O(D · Dt) demands (hence total size O(D)) of this
type remain unassigned and reach Step 5. This a total size of O(DT ), over all demand
types, that reach the latter step, as desired. ◀

We summarize the main results of this section and the previous with the next theorem:
By approximately solving (LPmach) (Lemma 15), rounding the solution (Lemma 16), and
using the above algorithm to obtain an assignment of demands to edges (Theorem 17), we
obtain the following.

▶ Theorem 19. Consider an instance of OffMinFailover that has most T demands types
and where each configuration has at most D demands. Then there is a poly-time algorithm
that finds a feasible solution that uses at most LPmach + O(DT ) machines.
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To obtain our main result, Theorem 7, we need to modify the input instance to make D

and T small enough. In the full version of this paper – by losing a multiplicative (1 + O(ϵ))-
factor – we show how to ensure that D, T = poly( 1

ϵ ) by rounding demand sizes and handling
the small demands separately. This concludes the proof of Theorem 7.
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