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Abstract
We revisit the relation between two fundamental property testing models for bounded-degree directed
graphs: the bidirectional model in which the algorithms are allowed to query both the outgoing
edges and incoming edges of a vertex, and the unidirectional model in which only queries to the
outgoing edges are allowed. Czumaj, Peng and Sohler [STOC 2016] showed that for directed graphs
with both maximum indegree and maximum outdegree upper bounded by d, any property that can
be tested with query complexity Oε,d(1) in the bidirectional model can be tested with n1−Ωε,d(1)

queries in the unidirectional model. In particular, if the proximity parameter ε approaches 0, then
the query complexity of the transformed tester in the unidirectional model approaches n. It was left
open if this transformation can be further improved or there exists any property that exhibits such
an extreme separation.

We prove that testing subgraph-freeness in which the subgraph contains k source components,
requires Ω(n1− 1

k ) queries in the unidirectional model. This directly gives the first explicit properties
that exhibit an Oε,d(1) vs Ω(n1−f(ε,d)) separation of the query complexities between the bidirectional
model and unidirectional model, where f(ε, d) is a function that approaches 0 as ε approaches 0.
Furthermore, our lower bound also resolves a conjecture by Hellweg and Sohler [ESA 2012] on the
query complexity of testing k-star-freeness.
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1 Introduction

Graph property testing is a framework for studying extremely fast (randomized) algorithms
for solving a relaxation of classical decision problems on graphs. Given a graph property
P , we are interested in designing an algorithm, called a property tester, that with high
constant probability, accepts any graph G that satisfies P , and rejects any graph that is
“far” from satisfying P , i.e., one needs to modify a significant fraction of the representation
(e.g., adjacency matrix or adjacency list) of the graph to make it satisfy P . It is assumed
that the algorithm is given oracle access to the representation of the graph and the goal of
a property tester is to solve the above problem by making as few queries to the oracle as
possible. Since the seminal works by Rubinfeld and Sudan [20] (on algebraic property testing)
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and Goldreich, Goldwasser and Ron [11] (on combinatorial and graph property testing), a
lot of efforts have been made on studying which properties can be tested within a sublinear
(e.g., constant) number of queries in several classical models, e.g., the dense graph model
[11, 1] and bounded-degree graph model [12]. In particular, we have see a rapid development
of property testing on undirected graphs in the past two decades. We refer to the recent
book [10] for a survey.

On the other hand, we still do not know much about property testing in directed graphs
(digraphs) so far. Bender and Ron [3] introduced two fundamental models for studying
directed graph property testing. The first is called bidirectional model, where the algorithm
is allowed to query both outgoing and incoming edges of a vertex; the second is called
unidirectional model, where the algorithm is only allowed to query the outgoing edges,
while not incoming edges. The latter model seems more realistic for some applications.
For example, consider the webgraphs. It is much easier to query the outgoing edges (u, v)
(which corresponds to a hyperlink from webpage u to webpage v) than querying the incoming
edges. In this paper, we focus on bounded-degree directed graphs. A digraph G is said to be
d-bounded, if both the maximum outdegree and maximum indegree of G are upper bounded
by d, which is assumed to be a constant.

Bender and Ron gave an algorithm for testing strong connectivity with Õ(1/ε) queries in
the bidirectional model, and showed that there is a lower bound of Ω(

√
n) queries for any

algorithm with two-sided error1 in the unidirectional model. Goldreich [9], and Hellweg and
Sohler [16] gave a lower bound of Ω(n) queries for testing strong connectivity with one-sided
error in the unidirectional model. The works [9, 16] also gave testers for strong connectivity
with n1−1/(d+1/ε) queries with two-sided error in the unidirectional model. In [16], the
authors gave testers for subgraph-freeness with O(n1− 1

k ) queries in the unidirectional model,
where k is the number of connected components in the subgraph that have no incoming
edges. It is known that a few properties can be tested with a constant number of queries in
the bidirectional model, including Eulerianity [18], k-edge connectivity [18, 23, 8], k-vertex
connectivity [18, 8].

Towards a deeper understanding of testing properties of bounded degree directed graphs
(digraphs), Czumaj, Peng and Sohler [5] studied the relation between these two models and
provided a generic transformation that converts testers with constant query complexity in the
bidirectional model, to testers with sublinear query complexity in the unidirectional model.
Specifically, in [5], it was shown that any property P that can be tested with2 q = Oε,d(1)
queries in the bidirectional model can be tested with n1−d−Θ(q) = n1−Ωε,d(1) queries in the
unidirectional model (with two-sided error). In particular, if the proximity parameter ε

approaches 0, then the query complexity of the transformed tester in the unidirectional
model approaches n (as the term d−Θ(q) approaches 0).

One natural question that is left open is that is the above the transformation tight? Or
equivalently, can we achieve a much better query complexity, say nc−Ωε,d(1), in the latter
model, for some universal constant c < 1? Indeed, currently, the best known lower bound
for this transformation is for testing 3-star-freeness, where a 3-star is a 4-vertex directed
graph such that there exists one center vertex v, and for any other three vertices u, there
is an edge from u to v, and no other edges exist. Hellweg and Sohler [16] have shown that
3-star-freeness can be tested with a constant number of queries in bidirectional model, while

1 A tester for a property P is said to have one-sided error if it accepts every (di)graph satisfying P , and
it errs if the graph is far from having P . It is said to have two-sided error if it errs in both cases.

2 Throughout the paper, we use the notation Oε,d() (resp. Ωε,d()) to describe a function in the Big-O
(resp. Big-Omega) notation assuming that ε and d are constant.
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the query complexity of a tester for this property in the unidirectional model is Θ(n2/3)
for any constant ε > 0. Therefore, there is still a significant gap between the upper bound
(i.e., n1−Ωε,d(1)) in the bidirectional model in the transformation and the current best-known
lower bound (i.e., Ω(n2/3)).

Before we state our result, we formally introduce the definition of property testing in both
directional and unidirectional models. Let P = (Pn)n∈N be a d-bounded digraph property,
where Pn is a property of d-bounded digraphs with n vertices. An n-vertex graph G is said
to be ε-far from satisfying Pn if one needs to modify more than εdn edges to make it a
d-bounded digraph with property Pn, where ε > 0 is called the proximity parameter. We say
that P is q-query testable (or that P can be tested with query complexity q) if for every n, ε

and d, there exists a tester that makes q = q(n, ε, d) queries and with probability at least 2
3 ,

accepts any n-vertex d-bounded digraph G satisfying P , and rejects any n-vertex d-bounded
digraph G that is ε-far from satisfying P . We call such a tester an ε-tester for P .

We show that there exists a property that exhibits an Oε,d(1) vs Ω(n1−Θε,d(1)) separation
of the query complexities between the bidirectional model and unidirectional model, which
implies that the transformation of [5] is essentially tight.

▶ Theorem 1. For any sufficiently small constant ε > 0, there exists a digraph property
P = Pε,d such that P can be tested with Oε,d(1) queries in the bidirectional model, while
any ε-tester for P in the unidirectional model requires n1−f(ε,d) queries, where f(ε, d) is a
function that approaches 0 when ε approaches 0.

The above theorem is a direct corollary from the following result regarding testing
subgraph-freeness. Let H be a directed graph. A strongly connected component3 W is called
a source component of H, if there is no edge from V (H) \ W to W . A directed graph H

is said to be weakly connected if its underlying undirected graph (i.e., the graph that is
obtained by ignoring all the directions of the edges) is connected. For example, we note that
k-star is just a weakly connected digraph with k source components, where a directed graph
H with k + 1 vertices is called a k-star if there is a vertex v such that each of the other k

vertices has exactly one edge pointing to v, and H does not contain any other edges. Let G

and H be two directed graphs. The graph G is said to be H-free if H does not appear as a
subgraph in G. We have the following theorem on testing H-freeness for any (constant-size)
H with k source components.

▶ Theorem 2. Let k be any integer such that k ≥ 2. Let d be some constant. Let H be a
weakly connected4 directed graph with k source components. There exists an ε0 = Θd,k(1)
such that any ε0-tester for testing H-freeness of an n-vertex d-bounded graph requires at least
Ω(n1− 1

k ) queries in the unidirectional model.

We remark that it has been shown by Hellweg and Sohler [16] that for any H with k source
components, H-freeness can be tested with query complexity Oε,d,k(1) in the bidirectional
model, and also can be tested with query complexity Oε,d,k(n1− 1

k ) in the unidirectional
model5. Given the above result, we can easily prove Theorem 1.

3 We call W ⊆ V (H) a strongly connected component of H if the subgraph H[W ] of H induced by W is
strongly connected, and there does not exist any set of vertices X ⊆ V (H) \ W such that the subgraph
of H induced by W ∪ X is strongly connected. That is, the subgraph of H[W ] is a strongly connected
and maximal.

4 For graphs H that is not weakly connected, we can handle each of its weakly connected components
separately.

5 On the high level, their algorithms use the following observation: if a bounded-degree directed graph G
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Proof of Theorem 1. Let η > 0 and define property Pη to be the property of being H-free,
for any H that is weakly connected digraph with k = ⌈1/η⌉ source components. According
to Theorem 2, any ε0-tester for Pη requires at least Ω(n1− 1

k ) > Ω(n1−η) queries in the
unidirectional model, where ε0 = ε0(d, η) is a function of d, η. Now given any sufficiently
small constant ε > 0, let η′ be a number satisfying that ε = ε0(d, η′). Then Theorem 1
follows by taking P = Pη′ and f(ε, d) = η′. ◀

Furthermore, it was conjectured in [16] that testing k-star-freeness requires Ω(n1− 1
k )

queries in the unidirectional model. Since k-star is a directed subgraph with k-source
components, our Theorem 2 resolves this conjecture.

1.1 Discussions of previous ideas and our techniques
We first sketch the main ideas of the lower bound for testing 3-star-freeness given by Hellweg
and Sohler [16]. Their proof makes use of a problem called testing 3-occurrence-freeness6 of
a sequence7. Let A be a length-n sequence of integers such that each element in A is from
[ℓ] := {1, · · · , ℓ} and occurs at most 3 times. We say A is 3-occurrence-free if no integer in A

occurs exactly 3 times in A. We say A is ε-far from being 3-occurrence-free if one needs to
change8 more than εn elements of A to obtain a 3-occurrence-free sequence. [16] gave a local
reduction from the problem of testing 3-occurrence-freeness of a sequence to the problem of
testing 3-star-freeness. That is, given an instance A with m elements of 3-occurrence-freeness,
they constructed a graph G with Θ(m) vertices, such that
1) if A is 3-occurrence-free, then G is 3-star-free; if A is ε-far from being 3-occurrence-free

then G is Θ(ε)-far from being 3-star-free;
2) every query to G can be answered by performing O(1) queries to A.

To obtain a lower bound for testing 3-occurrence-freeness, [16] constructed two classes
CA, CB of length-n sequences such that CA is a class of 3-occurrence-free sequences and CB

is a class of sequences that are Ω(1)-far from being 3-occurrence-free, and the frequency
variables, denoted by XA and XB, of the sequences from these two different classes have 2
proportional moments, i.e.,

E[XB ]
E[XA] = E[X2

B ]
E[X2

A] .

Then the lower bound Ω(n2/3) for testing 3-occurrence-freeness follows from a lower bound
for distinguishing random variables with 2-proportional moments given in [19].

Now we note that to obtain a lower bound for testing H-freeness for any H with k source
components, it suffices to give a lower bound for testing k-occurrence-freeness for general k

in the way similar as above. That is, we construct two classes CA, CB of length-n sequences
such that CA is a class of k-occurrence-free sequences and CB is a class of sequences that are
Ωk(1)-far from being k-occurrence-free, and the frequency variables, denoted by XA and XB ,
of the sequences from these two different classes have k − 1 proportional moments, i.e.,

E[XB ]
E[XA] = E[X2

B ]
E[X2

A] = · · · = E[Xk−1
B ]

E[Xk−1
A ]

.

is ε-far from H-freeness, then G contains Ω(εn) vertex-disjoint copies of H. Then in the bidirectional
model, one can sample a constant number of vertices and perform BFS from each sampled vertex to find
a copy of H; in the unidirectional model, one can sample many edges to see if some copy of H is formed.

6 In [16], the same problem was called 3-value freeness.
7 We use “sequence” rather than “multiset” as the position of each element affects our construction.
8 It is allowed to use integers that are larger than ℓ to change the elements of A.
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However, the main difficulty is to construct two classes of sequences satisfying the above
equations for general k ≥ 3, which was also pointed out in [16]. Besides the aforementioned
construction in [16] which only works for k = 3, we also note that in [19], a special pair of
random variables with k − 1 proportional moments is also constructed (for establishing their
lower bound for Distinct-Elements). That is, their random variables take values of the
form (B + 3)i, for any integers B > 1, k > 1 and i = 0, . . . , k − 1. This leads to a large gap
between the expectations of the corresponding variables. To show a lower bound for testing
k-occurrence-freeness, we need to construct random variables taking values 1, 2, . . . , k, for
any integer k > 1. This is more challenging as it corresponds to a much smaller gap (which
is arbitrarily close to 1) between the expectations of the corresponding variables (see Lemma
10). To construct such two random variables, we establish some identities related to binomial
coefficients, and use them to define two distributions satisfying a number of linear equations
which in turn are necessary conditions for two variables having proportional moments.

We then give a local reduction from testing k-occurrence-freeness to testing H-freeness
for H with k-source components. The reduction also non-trivially generalizes the one for
3-star-free in [16], as 3-star is a special subgraph with a nice symmetric property, while an
arbitrary subgraph H might contain different types of asymmetric structures. Our main
idea is as follows. Given a sequence S, we construct a graph G on the fly such that each
element in the sequence corresponds to a source component of H in G; an element in S

appears k times if and only if a copy of H is added in G. For the latter, we carefully add k

source components of H to G and add edges from these components to one center component
(which is the rest part of H after removing all the source components). Finally, we show
that this construction preserves the distance to the properties and each query to G can be
answered by querying at most 1 position in S.

1.2 Other Related work
Ito, Khoury and Newman [17] recently gave a characterization of monotone and hereditary
properties that can be tested with constant query complexity and one-sided error in both
bounded-degree bidirectional model and bounded-degree unidirectional model. For testing
acyclicity in the bidirectional model, Bender and Ron [3] gave a lower bound of Ω(n1/3)
queries for algorithms with two-sided error and a lower bound Ω(n1/2) queries for algorithms
with one-sided error. The latter lower bound has been improved to Ω̃(n5/9) queries by Chen,
Randolph, Servedio and Sun [4].

In the dense directed graph model (with different types of queries and notion of “ε-
far”), Alon and Shapira [2] gave an algorithm with constant query complexity for testing
subgraph-freeness.

There exists a class of properties which can be tested with constant number of queries
by the so-called proximity-oblivious testers [13]. Goldreich and Ron [14] showed that any
property that can be tested by a proximity-oblivious tester that makes q uniformly distributed
queries with constant detection probability can be tested by a sample-based testers of sample
complexity O(n1−1/q), where a sample-based tester only samples elements independently
from some distribution of the tested object. Building upon [7, 15], Dall’Agnol, Tom and
Lachish [6] recently showed that any property that is testable with q queries admits a sample-
based tester with sample complexity n1−1/O(q2 log2 q). Their algorithms are defined over a
constant-size output alphabet, which is very different from the bounded degree (directed)
graph model, in which a super constant alphabet is needed.

Valiant developed a wishful thinking theorem in [22], telling that two distributions whose
so-called k-based moments have small gap are indistinguishable by k-Poissonized samples.
This is a tool for establishing lower bounds of testing symmetric properties on distributions.

ICALP 2023



96:6 Two Property Testing Models for Bounded Degree Directed Graphs

On a very high level, both [22] and our work are constructing far distributions with the same
collision, while the details for the constructions differ significantly. For example, our proof
is built upon Corollary 5.7 of [19], which requires to carefully construct two distributions
that have proportional moments. In [22], it is required to construct two distributions whose
k-based moments have small gap. It is unclear if two distributions with small gap between
k-based moments have proportional moments, or vice versa. In addition, we are using very
different properties of Vandermonde matrix from those used in [22].

2 A Lower Bound for Testing k-Occurrence-freeness

In this section, we will prove the lower bound on the query complexity for testing k-occurrence-
freeness, which is defined as follows. Given a sequence A of n integers such that each entry
of A is from [n] := {1, . . . , n} and each element i ∈ [n] occurs at most k times, the problem
is to distinguish if A is k-occurrence-free, i.e., no element occurs in k positions of A, or A is
ε-far from k-occurrence-free, i.e., more than εn elements of A needs to be changed to make
it k-occurrence-free. We assume that the algorithm can query the element (or the value) of
any position of the sequence in constant time. The goal is to solve the problem by making as
few queries as possible. We will show the following result.

▶ Theorem 3. Any algorithm for testing k-occurrence-freeness with parameter ε = Ωk(1)
requires at least Ω(n1−1/k) queries, where n is the length of the input sequence.

2.1 Basic tools and notions
To prove the above theorem, we will make use of a lower bound by Raskhodnikova et al. [19]
for distinguishing two sequences satisfying some property. We first introduce two definitions.

▶ Definition 4 (Frequency variable). Let A be a sequence of integers. We define its frequency
variable XA as follows. Choose a number uniformly at random from the set of distinct
elements that occur in A and then let XA denote its frequency9, i.e., the number of times it
occurs.

Take the following sequence S = {1, 2, 1, 3, 2, 1, 4} as an example. There are 4 distinct
elements (or values) in S: value 1 occurs 3 times, value 2 occurs twice, value 3 and 4
each occurs once. Thus the frequency variable XS of S satisfies that Pr[XS = 1] = 0.5,
Pr[XS = 2] = 0.25, Pr[XS = 3] = 0.25.

▶ Definition 5 (Proportional moments). Two random variables X1 and X2 are said to have
k − 1 proportional moments, if E[X2]

E[X1] = E[X2
2 ]

E[X2
1 ] = · · · = E[Xk−1

2 ]
E[Xk−1

1 ] . We say that two sequences
have k −1 proportional moments if their frequency variables have k −1 proportional moments.

Let P denote a property defined on sequence of integers such that it is invariant under
any permutation of indices and values. [19] has shown that any tester for P that makes t

queries can be simulated by a Poisson-s algorithm that only looks at the histogram of the
samples as its input, and s = O(t). Relevant definitions are as follows.

▶ Definition 6 (Poisson-s algorithm). An algorithm is called a Poisson-s algorithm if the
number of samples of the algorithm is determined by a Poisson distribution with the expecta-
tion s.

9 We directly adopt the notion “frequency” from [19].
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▶ Definition 7 (Histogram). Given a sequence S, the histogram H of S is a function defined
as follows:

H(i) := |{s ∈ S|s occurs exactly i times in S}|

In [19], Raskhodnikova et al. proved that if two sequences have k−1 proportional moments
and s = o(n1− 1

k ), then any Poisson-s algorithm can’t distinguish their histograms.Formally,
based on Lemma 5.3 and Corollary 5.7 in [19], we have the following Lemma.

▶ Lemma 8 ([19]). Let XA and XB be two random variables with k−1 proportional moments.
And let DXA

and DXB
be two length-n sequences of integers, whose frequency variables are XA

and XB, respectively. Let P be a property of sequences that is invariant under permutations
of indices and values, and let ε > 0 be a constant.

1. If A′ is a tester for P with t queries, i.e., A′ accepts the input sequence that satisfies P

with probability at least 2
3 ; it rejects any sequence that is ε-far from satisfying P , with

probability at least 2
3 .

Then there must be a Poisson-s algorithm A that gets only the histogram of the samples,
where s = O(t), satisfiying the following: if the input sequence satisfies P , A accepts with
probability at least 2

3 − o(1); if the input sequence is ε-far from satisfying P , A rejects
with probability at least 2

3 − o(1).
2. For any Poisson-s algorithm A with s = o(n1− 1

k ), if A gets only access to the histogram
of samples, then we have

| Pr[A(DXA
) = True] − Pr[A(DXB

) = True]| = o(1).

Note that by the above Lemma, for a property P that is invariant under permutation of
indices and values, any tester for P can be well simulated by a Poisson-s algorithm, which
only accesses to the histogram of samples. Thus it suffices to only consider such Poisson-s
algorithms. Furthermore, if there exist two instances of P with proportional moments, then
it is hard to distinguish these two instances, for any Poisson-s algorithm that only accesses
to the histogram of samples.

2.2 Proof of Theorem 3
Now we give the proof of Theorem 3. We first note that k-occurrence-freeness is a property
that is invariant under permutation of indices and values. Suppose that there exist two
families of sequence instances, denoted by CA and CB , respectively, such that 1) CA and CB

have k − 1 proportional moments; 2) sequences in CA are k-occurrence-free, and sequences
in CB are far from k-occurrence-freeness. Now assume that there exist a tester A′ for
k-occurrence-freeness with s = o(n1− 1

k ) queries. Then, according to Lemma 8, there must
be a Poisson-s algorithm A that gets only access to the histogram of samples. For such
algorithm A, we have

| Pr[A(DXA
) = True] − Pr[A(DXB

) = True]| = (2
3 − o(1)) − (1

3 + o(1)) ≥ 1
6 ,

which contradicts to the second part of Lemma 8 and thus implies the Ω(n1− 1
k ) lower bound.

Therefore, to prove Theorem 3, it suffices to construct two families of sequences with the
above desired properties.

ICALP 2023
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Proof of Theorem 3. We first construct two classes, denoted by CA, CB, of length-n se-
quences, such that for any sequences A ∈ CA and B ∈ CB , it holds that 1) A is k-occurrence-
free and B is ε-far from k-occurrence-free, and 2) the frequency variables XA, XB of these
two instances A, B have k − 1 proportional moments.

To do so, we first prove the claim.

▷ Claim 9. It holds that
1 1 · · · 1
1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1

 ·


(−1)1(

k
1
)

(−1)2(
k
2
)

(−1)3(
k
3
)

...
(−1)k

(
k
k

)

 =


−1
0
0
...
0

 . (1)

Proof. We define a sequence of helper functions fj(x) to prove (1).

fj(x) =
{

(1 + x)k, j = 0
x · f

′

j−1(x), j = 1, 2, · · · , k − 1
(2)

To prove the claim, we note that it suffices to show the following:

f0(−1) = 1 +
k∑

i=1
(−1)·(k

j

)
= 0, (3)

fj(−1) =
k∑

i=1
ij · (−1)i ·

(
k
i

)
= 0, for any j = 1, . . . , k − 1. (4)

Note that if the above are true, then each line of Equations (1) holds, which finishes the
proof of the claim. In the following, we prove Equations (3) and (4).

Let us first consider the binomial expansion of f0(x). We have that

f0(x) = (1 + x)k =
k∑

i=0
xi ·

(
k
i

)
= 1+

k∑
i=1

xi ·
(

k
i

)
. (5)

Thus, f0 (−1) = (1 − 1)k = 1 +
∑k

i=1 (−1)i ·
(

k
i

)
= 0. That is, Equation (3) holds.

To prove Equation (4), we show that for any 1 ≤ j ≤ k − 1, it holds that
(a) fj(x) =

∑k
i=1 ij · xi ·

(
k
i

)
,

(b) fj(x) =
∑j

i=1 ai · xi · (1 + x)k−i, for some numbers a1, . . . , aj ≥ 0.
Note that by the above two items, we have that fj(−1) = 0 =

∑k
i=1 ij · xi ·

(
k
i

)
, for each

j = 1, . . . , k − 1, which finishes the proof of Equation (4) (and the claim).
In the following, we prove the above two items (a) and (b) by induction. Consider the

case j = 1. By definition of function fj(x) given by (2) and the expansion (5), it holds that

f ′
0 (x) = k · (1 + x)k−1 =

k∑
i=1

i · xi−1 ·
(

k
i

)
,

which implies that

f1(x) = x · f
′

0(x) = x · k · (1 + x)k−1 =
k∑

i=1
i · xi ·

(
k
i

)
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Now we assume that the items (a) and (b) hold for j ≤ k − 2, and we prove it for j + 1.
For item (a), since fj(x) =

∑k
i=1 ij · xi ·

(
k
i

)
, we have that f ′

j(x) =
∑k

i=1 ij+1 · xi−1 ·
(

k
i

)
.

Thus,

fj+1(x) =
k∑

i=1
ij+1 · xi ·

(
k
i

)
by Definition (2).

For item (b), since fj(x) =
∑j

i=1 ai · xi · (1 + x)k−i, for some numbers a1, . . . , aj ≥ 0, it
holds that

f ′
j(x) =

j∑
i=1

(ai · i · xi−1 · (1 + x)k−i + ai · xi · (k − i) · (1 + x)k−i−1).

Thus, by Definition (2),

fj+1(x) =
j∑

i=1
(ai · i ·xi · (1+x)k−i +ai ·xi+1 · (k − i) · (1+x)k−i−1) =

j+1∑
i=1

a′
i ·xi · (1+x)k−i,

for some numbers a′
1, · · · , a′

j+1 ≥ 0.
Therefore, both items (a) and (b) hold and this finishes the proof the claim. ◁

Now we define two distributions p, q over [k] as follows.
1. if k is even, define

pi =
{

0, if i is even
1

2k−1 ·
(

k
i

)
, if i is odd

qi =
{

1
2k−1−1 ·

(
k
i

)
, if i is even

0, if i is odd

2. if k is odd, define

pi =
{

1
2k−1−1 ·

(
k
i

)
, if i is even

0, if i is odd
qi =

{
0, if i is even

1
2k−1 ·

(
k
i

)
, if i is odd

Now we show the following Lemma.

▶ Lemma 10. Let p, q be defined as above. There exists d > 0 such that
q1
q2
q3
...

qk

 = d ·


p1
p2
p3
...

pk

 + (d − 1) ·


(−1)1(

k
1
)

(−1)2(
k
2
)

(−1)3(
k
3
)

...
(−1)k

(
k
k

)

 (6)

Proof. For the case that k is even, we let d = 1 + 1
2k−1−1 .

First note that pk = 0 and qk = (d − 1) ·
(

k
k

)
. Thus, the last equation holds. For

even i ∈ {2, 4, . . . , k}, pi = 0 and qi = d · pi + (d − 1) ·
(

k
i

)
. For odd i ∈ {1, 3, . . . , k − 1},

pi = d−1
d ·

(
k
i

)
and qi = d · pi + (d − 1) · (−1) ·

(
k
i

)
= 0. Thus, Equation (6) holds.

For the case that k is odd, we let d = 1 − 1
2k−1 .

Note that pk = 0 and qk = (1 − d) ·
(

k
k

)
. Thus, the last equation holds. For odd

i ∈ {1, 3, . . . , k}, pi = 0 and qi = d · pi + (1 − d) ·
(

k
i

)
. For even i ∈ {2, 4, . . . , k − 1},

pi = 1−d
d ·

(
k
i

)
and qi = d · pi + (d − 1) ·

(
k
i

)
= 0. Thus, Equation (6) holds. ◀
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▶ Lemma 11. Let k be any integer with k ≥ 2. Let p, q be distributions over [k] defined as
above. It holds that
1. pk = 0 and qk ≥ 1

2k ;
2. for any two random variables XA and XB with distributions p and q, respectively, it

holds that XA and XB have k − 1 proportional moments.

Proof. The first item follows from the definitions of p and q.
Now prove the second item. Let d > 0 be the number from Lemma 10. We will show that

E[XB ]
E[XA] = E[X2

B ]
E[X2

A] = · · · = E[Xk−1
B ]

E[Xk−1
A ]

= d,

or equivalently,
1

E[XB ]
E[X2

B ]
...

E[Xk−1
B ]

 = d ·


1/d

E[XA]
E[X2

A]
...

E[Xk−1
A ]

 . (7)

By the definition XA, it holds that for any 0 ≤ i ≤ k − 1, E[Xi
A] =

∑k
j=1 pj · ji. That is,

1
E[XA]
E[X2

A]
...

E[Xk−1
A ]

 =


1 1 · · · 1
1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1




p1
p2
p3
...

pk

 (8)

Similarly, it holds that
1

E[XB ]
E[X2

B ]
...

E[Xk−1
B ]

 =


1 1 · · · 1
1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1




q1
q2
q3
...

qk

 (9)

By Equations (8) and (9), we know that to prove Equation (7), it suffices to show that
1 1 · · · 1
1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1




q1
q2
q3
...

qk

 = d ·


1/d 1/d · · · 1/d

1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1




p1
p2
p3
...

pk

 . (10)

Recall that by Lemma 10, it holds that
q1
q2
q3
...

qk

 = d ·


p1
p2
p3
...

pk

 + (d − 1) ·


(−1)1(

k
1
)

(−1)2(
k
2
)

(−1)3(
k
3
)

...
(−1)k

(
k
k

)
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Substituting qi from the above equation to the left hand side of equation (10) gives us
that

d ·


1 1 · · · 1
1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1

 ·


p1
p2
p3
...

pk

 + (d − 1) ·


1 1 · · · 1
1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1

 ·


(−1)1(

k
1
)

(−1)2(
k
2
)

(−1)3(
k
3
)

...
(−1)k

(
k
i

)



=d ·


1

E[XA]
E[X2

A]
...

E[Xk−1
A ]

 + (d − 1) ·


1 1 · · · 1
1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1

 ·


(−1)1(

k
1
)

(−1)2(
k
2
)

(−1)3(
k
3
)

...
(−1)k

(
k
i

)

 = d ·


1/d

E[XA]
E[X2

A]
...

E[Xk−1
A ]

 ,

where the last equation follows from Claim 1.
On the other hand, by Equation (8), we know that the right hand side of (10) is,

d ·


1/d 1/d · · · 1/d

1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1




p1
p2
p3
...

pk

 = d ·


1/d

E[XA]
E[X2

A]
...

E[Xk−1
A ]

 .

Therefore, Equation (10) holds and thus XA and XB have k − 1 proportional moments. This
finishes the proof of the Lemma. ◀

Now we construct class CA as follows: CA is a class of sequences, and the frequency
variable XA of every sequence A is Pr[XA = i] = pi. That is, for every sequence A, the
fraction of elements that occur i times is exactly pi. We can construct CB analogously by
substituting pi with qi.

By construction, sequence A is k-occurrence-free. Consider the sequence B. Suppose
that there are l distinct values in B, then at least qk · l values occur k times in B, which
means that B is at least qk·l

n -far from k-occurrence-free. As every value in B occurs in at
most k positions, there are at least n

k distinct values, i.e., l ≥ n
k . Thus, B is at least qk

k -far
from k-occurrence-free. According to previous analysis, A and B have k − 1 proportional
moments. The theorem then follows from Lemma 8. ◀

3 A Lower Bound for Testing Subgraph-Freeness

In this section, we give the proof of the lower bound on the query complexity for testing
subgraph-freeness, i.e., prove Theorem 2.

Proof of Theorem 2. We give a reduction from the problem of testing k-occurrence of a
sequence to the problem of testing H-freeness in the unidirectional model. That is, given
an instance of the former problem, i.e., a length-n sequence S such that each element is
promised to occur at most k times, we will construct an instance of the H-freeness testing
problem, i.e., a directed graph G with n′ = Θ(n) vertices and bounded degree. Then we
show that this construction preserves the distances of the properties and any algorithm
A′ for testing H-freeness in the unidirectional model can be invoked on G to test if S is

ICALP 2023



96:12 Two Property Testing Models for Bounded Degree Directed Graphs

k-occurrence-freeness. In particular, if A′ has query complexity o(n′1− 1
k ), then this implies

an algorithm for testing k-occurrence-freeness with query complexity o(n1− 1
k ), contradicting

to Theorem 3.

Preprocessing the subgraph H. Since H has k source components, we denote these
components by {C1, · · · , Ck}. Note that each Ci is a subgraph of H. We use Ncomp to denote
the maximum number of vertices in {C1, C2, · · · , Ck}, i.e., Ncomp = maxi=1,··· ,k |V (Ci)|
where V (C) denotes the vertex set of the graph C. We use C0 to denote the subgraph
induced by the remainder of vertices in V (H) and we call C0 the center component of H.
Let Ncenter = |V (C0)| = |V (H)| −

∑k
i=1 |V (Ci)|. Note that since C1, · · · , Ck are source

components, by definition, no edge exists between different such components. All the
edges leaving Ci (for i = 1, · · · , k) are entering C0. We can first decompose H into source
components and the center component (e.g., by using Tarjan’s algorithm [21]), index them,
and identify all the edges crossing different components in constant time (as the size of H is
constant).

We illustrate such a decomposition of a subgraph H̃ in Figure 1. Note that H̃ has 3
source components and 1 center component (see Figure 2). It can be partitioned into four
parts such V (C̃0) = {v2, v7}, V (C̃1) = {v1}, V (C̃2) = {v3, v4, v5}, V (C̃3) = {v6} as follows.
In this example, Ncomp = 3, Ncenter = 2.

In the construction of the graph G, we will treat each component Ci, 1 ≤ i ≤ k, as a
subgraph with Ncomp vertices. That is, for each such Ci, we add (Ncomp − |V (Ci)|) isolated
vertices to Ci to obtain a new component C ′

i so that |V (C ′
i)| = Ncomp. We can reassemble

these new components {C ′
1, C ′

2, · · · , C ′
k} with C0 to obtain a graph H ′.

v1

v2

v3

v4 v5 v6

v7

Figure 1 A subgraph H̃.

Now we index each vertex of H ′ by some integer in {1, · · · , Ncenter + k · Ncomp} as follows.
The index set of V (C ′

0) is [1, Ncenter], and the index set of V (C ′
i) is [Ncenter + (i − 1) ·

Ncomp + 1, Ncenter + i · Ncomp], for each 1 ≤ i ≤ k. Furthermore, for each component C ′
i with

0 ≤ i ≤ k, we sequentially index the vertices using the corresponding index set according to
the lexicographical ordering of the vertices in the aforementioned component decomposition.

Now we describe the reduction. Given a length-n sequence S, the directed graph
G = (V, E) can be constructed as follows. We first add n disjoint copies of the subgraph
C0 to G. Then we will add n copies of source components and add some edges from source
components to some copy of C0 constructed before. That is, each element in the sequence
corresponds to a source component. Note that there are no edges between different copies of
source components. The offline construction is formally described as follows.
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v1

(a) Source component C̃1.

v3

v4 v5

(b) Source component C̃2.

v6

(c) Source component C̃3.

v2

v7

(d) Center component C̃0.

Figure 2 Decomposing H̃ into 3 source components and 1 center component.

Figure 3 Constructing G̃ from the sequence S̃ and the decomposition of H̃.

Vertex set and vertex indices. We index vertices in G from 1 to n · (Ncenter + Ncomp). The
vertex set is decomposed into two parts: the center part and the source part. More precisely,
the source part contains n potential source components with vertex indices from 1 to n·Ncomp,
and the center part contains n disjoint copies of the center component C0 with vertex indices
from n · Ncomp + 1 to n · (Ncomp + Ncenter). Furthermore, the vertices in the i-th copy of
the source component are indexed from (i − 1) · Ncomp + 1 to i · Ncomp, while the vertices of
the j-th copy of the center component are indexed from n · Ncomp + (j − 1) · Ncenter + 1 to
n · Ncomp + j · Ncenter.

Adding components and edges. Add n disjoint copies of C0 to G. Initialize a size-n array
T such that Ta = 0 for each 1 ≤ a ≤ n. For each a = 1, 2, · · · , n:
1. let b be the value (or element) of S at position a

2. If b is a new value that algorithm sees for the first time, define an array Rb = {1, 2, · · · , k}.
3. Uniformly sample a number t from Rb. Add an copy of C ′

t. Ignoring isolated vertices in
C ′

t, add edges between this copy of C ′
t and the b-th copy of C0 in the same way as the

connections between their counterparts in the subgraph H. Delete t from Rb. Set Ta = t,
i.e., the a-th position of S is mapped to a source component C ′

t.
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Note that by construction, the graph G is d-bounded, and its maximum (in- or out-)
degree the same as the maximum (in- or out-) degree of H.

We give an illustration of the above construction in Figure 3. Given a sequence S̃ =
{1, 2, 1, 3, 2, 1}, and a subgraph H̃ as shown in Figure 1. The graph G̃ from the above
reduction is shown Figure 3. In this figure, edges of the same color correspond to positions
of the same value (or element) in S̃. For example, the 3 red edges correspond to the 3
occurrences of value 1. Together with the corresponding source and center components, these
red edges form an copy of H̃.

Construction on the fly. We show that the above construction of G can be done on the fly
and each query to G can be answered by querying at most 1 position in S. More precisely,
let A′ be an algorithm for testing H-freeness. When A′ queries the i-th outgoing neighbor of
a vertex v, we consider the following cases.

If v > n · Ncomp, then v belongs to a copy of C0, then we do not need to query sequence
S, and we can simply locate the vertex v′ = (v − n · Ncomp) mod Ncenter in C0. And by our
index in H ′, we know the corresponding vertex index in H ′ is also v′. Then we can check
the i-th neighbor of v′ in H ′, denoted by v′′. Thus we just return v − v′ + v′′.

If 1 ≤ v ≤ n · Ncomp, then v belongs to a copy of some source component. Calculate
a = ⌈v/Ncomp⌉ and query the a-th position of S. Let b denote the query answer. If Ta = 0,
which means that this element is queried for the first time, uniformly sample a type t from
the rest of types Rb for value b, and update Ta = t; otherwise simply set t = Ta. Note that
R and T are maintained as described in the construction. Then calculate v′ = v mod Ncomp.
Now we know that the queried vertex v corresponds to the v′-th vertex in a C ′

t component,
which is adjacent to the b-th copy of C0. We can look up vertex Ncenter + (t − 1) · Ncomp + v′

in H ′, which is isomorphic to vertex v in G. We use v′′ to denote the i-th neighbor of
Ncenter + (t − 1) · Ncomp + v′ in H ′. If v′′ belongs to the C ′

t part in H, we just return
v − v′ + v′′. Otherwise, if v′′ belongs to a C0 part, we return n · Ncomp + (b − 1) · Ncenter + v′′.

Thus, any query for a vertex v with v > n · Ncomp can be answered without querying S;
query for a vertex v with 1 ≤ v ≤ n · Ncomp can be answered by making one query to S.

Note that our construction generates a graph G from a distribution D = {G1, G2, · · · }.
We will show that if S is k-occurrence-free, then any graph from D is H-free; if S is far from
being k-occurrence-free, then every graph in D is far from H-freeness.

Preserving the distances. Note that in the above construction, if there exists some value
occurring k times in S, then these k occurrences of the same value results in k different
source components covering {C1, C2, · · · , Ck}, and they are adjacent to the same center.
That is, each element occurring k times in the sequence result in an occurrence of H in G.
For each element occurring less than k times, the center corresponding to this value will be
adjacent to less than k source components, which in turn implies that H does not occur
in this case. We mention that the auxiliary isolated vertices also do not contribute to any
occurrence of H.

Thus, if S is k-occurrence-free, then there can not be any occurrence of H, and thus
G must be H-free. If S is ε-far from being k-occurrence-free, then there will be at least
εn occurrences of H in G. This implies that G is at least ε′-far from H-freeness, for
ε′ = εn

d(Ncenter+Ncomp)n = ε
d(Ncenter+Ncomp) .

Putting things together. Let A′ be an algorithm for testing H-freeness with proximity
parameter ε = Θk,d(1). Suppose that the query complexity is o(n′1− 1

k ) on an n′-vertex
digraph. Now we invoke the algorithm A′ on the graph G that was constructed as before.
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As we have seen, each query in G can be answered by making at most 1 query to the
sequence S. Furthermore, if S is k-occurrence-free, then G is H-free and if S is ε-far from
being k-occurrence-free, then G is ε′-far from H-free, for ε′ = ε

d·(Ncenter+Ncomp) = Θk,d(1).
Thus, the algorithm A′, together with the construction, also solves the problem of testing
k-occurrence-freeness with o(n1− 1

k ) queries, which contradicts Theorem 3. Thus, the query
complexity of A′ is Ω(n1− 1

k ). This finishes the proof of the theorem. ◀
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