
Scheduling Under Non-Uniform Job and Machine
Delays
Rajmohan Rajaraman #

Northeastern University, Boston, MA, USA

David Stalfa #

Northeastern University, Boston, MA, USA

Sheng Yang #

Shanghai, CN

Abstract
We study the problem of scheduling precedence-constrained jobs on heterogenous machines in the
presence of non-uniform job and machine communication delays. We are given a set of n unit size
precedence-ordered jobs, and a set of m related machines each with size mi (machine i can execute
at most mi jobs at any time). Each machine i has an associated in-delay ρin

i and out-delay ρout
i .

Each job v also has an associated in-delay ρin
v and out-delay ρout

v . In a schedule, job v may be
executed on machine i at time t if each predecessor u of v is completed on i before time t or on any
machine j before time t − (ρin

i + ρout
j + ρout

u + ρin
v). The objective is to construct a schedule that

minimizes makespan, which is the maximum completion time over all jobs.
We consider schedules which allow duplication of jobs as well as schedules which do not.

When duplication is allowed, we provide an asymptotic polylog(n)-approximation algorithm. This
approximation is further improved in the setting with uniform machine speeds and sizes. Our best
approximation for non-uniform delays is provided for the setting with uniform speeds, uniform
sizes, and no job delays. For schedules with no duplication, we obtain an asymptotic polylog(n)-
approximation for the above model, and a true polylog(n)-approximation for symmetric machine and
job delays. These results represent the first polylogarithmic approximation algorithms for scheduling
with non-uniform communication delays.

Finally, we consider a more general model, where the delay can be an arbitrary function of the job
and the machine executing it: job v can be executed on machine i at time t if all of v’s predecessors
are executed on i by time t − 1 or on any machine by time t − ρv,i. We present an approximation-
preserving reduction from the Unique Machines Precedence-constrained Scheduling (umps) problem,
first defined in [15], to this job-machine delay model. The reduction entails logarithmic hardness for
this delay setting, as well as polynomial hardness if the conjectured hardness of umps holds.

This set of results is among the first steps toward cataloging the rich landscape of problems in
non-uniform delay scheduling.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Scheduling, Approximation Algorithms, Precedence Constraints, Communic-
ation Delay, Non-Uniform Delays

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.98

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2207.13121 [42]

Funding Rajmohan Rajaraman: Partially supported by NSF grant CCF-1909363.
David Stalfa: Partially supported by NSF grant CCF-1909363.
Sheng Yang: Work done when the author was at Northwestern University, supported by Samir
Khuller’s funding.

EA
T
C
S

© Rajmohan Rajaraman, David Stalfa, and Sheng Yang;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 98; pp. 98:1–98:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:r.rajaraman@northeastern.edu
mailto:stalfa.d@northeastern.edu
mailto:styang@fastmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2023.98
https://arxiv.org/abs/2207.13121
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

98:2 Scheduling Under Non-Uniform Job and Machine Delays

1 Introduction

With the increasing scale and complexity of scientific and data-intensive computations,
it is often necessary to process workloads with many dependent jobs on a network of
heterogeneous computing devices with varying computing capabilities and communication
delays. For instance, the training and evaluation of neural network models, which involves
iterations of precedence constrained jobs, is often distributed over diverse devices such
as CPUs, GPUs, or other specialized hardware. This process, commonly referred to as
device placement, has gained significant interest [18, 21, 32, 33]. Similarly, many scientific
workflows are best modeled precedence constrained jobs, and the underlying high-performance
computing system as a heterogeneous networked distributed system with communication
delays [3, 44,49].

Optimization problems associated with scheduling under communication delays have been
studied extensively, but provably good approximation bounds are few and several challenging
open problems remain [1, 4, 14, 23, 26, 34, 35, 37, 39, 40, 43]. With a communication delay,
scheduling a set of precedence constrained uniform size jobs on identical machines is already
NP-hard [40,43], and several inapproximability results are known [4,23]. However, the field is
still underexplored and scheduling under communication delay was listed as one of the top ten
open problems in scheduling surveys [5,45]. While there has been progress on polylogarthmic-
approximation algorithms for the case of uniform communication delays [16, 26, 29, 31], little
is known for more general delay models.

This paper considers the problem of scheduling precedence-constrained jobs on machines
connected by a network with non-uniform communication delays. In general, the delay
incurred in communication between two machines could vary with the machines as well as
with the data being communicated, which in turn may depend on the jobs being excuted
on the machines. For many applications, however, simpler models suffice. For instance, the
machine delays model, where the communication between two machines incurs a delay given
by the sum of latencies associated with the two machines, is suitable when the bottleneck is
primarily at the machine interfaces. On the other hand, job delays model scenarios where the
delay incurred in the communication between two jobs running on two different machines is a
function primarily of the two jobs. This is suitable when the communication is data-intensive.
Recent work in [15] presents a hardness result for a model in which jobs are given as a DAG
and any edge of the DAG separating two jobs running on different machines causes a delay,
providing preliminary evidence that obtaining sub-polynomial approximation factors for
this model may be intractable. Given polylogarithmic approximations for uniform delays, a
natural question is which, if any, non-uniform delay models are tractable.

1.1 Overview of our results
A central contribution of this paper is to explore and catalog a rich landscape of problems
in non-uniform delay scheduling. We present polylogarithmic approximation algorithms
for several models with non-uniform delays, and a hardness result in the mold of [15] for a
different non-uniform delay model. Figure 2 organizes various models in this space, with
pointers to results in this paper and relevant previous work.

ρouti ρinji j

Figure 1 Communicating a result from i to j takes ρout
i + ρin

j time.

R. Rajaraman, D. Stalfa, and S. Yang 98:3

General Delays
Delays can depend on features of machines, features of jobs, or features of the schedule

Job-Job
For u ≺ v, delay from u to v on a
different machine is a function of

(u, v) [15]

Machine-Machine
Delay from machine i to j is a

function of (i, j)

General Metric
Delay from i to j is given by a

metric over the machines

Job Delays & Machine Delays
For u ≺ v, delay from u on j to v on i is

ρoutu + ρoutj + ρinv + ρini
Theorems 1, 2

Machine Delays
The delay from machine i to

machine j is ρouti + ρinj
Corollary 1.1

Uniform Delay
Fixed delay ρ
[16,26,29,31]

Layered DAG Edge Delays
Jobs given as a layered DAG. For

any edge u→ v, delay from u to v
on a different machine is ρ

Job-Machine
Delay from any predecessor on a different

machine to v on i is a function of (i, v)
Theorem 4

Job Delays
For u ≺ v, delay from u to v on a

different machine is ρoutu + ρinv
Lemma 2.11

Job Delays & Symmetric Machine Delays
For u ≺ v, delay from u on j to v on i is

ρoutu + ρj + ρinv + ρi
Theorem 3

Figure 2 Selection of scheduling models with communication delays. a −� b indicates that a is a
special case of b. We present approximation algorithms for models with machine delays and job
delays, and a hardness of approximation result for the job-machine delays model. Theorems and
citations point to results in this paper and in previous work, respectively. Those problems backed in
gray are ones for which approximation algorithms are known. Those in the gray box are ones for
which hardness results have been proven.

Machine delays and job delays (Section 2). We begin with a natural model where the
delay incurred in communication from one machine to another is the sum of delays at the two
endpoints. Under machine delays, each machine i has an in-delay ρin

i and out-delay ρout
i , and

the time taken to communicate a result from i to j is ρout
i + ρin

j . This model, illustrated in
Figure 1, is especially suitable for environments where data exchange between jobs occurs via
the cloud, an increasingly common mode of operation in modern distributed systems [28,30,50];
ρin

i and ρout
i represent the cloud download and upload latencies, respectively, for machine i.

The machine delays model does not account for heterogeneity among jobs, where different
jobs may be producing or consuming different amounts of data, which may impact the delay
between the processing of one job and that of another dependent job on a different machine.
To model this, we allow each job u to have an in-delay ρin

u and an out-delay ρout
u .

▶ Definition 1 (Scheduling under Machine Delays and Job Delays). We are given as input a
set of n precedence ordered jobs and a set of m machines. For any jobs u and v with u ≺ v,
machine i, and time t, u is available to v on i at time t if u is completed on i before time t

or on any machine j before time t− (ρout
j + ρout

u + ρin
i + ρin

v). (This model is illustrated in
Figure 3.) If job v is scheduled at time t on machine i, then all of its predecessors must be
available to v on i at time t. We define ρmax = maxx∈V ∪M{ρin

x + ρout
x }. The objective is to

construct a schedule that minimizes makespan.

Remark. In our model of Definition 1, communication delay is defined over all pairs of
precedence ordered jobs. An alternate model defines communication delay only over those
pairs that are adjacent in the job DAG. The two settings differ in general but are equivalent

ICALP 2023

98:4 Scheduling Under Non-Uniform Job and Machine Delays

time to
postprocess u

vi

time to upload a
result from j

time to download a
result to i

time to
preprocess v

ρoutu ρoutj ρini ρinv

uj

Figure 3 Communicating the result of job u on machine j to execute job v on machine i.

in many scenarios, for instance, when the delays are given by an underlying metric space
over the machines, or when communication delays are uniform. The models are equivalent
if all delays are machine delays, so our machine delay results hold in the alternate model.
The models differ in the presence of general job delays but are equivalent in several special
cases, for instance in the setting where the job DAG is transitively closed, which has been
extensively studied and proved useful in several important applications [2,19,46]. Transitively
closed DAGs capture scenarios where each job may be generating data used by upstream
jobs, and an upstream job may need to check the results of any of its predecessors. Examples
of such graphs arising in scheduling include interval orders [38], as well as Solution Order
Graphs in the context of SAT solvers [8].

We present the first approximation algorithms for scheduling under non-uniform commu-
nication delays. In the presence of delays, a natural approach to hide latency and reduce
makespan is to duplicate some jobs (for instance, a job that is a predecessor of many other
jobs) [1,39]. We consider both schedules that allow duplication (which we assume by default)
and those that do not. Our first result is a polylogarithmic asymptotic approximation for
scheduling under machine and job delays when duplication is allowed.

▶ Theorem 1. There exists a polynomial time algorithm for scheduling unit length,
precedence constrained jobs with duplication under machine and job delays, that produces
a schedule with makespan O((log9 n)(opt + ρmax)).

We emphasize that if the makespan of any schedule includes the delays incurred in distributing
the problem instance and collecting the output of the jobs, then the algorithm of Theorem 1
is, in fact, a true polylogarithmic approximation for makespan. (From a practical standpoint,
in order to account for the time incurred to distribute the jobs and collect the results, it
is natural to include in the makespan the in- and out-delays of every machine used in the
schedule.)

We note that when delays are uniform and duplication is not allowed, it is easy to check
if opt < ρ since any connected component of the job DAG must be placed on the same
machine. This is demonstrated in our true approximation without duplication in Theorem 3.
In the presence of duplication, the problem is closely related to the Min k-Union problem,
for which conditional hardness proofs are known [12]. This motivates the additive ρmax in
our approximation guarantee.

Related machines and multiprocessors. Theorem 1 is based on a new linear programming
framework for addressing non-uniform job and machine delays. We demonstrate the power
and flexibility of this approach by incorporating two more aspects of heterogeneity: speed
and number of processors. Each machine i has a number mi of processors and a speed si

at which each processor processes jobs. We generalize Theorem 1 to obtain the following
result.

R. Rajaraman, D. Stalfa, and S. Yang 98:5

▶ Theorem 2. There exists a polynomial time algorithm for scheduling unit length,
precedence constrained jobs with duplication on related multiprocessor machines under
machine and job delays, that yields a schedule with makespan polylog(n)(opt + ρmax)).

The exact approximation factor obtained depends on the non-uniformity of the particular
model. For the most general model we consider in Theorem 2, our proof achieves a O(log15 n)
bound. We obtain improved bounds when any of the three defining parameters – size, speed,
and delay – are uniform. For instance, we obtain an approximation factor of O(log5 n)
for scheduling uniform speed and uniform size machines under machine delays alone, i.e.,
when there are no job delays (Corollary 12 of Section 2). Further, with only job delays and
uniform machine delays, we provide a combinatorial asymptotic O(log6 n) approximation
(Lemma 15 of Section 2) which is improved to an asymptotic O(log n) approximation if the
input contains no out-delays. We note that despite some uniformity, special cases can model
certain two-level non-uniform network hierarchies with processors at the leaves, low delays
at the first level, and high delays at the second level.

No-duplication schedules. We next consider the problem of designing schedules that do not
allow duplication. We obtain a polylogarithmic asymptotic approximation via a reduction
to scheduling with duplication. Furthermore, if the delays are symmetric (i.e., ρout

i = ρin
i

for all i, and ρout
v = ρin

v for all v) we are able to find a true polylogarithmic-approximate
no-duplication schedule. To achieve this result, we present an approximation algorithm to
estimate if the makespan of an optimal no-duplication schedule is at least the delay of any
given machine; this enables us to identify machines that cannot communicate in the desired
schedule.1

▶ Theorem 3. There exists a polynomial time algorithm for scheduling unit length,
precedence constrained jobs on related multiprocessor machines under machine
delays and job delays, which produces a no-duplication schedule with makespan
polylog(n)(opt + ρmax). If ρin

i = ρout
i for all i, then there exists a polynomial time

polylog(n)-approximation algorithm for no-duplication schedules.

Pairwise delays. All of the preceding results concern models where the communication
associated with a precedence relation u ≺ v when u and v are executed on different machines
i and j is an additive combination of delays at u, v, i, and j. Additive delays are suitable
for capturing independent latencies incurred by various components of the system. A more
general class of models considers pairwise delays where the delay is an arbitrary function
of i and j (machine-machine), u and v (job-job), or either job and the machine on which
it executes (job-machine). The machine-machine delay model captures classic networking
scenarios, where the delay across machines is determined by the network links connecting
them. Job-job delays model applications where the data that needs to be communicated
from one job to another descendant job depends arbitrarily on the two jobs. The job-machine
model is well-suited for applications where the delay incurred for communicating the data
consumed or produced by a job executing on a machine is an arbitrary function of the size of

1 We note that the corresponding problem for duplication schedules is a min-max partitioning variant of
the Minimum k-Union problem and related to the Min-Max Hypergraph k-Partitioning problem, both
of which have been shown to be Densest-k-Subgraph-hard [9, 11]; this might suggest a similar hardness
result for deriving a true approximation when duplication is allowed.

ICALP 2023

98:6 Scheduling Under Non-Uniform Job and Machine Delays

the data and the bandwidth of the machine. Recent work in [15] shows that scheduling under
job-job delays is as hard as the Unique Machine Precedence Scheduling (UMPS) problem,
providing preliminary evidence that obtaining sub-polynomial approximation factors may
be intractable. We show that UMPS also reduces to scheduling under job-machine delays,
suggesting a similar inapproximability for this model.

▶ Theorem 4 (umps reduces to scheduling under job-machine delays). There is
a polynomial-time approximation-preserving reduction from umps to the scheduling
precedence constrained jobs under job-machine delays.

1.2 Overview of our techniques
Our approximation algorithms for scheduling under job delays and machine delays (The-
orem 1 proved in Section 2) and the generalization to related machines and multiprocessors
(Theorem 2 proved in [42]) rely on a framework composed of a carefully crafted linear
programming relaxation and a series of reductions that help successively reduce the level of
heterogeneity in the problem. While each individual component of the framework refines
established techniques or builds on prior work, taken together they offer a flexible recipe for
designing approximation algorithms for scheduling precedence-ordered jobs on a distributed
system of heterogeneous machines with non-uniform delays. Given the hardness conjectures
of [15] for the job-job delay setting (and for the job-machine setting via Theorem 4), we find
it surprising that a fairly general model incorporating both job delays and machine delays
on related machines is tractable.

Previous results on scheduling under (uniform) communication delays are based on three
different approaches: (a) a purely combinatorial algorithm of [26] that works only for uniform
delay machines; (b) an LP-based approach of [31] that handles related machines and uniform
delays, assuming jobs can be duplicated, and then extends to no-duplication via a reduction;
and (c) an approach of [16] based on a Sherali-Adams hierarchy relaxation followed by a
semi-metric clustering, which directly tackles the no-duplication model. At a very high level,
our main challenge, which is not addressed in any of the previous studies, is to tackle the
multi-dimensional heterogeneity of the problem space: in the nature of delays (non-uniform
values, in- and out-delays, job delays, machine delays) as well as the machines (delay, speed,
and size).

We pursue an LP-based framework, which significantly refines the approach of [31]. Their
algorithm organizes the computation in phases, each phase corresponding to a (uniform)
delay period, and develops a linear program that includes delay constraints capturing when
jobs have to be phase-separated and phase constraints bounding the amount of computation
within a phase. In non-uniform delay models, the delay constraints for a job v executing on
a machine i depend not only on the predecessors of v, but also on the machines on which
they may be scheduled. While there is a natural way to account for non-uniform in-delays in
the LP, incorporating out-delays or even symmetric delays poses technical difficulties. We
overcome this hurdle by first showing that out-delays can be eliminated by suitably adjusting
in-delays, at the expense of a polylogarithmic factor in approximation, thus allowing us to
focus on in-delays.

Despite the reduction to in-delays, extending the LP of [31] by replacing the uniform
delay parameter by the non-uniform delay parameters of our models fails and yields a high
integrality gap. This is because their algorithm crucially relies on an ordering of the machines
(on the basis of their speeds), which is exploited both in the LP (in the delay and phase
constraints) as well as how jobs get assigned and moved in the computation of the final

R. Rajaraman, D. Stalfa, and S. Yang 98:7

schedule. Given the multi-dimensional heterogeneity of the problems we study, there is
no such natural ordering of the machines. To address the above hurdle, we organize the
machines and jobs into groups based on their common characteristics (delay, speed, size),
and introduce new variables for assigning jobs to groups without regard to any ordering
among them. This necessitates new load and delay constraints and a change in rounding and
schedule construction. We now elaborate on these ideas, as we discuss our new framework in
more detail.

Reduction to in-delays. The first ingredient of our recipe is an argument that any instance
of the problem with machine delays and job delays can be reduced to an instance in which
all out-delays are 0, meaning that in the new instance delays depend only on the machine
and job receiving the data, at the expense of a polylogarithmic factor in approximation. This
reduction is given in Lemma 37 and Algorithm 2 in [42]. To convert from a given schedule
with out-delays to one without, we subtract ρout

i + ρout
v from the execution time of every job

v on machine i. However, in order to avoid collisions, we expand the given schedule into
phases of different length, organized in particular sequence so that the execution times within
each phase may be reduced without colliding with prior phases. This transforms the schedule
into one where the in-delay of every machine i is ρin

i + ρout
i and every job v is ρin

v + ρout
v .

This transformation comes at a constant factor cost for machine delays and an O(log2 ρmax)
cost for job delays. A similar procedure converts from an in-delay schedule to one with in-
and out-delays, completing the desired reduction.

The linear program (Sections 2.1–2.2). Before setting up the linear program, we partition
the machines and the jobs into groups of uniform machines and jobs, respectively; i.e. each
machine in a group can be treated as having the same in-delay, speed, and size (to within a
constant factor), and each job in a group can be treated as having the same in-delay. The
final approximation factor for the most general model grows as K3 and L, where L is the
number of job groups and K is the number of machine groups, which depends on the extent
of heterogeneity among the machines. We bound K by O(log3 n) in the case when the speeds,
sizes, and delays of machines are non-uniform. We emphasize that, even with the machines
partitioned in this way, we must carefully design our LP to judiciously distribute jobs among
the groups depending on the precedence structure of the jobs and the particular job and
machine parameters.

Our LP is inspired by that of [31], though significant changes are necessary to allow for
non-uniform delays. The key constraints of each LP are presented below (with the constraints
from [31] rewritten to include machine group variables). Here, C∗ represents the makespan
of the schedule and Cv represents the earliest execution time of job v. xv,k indicates if v is
placed on a machine in group ⟨k⟩ (= 1) or not (= 0). zu,v,k indicates whether xv,k = 1 and
Cv − Cu is less the time it takes to communicate the result of u from a different machine.
yv,k takes the maximum of xv,k and maxu{zv,u,k} to indicate whether some copy of v is
executed on a machine in group ⟨k⟩ (= 1) or not (= 0). Other notation used in the linear
program is explained in Section 2.

One main difference between our LP and that of [31] is in the constraint that regulates
the completion time of precedence ordered jobs in the presence of communication delay.

Delay Constraint in [31] New Delay Constraint

Cv ≥ Cu + ρ
(∑

k′≤k

xv,k′ − zu,v,k

)
⇒ Cv ≥ Cu + (ρ̄k + ρ̄ℓ)(xv,k − zu,v,k)

∀u, v, k : u ≺ v ∀u, v, k, ℓ : u ≺ v and v ∈ JℓK

ICALP 2023

98:8 Scheduling Under Non-Uniform Job and Machine Delays

The constraint of [31] states that if u ≺ v and v is executed on a machine in speed group
k, then the completion time of v is at least ρ greater than the completion time of u unless
some duplicate of u is executed on group k. The summation over machine groups orders
the groups by increasing speeds (similar to [13]). It turns out that the rounding technique
which uses this ordering of machine groups, which is used to eliminate a log factor in [13,31],
does not straightforwardly work in our context. The new constraint has an interpretation
similar to that of the delay constraint in [31]: if u ≺ v and v is executed on delay group k,
then the completion time of v is at least the in-delay of k plus the in-delay of v greater than
the completion time of u, unless some duplicate of u is also executed on group k. However,
in the new constraint, the summation over machine groups has been replaced by a single
machine group assignment variable.

The next change to the linear program regards the constraint which governs how many
jobs can be duplicated within a communication phase for a single job.

Phase Constraint in [31] New Phase Constraint

ρ ≥
∑
u≺v

zu,v,k ∀v, k ⇒ (ρ̄k + ρ̄ℓ)
∑

u

zu,v,k ∀v, k, ℓ : v ∈ JℓK

Both the old and new constraints state that the amount of duplication that can be performed
for a single job within a single communication phase on a given group of machines is at most
the length of the phase. The new constraint also incorporates the machine and job in-delays.

The final change is to the constraints which lower bound the makespan of the schedule
by the total load placed on a single machine.

Load Constraint in [31] New Load Constraints

C∗ · |⟨k⟩| ≥
∑

v

xv,k ∀k ⇒ C∗ · |⟨k⟩| ≥
∑

v

yv,k ∀k

yv,k ≥ xv,k ∀v, k

yu,k ≥ zu,v,k ∀u, v, k

Both constraints state that the makespan is at least the total number of jobs placed on any
group divided by the size of the group. The old constraint uses xv,k as the sole indicator
of whether or not a job is placed on machine group k, and does not need to account for
duplicates because of the optimized rounding scheme which utlizes the ordering of job groups
by increasing speed. Because the new constraint cannot rely on this ordering, we use the
y-variables to account for all duplicates as well.

In [31], the ordering of the groups was leveraged to construct the final schedule by always
placing a job on higher capacity groups than the one to which it is assigned by the LP. Since
the LP assigns all jobs to some group, we can infer that the total load over all groups does
not increase by more than a constant factor. With multidimensional heterogenous machines,
there is no clear ordering of machine groups to achieve a similar property (e.g. one set of jobs
may be highly parallelizable, while another requires a single fast machine). Using the new LP,
our solution is to place all jobs on those groups to which the LP assigns them, along with any
predecessors indicated by the z-variables. However, such a construction could vastly exceed
the value of the LP unless the load contributed by the z-variables is counted toward the
LP makespan. To this end, we introduce the y-variables and associated constraints, which
account for this additional, duplicated load. In the most general setting, we also introduce
constraints which govern the amount of duplication possible within a single communication
phase. These additional constrains model an optimal schedule of the duplicated jobs on the
uniform machines within a single group.

R. Rajaraman, D. Stalfa, and S. Yang 98:9

Rounding the LP solution and determining final schedule (Sections 2.3–2.4). The next
component rounds an optimal LP solution to an integer solution by placing each job on the
group for which the job’s LP mass is maximized. We also place duplicate predecessors of
each job v on its group according to the z-variables for v’s predecessors. This indicates a key
difference with [31], where the load contributed by duplicates was handled by the ordering
of the machines. A benefit of our simple rounding is that it accommodates many different
machine and job properties as long as the number of groups can be kept small. Finally, we
construct a schedule using the integer LP solution. This subroutine divides the set of jobs
assigned to each group into phases and constructs a schedule for each phase by invoking a
schedule for the uniform machines case, appending each schedule to the existing schedule for
the entire instance.

No-duplication schedules. The proof of the first part of Theorem 3 extends an asympototic
polylogarithmic approximation to no-duplication schedules for machine delays and job delays.
The theorem follows from the structure of the schedule designed in Theorem 2 and a
general reduction in [31] from duplication to no-duplication schedules in the uniform delay
case. Avoiding the additive delay penalty of the first part of Theorem 3 to achieve a true
approximation is much more difficult. When delays are symmetric (i.e., in-delays equal out-
delays), we can distinguish those machines whose delay is low enough to communicate with
other machines from those machines with high delay. One of the central challenges is then to
distribute jobs among the high-delay machines. We overcome this difficulty by revising the
LP in the framework of Theorem 2 to partition the jobs among low- and high-delay machines,
and rounding the corresponding solutions separately.

We then must distinguish between those jobs with delay low enough to communicate
with other jobs from those with high delay. We note that any predecessor or successor
of a high delay job must be executed on the same machine as that job. We leverage this
fact to construct our schedule, first placing all high delay jobs with their predecessors and
successors on individual machines. We then run our machine and job delay algorithm with
the remaining jobs on the low delay machines. This schedule is placed after the execution
of the downward closed high-delay components, and before the upward closed high-delay
components, ensuring that the schedule is valid.

We note that the design of no-duplication schedules via a reduction to duplication
schedules incurs a loss in approximation factor of an additional polylogarithmic factor. While
this may not be desirable in a practical implementation, our results demonstrate the flexibility
of the approach and highlight its potential for more general delay models.

Hardness for job-machine delay model. The algorithmic framework outlined above incor-
porates non-uniform job and machine delays that combine additively. It is natural to ask if
the techniques extend to other delay combinations or more broadly to pairwise delay models.
In the job-machine delay model we study, when a job u executed on machine i precedes job
v executed on machine j, then a delay ρv,j between the two executions is incurred. Our
reduction from umps to the job-machine delay problem follows the approach of [15] by
introducing new jobs with suitable job-machine delay parameters that essentially force each
job to be executed on a particular machine. This reduction does not require the flexibility of
assigning different delays for different job-job pairs, but it is unclear if the same technique can
be applied to machine-machine delay models. Delineating the boundary between tractable
models and those for which polylogarithmic approximations violate conjectured complexity
lower bounds is a major problem of interest.

ICALP 2023

98:10 Scheduling Under Non-Uniform Job and Machine Delays

1.3 Related work

Precedence constrained scheduling. The problem of scheduling precedence-constrained
jobs was initiated in the classic work of Graham who gave a constant approximation algorithm
for uniform machines [20]. Jaffe presented an O(

√
m) makespan approximation for the case

with related machines [24]. This was improved upon by Chudak and Shmoys who gave an
O(log m) approximation [13], then used the work of Hall, Schulz, Shmoys, and Wein [22] and
Queyranne and Sviridenko [41] to generalize the result to an O(log m) approximation for
weighted completion time. Chekuri and Bender [10] proved the same bound as Chudak and
Shmoys using a combinatorial algorithm. In subsequent work, Li improved the approximation
factor to O(log m/ log log m) [27]. The problem of scheduling precedence-constrained jobs is
hard to approximate even for identical machines, where the constant depends on complexity
assumptions [6, 25, 47]. Also, Bazzi and Norouzi-Fard [7] showed a close connection between
structural hardness for k-partite graph and scheduling with precedence constraints.

Precedence constrained scheduling under communication delays. Scheduling under
communication delays has been studied extensively [39,43,48]. For unit size jobs, identical
machines, and unit delay, a (7/3)-approximation is given in [35], and [23] proves the NP-
hardness of achieving better than a 5/4-approxmation. Other hardness results are given
in [4, 40, 43]. More recently, Davies, Kulkarni, Rothvoss, Tarnawski, and Zhang [16] give an
O(log ρ log m) approximation in the identical machine setting using an LP approach based on
Sherali-Adams hierarchy, which is extended to include related machines in [17]. Concurrently,
Maiti, Rajaraman, Stalfa, Svitkina, and Vijayaraghavan [31] provide a polylogarithmic
approximation for uniform communication delay with related machines as a reduction from
scheduling with duplication. The algorithm of [31] is combinatorial in the case with identical
machines.

Davies, Kulkarni, Rothvoss, Sandeep, Tarnawski, and Zhang [15] consider the problem of
scheduling precedence-constrained jobs on uniform machine in the presence of non-uniform,
job-pairwise communication delays. That is, if u ≺ v and u and v are scheduled on different
machines, then the time between their executions is at least ρu,v. The authors reduce to
this problem from Unique-Machines Precedence-constrained Scheduling (umps) in which
there is no communication delay, but for each job there is some particular machine on which
that job must be placed. The authors show that umps is hard to approximate to within a
logarithmic factor by a reduction from job-shop scheduling, and conjecture that umps is
hard to approximate within a polynomial factor.

Precedence constrained scheduling under communication delays with job duplication. Us-
ing duplication with communication delay first studied by Papadimitriou and Yannakakis [39],
who give a 2-approximation for DAG scheduling with unbounded processors and fixed delay.
Improved bounds for infinite machines are given in [1, 14, 36, 37]. Approximation algorithms
are given by Munier and Hanen [34,35] for special cases in which the fixed delay is very small
or very large, or the DAG restricted to a tree. The first bounds for a bounded number of
machines are given by Lepere and Rapine [26] who prove an asymptotic O(log ρ/ log log ρ)
approximation. Recent work has extended their framework to other settings: [31] uses
duplication to achieve an O(log ρ log m/ log log ρ) approximation for a bounded number of
related machines, and Liu, Purohit, Svitkina, Vee, and Wang [29] improve on the runtime
of [26] to a near linear time algorithm with uniform delay and identical machines.

R. Rajaraman, D. Stalfa, and S. Yang 98:11

1.4 Discussion and open problems

Our results indicate several directions for further work. First, we conjecture that our results
extend easily to the setting with non-uniform job sizes. We believe the only barriers to such
a result are the techinical difficulties of tracking the completion times of very large jobs that
continue executing long after they are placed on a machine. Also, while our approximation
ratios are the first polylogarithmic guarantees for scheduling under non-uniform delays, we
have not attempted to optimize logarithmic factors. There are obvious avenues for small
reductions in our ratio, e.g. the technique used in [26] to reduce the ratio by a factor of
log log ρ. More substantial reduction, however, may require a novel approach. Additionally,
in the setting without duplication, we incur even more logarithmic factors owing to our
reduction to scheduling with duplication. These factors may be reduced by using a more
direct method, possibly extending the LP-hierarchy style approach taken in [16,17].

Aside from improvements to our current results, our techniques suggest possible avenues
to solve related non-uniform delay scheduling problems. A special case of general machine
metrics is a machine hierarchy, where machines are given as leaves in a weighted tree. Our
incorporation of parallel processors allows our results to apply to a two-level machine hierarch.
We would like to explore extensions of our framework to constant-depth hierarchies and
tree metrics. More generally, scheduling under metric and general machine-machine delays
remains wide open (see Figure 2).

We also believe there are useful analogs to these machine delay models in the job-pairwise
regime. A job v with in-delay ρin

v and out-delay ρout
v has the natural interpretation of the

data required to execute a job, and the data produced by a job. A job tree hierarchy
could model the shared libraries required to execute certain jobs: jobs in different subtrees
require different resources to execute, and downloading these additional resources incurs a
delay. Given the hardness conjectures of [15] and our hardness result for the job-machine
delay model, further refining Figure 2 and exploring the tractability boundary would greatly
enhance our understanding of scheduling under non-uniform delays.

Finally, recall that our notion of job delays is defined in terms of the precedence relation
over the jobs. Another natural notion of job delay may be to consider a DAG defined over
the jobs, with a delay incurred only if there is a directed edge u→ v (rather than u ≺ v). In
this setting, while our results do not hold in the presence of general job delays, they do hold
for some significant special cases. These include instances where the job DAG is transitively
closed, or where job delays are uniform, or where job delays of predecessors are at most that
of their successors (i.e. u ≺ v implies ρout

u ≤ ρout
v and ρin

u ≤ ρin
v), or where there are only

machine delays. However, resolving the most general case is an interesting open problem
since this family of delay models provides an intuitive and important set of problems.

2 Machine Delays and Job Delays

In this section, we present an asymptotic approximation algorithm for scheduling under
machine delays and job delays for unit speed and size machines. As discussed in Section 1.2,
we can focus on the setting with no out-delays, at the expense of a polylogarithmic factor
in approximation; Lemma 37 of [42] presents the reduction to in-delays. Therefore, in
this section, we assume that ρout

i = 0 for all machines i and ρout
v = 0 for all jobs v. For

convenience, we use ρi to denote the in-delay ρin
i of machine i and ρv to denote the in-delay

ρin
v of machine v. Let ρmax = max{maxv{ρv}, maxi{ρi}}.

ICALP 2023

98:12 Scheduling Under Non-Uniform Job and Machine Delays

2.1 Partitioning machines and jobs into groups
In order to simplify our exposition and analysis, we introduce a new set of machines M ′ with
rounded delays. For each i ∈M , if 2k−1 ≤ ρi < 2k, we introduce i′ ∈M ′ with ρi′ = 2k. We
then partition M ′ according to machine delays: machine i ∈M ′ is in ⟨k⟩ if ρi = 2k; we set
ρ̄k = 2k. We also introduce a new set of jobs V ′ with rounded delays. For each v ∈ V , if
2ℓ−1 ≤ ρv < 2ℓ, we introduce v′ ∈ V ′ with ρv′ = 2ℓ. We then partition V ′ according to job
delays: job v ∈ V ′ is in JℓK if ρv = 2ℓ = ρ̄ℓ. For the remainder of the section, we work with
the machine set M ′ and the job set V ′, ensuring that all machines or jobs within a group
have identical delays. As shown in the following lemma, this partitioning is at the expense of
at most a constant factor in approximation.

▶ Lemma 2. The optimal makespan over the machine set V ′, M ′ is no more than a factor
of 2 greater than the optimal solution over V, M .

Proof. Consider any schedule σ on the machine set M . We first show that increasing the
delay of each machine by a factor of 2 increases the makespan of the schedule by at most
a factor of 2. We define the schedule σ′ as follows. For every i, t, if (i, t) ∈ σ(v), then
(i, 2t) ∈ σ′(v). It is easy to see that σ′ maintains the precedence ordering of jobs, and that
the time between the executions of any two jobs has been doubled. Therefore, σ′ is a valid
schedule with all communication delays doubled, and with the makespan doubled. ◀

We can assume that maxk{ρ̄k} ≤ n since if we ever needed to communicate to a machine
with delay greater than n we could schedule everything on a single machine in less time.
Therefore, we have K ≤ log n machine groups. Similarly, maxℓ{ρ̄ℓ} ≤ n, implying that we
have L ≤ log n job groups.

2.2 The linear program
In this section, we design a linear program LPα – Equations (1-11) – parametrized by
α ≥ 1, for machine delays. Following Section 2.1, we assume that the machines and jobs are
organized in groups, where each group ⟨k⟩ (resp., JℓK) is composed of machines (resp., jobs)
that have identical delay.

C∗
α ≥ Cv ∀v (1)

C∗
α · |⟨k⟩| ≥

∑
v

yv,k ∀k (2)

Cv ≥ Cu + (ρ̄k + ρ̄ℓ)(xv,k − zu,v,k) ∀u, v, k, ℓ : (3)
u ≺ v, v ∈ JℓK

Cv ≥ Cu + 1 ∀u, v : u ≺ v (4)

α(ρ̄k + ρ̄ℓ) ≥
∑

u

zu,v,k ∀v, k, ℓ : v ∈ JℓK (5)

∑
k

xv,k = 1 ∀v (6)

Cv ≥ 0 ∀v (7)
xv,k ≥ zu,v,k ∀u, v, k (8)
yv,k ≥ xv,k ∀v, k (9)
yu,k ≥ zu,v,k ∀u, v, k (10)
zu,v,k ≥ 0 ∀u, v, k (11)

Variables. C∗
α represents the makespan of the schedule. For each job v, Cv represents the

earliest completion time of v. For each job v and group ⟨k⟩, xv,k indicates whether or not
v is first executed on a machine in group ⟨k⟩. For each ⟨k⟩ and pair of jobs u, v such that
u ≺ v and v ∈ JℓK, zu,v,k indicates whether v is first executed on a machine in group ⟨k⟩ and
the earliest execution of u is less that ρ̄k + ρ̄ℓ time before the execution of v. Intuitively,
zu,v,k indicates whether there must be a copy of u executed on the same machine that first

R. Rajaraman, D. Stalfa, and S. Yang 98:13

executes v. For each job v and group ⟨k⟩, yv,k indicates whether xv,k = 1 or zu,v,k = 1 for
some u; that is, whether or not some copy of v is placed on group ⟨k⟩. Constraints (7 - 11)
guarantee that all variables are non-negative.

Makespan (2, 1). Constraint 1 states that the makespan is at least the maximum completion
time of any job. Constraint 2 states that the makespan is at least the load on any single
group.

Delays (3, 5). Constraint 3 states that the earliest completion time of v ∈ JℓK must be at
least ρ̄k + ρ̄ℓ after the earliest completion time of any predecessor u if v is first executed on a
machine in group ⟨k⟩ and no copy of u is duplicated on the same machine as v. Constraint 5
limits the amount of duplication that can be done to improve the completion time of any job:
if v ∈ JℓK first executes on a machine in group ⟨k⟩ at time t, then the number of predecessors
that may be executed in the ρ̄k + ρ̄ℓ steps preceding t is at most ρ̄k.

The remaining constraints enforce standard scheduling conditions. Constraint 4 states
that the completion time of v is at least the completion time of any of its predecessors, and
constraint 6 ensures that every job is executed on some group. Constraints 6 and 8 guarantee
that zu,v,k ≤ 1 for all u, v, k. This is an important feature of the LP, since a large z-value
could be used to disproportionately reduce the delay between two jobs in constraint 3.

▶ Lemma 3 (LP1 is a valid relaxation). The minimum of C∗
1 is at most opt.

Proof. Consider an arbitrary schedule σ with makespan Cσ, i.e. Cσ = maxv,i,t{t : (i, t) ∈
σ(v)}.

LP solution. Set C∗
1 = Cσ. For each job v, set Cv to be the earliest completion time of

v in σ, i.e. Cv = mini,t{t : (i, t) ∈ σ(v)}. Set xv,k = 1 if ⟨k⟩ is the group that contains the
machine on which v first completes (choosing arbitrarily if there is more than one) and 0
otherwise. For u, v, k, set zu,v,k = 1 if u ≺ v, xv,k = 1, v ∈ JℓK, and Cv − Cu < ρ̄k + ρ̄ℓ (0
otherwise). Set yu,k = max{xu,k, maxv{zu,v,k}}.

Feasibility. We now establish that the solution defined is feasible. Constraints (1, 7–11)
are easy to verify. We now establish constraints (2–5). Consider constraint 2 for fixed
group ⟨k⟩.

∑
v yv,k is upper bound by the total load Λ on ⟨k⟩. The constraint follows from

C∗
α ≥ Cσ ≥ Λ/|⟨k⟩|.

Consider constraint 3 for fixed u, v, k where u ≺ v. Let X = xv,k and let Z = zu,v,k. If
(X, Z) = (0, 0), (0, 1), or (1, 1) then the constraint follows from constraint 4. If (X, Z) = (1, 0),
then by the assignment of zu,v,k we can infer that Cv − Cu ≥ ρ̄k + ρ̄ℓ, which shows the
constraint is satisfied.

Consider constraint 5 for fixed v, k. If xv,k = 0 then the result follows from the fact
that zu,v,k = 0 for all u. If xv,k = 1, then we can infer that v ∈ JℓK. So, at most ρ̄k + ρ̄ℓ

predecessors of v that can be scheduled in the ρ̄k + ρ̄ℓ time before Cv, ensuring that the
constraint is satisfied. ◀

2.3 Deriving a rounded solution to the linear program
▶ Definition 4. (C, x, y, z) is a rounded solution to LPα if all values of x, y, z are either 0
or 1.

ICALP 2023

98:14 Scheduling Under Non-Uniform Job and Machine Delays

Let LP1 be defined over machine groups ⟨1⟩, ⟨2⟩, . . . , ⟨K⟩ and job groups J1K, J2K, . . . , JLK.
Given a solution (Ĉ, x̂, ŷ, ẑ) to LP1, we construct an integer solution (C, x, y, z) to LP2K as
follows. For each v, k, set xv,k = 1 if k = maxk′{x̂v,k′} (if there is more than one maximizing
k, arbitrarily select one); set to 0 otherwise. Set zu,v,k = 1 if xv,k = 1 and ẑu,v,k ≥ 1/(2K);
set to 0 otherwise. For all u, k, yu,k = max{xu,k, maxv{zu,v,k}}. Set Cv = 2K · Ĉv. Set
C∗

2K = 2K · Ĉ∗
1 .

▶ Lemma 5. If (Ĉ, x̂, ŷ, ẑ) is a valid solution to LP1, then (C, x, y, z) is a valid solution to
LP2K .

Proof. By constraint (6),
∑

k x̂v,k is at least 1, so maxk{x̂v,k} is at least 1/K. Therefore,
xv,k ≤ Kx̂v,k for all v and k. Also, zu,v,k ≤ 2Kẑu,v,k for any u, v, k by definition. By the
setting of Cv for all v, yv,k for all v, k, and C∗

2K , it follows that constraints (1, 4-11) of LP1
imply the respective constraints of LP2K . We first establish constraint (2). For any fixed
group ⟨k⟩,

2KĈ1 · |⟨k⟩| ≥ 2K
∑

v

ŷv,k = 2K
∑

v

max{x̂v,k, max
u

{ẑv,u,k}} by constraints 2, 11 of LP1

≥ 2K
∑

v

xv,k + maxu{zv,u,k}
2K

≥
∑

v

yv,k by definition of yv,k

which entails constraint (2) by C∗
2K = 2KĈ∗

1 . It remains to establish constraint (3) for fixed
u, v, k. We consider two cases. If xv,k − zu,v,k ≤ 0, then the constraint is trivially satisfied in
LP2K . If xv,k − zu,v,k = 1, then, by definition of x and z, x̂v,k − ẑu,v,k is at least 1/(2K).
This entails that Ĉv ≥ Ĉu + ((ρ̄k + ρ̄ℓ)/2K) which establishes constraint (3) of LP2K by
definition of Cv and Cu. ◀

▶ Lemma 6. C2K ≤ 4K · opt.

Proof. Lemma 2 shows that our grouping of machines does not increase the value of the LP
by more than a factor of 2. Therefore, by Lemmas 3 and 5, C2K = 2K · Ĉ1 ≤ 4K · opt. ◀

2.4 Computing a schedule given an integer solution to the LP
Suppose we are given a partition of M into K groups such that group ⟨k⟩ is composed of
identical machines (i.e. for all i, j ∈ ⟨k⟩, ρi = ρj). Also, suppose we are given a partition
of V into L groups such that group JℓK is composed of jobs with identical in-delay. Finally,
we are given a rounded solution (C, x, y, z) to LPα defined over machine groups ⟨1⟩, . . . , ⟨K⟩
and job groups J1K, . . . JLK. In this section, we show that we can construct a schedule that
achieves an approximation for machine delays in terms of α, K, and L. The combinatorial
subroutine that constructs the schedule is defined in Algorithm 1. In the algorithm, we
use a subroutine udps-Solver for Uniform Delay Precedence-Constrained Scheduling. An
O(log ρ/ log log ρ)-asympototic approximation is given in [26]. For completeness, we use
the udps-Solver presented and analyzed in [42], which generalizes the algorithm of [26] to
incorporate non-uniform machine sizes.

We now describe Algorithm 1 informally. The subroutine takes as input the rounded
LPα solution (C, x, y, z) and initializes an empty schedule σ and global parameters T, θ to
0. For a fixed value of T , we iterate through all machine groups ⟨k⟩ and job groups JℓK,
with decreasing ℓ. For a fixed value of T, k, ℓ, we check if there is some integer d such that
T = d(ρ̄k + ρ̄ℓ). If so, we define Vk,ℓ,d and Uk,ℓ,d as in lines 4 and 5. Vk,ℓ,d represents the set
of jobs in JℓK assigned by the LP to machine group ⟨k⟩ in a single phase of length ρ̄k + ρ̄ℓ.

R. Rajaraman, D. Stalfa, and S. Yang 98:15

Algorithm 1 Machine Delay Scheduling with Duplication.

Init: ∀v, σ(v)← ∅; T ← 0; θ ← 0
1 while T ≤ C∗

α do
2 forall machine groups ⟨k⟩ do
3 for job group JℓK = JLK to J1K: ∃ integer d, T = d(ρ̄k + ρ̄ℓ) do
4 Vk,ℓ,d ← {v ∈ JℓK : xv,k = 1 and T ≤ Cv < T + ρ̄k + ρ̄ℓ}
5 Uk,ℓ,d ← {u : ∃v ∈ Vk,ℓ,d, u ≺ v and T ≤ Cu < T + ρ̄k + ρ̄ℓ}
6 σ′ ← udps-Solver on (Vk,ℓ,d ∪ Uk,ℓ,d, ⟨k⟩, ρ̄k + ρ̄ℓ)
7 ∀v, i, t, if (i, t) ∈ σ′(v) then σ(v)← σ(v) ∪ {(i, θ + ρ̄k + ρ̄ℓ + t)}
8 θ ← θ + 2(ρ̄k + ρ̄ℓ)

9 T ← T + 1

Uk,ℓ,d represents predecessors of Vk,ℓ,d whose LP completion times are within ρ̄k + ρ̄ℓ of
their successor in Vk,ℓ,d. We then call udps-Solver to construct a udps schedule σ′ on jobs
Vk,ℓ,d∪Uk,ℓ,d, machines in ⟨k⟩, and delay ρ̄k + ρ̄ℓ. We then append σ′ to σ. Once all values of
k, ℓ have been checked, we increment T and repeat until all jobs are scheduled. The structure
of the schedule produced by Algorithm 1 is depicted in Figure 4. Lemma 7 (entailed by
Lemma 45 of [42]) provides guarantees for the udps-Solver subroutine.

▶ Lemma 7. Let U be a set of η jobs such that for any v ∈ U, |{u ∈ U : u ≺ v}| ≤ αδ. Given
input U , a set of µ identical machines, and delay δ, udps-Solver produces, in polynomial
time, a valid udps schedule with makespan at most 3αδ log(αδ) + (2η/µ).

▶ Lemma 8. Algorithm 1 outputs a valid schedule in polynomial time.

Proof. It is easy to see that the algorithm runs in polynomial time, and Lemma 7 entails
that precedence constraints are obeyed on each machine. Consider a fixed v, k, d such that
v ∈ Vk,ℓ,d. By line 7, we insert a communication phase of length ρ̄k + ρ̄ℓ before appending
the schedule of any set of jobs Vk,ℓ,d ∪ Uk,ℓ,d on any machine group ⟨k⟩. So, by the time
Algorithm 1 executes any job in Vk,ℓ,d, every job u such that Cu < d(ρ̄k + ρ̄ℓ) is available to
all machines, including those in group ⟨k⟩. So the only predecessors of v left to execute are
those jobs in Uk,ℓ,d. Therefore, all communication constraints are satisfied. ◀

▶ Lemma 9. If (C, x, y, z) is a rounded solution to LPα then Algorithm 1 outputs a schedule
with makespan at most 12α log(ρmax)(KLC∗

α + ρmax(K + L)).

Proof. Fix any schedule σ. Note that the schedule produced by the algorithm executes a
single job group on a single machine group at a time. Our proof establishes a bound for
the total time spent executing a single job group on a single machine group, then sums this
bound over all K machine groups and L job groups.

▷ Claim 10. For any v, u, k, ℓ, d, if v ∈ Vk,ℓ,d and Cv < Cu + (ρ̄k + ρ̄ℓ) then zu,v,k,ℓ = 1.

Proof. Fix u, v, k, ℓ, d such that v ∈ Vk,ℓ,d and Cv < Cu + (ρ̄k + ρ̄ℓ). By the definition of
Vk,ℓ,d, xv,k is 1. By constraint 3, Cv ≥ Cu + ρ̄k(1− zu,v,k), implying that zu,v,k cannot equal
0. Since zu,v,k is either 0 or 1, we have zu,v,k = 1. ◁

ICALP 2023

98:16 Scheduling Under Non-Uniform Job and Machine Delays

〈1〉
〈2〉
〈3〉

〈1〉
〈2〉
〈3〉

V1,1 V1,2 V1,3 V1,4 V1,5 V1,6 V1,7 V1,8

. . .V2,1 V2,2 V2,3 V2,4

V3,1 V3,2

. . .

LPα solution

Schedule

σ1,1

σ2,1

σ3,1

σ1,2 σ1,3

σ2,2

σ1,4 σ1,5

σ2,3

σ3,2

σ1,6 σ1,7

σ2,4

σ1,8

Figure 4 Structure of the schedule produced by Algorithm 1. σk,d denotes a schedule of Vk,ℓ,d

on the machines in group ⟨k⟩. The algorithm scans the LPα solution by increasing time (left to
right). At the start of each Vk,ℓ,d, the algorithm constructs a schedule of the set and appends it to
the existing schedule.

▷ Claim 11. For any k, ℓ, we show
a

∑
d |Vk,ℓ,d ∪ Uk,ℓ,d| ≤ C∗

α · |⟨k⟩| and
b for any d and v ∈ Vk,ℓ,d, the number of v’s predecessors in Vk,ℓ,d ∪ Uk,ℓ,d is at most

α(ρ̄k + ρ̄ℓ).

Proof. Fix k, ℓ. We first prove a. For any v in Vk,ℓ,d we have xv,k = 1 by the definition of
Vk,ℓ,d. Consider any u in Uk,ℓ,d. By definition, there exists a v′ ∈ Vk,ℓ,d such that xv′,k = 1
and Cv < Cu + (ρ̄k + ρ̄ℓ); fix such a v′. By claim 10, zu,v′,k = 1. So, by constraint 10,
yv,k = 1 for every job v ∈ Vk,ℓ,d ∪ Uk,ℓ,d. For any d′ ̸= d, Vk,ℓ,d and Vk,ℓ,d′ are disjoint. So∑

d |Vk,ℓ,d ∪ Uk,ℓ,d| is at most the right-hand side of constraint 2, which is at most C∗
α · |⟨k⟩|.

We now prove b. Fix v, d such that v ∈ Vk,ℓ,d. Consider any u in Vk,ℓ,d ∪ Uk,d such that
u ≺ v. By definition of Vk,ℓ,d and Uk,ℓ,d, Cv < Cu + (ρ̄k + ρ̄ℓ). By Claim 10, zu,v,k = 1. The
claim then follows from constraint (5). ◁

By Lemma 7 and Claim 11b, the time spent executing jobs in JℓK on machines in ⟨k⟩ is
at most∑

d

(
3α(ρ̄k + ρ̄ℓ) log(α(ρ̄k + ρ̄ℓ)) + 2 · |Vk,ℓ,d ∪ Uk,ℓ,d|

|⟨k⟩|

)
The summation over the first term is at most ⌈C∗

α/(ρ̄k + ρ̄ℓ)⌉ 3α(ρ̄k + ρ̄ℓ) log(α(ρ̄k + ρ̄ℓ))
which is at most 3C∗

αα log(α(ρ̄k + ρ̄ℓ)) + 3α(ρ̄k + ρ̄ℓ) log(α(ρ̄k + ρ̄ℓ)). The summation over
the second term is at most 2C∗

α by claim 11a. Summing over all K machine groups and
L job groups, and considering K, L ≤ log ρmax, the total length of the schedule is at most
12α log(ρmax)(KLC∗

α + ρmax(K + L)). ◀

▶ Theorem 1 (Job Delays and Machine Delays). There exists a polynomial time algorithm
to compute a valid machine delays and job precedence delays schedule with makespan
O((log n)9(opt + ρmax)).

Proof. Lemma 5 entails that (C, x, y, z) is a valid solution to LP2K . Lemma 6 entails that
C∗

2K ≤ 4K ·opt. With α = 2K, Lemma 9 entails that the makespan of our schedule is at most
12α log(ρmax)(KLC∗

α+ρmax(K+L)) = 48(log ρmax)5opt+24(log ρmax)3ρmax for the case with
no out-delays. By Lemma 37 of [42], the length of our schedule is O((log ρmax)9(opt + ρmax)
The theorem is entailed by ρmax ≤ n. This proves the theorem. ◀

R. Rajaraman, D. Stalfa, and S. Yang 98:17

▶ Corollary 12 (Machine Delays). There exists a polynomial time algorithm to compute a
valid machine delays schedule with makespan O((log n)5 · (opt + ρ)).

Proof. Lemma 5 entails that (C, x, y, z) is a valid solution to LP2K . Lemma 6 entails that
C∗

2K ≤ 4K · opt. With α = 2K, Lemma 9 entails that the makespan of our schedule
is at most 12α log(ρmax)(KLC∗

α + ρmax(K + L)) = 48(log ρmax)5opt + 24(log ρmax)3ρmax
for the case with no out-delays. By Lemma 41 of [42], the length of our schedule is
O((log ρmax)5(opt + ρmax) The theorem is entailed by ρmax ≤ n. ◀

2.5 Combinatorial Algorithm for Uniform Machine Delays

The only noncombinatorial subroutine of our algorithm is solving the linear program. In
this section, we describe how to combinatorially construct a rounded solution to LP1 when
machine delays are uniform (i.e. for all i, j, ρin

i = ρout
i = ρin

j = ρout
j), machine speeds are

unit, and machine capacities are unit. We let δ represent the uniform machine delay. By
Lemma 37 of [42], we focus on the case where all job out-delays are 0. We let ρv = δ + ρin

v

for any job v.
Since delays, speeds, and capacities are uniform, there is only one machine group: ⟨1⟩.

Set xv,1 = yv,1 = 1 for all v. For each job v, we define Cv as follows. If v has no predecessors,
we set Cv = 0. Otherwise, we order v’s predecessors such that Cui ≥ Cui+1 . We define
Cv = max1≤i≤ρv

{Cui
+ i}. We set C∗ = max{n/m, maxv{Cv}}. We set zu,v,1 = 1 if u ≺ v

and Cv − Cu < ρv; and set to 0 otherwise.

▶ Lemma 13. C∗ ≤ opt.

Proof. Consider an arbitrary schedule in which tv is the earliest completion time of any job
v. We show that, for any v, tv ≥ Cv, which is sufficient to prove the lemma.

We prove the claim by induction on the number of predecessors of v. The claim is trivial
if v has no predecessors. Suppose that the claim holds for all of v’s predecessors and let
y = arg max1≤i≤ρv

{Cui
+ i}. Then Cv = Cuy

+ y ≤ tuy
+ y (by IH) = ty + |{ux : 0 ≤ x ≤

y}| ≤ ty + ρv. This entails that all jobs u1, . . . uy must be executed on the same machine as v.
Now suppose, for the sake of contradiction, that tv < Cv. Then all jobs u ∈ {ux : 0 ≤ x < y}|
must be executed serially in the time tv − tuy < Cv − tuy = |{ux : 0 ≤ x ≤ y}| which gives
us our contradiction. ◀

▶ Lemma 14. (C, x, y, z) is a rounded solution to LP1.

Proof. It is easy to see that constraints (1, 2, 3, 4, 6, 7, 8, 9, 10 11) are satisfied by the
assignment. So we must only show that constraint (5) is satisfied for fixed v. We can see from
the definition of Cv, that maximum number of predecessors u such that Cv − Cu < ρv + ρ is
at most ρv + ρ. This proves the lemma. ◀

▶ Lemma 15 (Combinatorial Algorithm for Job Delays). There exists a purely combinat-
orial, polynomial time algorithm to compute a schedule for Job Delays with makespan
O((log n)6(opt + maxv{ρv})).

Proof. Lemma 9 entails that the length of the schedule is at most 12(log ρmax)2(opt + ρmax)
for the problem with job in-delays. By Lemma 37 of [42] we achieve a makespan of
O((log ρmax)6(opt + ρmax)) for job in- and out-delays. ◀

ICALP 2023

98:18 Scheduling Under Non-Uniform Job and Machine Delays

References
1 Ishfaq Ahmad and Yu-Kwong Kwok. On exploiting task duplication in parallel program

scheduling. IEEE Transactions on Parallel and Distributed Systems, 9(9):872–892, September
1998. doi:10.1109/71.722221.

2 Adil Amirjanov and Konstantin Sobolev. Scheduling of directed acyclic graphs by a genetic
algorithm with a repairing mechanism. Concurrency and Computation: Practice and Experience,
29(5):e3954, 2017. e3954 CPE-16-0237.R1. doi:10.1002/cpe.3954.

3 Pau Andrio, Adam Hospital, Javier Conejero, Luis Jordá, Marc Del Pino, Laia Codo, Stian
Soiland-Reyes, Carole Goble, Daniele Lezzi, Rosa M Badia, Modesto Orozco, and Josep Gelpi.
Bioexcel building blocks, a software library for interoperable biomolecular simulation workflows.
Scientific data, 6(1):1–8, 2019.

4 Evripidis Bampis, Aristotelis Giannakos, and Jean-Claude König. On the complexity of
scheduling with large communication delays. European Journal of Operational Research,
94:252–260, 1996.

5 Nikhil Bansal. Scheduling open problems: Old and new. The 13th Workshop on Models
and Algorithms for Planning and Scheduling Problems (MAPSP 2017), 2017. URL: http:
//www.mapsp2017.ma.tum.de/MAPSP2017-Bansal.pdf.

6 Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. 2009 50th
Annual IEEE Symposium on Foundations of Computer Science, pages 453–462, October 2009.
doi:10.1109/focs.2009.23.

7 Abbas Bazzi and Ashkan Norouzi-Fard. Towards tight lower bounds for scheduling problems.
Lecture Notes in Computer Science, pages 118–129, 2015. doi:10.1007/978-3-662-48350-3_
11.

8 Gregor Behnke, Daniel Höller, and Susanne Biundo. Bringing order to chaos – a compact
representation of partial order in sat-based htn planning. Proceedings of the AAAI Conference
on Artificial Intelligence, 33(01):7520–7529, July 2019. doi:10.1609/aaai.v33i01.33017520.

9 Karthekeyan Chandrasekaran and Chandra Chekuri. Min-max partitioning of hypergraphs
and symmetric submodular functions. In Proceedings of the Thirty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’21, pages 1026–1038, USA, 2021. Society for
Industrial and Applied Mathematics.

10 Chandra Chekuri and Michael Bender. An efficient approximation algorithm for minimizing
makespan on uniformly related machines. Journal of Algorithms, 41(2):212–224, November
2001. doi:10.1006/jagm.2001.1184.

11 Eden Chlamtáč, Michael Dinitz, and Yury Makarychev. Minimizing the union: Tight approx-
imations for small set bipartite vertex expansion. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 881–899. SIAM, 2017.

12 Eden Chlamtáč, Michael Dinitz, and Yury Makarychev. Minimizing the union: Tight ap-
proximations for small set bipartite vertex expansion. In Proceedings of the 2017 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 881–899, 2017.

13 Fabián A. Chudak and David B. Shmoys. Approximation algorithms for precedence-constrained
scheduling problems on parallel machines that run at different speeds. Journal of Algorithms,
30(2):323–343, 1999.

14 Sekhar Darbha and Dharma P. Agrawal. Optimal scheduling algorithm for distributed-memory
machines. IEEE Transactions on Parallel and Distributed Systems, 9:87–95, 1998.

15 Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Sai Sandeep, Jakub Tarnawski, and
Yihao Zhang. On the hardness of scheduling with non-uniform communication delays. In
Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2958–2977, 2022. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.176.

16 Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, and Yihao Zhang.
Scheduling with communication delays via lp hierarchies and clustering. In 2020 IEEE
61st Annual Symposium on Foundations of Computer Science (FOCS), pages 822–833, 2020.
doi:10.1109/FOCS46700.2020.00081.

https://doi.org/10.1109/71.722221
https://doi.org/10.1002/cpe.3954
http://www.mapsp2017.ma.tum.de/MAPSP2017-Bansal.pdf
http://www.mapsp2017.ma.tum.de/MAPSP2017-Bansal.pdf
https://doi.org/10.1109/focs.2009.23
https://doi.org/10.1007/978-3-662-48350-3_11
https://doi.org/10.1007/978-3-662-48350-3_11
https://doi.org/10.1609/aaai.v33i01.33017520
https://doi.org/10.1006/jagm.2001.1184
https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.176
https://doi.org/10.1109/FOCS46700.2020.00081

R. Rajaraman, D. Stalfa, and S. Yang 98:19

17 Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, and Yihao Zhang.
Scheduling with communication delays via lp hierarchies and clustering ii: Weighted completion
times on related machines. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2958–2977, 2021. doi:10.1137/1.9781611976465.176.

18 Yuanxiang Gao, Li Chen, and Baochun Li. Spotlight: Optimizing device placement for training
deep neural networks. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1676–1684. PMLR, 10–15 July 2018. URL: https://proceedings.mlr.press/
v80/gao18a.html.

19 M. R. Garey and David S. Johnson. Scheduling tasks with nonuniform deadlines on two
processors. J. ACM, 23(3):461–467, 1976. doi:10.1145/321958.321967.

20 Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics, 17:416–429, 1969.

21 Ubaid Ullah Hafeez, Xiao Sun, Anshul Gandhi, and Zhenhua Liu. Towards optimal placement
and scheduling of dnn operations with pesto. In Proceedings of the 22nd International
Middleware Conference, pages 39–51, 2021.

22 Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to minimize
average completion time: Off-line and on-line approximation algorithms. Mathematics of
Operations Research, 22(3):513–544, August 1997. doi:10.1287/moor.22.3.513.

23 J.A. Hoogeveen, Jan Karel Lenstra, and Bart Veltman. Three, four, five, six, or the complexity
of scheduling with communication delays. Operations Research Letters, 16(3):129–137, 1994.
doi:10.1016/0167-6377(94)90024-8.

24 Jeffrey M. Jaffe. Efficient scheduling of tasks without full use of processor resources. Theoretical
Computer Science, 12(1):1–17, September 1980. doi:10.1016/0304-3975(80)90002-x.

25 Jan Karel Lenstra and A. H. G. Rinnooy Kan. Complexity of scheduling under precedence
constraints. Operations Research, 26(1):22–35, 1978. doi:10.1287/opre.26.1.22.

26 Renaud Lepere and Christophe Rapine. An asymptotic O(ln ρ/ ln ln ρ)-approximation al-
gorithm for the scheduling problem with duplication on large communication delay graphs.
In Annual Symposium on Theoretical Aspects of Computer Science, pages 154–165. Springer,
2002.

27 Shi Li. Scheduling to minimize total weighted completion time via time-indexed linear
programming relaxations. In 2017 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, pages 283–294, 2017. doi:10.1109/FOCS.2017.34.

28 Guanfeng Liang and Ulaş C. Kozat. Fast cloud: Pushing the envelope on delay performance
of cloud storage with coding. IEEE/ACM Transactions on Networking, 22(6):2012–2025,
December 2014. doi:10.1109/TNET.2013.2289382.

29 Quanquan C. Liu, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang. Scheduling
with communication delay in near-linear time. In STACS, 2022.

30 Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan Minocha, Sameh Elnikety,
Saurabh Bagchi, and Somali Chaterji. Wisefuse: Workload characterization and dag trans-
formation for serverless workflows. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 6(2), June 2022. doi:10.1145/3530892.

31 Biswaroop Maiti, Rajmohan Rajaraman, David Stalfa, Zoya Svitkina, and Aravindan Vi-
jayaraghavan. Scheduling precedence-constrained jobs on related machines with communication
delay. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS),
pages 834–845, 2020. doi:10.1109/FOCS46700.2020.00082.

32 Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff Dean.
Hierarchical planning for device placement. In International Conference on Learning Repres-
entations, 2018. URL: https://openreview.net/pdf?id=Hkc-TeZ0W.

33 Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou,
Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement op-
timization with reinforcement learning. In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, pages 2430–2439, 2017. URL: http://proceedings.mlr.
press/v70/mirhoseini17a.html.

ICALP 2023

https://doi.org/10.1137/1.9781611976465.176
https://proceedings.mlr.press/v80/gao18a.html
https://proceedings.mlr.press/v80/gao18a.html
https://doi.org/10.1145/321958.321967
https://doi.org/10.1287/moor.22.3.513
https://doi.org/10.1016/0167-6377(94)90024-8
https://doi.org/10.1016/0304-3975(80)90002-x
https://doi.org/10.1287/opre.26.1.22
https://doi.org/10.1109/FOCS.2017.34
https://doi.org/10.1109/TNET.2013.2289382
https://doi.org/10.1145/3530892
https://doi.org/10.1109/FOCS46700.2020.00082
https://openreview.net/pdf?id=Hkc-TeZ0W
http://proceedings.mlr.press/v70/mirhoseini17a.html
http://proceedings.mlr.press/v70/mirhoseini17a.html

98:20 Scheduling Under Non-Uniform Job and Machine Delays

34 Alix Munier. Approximation algorithms for scheduling trees with general communication
delays. Parallel Computing, 25(1):41–48, 1999.

35 Alix Munier and Claire Hanen. Using duplication for scheduling unitary tasks on m processors
with unit communication delays. Theoretical Computer Science, 178(1):119–127, 1997. doi:
10.1016/S0304-3975(97)88194-7.

36 Alix Munier and Jean-Claude König. A heuristic for a scheduling problem with communication
delays. Operations Research, 45(1):145–147, 1997.

37 Michael A. Palis, Jing-Chiou Liou, and David S. L. Wei. Task clustering and scheduling for
distributed memory parallel architectures. IEEE Transactions on Parallel and Distributed
Systems, 7(1):46–55, 1996.

38 Christos H. Papadimitriou and Mihalis Yannakakis. Scheduling interval-ordered tasks. SIAM
J. Comput., 8(3):405–409, 1979. doi:10.1137/0208031.

39 Christos H. Papadimitriou and Mihalis Yannakakis. Towards an architecture-independent
analysis of parallel algorithms. SIAM journal on computing, 19(2):322–328, 1990.

40 Christophe Picouleau. Two new NP-complete scheduling problems with communication delays
and unlimited number of processors. Inst. Blaise Pascal, Univ., 1991.

41 Maurice Queyranne and Maxim Sviridenko. Approximation algorithms for shop scheduling
problems with minsum objective. Journal of Scheduling, 5(4):287–305, 2002. doi:10.1002/
jos.96.

42 Rajmohan Rajaraman, David Stalfa, and Sheng Yang. Scheduling under non-uniform job and
machine delays, 2022. arXiv:2207.13121.

43 Victor J Rayward-Smith. UET scheduling with unit interprocessor communication delays.
Discrete Applied Mathematics, 18(1):55–71, 1987.

44 Juan A. Rico-Gallego, Juan C. Díaz-Martín, Ravi Reddy Manumachu, and Alexey L. Lastovet-
sky. A survey of communication performance models for high-performance computing. ACM
Computing Surveys, 51(6), January 2019. doi:10.1145/3284358.

45 Petra Schuurman and Gerhard J. Woeginger. Polynomial time approximation algorithms for
machine scheduling: ten open problems. Journal of Scheduling, 2(5):203–213, 1999.

46 Bastian Seifert, Chris Wendler, and Markus Püschel. Causal fourier analysis on directed
acyclic graphs and posets. CoRR, abs/2209.07970, 2022. doi:10.48550/arXiv.2209.07970.

47 Ola Svensson. Conditional hardness of precedence constrained scheduling on identical machines.
Proceedings of the 42nd ACM symposium on Theory of computing – STOC ’10, pages 745–754,
2010. doi:10.1145/1806689.1806791.

48 Bart Veltman, B. J. Lageweg, and Jan Lenstra. Multiprocessor scheduling with communication
delays. Parallel Computing, 16:173–182, 1990.

49 Laurens Versluis, Erwin Van Eyk, and Alexandru Iosup. An analysis of workflow formalisms for
workflows with complex non-functional requirements. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, pages 107–112, 2018.

50 Guangyuan Wu, Fangming Liu, Haowen Tang, Keke Huang, Qixia Zhang, Zhenhua Li, Ben Y.
Zhao, and Hai Jin. On the performance of cloud storage applications with global measurement.
In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), pages
1–10, 2016. doi:10.1109/IWQoS.2016.7590449.

https://doi.org/10.1016/S0304-3975(97)88194-7
https://doi.org/10.1016/S0304-3975(97)88194-7
https://doi.org/10.1137/0208031
https://doi.org/10.1002/jos.96
https://doi.org/10.1002/jos.96
https://arxiv.org/abs/2207.13121
https://doi.org/10.1145/3284358
https://doi.org/10.48550/arXiv.2209.07970
https://doi.org/10.1145/1806689.1806791
https://doi.org/10.1109/IWQoS.2016.7590449

	1 Introduction
	1.1 Overview of our results
	1.2 Overview of our techniques
	1.3 Related work
	1.4 Discussion and open problems

	2 Machine Delays and Job Delays
	2.1 Partitioning machines and jobs into groups
	2.2 The linear program
	2.3 Deriving a rounded solution to the linear program
	2.4 Computing a schedule given an integer solution to the LP
	2.5 Combinatorial Algorithm for Uniform Machine Delays

