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Abstract
The increasing complexity of real-time systems, comprising control tasks interacting with physics and
non-control tasks, comes with substantial challenges: meeting various non-functional requirements
implies conflicting design goals and a pronounced gap between worst and average-case resource
requirements up to the overall timeliness being unverifiable. Mixed-criticality systems (MCS) is a
well-known mitigation concept that operates the system in different criticality levels with timing
guarantees given only to the subset of critical tasks. However, in many real-world applications,
the criticality of control tasks is tied to the system’s physical state and control deviation, with
safety specifications becoming a crucial design objective. Monitoring the physical state and adapting
scheduling is inaccessible to MCS but has been dedicated mainly to control engineering approaches
such as self-triggered (model-predictive) control. These, however, are hard to integrate with
scheduling or expensive at run-time.

This paper explores the potential of linking both worlds and elevating the physical state to a
criticality criterion. We, therefore, propose a dedicated state estimation that can be leveraged as a
run-time monitor for criticality mode changes. For this purpose, we develop a highly efficient one-
dimensional state abstraction to be computed within the operating system’s scheduling. Furthermore,
we show how to limit abstraction pessimism by feeding back state measurements robustly. The
paper focuses on the control fundamentals and outlines how to leverage this new tool in adaptive
scheduling. Our experimental results substantiate the efficiency and applicability of our approach.
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1 Introduction

For quite some time, we have been facing a rapidly increasing complexity of real-time (control)
systems, such as the proliferation of autonomous driving and robotic applications. These are
characterized by high performance requirements with numerous control tasks, which interact
with physics in closed loops, and non-control tasks executed along with them, forming
a heterogenous task set. Meeting all the tasks’ non-functional requirements (e.g., QoC,
performance, costs) implies conflicting design goals and a pronounced gap between worst and
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11:2 State Abstraction and Run-Time Monitoring of Mixed-Criticality Control Systems

Wind disturbance

Zero state
Safety specification
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Figure 1 Illustration of a system with safety constraints: the UAV must stay within given bounds
(filled area). Compliance is challenged by disturbances (i.e., wind), which, in the worst case, can
only be rejected in ℎ𝑖 mode. Note that criticality change depends on the physical state (i.e., position
and velocity vectors). State estimation (hatched areas) varies between modes as laxer scheduling
implies more pessimism due to less stringent control.

average-case resource requirements up to the overall timeliness and safety being unverifiable.
This gap is a well-known challenge for heterogeneous task sets with a large body of work
on mitigation techniques, particularly the concept of mixed-criticality systems (MCS) first
introduced by Vestal [42]. It facilitates adapted design and verification of task sets with
varying requirements, such that task parameters (e.g., WCETs, periods) become dependent
on a criticality level. As a result, MCSs operate in different modes, transparently monitored
(e.g., execution time) and enforced by the operating system, with timing guarantees given
only to the subset of critical (control) tasks; MCS typically have no intended bearing on the
physical side of the system.

As an orthogonal approach, conflicting design goals can be eased by reducing the timing
requirements of control tasks based on the inherent robustness of controllers. The latter is
exploited to relax, for example, periodicity [11] or deadline adherence [32] while guaranteeing
stability. A popular approach is, for example, (𝑚, 𝐾)-firm scheduling [21], which requires
at least 𝑚 out of 𝐾 consecutive job releases to meet their deadlines in terms of a weakly-
hard [7] real-time design. Consequently, the controller consistently provides the best possible
performance, depending on the utilization, without failing in the worst case [4]. However, this
behavior, in turn, represents significant over-provisioning on average. Extended variants of
these co-design approaches also allow the controller to adapt to specific job drop scenarios [29]
or switch between different controller modes [15], further softening timing constraints. We
will discuss a large body of related work in Section 5.

1.1 Problem Statement

In real-world applications, a crucial design objective [2, 6, 38] is to ensure that a system
will remain within given safety specifications (e.g., maximum deviation from equilibrium)
even at the worst assumed disturbance. Here, the necessary system response’s stringency
(e.g., temporal) varies with the state-dependent deviation (e.g., control error). Although the
control-aware scheduling approaches above can exploit varying demands, they typically aim
solely at control stability and thus cannot guarantee compliance with such safety specifications.
Note that, in this context, stability only implies that the system reaches equilibrium in the
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absence of disturbances without any assertions of the largest possible deviation they inflict.
On the other hand, a control task’s criticality could be characterized by the risk of a safety
violation. However, typically, MCS cannot meet such requirements since they do not assess
criticality based on control error but on timing, whereby only an indirect relationship exists
between temporal and physical properties.

In the following, we use the UAV in Figure 1 as an illustrative example to make our
point. It must follow a given flight trajectory, perform collision avoidance, and simultaneously
fulfill other mission objectives, all on a shared resource-limited computing platform. In
addition, per safety specifications, the UAV must settle and stay within a one-meter radius
around its reference (filled area) to avoid crashing into obstacles even in the presence of
wind disturbance. On the other hand, higher accuracy inside this envelope is generally
desirable yet not mandatory. Finally, assuming worst-case wind disturbances to be a rare
failure scenario, we can design the system with a low (𝑙𝑜) and a high (ℎ𝑖) criticality mode.
The former facilitates sharing and uses relaxed parameters, for example, larger periods, lax
WCETs, or an (m, K) execution model. The latter provides strong isolation, high assurance,
and fault rejection. In the given scenario, the maximum wind disturbance drives the UAV off.
For some time (i.e., first two states), the relaxed execution behavior in low-criticality mode
remains tolerable due to inertia. However, depending on the UAV’s physical state, notably
its position and velocity vectors, switching to high-criticality mode at a precise moment (i.e.,
third state) is imperative to avoid the momentum carrying the UAV outside the safety limit.
Our concern is that monitoring timing parameters is insufficient to identify the criticality
change. Cheng et al. [13] consequently propose using the quality of control as a changeover
criterion, however, assuming uncorrelated noise and resorting to a probabilistical model,
which is hardly suited for our scenario.

In control engineering, some approaches tie criticality to the current system state. For
example, in self-triggered control (STC) methods [23], the controller itself computes the
next necessary control instant based on the physical state. Thus, STC releases control tasks
sporadically whenever the system threatens to deviate from equilibrium too far, establishing a
form of adaptive scheduling. Self-triggered model predictive control (MPC) schemes go even
one step further by controlling the process and computing the next sampling instant [25] while
enforcing state and control value constraints in the presence of disturbances [28]. However,
by unifying state estimation and scheduling, these approaches are inherently incompatible
with traditional scheduling methods: jobs must be executed with high timing adherence once
released. Thus we lose support for heterogeneous task sets and adaptive scheduling (e.g.,
criticality-dependent task parameters).

We can address the problem by separating state estimation from controller execution. For
the UAV example, a safe decision must be made for a criticality mode. Since the execution
conditions in low-criticality mode are more relaxed, the reachable physical state for a given
observation period is larger: with less control, the drone can drift further. Conversely, the
reachable set is much tighter in high mode. However, robustly observing and predicting the
system’s physical state is challenging. Established approaches, for example, a set-valued
Kalman filter [30], can robustly locate the physical state up to a time-varying ellipsoid. Yet,
computational costs have thwarted their use as run-time monitoring for mixed-criticality or
other adaptive scheduling approaches at the operating system (OS) level. Our evaluation in
Section 4 highlights the overheads associated with set-valued state estimation.

The fundamental issue addressed in this paper is to facilitate the use of the physical
state of control systems as a general criticality and scheduling criterion at the OS level.
Our approach offers significant advantages over application-level solutions, such as isolation,
standard interfaces, and, most importantly, seamless integration with temporal monitoring
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Figure 2 Overview of our approach: implementing state monitoring at the OS level facilitates
strong isolation, an application-independent interface, and seamless integration with traditional (MC)
execution-time monitoring and scheduling. State abstractions are parameterized by design-time
analysis for safe mode switching.

and scheduling of all the system’s tasks. As a first step, we focus on low-overhead yet robust
(i.e., sound) state estimation at run time and design-time verification of it as a prerequisite
for this aim. Therefore, we derive the necessary control engineering background and provide
an interface to real-time scheduling. At this point, we emphasize that in this paper, we are
concerned with the basic methodology rather than a specific scheduling approach; we believe
our approach can serve a wide range of existing scheduling techniques.

Conceptually, we seek a time-dynamic and one-dimensional state abstraction 𝑣𝑘 :

𝑣𝑘+1 = 𝜌𝜎𝑘
𝑣𝑘 + 𝛽𝜎𝑘

, 0 ≤ 𝑣𝑘
!
≤ 𝑣𝑚𝑎𝑥 ∀𝑘 ∈ N0.

While the quantity 𝑣𝑘 provides an upper bound on the system’s state, 𝜌𝜎𝑘
denotes the

time-varying decay rate (i.e., a lower bound for speed of convergence) and 𝛽𝜎𝑘
the disturbance

term (i.e., how the system deviates from equilibrium due to disturbances). Finally, 𝑣𝑚𝑎𝑥 gives
the application-specific safety requirement (i.e., the maximum permissible deviation from
the nominal state). The robust prediction 𝑣𝑘+1 provides a unified framework to monitor the
physical state in the OS-level at run time, for example, allowing us to identify the changeover
instant between both modes in our example from Figure 1. However, this seemingly simple
requirement is tied to a number of fundamental challenges.

Challenge 1: Run-Time Monitoring by an Easy-to-Compute State Abstraction

Reachability analysis using time-variant sets can yield precise results. However, for example,
computing the distance between two sets is prohibitively expensive at run time. Therefore,
we aim for a state abstraction (i.e., sound estimation) that reliably predicts future violations
of the control’s safety specification, serving as a run-time monitor for criticality modes.
Furthermore, the abstraction should facilitate a simple application-independent interface and
simultaneously be economical to compute.

Our Approach. Based on [19], we develop a one-dimensional state abstraction (called blind
abstraction) for switched linear control systems. This allows us to restrict the prediction
horizon to one time step (e.g., time slice of the scheduler), permitting a timely mode change
and, if necessary, an adaptation of the control regime to reject worst-case disturbance safely.
Furthermore, reducing the state dimensions and prediction horizon grants low run-time
overhead and a simple interface. Figure 2 outlines our approach and illustrates how the state
abstractions fit the OS kernel and scheduling.
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Challenge 2: Selective Reduction of State Abstraction Overestimation

Abstraction reduces complexity but is typically accompanied by considerable pessimism. Ac-
cordingly, we must ensure appropriate accuracy by leveraging the available state information.
Furthermore, executing modes of lower criticality causes the state information to become
increasingly uncertain. Consequently, the abstraction’s overapproximation could lead to
premature anticipation of safety violations causing false changeovers. Such behavior would
jeopardize its use as a monitoring function.

Our Approach. We introduce the concept of an observer abstraction, which mitigates the
statically inferred worst-case pessimism of the abstraction by robustly feeding uncertain
measurements of the system state into the (formerly blind) abstraction.

Challenge 3: Design-Time Analysis for Efficiently Choosing the Parameters

Finally, we must ensure that all abstractions fit the system and are safe to use. The challenge
is to tailor our abstractions at design time to a system with multiple criticality levels and
system parameters for which potentially only the most stringent one guarantees adherence
to the safety specification. Simply put, starting with the worst-case observer abstraction for
the worst case, we must parameterize the observers for the lower criticality levels such that
the system remains in optimistic execution with high probability and that each criticality
level has a reasonable operating range.

Our Approach. Based on semidefinite programming, we develop a heuristic which optimizes
all design-time parameters for the average case while still guaranteeing safety in the worst
case. This analysis, as shown in Figure 2, is used to parameterize the state abstractions
offline based on the control applications’ specification and criticality modes.

1.2 Contribution and Outline
This paper makes the following four contributions: (1) Extend the convergence rate abstrac-
tions presented in our previous work [19] to a more general linear system model. (2) An
observer-based approach to mitigate over-estimation in those state abstractions by feeding
back uncertain measurements robustly. (3) Determine safe change-over points for criticality
and implement a prototypical adaptive run-time policy. (4) A design-time heuristic to
parameterize the observer abstractions’ parameters.

The remainder is organized as follows. In Section 2, we detail our system model and present
relevant background information. Our approach on efficient and robust state monitoring to
facilitate run-time adaptivity is presented informally as well as formally in Section 3 while the
necessary mathematical proofs are detached to Appendix A. Section 4 provides experimental
results as part of a case study. Section 5 discusses related work. Finally, we conclude our
work in Section 6.

2 System Model

In this section, we define the paper’s notation, describe the mathematical foundations, and
formulate our control-theoretic system model. Further, we outline integrating the latter into
a real-time system’s scheduling and schedulability analysis.

ECRTS 2023
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2.1 Notation, Ellipsoids, and Relevant Norms

We denote both scalars 𝜌 ∈ R and vectors 𝑥 ∈ R𝑛 as lowercase, matrices 𝐴 ∈ R𝑛×𝑛 as uppercase
letters. The identity matrix of appropriate size is referred to as 𝐼. We use 𝐴𝑇 and 𝐴−1 for
a matrix’s transposed and inverse and denote a symmetric and positive definite (s.p.d.) /
semidefinite (s.p.sd.) matrix 𝑃 = 𝑃𝑇 , 𝑥𝑇𝑃𝑥 > 0∀𝑥 ≠ 0 / 𝑥𝑇𝑃𝑥 ≥ 0∀𝑥 as 𝑃 ≻ 0 / 𝑃 ⪰ 0. For
an s.p.d. matrix 𝑃 ≻ 0, we refer to its lower Cholesky decomposition as 𝑃 1

2 , i.e. 𝑃 = 𝑃
1
2 𝑃

𝑇
2 .

Given two symmetric matrices 𝑃 = 𝑃𝑇 , 𝑄 = 𝑄𝑇 , we abbreviate 𝑥𝑇𝑃𝑥 ≥ 𝑥𝑇𝑄𝑥 ∀𝑥 as 𝑃 ⪰ 𝑄.
Based upon the Euclidean vector norm | |𝑥 | |, we define the 𝑃-weighted norm | |𝑥 | |𝑃 := | |𝑃 𝑇

2 𝑥 | |
with 𝑃 ≻ 0. The inequality | |𝑥 | |𝑃 ≤ 1 defines a non-degenerate and centered ellipsoid.

Given the spectral norm | | · | |, we generalize the vector norms | | · | |𝑃 to matrix norms
| |𝐴| |𝑃𝑄 in terms of the s.p.d. weight matrices 𝑃,𝑄 ≻ 0, 𝑃 ∈ R𝑛×𝑛, 𝑄 ∈ R𝑚×𝑚. With correctly
sized 𝑥 and s.p.d. 𝑊 ≻ 0, the following hold [46, pp. 34–35]:

| |𝐴| |𝑃𝑄 := max
| |𝑥 | |𝑄=1

| |𝐴𝑥 | |𝑃 (Definition as Operator Norm) (1a)

| |𝐴| |𝑃𝑄 = | |𝑃 𝑇
2 𝐴𝑄− 𝑇

2 | | (Relation to Spectral Norm) (1b)
| |𝐴𝑥 | |𝑃 ≤ ||𝐴| |𝑃𝑄 | |𝑥 | |𝑄 (Consistency) (1c)
| |𝐴𝐵| |𝑃𝑄 ≤ ||𝐴| |𝑃𝑊 | |𝐵 | |𝑊𝑄 (Generalized Consistency) (1d)

The last equation (1d) is a generalization of [46] (Wang et al. assume P=Q). Given the
sub-multiplicativity (| |𝐴𝐵| | ≤ | |𝐴| | | |𝐵 | |) of the spectral norm, the proof is:

| |𝐴𝐵| |𝑃𝑄
(1b)
= | |𝑃 𝑇

2 𝐴𝑊− 𝑇
2𝑊

𝑇
2︸     ︷︷     ︸

=𝐼

𝐵𝑄− 𝑇
2 | | ≤ | |𝑃 𝑇

2 𝐴𝑊− 𝑇
2 | | | |𝑊 𝑇

2 𝐵𝑄− 𝑇
2 | | (1b)

= | |𝐴| |𝑃𝑊 | |𝐵 | |𝑊𝑄 . (2)

Further, we will be using the defining properties of (semi-) norms, i.e., for any norm | | · | |,
vectors 𝑥, 𝑦, and scalar 𝛼

| |𝛼𝑥 | | = |𝛼 | | |𝑥 | | (Homogeneity) (3a)
| |𝑥 | | ≥ 0 (Non-negativity) (3b)

| |𝑥 + 𝑦 | | ≤ | |𝑥 | | + | |𝑦 | | (Triangle Inequality) (3c)

The notation 𝑎
!
≤ 𝑏 indicates that we must ensure 𝑎 ≤ 𝑏 by applying adequate measures.

2.2 System Model

This section defines the system model used in the remainder of the paper. For each control
application, we assume a switched linear plant and controller with a finite number of modes.
All states, potentially including sensor and actuator values, are summarized into an extended
linear system. This model allows for complex real-time behavior, e.g., omitting controller
executions or sampling only a part of the available sensors [45, 44, 18]. Adding safety outputs
allows us to both disregard states (e.g., controller states or measurements) aiding the analysis
or impose additional constraints (e.g., limits on the control signals). The safety goal is to
keep these outputs inside of a given ellipsoid. The dynamics are influenced by an ellipsoidally
bounded process uncertainty, as are the uncertain measurements. The initial state is also
constrained to an ellipsoid. The state-space model reads
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𝑥𝑘+1 = 𝐴𝜎𝑘
𝑥𝑘 + 𝐺𝜎𝑘

𝑑𝑘 (Dynamics)
𝑦𝑘 = 𝐶𝜎𝑘

𝑥𝑘 + 𝐻𝜎𝑘
𝑧𝑘 (Measurements)

| |𝑑𝑘 | |𝐷𝜎𝑘
≤ 1, | |𝑧𝑘 | |𝑍𝜎𝑘

≤ 1 (Disturbances)

| |𝑥0 | |𝑋0 ≤ 1 (Initial State)
𝑠𝑘 := 𝐶𝑠𝑥𝑘 (Safety Outputs)

| |𝑠𝑘 | |𝑆
!
≤ 1 (Safety Specification)

𝜎𝑘 ∈ Σ, |Σ | = 𝑛Σ (Switching Sequence)

(4a)
(4b)
(4c)

(4d)
(4e)

(4f)
(4g)

∀𝑘 ∈ N0, where 𝑥𝑘 ∈ R𝑛𝑥 , 𝑑𝑘 ∈ R𝑛𝑑 (𝜎𝑘 ) , 𝑧𝑘 ∈ R𝑛𝑧 (𝜎𝑘 ) , 𝑦𝑘 ∈ R𝑛𝑦 (𝜎𝑘 ) , and 𝑠𝑘 ∈ R𝑛𝑠 are the
system state, process and measurement disturbances, as well as the measurements and the
safety outputs. All matrices should be of appropriate (possibly zero) size. The ellipsoids (if
not of zero dimension) are assumed to be non-degenerate, i.e. 𝐷𝜎 , 𝑍𝜎 , 𝑋0, and 𝑆 ≻ 0 ∀𝜎 ∈ Σ.

Given the system model, we define the worst-case disturbance as the values of 𝑥0, 𝑑𝑘
and 𝑧𝑘 , which steer the safety outputs the closest to the specification boundary for a given
switching sequence 𝜎𝑘 , i.e., sup𝑥0∈𝑋0 ,𝑑𝑘 ∈𝐷𝜎𝑘

,𝑧𝑘 ∈𝑍𝜎𝑘
,𝑙∈N0 | |𝑠𝑙 | |𝑆. These values can not readily

be obtained as the optimization horizon is infinite.
For the sake of clarity, we omitted any reference signals 𝑤𝑘 ∈ R𝑛𝑥 , 𝑥𝑟 ,𝑘+1 = 𝐴𝜎𝑘

𝑥𝑟 ,𝑘 + 𝑤𝑘

and 𝑦𝑟 ,𝑘 = 𝐶𝜎𝑘
𝑥𝑟 ,𝑘 . They can, however, be incorporated by substituting 𝑥𝑘 and 𝑦𝑘 in the

system above by their corresponding error signals Δ𝑥𝑘 := 𝑥𝑘 − 𝑥𝑟 ,𝑘 and Δ𝑦𝑘 := 𝑦𝑘 − 𝑦𝑟 ,𝑘 . The
abstraction then bounds the tracking error, which leads to the same analytical results as
below due to the system’s linearity.

We assume that, except for potential reference signals, a single application implements
the above controller. Every criticality mode 𝜎 inside this application has its own task set.
Our approach is agnostic to the underlying scheduling scheme as long as the signals meet
their sampling points. This can, e.g., be achieved using the logical execution time (LET)
paradigm. Multiple independent control applications can be used if the scheduling algorithm
guarantees their timeliness.

3 Approach

With our system model defined, we proceed by detailing our state abstraction approach
in this section. In an informal description in Section 3.1, we first recapitulate the intent
of state abstractions, describe how they interact with the real-time control system, and
discuss what sets them apart from well-known state observers. After Section 3.2 extends
the convergence rate abstractions presented in our previous work [19] to our system model,
Section 3.3 shows how to incorporate measurements to reduce their pessimism. In Section 3.4,
we derive the run-time monitoring algorithm and a prototypical approach for guaranteed safe
switching decisions. Finally, Section 3.5 describes a heuristic for choosing the design-time
parameters. To better convey the ideas, we detach the necessary formal proofs to Appendix A
and reference them as needed.

3.1 Informal Description
We seek a method of monitoring the system model presented in Section 2.2 at run time
with respect to safety, i.e., how close the physical state is to its specified limits and, in
extension, predict points where criticality changes. When reaching such a point, the scheduler
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11:8 State Abstraction and Run-Time Monitoring of Mixed-Criticality Control Systems

must alter the switching sequence 𝜎𝑘 to avoid specification violations. Note that safety is a
stronger condition than mere exponential stability for which the literature already provides
solutions [45].

Our approach provides (state) abstractions 𝑣𝑘 , which are one-dimensional and positive
dynamic systems. An abstraction’s state 𝑣𝑘 is an upper bound on the control system’s
physical state expressed in the analysis norm | | · | |𝑃, i.e., 0 ≤ ||𝑥𝑘 | |𝑃 ≤ 𝑣𝑘∀𝑘 ∈ N0. As a
geometric interpretation: instead of the ellipsoidal observers, which track how the system’s
dynamics recursively alters the initial state ellipsoid at run time, we choose a fix-shaped
analysis ellipsoid parametrized by 𝑃 ≻ 0 at design time, leaving the scaling factor 𝑣𝑘 as
the only run-time parameter. The abstraction dynamics, i.e., the coefficients 𝜌𝜎 and 𝛽𝜎

mentioned above, are chosen such that the scaled analysis ellipsoid is guaranteed to contain
the system’s state for the switching sequence 𝜎𝑘 at hand. Tightly over-approximating the
initial state and safety ellipsoids yields the two static factors 𝑣0 and 𝑣𝑚𝑎𝑥 . While the former
is the initial value for the abstraction state, the latter links it to the safety goal: for our
approach to guarantee safety, 𝑣𝑘 ≤ 𝑣𝑚𝑎𝑥 must be enforced at all times by choosing the
switching sequence accordingly.

The intermediate steps introduce analysis pessimism as the ellipsoids are usually not
aligned in practice. Further, the exponential envelope curve 𝑣𝑘 has to incorporate all transient
behavior and overshoot in the system state even under worst-case disturbance. Despite the
high pessimism, the lack of overshoot allows us to derive scheduling decisions at a single
time step prediction horizon. We will later introduce observer abstractions to alleviate the
pessimism by feeding back uncertain state measurements. The analysis presented in this
section expresses the scheduling horizon in terms of a maximum safe value 𝑣∗𝜎 for every
mode 𝜎 ∈ Σ, i.e., the highest value of 𝑣𝑘 for which the corresponding mode is sufficient.
Consequentially, modes with higher 𝑣∗𝜎 indicate higher physical criticality as they allow the
control loop to withstand more severe conditions. If 𝑣∗𝜎 ≥ 𝑣𝑚𝑎𝑥 holds for a mode 𝜎, it is
a safe mode as applying it guarantees the system to remain safe at all times. We call the
excess 𝑣∗𝜎 − 𝑣𝑚𝑎𝑥 the safety margin.

While set-valued observers are available for our system model [16, 30], they perform the
aforementioned ellipsoidal analysis at run time, yielding a precise bound on the system’s
state. However, choosing the switching sequence 𝜎𝑘 requires further assessing the system’s
reachability at run time which is expensive as the ellipsoids are not aligned in general. In
contrast, their non-robust counter parts (e.g., the classical Luenberger observer) give static
guarantees on the estimation error’s decay. Going down this path will eventually lead to
similar results as presented in this paper.1

Since our analysis is sound as long as the IO timing is met, every (mixed-criticality)
scheduling scheme suffices when choosing the control application’s criticality high enough.
Conversely, the abstraction introduces some overhead. The value of 𝑣𝑘 has to be updated
every time step given (8a), potentially reusing the measurements from the controller. Then,
the scheduler has to select one of the feasible modes defined by (13) for the upcoming time
step and possibly reconfigure the real-time system accordingly using a mode change. These
operations look the same for every control loop and thus share a common interface. As shown
in Section 4, they are also cheap to compute. Thus, they lend themselves to be executed as
privileged operations inside the RTOS’s kernel.

1 We omitted the analysis for the sake of brevity. As an outline: compute the estimate 𝑥𝑘 as usual and
bound the uncertainty ellipsoid just as the blind abstractions bound the state. Then, | |𝑥𝑘 | |𝑃 − 𝑣𝑘 ≤
| |𝑥𝑘 | |𝑃 ≤ | |𝑥𝑘 | |𝑃 + 𝑣𝑘∀𝑘.
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Figure 3 Example task set illustrating the application of state abstractions for mixed-criticality
real-time control systems. (A) shows the time-dynamic state abstraction monitoring a UAV under
the influence of varying wind conditions. (B) illustrates the resulting schedule with criticality change.

We exemplify our approach using the UAV from above as an illustrative example. The
safety goal is to keep the UAV’s position 𝑝𝑘 inside a one-meter radius around its reference
trajectory. Thus, the safety outputs omit all other state components such as the UAV’s
velocities, i.e., 𝑠𝑘 = 𝑝𝑘 . 𝑆 = 𝐼 models the 1m radius. Figure 3 (B) shows the exemplary
task set: the flight controller application carries out the state reconstruction by linearly
fusing inertial (IMU) and GPS measurements, then computes the control values, and finally
outputs them to the propellers. To avoid jitter, sensing and actuation follow the logical
execution time (LET) paradigm. The application features two periodic task sets whose
physical (i.e., abstraction coefficients) and temporal properties vary with their criticality
levels: in the 𝑙𝑜-criticality mode 𝜎 = 1, the IMU measurement task is omitted, also leading
to a smaller WCET for the sensor fusion task in comparison to the ℎ𝑖-criticality mode 𝜎 = 0.
Consequently, the deadline for the controller task can be relaxed, leaving enough resources to
guarantee schedulability of the less critical path-planning application. The latter comprises
only a single long-running periodic task altering the controller’s set point.

At the beginning of the timeline in Figure 3 (A), the UAV is in good condition, indicated
by 𝑣𝑘 ≤ 𝑣∗1. Measurements allow the observer abstraction to detect the mild gust of wind
and its state rises in turn. While the 𝑙𝑜-criticality mode 𝜎 = 1 can reject this disturbance,
the strong gust of wind occurring later drives the UAV further off its reference trajectory,
eventually leading to a change in criticality when 𝑣𝑘 passes 𝑣∗1. Here, the scheduler timely
reconfigures the system for the ℎ𝑖-criticality mode, which can withstand the strongest specified
disturbance for any amount of time. However, the increased computational demand for 𝜎 = 0
implies that guaranteed timeliness for the less critical path planning application must be
dropped. Figure 3 (B) illustrates how worst-case timing leads to a deadline violation in the
latter. Recapitulating, this signifies the notion of physical mixed-criticality introduced by
our approach: in the average case, the whole system works as expected. However, during
unusually high disturbances, the criticality changes based on the underlying physical process.
If the system becomes overloaded, it still has a defined fault state. In the UAV’s case, it
will hover around the last known reference point until the disturbance wears off and then
continue its flight.
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3.2 Blind Abstractions
As a first step, we apply the idea presented in [19] to our system model (4) by restricting
it to the linear case and extending it to support ellipsoidal bounds and multiple switching
modes. For this, we base the analysis on the | | · | |𝑃𝑄-norms introduced in Section 2.1.

While the rigorous proofs are detached to Appendix A, we still want to exemplify the
derivation here. The key mathematical idea is to express the system’s safety outputs under
the | | · | |𝑆-norm, split the resulting equation by applying the triangle inequality, and upper
bound the uncertain terms by their specified ellipsoids. Introducing an analysis ellipsoid
parametrized by the matrix 𝑃 ≻ 0 yields a time-dynamic expression | |𝑥𝑘 | |𝑃, which we can
relate to the specification. Applying the ideas, we get

| |𝑠𝑘+1 | |𝑆
(4a),(4e)

= | |𝐶𝑠 (𝐴𝜎𝑘
𝑥𝑘+𝐺𝜎𝑘

𝑑𝑘) | |𝑆
(3)
≤ ||𝐶𝑠 | |𝑆𝑃 ( | |𝐴𝜎𝑘

| |𝑃𝑃 | |𝑥𝑘 | |𝑃+||𝐺𝜎𝑘
| |𝑃𝐷𝜎𝑘

)
(4f),!
≤ 1. (5)

Appendix A gives a more formal derivation. There, we prove why the following linear
system, which we call blind (state) abstraction, provides a sound upper bound (Theorem 3)
on the system’s state, i.e., | |𝑥𝑘 | |𝑃 ≤ 𝑣𝑘 ∀𝑘 ∈ N0 and how obeying the specification translates
to a constant-valued safety bound 𝑣𝑚𝑎𝑥 on the abstraction’s state (6c) (Theorem 4). ∀𝑘 ∈ N0:

𝑣𝑘+1 = 𝜌𝜎𝑘
𝑣𝑘 + 𝛽𝜎𝑘

(Dynamics)
𝑣0 = 𝛼 (Initial State)

𝑣𝑘
!
≤ 𝑣𝑚𝑎𝑥 . (Safety Bound)

(6a)
(6b)

(6c)

All coefficients can be derived from the system model (4) by applying different | | · | |𝑃𝑄-
norms as

𝜌𝜎 := | |𝐴𝜎 | |𝑃𝑃 𝛽𝜎 := | |𝐺𝜎 | |𝑃𝐷𝜎
𝑣𝑚𝑎𝑥 := | |𝐶𝑠 | |−1

𝑆𝑃 𝛼 := | |𝐼 | |𝑃𝑋0 . (7)

While 𝛼 is the abstraction’s lowest admissible initial state, 𝜌𝜎 and 𝛽𝜎 define the worst-
case exponential decays and disturbance influences for each mode 𝜎 ∈ Σ, respectively. Aside
from being one-dimensional, the abstraction’s state 𝑣𝑘 inherits the desirable property of non-
negativity from the norm-based coefficients. In combination, this allows for easy monitoring
of the system with respect to two values with clear interpretations: while for 𝑣𝑘 = 0 the
system is in perfect condition, 𝑣𝑘 = 𝑣𝑚𝑎𝑥 indicates that the abstraction is on the verge of
guaranteeing safety.

3.3 Adding Measurements: Observer Abstractions
We argue that the blind abstraction (6) poses a valuable analysis tool. However, as we will
show in Section 4, the pessimistic assumptions make it hard to use in practice. This section
presents how uncertain measurements can be fed into the abstraction to improve the average-
case behavior. Casually speaking, the measurement allows the arising observer abstractions
to rule out impossible abstraction values. The underlying assumption is that these impossible
cases are more often on the pessimistic side than not, improving the abstraction’s performance
on average.

The key concept behind incorporating measurements is to add a Luenberger observer,
i.e., superimposing the state estimate with some linear combination of the measurements.
The observer gains 𝐿𝜎 ∈ R𝑛𝑥×𝑛𝑦 (𝜎) define the weights for every state and measurement
component. As shown by Lemma 1, the observer abstractions truly generalize the blind
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ones when disregarding the measurements, i.e., choosing 𝐿𝜎 = 0 ∀𝜎 ∈ Σ. In a slight abuse
of notation, we redefine the symbols used before and arrive at the following definition of
observer abstractions. ∀𝑘 ∈ N0:


𝑣𝑘+1 = 𝜌𝜎𝑘

𝑣𝑘 + 𝛽𝜎𝑘
+ ||𝐿𝜎𝑘

𝑦𝑘 | |𝑃 (Dynamics)
𝑣0 = 𝛼 (Initial State)

𝑣𝑘
!
≤ 𝑣𝑚𝑎𝑥 . (Safety Bound)

(8a)
(8b)

(8c)

Comparing (6) and (8), their structure differs only in the additional measurement term
in the dynamics equation. To discuss how adding measurements alters the abstraction, we
first introduce the observer dynamics matrix to abbreviate the results later on:

𝐴𝜎 := 𝐴𝜎 − 𝐿𝜎𝐶𝜎 . (9)

With this in mind, the coefficients for (8) are again | | · | |𝑃𝑄-norms of the matrices defining
the system model (4). They read{

𝜌𝜎 := | |𝐴𝜎 | |𝑃𝑃 𝛽𝜎 := | |𝐺𝜎 | |𝑃𝐷𝜎
+ ||𝐿𝜎𝐻𝜎 | |𝑃𝑍𝜎

𝑣𝑚𝑎𝑥 := | |𝐶𝑠 | |−1
𝑆𝑃

𝛼 := | |𝐼 | |𝑃𝑋0

𝛾𝜎 := | |𝐿𝜎𝐶𝜎 | |𝑃𝑃 𝛿𝜎 := | |𝐿𝜎𝐻𝜎 | |𝑃𝑍𝜎
.

(10a)
(10b)

Besides the coefficients already introduced for the blind abstractions, assessing the worst-
case behavior of the observer abstractions requires the two additional terms 𝛾𝜎 and 𝛿𝜎.
Lemma 5 shows that the dynamic system{

𝑣𝑘+1 = (𝜌𝜎𝑘
+ 𝛾𝜎𝑘

)𝑣𝑘 + 𝛽𝜎𝑘
+ 𝛿𝜎𝑘

∀𝑘 ∈ N0

𝑣0 = 𝛼

(11a)
(11b)

provides an upper bound on the observer abstraction, i.e., 𝑣𝑘 ≤ 𝑣𝑘 ∀𝑘 ∈ N0, effectively
reducing the worst-case behavior to a more pessimistic version of the blind abstraction (6).
Interpreting this result, the coefficients 𝛾𝜎 and 𝛿𝜎 describe the additional decay rate and
disturbance input separating the average from the worst case.

Assuming that the pair (𝐴𝜎 , 𝐶𝜎) is sufficiently observable,2 the gains 𝐿𝜎 allow for altering
the abstraction dynamics for the better (i.e., reduce 𝜌𝜎 and 𝛽𝜎) on average. This reduction
comes at the cost of adding uncertainty originating from the measurements via 𝛿𝜎. We
want to make clear that we are still concerned with how the system states behave, not the
observer’s error dynamics. It is impossible to alter the system’s dynamic properties via the
measurements, even if they are perfect, i.e., 𝛿𝜎 = 0. They only allow for improving upon our
knowledge about its state. The triangle inequality reflects this mathematically:

| |𝐴𝜎 | |𝑃𝑃

(9)
= | |𝐴𝜎 + 𝐿𝜎𝐶𝜎 | |𝑃𝑃

(3c),(10)
≤ 𝜌𝜎 + 𝛾𝜎 .

As a note, the observer gains shown here are independent of any observer encapsulated
in (4). While they allow for adding any measurement of the form (4b), we assume that the
abstraction is only fed a subset of those measurements used for the controller as querying
additional sensors at run time defies the goal of cheap state monitoring.

2 While full observability allows for choosing 𝜌𝜎 arbitrarily small or even as 0 [33, 40], its value can
already be reduced with only subsystems being observable.
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3.4 Safe Abstraction-Based Run-Time Switching Policies
If we recapitulate on the previous sections, we have found a safe upper bound for assessing
the system’s state and how well it obeys its safety specification by introducing state abstrac-
tions (8). Based upon the assumption of a safe mode, i.e., one which can provably withstand
the worst-case disturbance over any amount of time, we derive the set of feasible switching
modes for the current abstraction state. Finally, we describe a prototypical algorithm for
abstraction-based run-time scheduling.

To find the set of feasible modes and thus determine points at which criticality changes,
we first use the results from Lemma 5 to define the maximum safe value 𝑣∗𝜎 for every mode
𝜎 as the highest abstraction value which guarantees that the abstraction stays within its
safety bound for the next time step when choosing 𝜎𝑘 = 𝜎:

𝑣∗𝜎 := 𝑣𝑚𝑎𝑥 − 𝛽𝜎 − 𝛿𝜎
𝜌𝜎 + 𝛾𝜎

∀𝜎 ∈ Σ. (12)

Note that modes with negative 𝑣∗𝜎 are infeasible, i.e., our analysis provides them with no
safety guarantees at any time. In contrast, the feasible set Σ 𝑓 (𝑣𝑘) at time step 𝑘 defines all
modes for which the abstraction stays safe for 𝑘 + 1, i.e.,

Σ 𝑓 (𝑣𝑘) := {𝜎 ∈ Σ |𝑣𝑘 ≤ 𝑣∗𝜎}. (13)

By Theorem 7, this set is never empty if a) the system is feasible and b) there is at least
one safe mode 𝜎 permitting worst-case disturbance for any amount of time, which translates
to

𝑣0 ≤ 𝑣𝑚𝑎𝑥 and (14)
∃𝜎 ∈ Σ : 𝑣∗𝜎 ≥ 𝑣𝑚𝑎𝑥 . (15)

Notice that the condition (15) requires exponential stability, i.e., 𝜌𝜎 + 𝛾𝜎 < 1. If these
assumptions hold, the system is guaranteed to remain safe by Corollary 8 when the scheduler
chooses the switching sequence from the feasible set (13):

𝜎𝑘 ∈ Σ 𝑓 (𝑣𝑘) ∀𝑘 ∈ N0 ⇒ ||𝑠𝑘 | |𝑆 ≤ 1 ∀𝑘 ∈ N0. (16)

We now define a prototypical switching policy. It greedily chooses the least critical but
feasible mode 𝜎 for the timestep 𝑘 by assessing the abstraction’s state 𝑣𝑘 . Without loss of
generality, we assume that the states are ordered by criticality with 𝜎 = 0 being the highest
critical one. Formally:

𝜎𝑘 = max Σ 𝑓 (𝑣𝑘) ∀𝑘 ∈ N0. (17)

3.5 Design-Time Analysis
Aside from the analysis ellipsoid parametrized by the matrix 𝑃 ≻ 0, each set of observer
gains 𝐿𝜎 introduces additional parameters. While the problem of choosing them looks
similar to designing a robust observer for switched systems for which the literature provides
optimal solutions [16], we are again not concerned with the observer’s error dynamics but
the system’s safety. Therefore, the problem is more challenging: as shown in Section 3.3,
adding an observer will – at best – not increase the abstraction coefficients (10). However,
as of Section 3.4, we need only one safe mode to guarantee safety at all times. This allows us
to adapt the parameters accordingly and incorporate the other (possibly unstable) modes
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to best effort. In this section, we derive a heuristic for choosing the parameters for large
𝑣∗𝜎 by formulating a parametric semidefinite program (SDP) and solving it on a grid 𝑖 ∈ G.
To keep the parameters and variables for the individual optimization problems distinct
from the derivations above, we index them using 𝑖 as, e.g., 𝑃(𝑖). Afterward, we choose the
actual abstraction parameters as the best feasible solution found on the grid. Note that this
part of the paper is not a rigorous derivation but a piece of engineering that works for our
purposes. Consequently, we focus on conveying the underlying thoughts instead of detailing
the fundamentals of and modeling with semidefinite programming. We refer the interested
reader to e.g., [41] and [16].

As a starting point, the abstraction coefficients (10) can be computed for every 𝑃 ≻ 0.
This allows us to apply any heuristic for choosing 𝑃 and the 𝐿𝜎 and later assess if the
resulting abstraction guarantees safety. With that in mind and for the sake of brevity, we
do not give proofs for the derivation of the heuristic and formulate assumptions from which
we proceed. Informally, the SDP aims to maximize the smallest 𝑣∗𝜎 (𝑖), i.e., make the least
critical mode schedulable for the longest amount of time. In the following, we will detail
the optimization problem mathematically. Most of the constraints are needed to express
different | | · | |𝑃𝑄-norms, but we also add additional ones to enforce safe modes.

The first set of constraints follows from the static portions of the system model (4): we
require that the safety outputs obey the specification for all initial states, i.e., | |𝑥0 | |𝑋0 ≤ 1 ⇒
||𝐶𝑠𝑥0 | |𝑆 ≤ 1. The following linear matrix inequality (LMI) is mathematically equivalent:

𝑋0
!
⪰ 𝐶𝑇

𝑠 𝑆𝐶𝑠 . (18)

We want to ensure that the analysis ellipsoid of the 𝑖-th problem expressed by the matrix
variable 𝑃(𝑖) ≻ 0 is non-degenerate and well-conditioned. For convenience, we confine it
between the initial state and the specification ellipsoid, leading to 0 ≤ 𝑣0 ≤ 𝑣𝑚𝑎𝑥 ≤ 1 if the
problem is feasible. To avoid a loss of definiteness in case of 𝐶𝑠 not being full-ranked, we
restrict the smallest eigenvalue to the arbitrary value

√
10−6. The following LMIs express all

of this:

𝑃(𝑖)
!
⪰ 𝐶𝑇

𝑠 𝑆𝐶𝑠 and 𝑋0
!
⪰ 𝑃(𝑖), 𝑃(𝑖)

!
⪰ 10−6 · 𝐼 . (19)

To make the optimizer aware of the 𝑣∗𝜎 (𝑖), we must provide it with the abstraction
coefficients (10), which depend on 𝑃(𝑖). We assume there is no convex representation for
choosing the 𝜌𝜎 (𝑖), 𝛾𝜎 (𝑖), 𝐿𝜎 (𝑖), and 𝑃(𝑖) simultaneously, use the former two as parameters
for the semidefinite program, and confine them to a grid later. To incorporate the observer
gains, we define the optimization variables 𝑊𝜎 (𝑖) := 𝑃(𝑖)𝐿𝜎 (𝑖). By Schur’s complement and
after multiplying with 𝑃(𝑖), we can rewrite | |𝐴𝜎 (𝑖) | |𝑃 (𝑖)𝑃 (𝑖) ≤ 𝜌𝜎 (𝑖) and | |𝐿𝜎 (𝑖)𝐶𝜎 | |𝑃 (𝑖)𝑃 (𝑖) ≤
𝛾𝜎 (𝑖) as ∀𝜎 ∈ Σ :[

𝜌𝜎 (𝑖)𝑃(𝑖) (𝑃(𝑖)𝐴𝜎 −𝑊𝜎 (𝑖)𝐶𝜎)𝑇
𝑃(𝑖)𝐴𝜎 −𝑊𝜎 (𝑖)𝐶𝜎 𝜌𝜎 (𝑖)𝑃(𝑖)

]
!
⪰ 0 and

[
𝛾𝜎 (𝑖)𝑃(𝑖) (𝑊𝜎 (𝑖)𝐶𝜎)𝑇
𝑊𝜎 (𝑖)𝐶𝜎 𝛾𝜎 (𝑖)𝑃(𝑖)

]
!
⪰ 0. (20)

We want to avoid introducing additional parameters and, therefore, an exponential
increase in the search space they span. Thus, we define the optimization variables 𝛽2

𝑘
(𝑖)

and 𝛿2
𝑘
(𝑖) and (probably falsely) assume that 𝛽2

𝑘
(𝑖) ≈ 𝛽𝑘 and 𝛿2

𝑘
(𝑖) ≈ 𝛿𝑘 . This makeshift is

valuable as we can avoid non-convex products such as 𝛿𝜎 (𝑖)𝑃−1 (𝑖) and instead reformulate
| |𝐺𝜎 | |2𝑃 (𝑖)𝐷𝜎

≤ 𝛽2
𝜎 (𝑖) and | |𝐿𝜎 (𝑖)𝐻𝜎 | |2𝑃 (𝑖)𝑍𝜎

≤ 𝛿2
𝜎 (𝑖) as the LMI contraints[

𝛽2
𝜎 (𝑖)𝐷𝜎 (𝑃(𝑖)𝐺𝜎)𝑇
𝑃(𝑖)𝐺𝜎 𝑃(𝑖)

]
!
⪰ 0 and

[
𝛿2
𝜎 (𝑖)𝑍𝜎 (𝑊𝜎 (𝑖)𝐻𝜎)𝑇

𝑊𝜎 (𝑖)𝐻𝜎 𝑃(𝑖)

]
!
⪰ 0 ∀𝜎 ∈ Σ. (21)
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To express the maximum safe values, we rewrite (12) as (𝜌𝜎 +𝛾𝜎)𝑣∗𝜎 + 𝛽𝜎 +𝛿𝜎 ≤ 𝑣𝑚𝑎𝑥 and
introduce 𝑣∗𝜎 (𝑖) as optimization variables. We have found empirically that this inequality can
be approximated as 𝑐𝜎 (𝑖) := (𝜌𝜎 (𝑖) + 𝛾𝜎 (𝑖))𝑣∗𝜎 (𝑖) + 𝛽2

𝜎 (𝑖) + 4𝛿2
𝜎 (𝑖) ≤ 𝑣𝑚𝑎𝑥 . Given the norm-

based definition (10) of 𝑣𝑚𝑎𝑥 , which is also used to obtain its actual value after optimization,
we get[

𝑃(𝑖) 𝑐𝜎 (𝑖)𝐶𝑇
𝑠

𝑐𝜎 (𝑖)𝐶𝑠 𝑆−1

]
!
⪰ 0 ∀𝜎 ∈ Σ. (22)

We require a subset of modes ∅ ≠ Σ𝑠 ⊆ Σ to be safe which translates to

𝑣∗𝜎
!
≥ 𝑣𝑚𝑎𝑥 ∀𝜎 ∈ Σ𝑠 . (23)

As a last set of constraints, we introduce the single variable 𝑣∗
𝑚𝑖𝑛

(𝑖) as the minimum of
all 𝑣∗𝜎 (𝑖),

𝑣∗𝑚𝑖𝑛 (𝑖)
!
≤ 𝑣∗𝜎 (𝑖) ∀𝜎 ∈ Σ, (24)

and use it as the maximization objective. Requirements on the modes’ exponential decays
can then be imposed using the optimization parameters 𝜌𝜎 (𝑖) and 𝛾𝜎 (𝑖). The next step
is to define a grid for their values on which to solve the SDP. The parameter space grows
exponentially in the number of modes. We consider this to be undesired and consequentially
constrain all values 𝜌𝜎 (𝑖) and 𝛾𝜎 (𝑖) onto a one-dimensional grid 𝑖 ∈ G := {0, . . . , 𝑛𝑔 − 1} as

𝜌𝜎 (𝑖) = r𝜎 +
𝑟𝜎 − r𝜎
𝑛𝑔 − 1 𝑖 and 𝛾𝜎 (𝑖) = 𝑙𝜎 − 𝜌𝜎 (𝑖) ∀𝜎 ∈ Σ. (25)

With the spectral radius R(𝐴𝜎), i.e., 𝐴𝜎 ’s largest absolute eigenvalue, the hyperparame-
ters for our heuristic are given by Σ𝑠, R(𝐴𝜎) ≤ 𝑙𝜎 , 0 ≤ r𝜎 ≤ 𝑟𝜎 ≤ 𝑙𝜎. Again without proof,
we conceptualize their meaning: 𝑙𝜎 sets the maximum admissible decay rate. Bounding it
from below makes sense, as a sound abstraction must not decay faster than the underlying
system. Imposing r𝜎 ≤ 𝜌𝜎 (𝑖) avoids high observer gains which amplify noise, i.e., they
increase 𝛾𝜎 (𝑖) and 𝛿𝜎 (𝑖). Lastly, 𝜌𝜎 (𝑖) ≤ 𝑟𝜎 sets the desired decay rate in the optimistic
case.

The parameterization works as follows: for every grid point 𝑖 ∈ G, solve the SDP
max 𝑣∗

𝑚𝑖𝑛
(𝑖) in 𝑃(𝑖),𝑊𝜎 (𝑖), 𝛽2

𝜎 (𝑖), 𝛿2
𝜎 (𝑖), 𝑣∗𝜎 (𝑖) and 𝑣∗

𝑚𝑖𝑛
(𝑖) subject to (18)–(24) with the

parameters set by (25), then compute 𝐿𝜎 (𝑖) = 𝑃−1 (𝑖)𝑊𝜎 (𝑖). For all feasible SDPs, determine
the actual abstraction coefficients (10) as the optimization variables do not reflect their
actual values. Of all safe abstraction parametrizations, choose the one which maximizes the
actual 𝑣∗

𝑚𝑖𝑛
:= min

𝜎∈Σ
𝑣∗𝜎 obtained from (10).

4 Evaluation

In this section, we evaluate how introducing measurements lessens the blind abstractions’
inherent pessimism and that the run-time policy (17) adapts well in a weakly-hard setting.
Further, we demonstrate that mere stability is insufficient for guaranteeing safety and that
correlated disturbances justify using a set-valued disturbance model. While this was carried
out in a custom simulator, we complement the results with execution time measurements,
which compare the abstractions’ run-time overheads to those of set-valued estimators from
the literature on an ARM Cortex-M4F processor.
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4.1 Benchmark System
We use a double integrator as our benchmark system. The two modes are defined as 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
(𝜎 = 0) and 𝑠𝑘𝑖𝑝 (𝜎 = 1), i.e., measure both states and apply a state-space controller as the
control signal or skip measurements and zero the controller output. They represent extreme
examples for high and low criticality. We do not consider that measurement uncertainties
enter the system via the controller and instead specify a single process disturbance affecting
the states, which is the same mathematically. Further, we subject the measurements passed to
the state abstraction to uncertainties. When executed, the controller places both closed-loop
eigenvalues at 0.9. The safety specification is set arbitrarily to constrain both states and
the control signal to a sphere of radius 1.25. The initial state is chosen as one tenth of this
radius. For the lack of an analytical bound, we empirically chose the disturbances as high as
possible such that our heuristic is still able to verify that 𝜎 = 0 is a safe mode, i.e., 𝑣𝑚𝑎𝑥 ≤ 𝑣∗0.
The benchmark’s system model reads

𝐴0 =

[
0.9950 8.205 · 10−2

−0.1100 0.8050

]
, 𝐴1 =

[
1 9.091 · 10−2

0 1

]
𝐺0 = 𝐺1 =

[
−5.051 · 10−3

−0.1111

]
, 𝐷0 = 𝐷1 = 3.516 · 10−4

𝐶0 = 𝐻0 = 𝐼, 𝑍0 = 2.384 · 10−5 · 𝐼, 𝐶1, 𝐻1, 𝑍1 empty

𝑋0 = 1.563 · 10−2 · 𝐼, 𝐶𝑠 =


1 0
0 1

0.99 1.755

 , 𝑆 = 1.563 · 𝐼 .

(26)

We draw the initial states independently and identically (i.i.d.) uniformly distributed
from the surface of E(𝑋0).

4.2 Disturbance Scenarios
According to their elliptical bounds, we specify two types of disturbance scenarios for the
simulation runs: in the benign case, we draw both disturbances uniformly and i.i.d. from
their ellipsoids’ volumes resulting in uncorrelated noise. In contrast, the malicious scenario
aims to approximate the worst-case disturbance. We achieve this by drawing 100 points
uniformly and i.i.d. from the corresponding ellipsoids’ surfaces in each timestep. For the
process disturbance, we then select the point 𝑑𝑘 which maximizes | |𝐶𝑠 (𝑥𝑘 + 𝐺𝜎𝑘

𝑑𝑘) | |𝑆 given
the current state 𝑥𝑘 . As the measurement uncertainty only affects the abstraction, we select
𝑧𝑘 to maximize | |𝑥𝑘 + 𝐿𝜎𝑘

𝐻𝜎𝑘
𝑧𝑘 | |𝑃. This procedure yields time-correlated values.

4.3 Effect of Measurements
In a first simulative experiment, we want to assess the effect of adding measurements as
described in Section 3.3 by parametrizing three different state abstractions: the first one
performs a full measurement, i.e., it utilizes both measurements via 𝐶0 and 𝐻0. The second
abstraction uses partial measurements only, i.e., it disregards the measurement 𝑦2 by omitting
the second row of 𝐶0 and 𝐻0, respectively. Finally, the third abstraction is blind and thus
disregards both 𝑦1 and 𝑦2, allowing it only to use the worst-case assumptions. Note that no
measurements are used when skipping the controller.

Parametrizing each abstraction using our heuristic on an Intel Core i7-8565U took less
than five seconds. Both observer abstractions were parametrized for r0 = 0.3, 𝑟0 = 0.9,
𝜆0 = 0.94, r1 = 1.05 and 𝑟1 = 𝜆1 = 1.15 on 𝑛𝑔 = 101 grid points. For the blind abstraction, we
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Figure 4 Effect of measurements. A double integrator is subjected to the benign (left) and
malicious (right) disturbance scenario. Its state (dotted black) is compared to three state abstractions
(blue), either running blindly (dash-dotted), measuring its partial (dashed), or full state (solid).
The controller is always executed until time step 1000 and then subjected to 50% dropout, i.e., the
modes are alternated deterministically.

Table 1 State abstraction coefficients for the double integrator and different measurement outputs
computed by (10) and rounded to three significant digits.

Measurement 𝛼 𝑣𝑚𝑎𝑥 𝜎 𝜌𝜎 𝛾𝜎 𝛽𝜎 𝛿𝜎 𝑣∗𝜎

Full 0.314 1.00 0 0.396 0.554 0.0104 0.00616 1.05
1 1.07 0.00 0.00425 0.00 0.934

Partial 0.317 1.00 0 0.900 0.0400 0.00448 0.000235 1.06
1 1.07 0.00 0.00425 0.00 0.933

Blind 0.310 1.00 0 0.940 0.00 0.00411 0.00 1.06
1 1.07 0.00 0.00411 0.00 0.933

matched 𝑟0 = 𝜆0 = 0.94 to make the SDP feasible. Table 1 shows the resulting abstraction

coefficients computed via (10). The observer gains read 𝐿0 ≈
[

0.577 0.0487
−0.0687 0.458

]
for the

full and 𝐿0 ≈
[

0.0393
−0.0233

]
for the partial measurement. The condition numbers of the shape

matrices 𝑃−1 range between ∼6.64 and ∼7.48 with ∼0.155 being the smallest of all their
eigenvalues, i.e., the analysis ellipsoids are well-defined.

Figure 4 depicts two simulations in which the controller always runs at first and is
then subjected to a deterministic 50% dropout sequence, i.e., the switching signal alternates
between both modes starting at time step 1000. The benign or malicious disturbances perturb
the system during the whole simulation, respectively. After the initial values have decayed,
the blind abstraction’s state is strictly higher than those of both observer abstractions. In the
malicious scenario, the latter are nearly indistinguishable until the dropouts occur. There,
the full measurement improves its abstraction noticeably. As we show later, the additional
run-time overhead is negligible if the measurement is already available. Quantifying the
overapproximation over 100 simulation runs by comparing the mean quotient of the individual
𝑣𝑘 and 𝑣𝑚𝑎𝑥 · | |𝑠𝑘 | |𝑆 yields factors between ∼2.37 (full measurement, malicious disturbance,
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Figure 5 Execution times for updating a blind and observer abstraction by (6a) and (8a) as well
as the update steps for a set-valued Luenberger observer [16] and Kalman filter [30] for different
measurement sizes 𝑛𝑦 . Times are given in CPU cycles on an ARM Cortex-M4F processor and
plotted in logarithmic scales.

during dropout) and ∼71.6 (partial measurement, benign disturbance, during dropout). This
comparison leaves out the blind abstraction during dropout as – opposed to the observer
abstractions – it appears to diverge. The large discrepancy signifies the benefit of separating
the average case from the worst case at run time by reusing the controller’s measurements.
While our analysis cannot give guarantees about the steady states in case of dropouts, the
simulations indicate that the observer abstractions average out well below their safety bound.
The run-time algorithm (8) can predict upcoming violations in any case, such as for the
blind abstraction around timestep 1200, allowing the scheduler to timely reconfigure the
system for higher criticality.

4.4 Run-Time Overhead

While Section 4.3 focuses on the benefits of adding measurements, this section addresses
their run-time overhead. For this, we measured the execution times of updating a blind and
an observer abstraction by (6a) and (8a) given different measurement sizes 𝑛𝑦 ∈ {1, . . . , 60}.
To contrast the results, we also measured the cost of updating a set-valued Luenberger
observer [16] and Kalman filter [30]. Most of the time, only a subset of the states is measured,
i.e., 𝑛𝑦 < 𝑛𝑥 . We set 𝑛𝑥 = 𝑛𝑦 for both observers, effectively reducing their execution time
to a minimum. This does not affect the observer abstractions as the measurement term is
independent of 𝑛𝑥 , i.e., | |𝐿𝜎𝑘

𝑦𝑘 | |𝑃 =

√︃
𝑦𝑇
𝑘
𝐿𝑇𝜎𝑘

𝑃𝐿𝜎𝑘
𝑦𝑘 . We further reduced the cost for the

Kalman filter by omitting the proposed line search for 𝜔 in [30, (13c)] in favor of a constant
value while choosing 𝜔 by the trace criterion given in [16, (29)] for [30, (11c)].

Note that an additional online reachability analysis is required in all cases. While for
state abstractions this reduces to trivial real-valued comparisions as outlined in Section 3.4,
both set-valued observers from the literature require elaborate techniques as their ellipsoids’
shapes are time-varying. As the references do not provide the respective analyses, we neither
investigated this cost here nor their pessimism in Section 4.3. In all cases, we do not consider
the acquisition of measurements as we assume that a state abstraction reuses the ones passed
to the controller.
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Figure 6 Comparison between the abstraction switching policy (17) and a minimal (1, 5) sequence
(columns) subject to both disturbance scenarios (rows) when applied to the double integrator (26).

We conducted the experiment on an STM32F411E-Discovery board [37] with an
ARM Cortex-M4F processor using gcc with -O3 -ffp-contract=off. Utilizing the DWT
cycle counter, the measurement overhead amounted to one cycle consistently. We drew all
coefficient values at random and computed the corresponding update steps in single precision
for ten iterations utilizing some optimizations (e.g., take into account positive definiteness).
We repeated this procedure for ten sets of coefficients, yielding 100 measurements per update
step and 𝑛𝑦. Note that the parameters are stored in RAM. Placing them in flash adds
additional wait states [37, p. 44]. This, however, affects all candidates. Figure 5 depicts the
measurement results.

While the blind abstraction used 10 cycles consistently, the execution times for the
other update steps rise for increasing measurement sizes. Note that this rise is not always
monotonic as of compiler optimizations. The cycle counts for each size 𝑛𝑦 coincide for all 100
execution time measurements of every individual update step (except for the Kalman filter
for which the variations were negligible), which is to be expected as all are constant-time
algorithms. The observer abstraction’s maximum of 29874 cycles was attained at 𝑛𝑦 = 58. In
comparison, the Luenberger observer and Kalman filter took ∼198 and ∼1057 times longer
for an update of this size. Considering the 96 MHz clock, updating the observer abstraction
took around 300𝜇𝑠 for a system with 𝑛𝑦 = 58 measurement signals. Looking at the data, we
conclude that the additional overhead from adding measurements is still negligible compared
to the complexity imposed by a control system of this size.

4.5 Abstraction-Based Run-Time Switching and Insufficiency of Stability
Sections 4.3 and 4.4 evaluate the abstraction itself, i.e., how well it can track the physical
state and how expensive the assessment is at run time. This is possible for any known
switching sequence. In contrast, here we use the state abstraction as an inexpensive way to
construct the switching sequence such that the system stays safe at all times by applying
our prototypical policy (17). Further, we exemplify that stability alone is an insufficient
criterion for safety when dealing with disturbances. These experiments were again carried
out in simulation.
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We only consider an abstraction utilizing both measurements. Without the more pes-
simistic configurations detailed in Section 4.3, we were able to increase the process uncertainty
by a factor of 10 (i.e., 100 · 𝐷𝜎) while keeping the heuristic working. To achieve this, we de-
creased 𝑟0 to 0.7, which was previously disregarded to keep the full and partial measurements
comparable.

As the system is feasible and 𝜎 = 0 is safe, the policy guarantees safety at all time steps by
Corollary 8, which was validated over 100 simulation runs. For the experiment, we compare
it to a minimal (1, 5)-switching sequence, i.e., execute the controller only every fifth time.
We decided on this specific sequence as its execution ratio is close to but higher than the
average generated by the abstraction switching in the benign case. As shown by Theorem 9,
the system is exponentially stable even under the more general (1, 5) weakly-hard execution,
i.e., skip no more than four consecutive controller executions. Even though our approach
cannot guarantee safety under this sequence, the abstraction again remains a sound upper
bound on the specification output as of Theorem 3. Subjecting each switching policy to both
disturbance scenarios yields four combinations. Figure 6 depicts one of the 100 simulation
runs obtained this way. As a visual guide for the switching sequence, the plots are overlaid
with the average cost from controller execution defined by 𝑐𝑘 := 1 − avg(𝜎𝑘) where avg(·) is
the moving average over 31 time steps.

While the abstraction stays below 𝑣𝑚𝑎𝑥 for (1, 5)-switching under the benign disturbance,
even the system itself violates its specification in the malicious case for all 100 runs indicating a
critical condition. This shows that mere stability is insufficient in the presence of disturbances
and that correlated disturbances require more pessimistic approaches, such as ellipsoidal
models.

By design, the switching policy (17) keeps the abstraction and, by extension, the system
within safe bounds at all time steps. While the average cost stays nearly constant at 15% to
20% of the controller executions during the benign disturbance, it adapts to the malicious
case by increasing the average cost to around 45% after a brief period of overshoot between
timesteps 100 and 150. From this, we conclude that our state abstractions are a pessimistic
yet cheap and simple enough tool for monitoring and influencing run-time adaptive switched
linear systems at the operating system level.

5 Related Work

Adaptive scheduling and selective verification of CPSs is a thriving field of research. Our
approach shares its objective correspondingly with a wide area of related work that we
inherently expand upon as well. Yet, we are not aware of any approach that provides (1)
sound yet very cost-effective state abstraction, (2) guarantees not only stability but also
adhering to safety constraints, and (3) uses observer-based feedback of measured values to
mitigate pessimism. The following papers each differ from our approach in one or more
respects.

We are not the first to note that CPSs are a combination of criticalities in time and
quality of control (QoC), thus sharing parallels with MCS. For example, in [34], the QoC is
maximized while preserving guarantees for cyber tasks, while [26] maps high-level hazards to
the criticality of tasks.

The co-design of the controller and real-time system was introduced by Seto et al. [36]
to improve utilization by relaxing timing requirements. Realizing the impact on QoC [4],
[31] proposed to adjust control parameters to counteract deadline misses. For example, by
adapting the control period and deadline adherence [10, 11, 17, 20]. A popular variant of
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mitigated timing constraints is (𝑚, 𝐾)-firm scheduling introduced by [21]. Subsequently, more
flexible task models and switching between safe and optimistic control were researched [15,
47, 43, 5, 35]. Likewise, for sporadic bursts of deadline misses, control parameters can be
adapted [32, 14] and [44, 29] provide stability analysis of closed-loop systems.

Conversely, optimal sampling period approaches [8, 12] infer a sampling period to maximize
QoC and minimize the quadratic cost function regardless of other tasks.

Even more radical are approaches on self-triggered control [3, 39, 22, 23], which analyze the
system state to predict the next control instant. These approaches offer superior average-case
performance – unfortunately – to the detriment of overall schedulability.

The field of model predictive control emerged from the requirement to impose bounds on
control systems. Naturally, our approach reuses its fundamental concepts, e.g. bounding the
reachable sets of a perturbed system by ellipsoids as in Tube Model Predictive Control [9].
In fact, it can be interpreted as a stripped down version of MPC. While utilizing information
about the full system state promises to be less pessimistic and there are even variants
available which incorporate scheduling decisions [24, 25, 28], they require solving potentially
large optimization problems at run time. Further, determining a discrete switching sequence
can yield a problem growing exponentially in the prediction horizon [1]. This poses a high
burden on their implementation in embedded control systems [27]. We argue that while
superior in performance, MPC is only viable if the control system requires it anyway.

6 Conclusion

The physical state, or rather its distance from the safety specification, is a crucial criterion for
the actual criticality of control applications in many real-world applications. In this paper, we
proved that careful abstraction allows for state estimation efficiently enough to serve as run-
time monitoring. Therefore, we extended our previously defined one-dimensional convergence
rate abstractions described in [19] to linear systems which feature multiple modes of controller
execution and are subject to ellipsoidally bound disturbances. Further, we introduced the
concept of observer abstractions that allow for the feedback of uncertain measurements to
lessen overapproximation, making the abstractions much more practical. Given a well-posed
specification, we then developed a design-time analysis for their parameterization. Finally,
as part of a case study, we validated our disturbance model, showed that the benefits
of introducing measurements outweighs their run-time overhead, and illustrated that our
prototypical run-time policy for optimistically choosing the mode of controller execution
adapts well to changing disturbances while obeying safety specifications even in the worst case.
We consider our work a foundation for designing mixed-criticality systems and scheduling
approaches that leverage a system’s physical state for control tasks as an additional criticality
criterion.

References
1 Ricardo P. Aguilera and Daniel E. Quevedo. On the stability of MPC with a Finite Input Alpha-

bet. IFAC Proceedings Volumes, 44(1):7975–7980, 2011. doi:10.3182/20110828-6-IT-1002.
02705.

2 Anayo K. Akametalu, Claire J. Tomlin, and Mo Chen. Reachability-Based Forced Landing
System. Journal of Guidance, Control, and Dynamics, 41(12):2529–2542, 2018. doi:10/gfpcbn.

3 Shigeru Akashi, Hideaki Ishii, and Ahmet Cetinkaya. Self-triggered control with tradeoffs in
communication and computation. Automatica, 94:373–380, 2018. doi:10.1016/j.automatica.
2018.04.028.

https://doi.org/10.3182/20110828-6-IT-1002.02705
https://doi.org/10.3182/20110828-6-IT-1002.02705
https://doi.org/10/gfpcbn
https://doi.org/10.1016/j.automatica.2018.04.028
https://doi.org/10.1016/j.automatica.2018.04.028


T. Rheinfels, M. Gaukler, and P. Ulbrich 11:21

4 K.-E. Årzén, A. Cervin, J. Eker, and L. Sha. An introduction to control and scheduling
co-design. In Proceedings of the 39th IEEE Conference on Decision and Control, volume 5,
pages 4865–4870, 2000. doi:10/ck4mjj.

5 Stanley Bak, Deepti K. Chivukula, Olugbemiga Adekunle, Mu Sun, Marco Caccamo, and
Lui Sha. The system-level simplex architecture for improved real-time embedded system
safety. In Proceedings of the 15th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 99–107, 2009. doi:10.1109/RTAS.2009.20.

6 André Benine-Neto, Stefano Scalzi, Saïd Mammar, and Mariana Netto. Dynamic controller for
lane keeping and obstacle avoidance assistance system. In 13th International IEEE Conference
on Intelligent Transportation Systems, pages 1363–1368, 2010. doi:10/bj4xpb.

7 Guillem Bernat, Alan Burns, and Alberto Liamosi. Weakly Hard Real-time Systems. IEEE
Transactions on Computers, 50(4):308–321, 2001. doi:10/cqd6d3.

8 Enrico Bini and Giuseppe M. Buttazzo. The optimal sampling pattern for linear control
systems. IEEE Transactions on Automatic Control, 59(1):78–90, 2014. doi:10/f3nxws.

9 Mark Cannon, Johannes Buerger, Basil Kouvaritakis, and Saša Rakovic. Robust Tubes in
Nonlinear Model Predictive Control. IEEE Transactions on Automatic Control, 56(8):1942–
1947, 2011. doi:10/dhg386.

10 Rosa Castañé, Pau Marti, Manel Velasco, Anton Cervin, and Daniel Henriksson. Resource
management for control tasks based on the transient dynamics of closed-loop systems. In
Proceedings of the 18th Euromicro Conf. on Real-Time Systems (ECRTS ’06), pages 172–182,
Los Alamitos, CA, USA, 2006. doi:10/bx9rps.

11 Anton Cervin, Johan Eker, Bo Bernhardsson, and Karl-Erik Årzén. Feedback–feedforward
scheduling of control tasks. Real-Time Systems, 23(1-2):25–53, 2002. doi:10/fnb5nk.

12 Anton Cervin, Manel Velasco, Pau Martí, and Antonio Camacho. Optimal online sampling
period assignment: Theory and experiments. IEEE Trans. on Control Systems Technology,
19(4):902–910, 2011. doi:10/d38qtf.

13 Long Cheng, Kai Huang, Gang Chen, Biao Hu, and Alois Knoll. Mixed-criticality control
system with performance and robustness guarantees. In Proceedings of the IEEE Trustcom/Big-
DataSE/ICESS, pages 767–775, 2017. doi:10/gr65zt.

14 Hoon Sung Chwa, Kang G. Shin, and Jinkyu Lee. Closing the gap between stability and
schedulability: A new task model for cyber-physical systems. In Proceedings of the IEEE
Real-Time and Embedded Technology and Applications Symposium, pages 327–337, 2018.
doi:10/gqz7sd.

15 Xiaotian Dai, Wanli Chang, Shuai Zhao, and Alan Burns. A Dual-Mode Strategy for
Performance-Maximisation and Resource-Efficient CPS Design. ACM Transactions on Embed-
ded Computing Systems (TECS), 18(5s):85:1–85:20, October 2019. doi:10/gq5wfw.

16 Monia Dkhil, Thach Ngoc Dinh, Zhenhua Wang, Tarek Raïssi, and Messaoud Amairi. Interval
Estimation for Discrete-Time Switched Linear Systems Based on 𝐿∞ Observer and Ellipsoid
Analysis. IEEE Control Systems Letters, 5(1):13–18, 2021. doi:10/gq5wdm.

17 Daniele Fontanelli, Luca Greco, and Luigi Palopoli. Soft real-time scheduling for embedded
control systems. Automatica, 49(8):2330–2338, 2013. doi:10/gq5wfr.

18 Maximilian Gaukler, Andreas Michalka, Peter Ulbrich, and Tobias Klaus. A New Perspective
on Quality Evaluation for Control Systems with Stochastic Timing. In Proceedings of the 21st

International Conference on Hybrid Systems: Computation and Control (HSCC ’18), pages
91–100, New York, NY, USA, April 2018. ACM. doi:10/gq5wdx.

19 Maximilian Gaukler, Tim Rheinfels, Peter Ulbrich, and Günter Roppenecker. Convergence
Rate Abstractions for Weakly-Hard Real-Time Control, 2019. doi:10/gq5wdt.

20 Luca Greco, Daniele Fontanelli, and Antonio Bicchi. Design and Stability Analysis for Anytime
Control via Stochastic Scheduling. IEEE Transactions on Automatic Control, 56(3):571–585,
March 2011. doi:10/bgwcfj.

ECRTS 2023

https://doi.org/10/ck4mjj
https://doi.org/10.1109/RTAS.2009.20
https://doi.org/10/bj4xpb
https://doi.org/10/cqd6d3
https://doi.org/10/f3nxws
https://doi.org/10/dhg386
https://doi.org/10/bx9rps
https://doi.org/10/fnb5nk
https://doi.org/10/d38qtf
https://doi.org/10/gr65zt
https://doi.org/10/gqz7sd
https://doi.org/10/gq5wfw
https://doi.org/10/gq5wdm
https://doi.org/10/gq5wfr
https://doi.org/10/gq5wdx
https://doi.org/10/gq5wdt
https://doi.org/10/bgwcfj


11:22 State Abstraction and Run-Time Monitoring of Mixed-Criticality Control Systems

21 Moncef Hamdaoui and Parameswaran Ramanathan. A Dynamic Priority Assignment Technique
for Streams with (m, K)-firm Deadlines. IEEE Transactions on Computers, 44(12):1443–1451,
1995. doi:10/cq995j.

22 W. P. M. H. Heemels and M. C. F. Donkers. Model-based periodic event-triggered control for
linear systems. Automatica, 49(3):698–711, 2013. doi:10/f4sp65.

23 W. P. M. H. Heemels, Karl Henrik Johansson, and Paulo Tabuada. An introduction to
event-triggered and self-triggered control. In 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC), pages 3270–3285, 2012. doi:10/f22pf7.

24 Dan Henriksson, Anton Cervin, Johan Åkesson, and Karl-Erik Årzén. Feedback scheduling
of model predictive controllers. In Proceedings of the Eighth IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 207–216, 2002. doi:10/frxj6d.

25 Erik Henriksson, Daniel E. Quevedo, Henrik Sandberg, and Karl Henrik Johansson. Self-
Triggered Model Predictive Control for Network Scheduling and Control. IFAC Proceedings
Volumes, 45(15):432–438, 2012. doi:10/f24cvt.

26 Viacheslav Izosimov and Erik Levholt. Mixed criticality metric for safety-critical cyber-physical
systems on multi-core architectures. Methods, 2:8, 2015.

27 Tor Arne Johansen. Toward dependable embedded model predictive control. IEEE Systems
Journal, 11(2):1208–1219, 2017. doi:10.1109/JSYST.2014.2368129.

28 Yingzhao Lian, Yuning Jiang, Naomi Stricker, Lothar Thiele, and Colin N. Jones. Robust
resource-aware self-triggered model predictive control. IEEE Control Systems Letters, 6:1724–
1729, 2022. doi:10/gr65zv.

29 Martina Maggio, Arne Hamann, Eckart Mayer-John, and Dirk Ziegenbein. Control-System
Stability Under Consecutive Deadline Misses Constraints. In Marcus Völp, editor, 32nd Eu-
romicro Conference on Real-Time Systems (ECRTS 2020), volume 165 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 21:1–21:24, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10/ghqcvc.

30 Benjamin Noack, Marcus Baum, and Uwe D. Hanebeck. State estimation for ellipsoidally
constrained dynamic systems with set-membership pseudo measurements. In Proceedings
of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent
Systems (MFI), pages 297–302, 2015. doi:10/gq5wfg.

31 Paolo Pazzaglia, Arne Hamann, Dirk Ziegenbein, and Martina Maggio. Adaptive design of real-
time control systems subject to sporadic overruns. In Proceedings of the Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 1887–1892, 2021. doi:10/gq5whh.

32 Paolo Pazzaglia, Claudio Mandrioli, Martina Maggio, and Anton Cervin. DMAC: Deadline-
Miss-Aware Control. In Sophie Quinton, editor, Proceedings of the 31st Euromicro Conference
on Real-Time Systems (ECRTS 2019), volume 133 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 1:1–1:24, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10/gf6j4p.

33 Gilberto Pin, Peng Li, Giuseppe Fedele, and Thomas Parisini. A deadbeat observer for LTI
systems by time/output-dependent state mapping. In 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), pages 4795–4800, 2017. doi:10.1109/CDC.2017.8264367.

34 Reinhard Schneider, Dip Goswami, Alejandro Masrur, Martin Becker, and Samarjit
Chakraborty. Multi-layered Scheduling of Mixed-criticality Cyber-physical Systems. Journal
of System Architecture, 59(10):1215–1230, November 2013. doi:10/f5qdjc.

35 Danbing Seto, Bruce H. Krogh, Lui Sha, and Alongkarn Chutinan. Dynamic control system
upgrade using the simplex architecture. IEEE Control Systems, 18(4):72–80, August 1998.
doi:10/fk87g6.

36 Danbing Seto, John P. Lehoczky, Lui Sha, and Kang G. Shin. On Task Schedulability in Real-
time Control Systems. In Proceedings of the 17th IEEE Real-Time Systems Symposium (RTSS
’96), pages 13–21, Los Alamitos, CA, USA, December 1996. doi:10.1109/REAL.1996.563693.

37 STMicroelectronics. Reference manual RM0383, Rev 3, 2018.

https://doi.org/10/cq995j
https://doi.org/10/f4sp65
https://doi.org/10/f22pf7
https://doi.org/10/frxj6d
https://doi.org/10/f24cvt
https://doi.org/10.1109/JSYST.2014.2368129
https://doi.org/10/gr65zv
https://doi.org/10/ghqcvc
https://doi.org/10/gq5wfg
https://doi.org/10/gq5whh
https://doi.org/10/gf6j4p
https://doi.org/10.1109/CDC.2017.8264367
https://doi.org/10/f5qdjc
https://doi.org/10/fk87g6
https://doi.org/10.1109/REAL.1996.563693


T. Rheinfels, M. Gaukler, and P. Ulbrich 11:23

38 Mohammad M. Sultan, Daniel Biediger, Bernard Li, and Aaron T. Becker. The Reachable Set
of a Drone: Exploring the Position Isochrones for a Quadcopter. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 7679–7685, 2021. doi:10.1109/
ICRA48506.2021.9561715.

39 Sebastian Trimpe and Raffaello D’Andrea. Event-based state estimation with variance-
based triggering. IEEE Transactions on Automatic Control, 59(12):3266–3281, 2014. doi:
10.1109/TAC.2014.2351951.

40 Sezai Emre Tuna. Deadbeat Observer: Construction via Sets. IEEE Transactions on Automatic
Control, 57(9):2333–2337, 2012. doi:10.1109/TAC.2012.2183197.

41 Lieven Vandenberghe and Stephen Boyd. Semidefinite Programming. SIAM Review, 38(1):49–
95, 1996. doi:10.1137/1038003.

42 Steve Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance. In Proceedings of the 28th IEEE International Real-Time Systems
Symposium (RTSS ’07), pages 239–243, 2007. doi:10/cg89kh.

43 Prasanth Vivekanandan, Gonzalo Andres Garcia, Heechul Yun, and Shawn Shahriar Keshmiri.
A simplex architecture for intelligent and safe unmanned aerial vehicles. In Proceedings of the
IEEE 22nd International Conference on Embedded and Real-Time Computing Systems and
Applications, pages 69–75, 2016. doi:10.1109/RTCSA.2016.17.

44 Nils Vreman, Anton Cervin, and Martina Maggio. Stability and Performance Analysis of
Control Systems Subject to Bursts of Deadline Misses. In Björn B. Brandenburg, editor,
Proceedings of the 33rd Euromicro Conference on Real-Time Systems, volume 196 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 15:1–15:23, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECRTS.2021.15.

45 Nils Vreman, Paolo Pazzaglia, Victor Magron, Jie Wang, and Martina Maggio. Stability of
Linear Systems Under Extended Weakly-Hard Constraints. IEEE Control Systems Letters,
6:2900–2905, 2022. doi:10/gqnxtm.

46 Guorong Wang, Yimin Wei, and Sanzheng Qiao. Generalized Inverses: Theory and Computa-
tions. Springer Singapore, first edition, 2018. doi:10/gq5wd4.

47 Xiaofeng Wang, Naira Hovakimyan, and Lui Sha. Rsimplex: A robust control architecture for
cyber and physical failures. ACM Transactions on Cyber-Physical Systems, 2(4), July 2018.
doi:10.1145/3121428.

A Proofs

While in Section 3 we focused on conveying the ideas and design decisions behind our
approach, here we formalize and prove the state abstractions’ properties.

▶ Lemma 1 (Generalization). By setting 𝐿𝜎 = 0 ∀𝜎 ∈ Σ, the observer abstraction (8) is a
true generalization of the blind abstraction (6).

Proof. When applying norm homogeneity (3a), the observer abstraction’s dynamics (8a)
and their coefficients (10) are reduced to the blind counterparts (6a) and (7) by setting
𝐿𝜎 = 0 ∀𝜎 ∈ Σ. ◀

▶ Lemma 2 (Disturbance Bound). The highest impact of an ellipsoidally constrained distur-
bance in terms of the 𝑃-norm is attained at the ellipsoid’s surface:

max
| |𝑥 | |𝑄≤1

| |𝑀𝑥 | |𝑃 = max
| |𝑥 | |𝑄=1

| |𝑀𝑥 | |𝑃
(1c)
= | |𝑀 | |𝑃𝑄 . (27)
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Proof. We prove destructively: assume some 𝑥 with | |𝑥 | |𝑄 < 1 were a maximizer on the
ellipsoid’s inside. Then 𝑥 := | |𝑥 | |−1

𝑄
𝑥 is of unit length (i.e., it lies on the surface of 𝑄) and by

the norm properties

| |𝑀𝑥 | |𝑃
(3a)
= | |𝑥 | |−1

𝑄︸ ︷︷ ︸
>1

| |𝑀𝑥 | |𝑃
(3b)
> | |𝑀𝑥 | |𝑃

is greater than the assumed maximizer. This contradiction concludes (27). ◀

▶ Theorem 3 (Soundness). For any switching sequence 𝜎𝑘 ∈ Σ, 𝑘 ∈ N0, an (observer)
abstraction (8) poses a sound upper bound for the underlying system’s state (4), i.e.,

| |𝑥𝑘 | |𝑃 ≤ 𝑣𝑘 ∀𝑘 ∈ N0. (28)

Proof. We prove (28) by induction.

Base Case. By the ellipsoidal constraint on the initial state, the norm properties, and the
definition of blind abstractions

| |𝑥0 | |𝑃
(4d)
≤ max

| |𝑥 | |𝑋0 ≤1
| |𝑥 | |𝑃

(27)
= | |𝐼 | |𝑃𝑋0︸  ︷︷  ︸

(10)
= 𝛼

(8b)
= 𝑣0.

Inductive Assumption (I.A.). | |𝑥𝑘 | |𝑃 ≤ 𝑣𝑘 .

Inductive Step (𝒌 → 𝒌 + 1). We incorporate the observer by adding a zero and substituting
the measurement. Applying the triangle inequality and bounding the summands by the norm
properties yields the abstraction’s coefficients and dynamics by definition:

| |𝑥𝑘+1 | |𝑃
(4a)
= | |𝐴𝜎𝑘

𝑥𝑘 + 𝐺𝜎𝑘
𝑑𝑘 | |𝑃

(9),+0
= | |𝐴𝜎𝑘

𝑥𝑘 + 𝐺𝜎𝑘
𝑑𝑘 + 𝐿𝜎𝑘

𝐶𝜎𝑘
𝑥𝑘 | |𝑃

(4b)
=

| |𝐴𝜎𝑘
𝑥𝑘 + 𝐺𝜎𝑘

𝑑𝑘 − 𝐿𝜎𝑘
𝐻𝜎𝑘

𝑧𝑘 + 𝐿𝜎𝑘
𝑦𝑘 | |𝑃

(3c)
≤ ||𝐴𝜎𝑘

𝑥𝑘 | |𝑃 + ||𝐺𝜎𝑘
𝑑𝑘 | |𝑃 + ||𝐿𝜎𝑘

𝐻𝜎𝑘
𝑧𝑘 | |𝑃

+ ||𝐿𝜎𝑘
𝑦𝑘 | |𝑃

(1c),(4c),(27)
≤ ||𝐴𝜎𝑘

| |𝑃𝑃︸       ︷︷       ︸
(10)
= 𝜌𝜎𝑘

| |𝑥𝑘 | |𝑃 + ||𝐺𝜎𝑘
| |𝑃𝐷𝜎𝑘

+ ||𝐿𝜎𝑘
𝐻𝜎𝑘

| |𝑃𝑍𝜎𝑘︸                                       ︷︷                                       ︸
(10)
= 𝛽𝜎𝑘

+||𝐿𝜎𝑘
𝑦𝑘 | |𝑃

𝐼.𝐴.
≤

𝜌𝜎𝑘
𝑣𝑘 + 𝛽𝜎𝑘

+ ||𝐿𝜎𝑘
𝑦𝑘 | |𝑃

(8a)
= 𝑣𝑘+1. ◀

▶ Theorem 4 (Safety Bound). If an abstraction’s state is within its safety bound, the system
is guaranteed to obey its specification, i.e.,

𝑣𝑘 ≤ 𝑣𝑚𝑎𝑥 ⇒ ||𝑠𝑘 | |𝑆 ≤ 1 ∀𝑘 ∈ N0. (29)

Proof. After expanding the definitions, we apply Theorem 3 and the norm consistency.
Assume 𝑣𝑘 ≤ 𝑣𝑚𝑎𝑥 (∗), then

| |𝑠𝑘 | |𝑆
(4e)
= | |𝐶𝑠𝑥𝑘 | |𝑆

(1c)
≤ ||𝐶𝑠 | |𝑆𝑃︸   ︷︷   ︸

(10)
= 𝑣−1

𝑚𝑎𝑥

| |𝑥𝑘 | |𝑃
(28)
≤ 𝑣−1

𝑚𝑎𝑥𝑣𝑘
(∗)
≤ 1. ◀
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▶ Lemma 5 (Worst-case Behavior). The dynamic system (11) provides an upper bound on
the observer abstraction (8), i.e.,

𝑣𝑘 ≤ 𝑣𝑘 ∀𝑘 ∈ N0. (30)

Proof. First, we decompose the measurement term and apply Theorem 3:

| |𝐿𝜎𝑘
𝑦𝑘 | |𝑃

(4b)
≤ ||𝐿𝜎𝑘

𝐶𝜎𝑘
𝑥𝑘 + 𝐿𝜎𝑘

𝐻𝜎𝑘
𝑧𝑘 | |𝑃

(1c),(3c),(4c),(27)
≤

||𝐿𝜎𝑘
𝐶𝜎𝑘

| |𝑃𝑃︸            ︷︷            ︸
(10)
= 𝛾𝜎𝑘

| |𝑥𝑘 | |𝑃 + ||𝐿𝜎𝑘
𝐻𝜎𝑘

| |𝑃𝑍𝜎𝑘︸               ︷︷               ︸
(10)
= 𝛿𝜎𝑘

(28)
≤ 𝛾𝜎𝑘

𝑣𝑘 + 𝛿𝜎𝑘
. (31)

We then prove (30) by induction:
Base Case: By definition, 𝑣0

(8b),(11b)
= 𝑣0.

Inductive Assumption (I.A.): 𝑣𝑘 ≤ 𝑣𝑘 .
Inductive Step (𝒌 → 𝒌 + 1):

𝑣𝑘+1
(8a),(31)

≤ (𝜌𝜎𝑘
+ 𝛾𝜎𝑘

)𝑣𝑘 + 𝛽𝜎𝑘
+ 𝛿𝜎𝑘

𝐼.𝐴.
≤ (𝜌𝜎𝑘

+ 𝛾𝜎𝑘
)𝑣𝑘 + 𝛽𝜎𝑘

+ 𝛿𝜎𝑘

(11a)
= 𝑣𝑘+1. ◀

▶ Lemma 6 (An Inclusion Condition). The feasible set (13) obeys the following inclusion
condition:

𝑎 ≤ 𝑏 ⇒ Σ 𝑓 (𝑏) ⊆ Σ 𝑓 (𝑎). (32)

Proof.

Σ 𝑓 (𝑏)
(13)
= {𝜎 ∈ Σ |𝑏 ≤ 𝑣∗𝜎}

𝑎≤𝑏
= {𝜎 ∈ Σ |𝑎 ≤ 𝑣∗𝜎 ∨ 𝑏 ≤ 𝑣∗𝜎} ⊆ {𝜎 ∈ Σ |𝑎 ≤ 𝑣∗𝜎}

(13)
= Σ 𝑓 (𝑎). ◀

▶ Theorem 7 (Recursive Feasibility). Under the conditions (14) and (15), the switching
policy (16) is recursivly feasible, i.e., Σ 𝑓 (𝑣𝑘) ≠ ∅ ∀𝑘 ∈ N0. Assume (w.l.o.g.) that 𝑣∗0 ≥ 𝑣𝑚𝑎𝑥.
Then,

0 ∈ Σ 𝑓 (𝑣𝑘) ≠ ∅ ∀𝑘 ∈ N0. (33)

Proof. In preparation, observe that

𝜎 ∈ Σ 𝑓 (𝑣𝑘)
(13)
⇔ 𝑣𝑘 ≤ 𝑣∗𝜎

(12)
=

𝑣𝑚𝑎𝑥 − 𝛽𝜎 − 𝛿𝜎
𝜌𝜎 + 𝛾𝜎

⇔ (𝜌𝜎 + 𝛾𝜎)𝑣𝑘 + 𝛽𝜎 + 𝛿𝜎 ≤ 𝑣𝑚𝑎𝑥 . (34)

We prove (33) by induction using the results from Lemma 6:
Base Case: By assuming (14) and (15), 𝑣0 ≤ 𝑣𝑚𝑎𝑥 ≤ 𝑣∗0. Therefore:

0
(13)
∈ Σ 𝑓 (𝑣∗0)

(32)
⊆ Σ 𝑓 (𝑣0).

Inductive Assumption (I.A.): 0 ∈ Σ 𝑓 (𝑣𝑘).
Inductive Step (𝒌 → 𝒌 + 1): Assuming the I.A. holds, we know that Σ 𝑓 (𝑣𝑘) ≠ ∅, therefore,

using any policy 𝜎𝑘 ∈ Σ 𝑓 (𝑣𝑘) leads to

𝑣𝑘+1
(8a),(31)

≤ (𝜌𝜎𝑘
+ 𝛾𝜎𝑘

)𝑣𝑘 + 𝛽𝜎𝑘
+ 𝛿𝜎𝑘

≤ max
𝜎∈Σ 𝑓 (𝑣𝑘 )

((𝜌𝜎 + 𝛾𝜎)𝑣𝑘 + 𝛽𝜎 + 𝛿𝜎)
(34)
≤ 𝑣𝑚𝑎𝑥

(15)
≤ 𝑣∗0.

(35)

Using the definition of feasible sets, we arrive at 𝑣𝑘+1 ≤ 𝑣∗0
(13)
⇔ 0 ∈ Σ 𝑓 (𝑣𝑘+1). ◀
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▶ Corollary 8 (Guaranteed Safety). Under the conditions of Theorem 7, any switching policy
obeying (16) guarantees the safety specification (4f) ∀𝑘 ∈ N0.

Proof. 𝑣𝑘 ≤ 𝑣𝑚𝑎𝑥 holds for 𝑘 = 0 due to (14) and for 𝑘 ∈ N due to (15) and (33)–(35).
Theorem 4 concludes (4f) ∀𝑘 ∈ N0. ◀

▶ Theorem 9 (Double Integrator Stability). In the absence of disturbances (𝑑𝑘 = 0, 𝑧𝑘 = 0∀𝑘 ∈
N0), the double integrator benchmark (26) is exponentially stable under (1, 5)-switching, i.e.,
there exist some 𝐶 > 0, 0 < 𝜆 < 1 such that

| |𝑥𝑘 | |𝑃 ≤ 𝐶𝜆𝑘 | |𝑥0 | |𝑃 . (36)

Proof. Given 𝑑𝑘 = 0, 𝑧𝑘 = 0∀𝑘 ∈ N0, the system dynamics (4a) have the explicit solution

| |𝑥𝑘 | |𝑃 = | |
(
𝑘−1∏
𝑖=0

𝐴𝜎𝑖

)
𝑥0 | |𝑃 . (37)

For any switching sequence satisfying the (1, 5) constraint, we can decompose the product
(37) into 𝑛 shorter sequences of the shape 𝑀𝑚 = 𝐴0𝐴

𝑚
1 and some open loop part 𝐴𝑙1 with

𝑚, 𝑙 ∈ {0, . . . , 4}. Let 𝑓 (𝑖) be the mapping for the concrete sequence (∗∗). Applying the
consistency properties yields

| |𝑥𝑘 | |𝑃
(37), (∗∗)

= | |𝐴𝑙1

(
𝑛∏
𝑖=1

𝑀 𝑓 (𝑖)

)
𝑥0 | |𝑃

(1c),(1d)
≤ ||𝐴𝑙1 | |𝑃𝑃

(
𝑛∏
𝑖=1

| |𝑀 𝑓 (𝑖) | |𝑃𝑃

)
| |𝑥0 | |𝑃

(3b),𝑛≥0
≤ max

𝑙∈{0,...,4}
| |𝐴𝑙1 | |𝑃𝑃︸                 ︷︷                 ︸

=:𝐶

( max
𝑚∈{0,...,4}

| |𝑀𝑚 | |𝑃𝑃︸                   ︷︷                   ︸
=:𝜆

)𝑛 | |𝑥0 | |𝑃 .

Given that the 𝑀𝑚 describe between one and five timesteps, we can bound 𝑛 from below
as ⌊ 𝑘5 ⌋ ≤ 𝑛. Assuming 0 ≤ 𝜆 ≤ 1, the exponential decay can be upper bounded as

𝐶𝜆𝑛 ≤ 𝐶𝜆⌊ 𝑘
5 ⌋ ⌊ 𝑘

5 ⌋≥ 𝑘
5 −1

= 𝐶𝜆
𝑘
5 −1 = 𝐶𝜆−1︸︷︷︸

=:𝐶

( 𝜆 1
5︸︷︷︸

=:𝜆

)𝑘 .

Combining the above yields the stability condition (36), i.e., | |𝑥𝑘 | |𝑃 ≤ 𝐶𝜆𝑛 | |𝑥0 | |𝑃 ≤
𝐶𝜆𝑘 | |𝑥0 | |𝑃.

The last step is to prove that 0 ≤ 𝜆 ≤ 1 which can be shown for 𝑃 :=
[
5.849 5.045
5.045 13.45

]
≻ 0

and (1b) yielding 𝜆 = 0.9712 and therefore stability with 𝐶 = 1.191 and 𝜆 = 0.9942. ◀
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