
Low-Overhead Online Assessment of Timely
Progress as a System Commodity
Weifan Chen #

Boston University, MA, USA
Ivan Izhbirdeev #

Boston University, MA, USA

Denis Hoornaert #

Technische Universität München, Germany
Shahin Roozkhosh #

Boston University, MA, USA

Patrick Carpanedo #

Boston University, MA, USA
Sanskriti Sharma #

Boston University, MA, USA

Renato Mancuso #

Boston University, MA, USA

Abstract
The correctness of safety-critical systems depends on both their logical and temporal behavior.
Control-flow integrity (CFI) is a well-established and understood technique to safeguard the logical
flow of safety-critical applications. But unfortunately, no established methodologies exist for
the complementary problem of detecting violations of control flow timeliness. Worse yet, the
latter dimension, which we term Timely Progress Integrity (TPI), is increasingly more jeopardized
as the complexity of our embedded systems continues to soar. As key resources of the memory
hierarchy become shared by several CPUs and accelerators, they become hard-to-analyze performance
bottlenecks. And the precise interplay between software and hardware components becomes hard to
predict and reason about. How to restore control over timely progress integrity? We postulate that
the first stepping stone toward TPI is to develop methodologies for Timely Progress Assessment
(TPA). TPA refers to the ability of a system to live-monitor the positive/negative slack – with
respect to a known reference – at key milestones throughout an application’s lifespan. In this paper,
we propose one such methodology that goes under the name of Milestone-Based Timely Progress
Assessment or MB-TPA, for short. Among the key design principles of MB-TPA is the ability
to operate on black-box binary executables with near-zero time overhead and implementable on
commercial platforms. To prove its feasibility and effectiveness, we propose and evaluate a full-stack
implementation called Timely Progress Assessment with 0 Overhead (TPAw0v). We demonstrate
its capability in providing live TPA for complex vision applications while introducing less than
0.6% time overhead for applications under test. Finally, we demonstrate one use case where TPA
information is used to restore TPI in the presence of temporal interference over shared memory
resources.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases progress-aware regulation, hardware assisted runtime monitoring, timing
annotation, control flow graph

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2023.13

Supplementary Material Software (Source Code): https://github.com/wchen258/TPAw0v
archived at swh:1:dir:94e4198f133a2fb5eca90f45a5875eef2157ccee

Funding Denis Hoornaert: Denis Hoornaert was supported by the Chair for Cyber-Physical Systems
in Production Engineering at TUM and the Alexander von Humboldt Foundation.
Renato Mancuso: The material presented in this paper is based upon work supported by the National
Science Foundation (NSF) under grants number CCF-2008799 and CNS-2238476.

© Weifan Chen, Ivan Izhbirdeev, Denis Hoornaert, Shahin Roozkhosh, Patrick Carpanedo,
Sanskriti Sharma, and Renato Mancuso;
licensed under Creative Commons License CC-BY 4.0

35th Euromicro Conference on Real-Time Systems (ECRTS 2023).
Editor: Alessandro V. Papadopoulos; Article No. 13; pp. 13:1–13:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wfchen@bu.edu
https://orcid.org/0009-0002-4856-0421
mailto:ivani@bu.edu
mailto:denis.hoornaert@tum.de
https://orcid.org/0009-0009-7419-549X
mailto:shahin@bu.edu
https://orcid.org/0000-0001-5187-5999
mailto:pfcarp21@bu.edu
mailto:sanas@bu.edu
mailto:rmancuso@bu.edu
https://orcid.org/0000-0003-3558-5216
https://doi.org/10.4230/LIPIcs.ECRTS.2023.13
https://github.com/wchen258/TPAw0v
https://archive.softwareheritage.org/swh:1:dir:94e4198f133a2fb5eca90f45a5875eef2157ccee;origin=https://github.com/wchen258/TPAw0v;visit=swh:1:snp:a0733e1559103134836dd253f934c8aebd47ac79;anchor=swh:1:rev:45adb73e8be5ee4423aa8a7fadad289477193236
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Low-Overhead Online Assessment of Timely Progress as a System Commodity

1 Introduction

Prompted by the proliferation of cyber-physical, safety-critical, and human-in-the-loop
systems, the notion of timeliness in computing has gained growing interest. The accompanying
demand for complex, robust, and computationally demanding control algorithms has led
the real-time community to shift its focus away from simpler hardware platforms to high-
complexity and high-performance platforms. As the complexity increases in platforms, many
challenges have surfaced at all the software/hardware stack layers. It is well understood that
the logic of an application can be hardened against control-flow attacks via Control Flow
Integrity (CFI) [39] methods. But no established methodologies exist for the dual problem
in the temporal domain, for which we coin the name Timely Progress Integrity (TPI).

The introduction of heterogeneous multi-core System-on-Chip (SoC) along with complex
memory subsystem mechanisms at the hardware level has complicated the problem of ensuring
TPI. In particular, memory subsystem hierarchy such as shared [49], non-blocking caches [62],
shared memory controller [66], and DRAM organization [65] are among noteworthy sources of
interference. The interplay of each element mentioned above renders the task of guaranteeing
timeliness an open challenge. In turn, the introduced complexity in SoCs and their ongoing
proliferation have prompted the need for more complex operating systems and OS-level
scheduling strategies, which exacerbate the problem.

The real-time community has achieved important milestones towards restoring predict-
ability [45, 48]. But traditional methods – e.g. static WCET analysis, memory resource
partitioning – have largely focused on respecting end-to-end constraints in the worst case, as
opposed to reason on the current (timely) rate of progress of live applications. Solutions that
leverage code instrumentation have been proposed to checkpoint the progress of applications
at runtime [37, 38, 58], but a system-level solution that can operate on black-box binaries
and inform a rich OS of the expected/detected progress of its applications for it to make
informed management decisions has not been studied. We propose one such solution.

Timely progress assessment as a system commodity. Reasoning about, controlling, and
reacting to changes in the progress of safety-critical applications is the goal. Thus, the ability
to assess an application’s progress must become a system commodity. In referring to this
capability, we coin the term Timely Progress Assessment (TPA). With TPA, a system is
capable of detecting deviations in the timely progress of an application well before a deadline
is missed, providing the ability to enact corrective measures toward ensuring TPI early on.
On the other hand, when faster-than-expected progress is detected, the accumulated slack
can be redistributed to other workloads. Thus, TPA is an enabling capability towards Timely
Progress Integrity (TPI).

This article presents a system design and methodology called Milestone-Based Timely
Progress Assessment (MB-TPA) to perform TPA on live black-box applications. MB-TPA
relies on binary analysis and widely available on-chip tracing subsystems to detect the timely
completion of intermediate progress milestones for an application under analysis. We discuss
a full-stack implementation of MB-TPA on commercial hardware. The implemented TPA
subsystem was termed Timely Progress Assessment with 0 Overhead (TPAw0v), which we
describe and evaluate. We show that MB-TPA (1) introduces negligible (< 0.6%) overhead
to the monitored applications under test. MB-TPA is able to provide live progress assessment
even if a low-power CPU is used to monitor a high-performance CPU. In light of the discussion
above, we make the following contributions:

W. Chen et al. 13:3

Figure 1 High-level overview of the proposed system design. The CFG of the target application
is analyzed to produce a Timed Milestone Graph (TMG). Together with the online data produced
by the Trace Unit (TU), a progress tracker assesses timely progress and reports to the OS. The OS
can take corrective measures accordingly.

1. We propose the concept of TPI as a requirement that is complementary to CFI to marry
logical and temporal integrity.

2. We demonstrate for the first time that online progress assessment without source code
instrumentation for black-box applications is feasible in commercial platforms.

3. We present a method called MB-TPA, that solves key challenges with offline milestone
identification and online progress assessment.

4. Provide a full-stack proof-of-concept implementation and evaluation of MB-TPA for
multi-core Arm Aarch64 SoCs. We refer to our implementation as TPAw0v.

5. Showcase three use cases focusing on real-world vision applications. We leverage TPA
to (1) enforce the WCET of a target application; (2) achieve controlled performance
degradation of the target application by modulating the degree of contention over shared
memory resources; and (3) retrieve live progress-aware profiles of the microarchitectural
resources used by the target application.

1.1 Overview of Proposed System Design for MB-TPA
The goal of making TPA a system commodity imposes two main design constraints. First and
foremost, it must be possible for a system to enact TPA on potentially unknown (black-box)
applications that cannot be recompiled from sources. At the same time, TPA shall be
carried out with negligible temporal overhead. An overview of the proposed system design
is provided in Figure 1. The design involves the use of a Tracee PE (Processing Element)
where a target application (Task) runs unmodified. A second low-power/low-performance
PE, the Tracer, controls the TU to generate trace data transparently to the application
under analysis. Section 4 discusses the system assumptions that enable instantiating the
proposed system.

Initially, the unmodified binary of the target application is analyzed to construct its
Control Flow Graph (CFG) – (1) in Figure 1. Through a sequence of refinement steps, a
Timed Milestone Graph (TMG) is derived from the original CFG. An in-depth description
of the methodology proposed to produce a TMG from a CFG is provided in Section 5. The
TMG is a graph of milestones, each corresponding to some vertex in the original CFG, with
associated time information – (2) in Figure 1. At runtime, the tracer uses the input TMG
and the data received from the TU and detects (un)timely completion of the milestones –

ECRTS 2023

13:4 Low-Overhead Online Assessment of Timely Progress as a System Commodity

(3) in Figure 1. The detected positive/negative progress slack is reported back to the OS to
enact management decisions. The tracer was implemented as bare-metal firmware running
on a low-power CPU. The details of our implementation are provided in Section 7.

2 Related Works

Our work finds context in the broad literature concerned with ensuring that the timeliness of
a (set of) critical task(s) can be controlled. In modern platforms, the progress of application
workload can be impacted by many factors. These include scheduling decisions, overheads
introduced by preemptions and migrations [15, 40, 50] and I/O activity [16, 33, 55, 67], un-
predictable cache effects such as self-eviction [17,27], and contention over shared hardware
resources [45, 48]. The set of solutions proposed by the real-time community to reason about
the timeliness of an application can be placed on a spectrum. On one end are static analysis
approaches; on the other are runtime monitoring solutions.

Timeliness (interpreted as the ability to meet a completion deadline) in static analysis
approaches [5, 20, 31, 47] is ensured by computing an absolute worst-case execution time
(WCET) which is then used to compute a worst-case response time (WCRT). The promise is
that WCET/WCRT computation is done by considering the initial state(s) and sequences of
system states that lead to the worst possible temporal application behavior. Given the sheer
complexity of interactions between applications, system-level, and hardware-level components,
static approaches seldomly scale to modern multicore processors [30,35,46].

Recently, approaches based on runtime monitoring have gained momentum. At a high
level, these approaches select a monitoring scheme and a set of system metrics. By monitoring
such metrics online – and taking management actions accordingly – the system detects and/or
avoids undesired outcomes, e.g., uncontrolled contention over a shared resource or a deadline
miss for a critical task. To properly contextualize our work with respect to related approaches,
we categorize runtime monitoring solutions into software- and hardware-based approaches.

2.1 Software-based Monitoring and Progress Assessment
The vast majority of solutions for runtime monitoring and progress assessment introduce
software mechanisms to enact monitoring and/or enact management decisions. We distinguish
four main sub-categories discussed below.

(A) Memory Bandwidth Regulation. Memory bandwidth controllers [59,62,66] monitor
the number of last-level data cache refills and/or writebacks against an allocation budget.
Periodically, they stall the processor if the consumed budget is exceeded. Although bandwidth
regulation aims to prevent the unbalanced progress of co-running applications sharing the
same memory subsystem, no exact knowledge of application progress is constructed.

(B) Feedback Control Scheduling. Feedback control scheduling represents another form of
runtime monitoring. In the context of real-time systems, this approach was pioneered in [60].
The key insight is that the knowledge of task parameters computed offline is refined via
online observations performed at task completion. Task admission is geared accordingly to
meet a target deadline miss ratio. Since the aforementioned original work, a broad literature
on feedback control scheduling has surfaced [19,44,53].

(C) Early Deadline Detection. Early deadline detection is the runtime monitoring technique
at the center of adaptive mixed-criticality scheduling (AMC) [14, 18]. The key insight is
that multiple (at least two) runtime estimates are expressed for high-criticality tasks with

W. Chen et al. 13:5

varying degrees of pessimism. Initially, an optimistic execution time is assumed, and an early
deadline (virtual deadline) is set accordingly. At runtime, the system detects if any early
deadline is missed and takes corrective measures accordingly by dropping [13,24,29,41,54] or
degrading low-criticality tasks [28, 42]. Like feedback control scheduling, runtime monitoring
in AMC systems is limited to detecting an application’s completion (or lack thereof) by a set
(early) deadline. This is equivalent to detecting a single milestone at the application’s end.

(D) Progress Detection. A handful of works attempt to provide a finer-grained under-
standing of the progress of target applications. For instance, the work in [26] periodically
monitors the number of retired instructions to detect a sequence of phases in which the
application’s usage of hardware resources changes. This approach is inherently limited to
applications with a single execution path. In a way that is more closely related to our work,
the works in [36–38,58] consider the full CFG of a target application. These works propose
to instrument a target application’s code via source-to-source translation and/or a modified
compiler. The goal is to insert watchpoints at which progress is assessed in software. At
runtime, when the execution reaches a watchpoint, an interrupt/syscall is issued to decide
whether the system should raise the critical level and drop/suspend low-criticality jobs. In
previous works, the overhead is a limiting factor. Kritikakou et al., in an extension [36]
to [37, 38], propose an algorithm to ignore some checkpoints in order to reduce the overhead.
The authors of PAStime [58] place watchpoints outside of loops to limit the overhead.

Compared to the works in the four categories surveyed above, this paper sets itself apart
because we aim at precise progress assessment without the need to modify/recompile the
application under analysis. Importantly, we are able to express a notion of timely progress
even if the control flow is input dependent. Finally, for the first time, we demonstrate that
leveraging widely available tracing hardware for progress assessment is possible and minimizes
runtime overhead. Indeed, our system never interrupts the application under analysis while
its progress is assessed asynchronously and, therefore, off the critical path.

2.2 Run-time Monitoring via Hardware
Comparatively, less work has explored progress monitoring via specialized hardware support.
Most notably, Lo et al. proposed a customized hardware architecture for runtime monitoring
of hard real-time tasks [43]. Apart from timely progress, the work aims to monitor other
safety properties, such as the presence of uninitialized memory and the correctness of return
addresses. Differently from [43], we focus on commercially available hardware.

Few works have also proposed to leverage trace unit at runtime to perform control flow
integrity [25, 34], while FPGA-based trace decoders were proposed in [6, 32]. We are the first
to utilize a trace unit online to perform timely progress assessment in real-time systems.

3 Background

All the aforementioned approaches for progress assessment [36–38,43,58] consider the CFG
of critical tasks. Kritikakou et al. have constructed a formal grammar to extract the
CFG from a wide range of binaries [37]. There are also a plethora of tools capable of such
transformations [57]. The following section provides a brief overview of CFGs.

(A) Basic Block and Branch Instructions. A basic-block (BB) is a contiguous sequence of
non-branching (assembly) instructions ending with a branching instruction. In other words,
except for the last instruction, a basic block only contains instructions for which the program

ECRTS 2023

13:6 Low-Overhead Online Assessment of Timely Progress as a System Commodity

counter (PC) of the CPU – or more generally, processing element (PE) – is monotonously
incremented. A branch instruction has one or more target BBs. For example, in Arm®
aarch32/64 [11], an unconditional branch instruction b would take PC to the operand
address, the beginning of a BB. Conditional branch instructions b.cond have two target
BBs. When b.cond is executed, if the condition is met, the PC is set to the operand address,
otherwise to the instruction following the b.cond instruction. The return instruction ret
can have more than two target BBs. It is possible to statically know its target(s) if the call
sites can be fully enumerated.

(B) Control Flow Graph. A program’s control flow transfer information can be expressed
as a directed graph G = (V, E). A node n ∈ V represents a BB, and an edge (np, ns) ∈ E
indicates that the branch instruction in np has ns as a target. We term this type of edge
a normal edge. In practice, it is unnecessary to expand the complete CFG for runtime
monitoring purposes. Instead, one can view the program as a collection of functions with
the entry point at main [37]. Thus, if no watchpoints are to be placed inside a function f,
all nodes and edges related to f can be removed, and an edge from the caller BB to the
returning BB is added. We refer to this operation as the folding of function f, and to the
newly added edge as the folding edge.

(C) Processor Trace. The processor trace, often called the embedded trace, is a highly
compressed data stream generated by a PE when executing binary code. The trace contains
the necessary information to reconstruct the history of the executed program. Trace generation
is often used for debugging and performance evaluation purposes. As such, the on-chip
hardware circuitry dedicated to processor trace generation, i.e., the trace unit (TU), is
designed to introduce negligible overhead, if at all. The typical use of processor tracing
capabilities is in conjunction with external trace probes. In this case, the system runs without
modification while external hardware (probe) is connected to a physical trace port. The
probe collects (portions of) the produced processor trace data for offline analysis. Two
broadly used hardware probes are the Lauterbach® PowerTrace [1] and the Green Hills®
Probe V4 [2].

Trace generation units are almost ubiquitous in embedded and general-purpose high-
performance CPUs. Many embedded modern processors include more or less capable on-chip
TU’s. For example, Arm’s lineup of hardware modules for tracing and debugging that
fall under the CoreSight [7] umbrella includes TU modules such as the Embedded Trace
Macrocell (ETM) and Program Trace Macrocell (PTM). The TU solution from Intel® is
called Processor Trace (PT). The PT infrastructure has been introduced in 5th generation
Intel processors, promising overheads below 5% [21, Chapter 32]. RISC-V also has its own
embedded trace specification [4].

Since trace data is produced at the same (or comparable) timescale as instruction execution,
the data bandwidth is usually considerably high, even after many lossless compression
techniques are applied. A common compression technique only reports the progression of BBs
instead of individual instructions. If the current BB is known, then a single bit of information
is enough to encode whether the (conditional) branch at the end of the BB is taken or not.
When this information is combined with static knowledge of the binary under analysis, the
entire control flow can be recovered. If the current BB ends with an indirect branch such as
a function return, the trace provides an explicit branching address.

Trace data include additional metadata about the processor state. For instance, in systems
that support multiple tasks, the context ID of the process in execution (as determined by the
OS) is also generated. The virtual machine ID is also included for systems with hardware

W. Chen et al. 13:7

virtualization extensions. Similarly, information that can identify an interrupt context
(interrupt taken, interrupt type, interrupt return) is also provided. Other valuable meta-
information for performance analysis can also be included, such as the cycle counter and the
occurrence of other microarchitectural events.

A TU includes hardware resources that go beyond embedded trace generation to perform
some degree of pre-processing. For instance, trace packet filters, counters, sequencers/format-
ters, external input selectors, or aggregators to combine trace data from multiple sources
(e.g., multiple CPUs) can be included in the TU subsystem.

4 System Model and Assumptions

In this section, we describe the assumed system model upon which our MB-TPA is formulated.
These assumptions also dictate the system requirements to implement the proposed MB-TPA,
and ultimately introduce timely progress assessment as a commodity.

4.1 System-level Assumptions

(A) Tracee PE and Tracer PE. We assume that at least two PEs are present: (1) a main
PE (or tracee) running the application under analysis and (2) the other PE serving as a tracer.
Note that no assumption on the components’ nature nor performance is made, meaning that
the tracer and tracee can be implemented using various technologies. For instance, a system
could have high-performance PEs as tracee and be monitored by a low-performance real-time
core or specialized hardware implemented as an ASIC or on an FPGA.

(B) Address Range Filters. We assume that the tracee features a TU providing at least
one range-programmable instruction address filter. That way, the TU can be programmed
to trace specific address ranges corresponding to the immediate next milestones.

(C) On-chip Trace Data Path. We assume that an on-chip data path exists through which
the TU-generated trace data stream can be forwarded to the tracer, as it is commonly the case
for high-performance embedded systems. For instance, many ARM-based COTS platforms
offer dedicated on-chip trace routing and storage within the CoreSight [7] infrastructure1.

4.2 Application-level Assumption

(A) Single Binary. This work targets single-binary applications running on the tracee.
No restrictions on the number of software layers used by the tracee are imposed, meaning
that the target applications can equally run on top of a full-fledged OS, inside a virtual
machine on a hypervisor, or as a bare-metal application. The binary is sufficient to apply the
proposed MB-TPA: we place no assumption on the availability of the target’s source code,
nor that it can be recompiled and/or binary-instrumented. The goal is that MB-TPA can be
automatically employed by a system.

1 Trace data routing components include the Embedded Trace Router (ETR), Embedded Trace FIFO,
and Funnel. Storage components include the Embedded Trace Buffer and Trace Memory Controller.

ECRTS 2023

13:8 Low-Overhead Online Assessment of Timely Progress as a System Commodity

Figure 2 Abstract tool-chain proposed. Ovals represent the inputs and outputs, red rectangles
represent timing-sensitive tools, and green rectangles represent timing-insensitive tools.

(B) Single Entry/Exit. Without loss of generality, we assume that the entry BB address
and the exit BB address are (1) known, (2) within the target’s binary, and (3) they are linked
by at least one valid control path. The entry and exit BB of a function generally2 represent a
valid selection. Otherwise, for applications implementing time- or event-triggered logic in an
infinite loop, the first and last BBs of the loop iteration can be selected as the entry and exit
BB points. If the debug symbols are part of the binary, the entry/exit BB selection can be
automated (e.g., given a function name).

(C) Availability of Representative Inputs. Finally, for complex and input-dependent
applications, we assume that a set of representative input vectors is available to experimentally
produce (offline) a nominal progress reference to check against during the online phase.

5 Methodology for Milestone-Based Timely Progress Assessment

We hereby describe the proposed Milestone-Based Timely Progress Assessment in its different
phases. With reference to Figure 1, this section details the design choices and steps involved
in going from CFG creation to TMG generation. A bird’s eye view of MB-TPA is depicted
in Figure 2. The following sections cover the numbered steps (1) through (5) in detail.

5.1 Intuition of Key Challenges and Solutions
(A) Monotonic Progress in Black-Box Binaries. As discussed in Section 3, the execution
of a binary implies control flow transfer over a graph. On the other hand, the idea that a
target application must execute (and thus complete) on time implies a monotonic notion
of progress. Therefore, the first challenge we face is to construct a notion of progress given
black-box application binaries.

Our solution consists in identifying BBs that represent progress milestones (Section 5.3).
Intuitively, a BB is a progress milestone (a.k.a. MBB) if, once reached, it is possible to
conclude that a sizable amount of progress has been made by the application logic. Milestone
identification is done through a combination of (1) CFG extraction, (2) CFG refinement by
observing concrete runs of the target, and (3) applying the milestone placement algorithm.
The output of the algorithm is a milestone graph (MG). The procedure is detailed in
Section 5.3.

(B) Keeping up with Trace Data. Timely progress assessment has to be performed in a
timely manner. Assuming that a valid set of MBBs has been identified, the goal is to detect
the completion of milestones at the tracer as soon as they are reached on the tracee, or with

2 If no infinite loops are present in the function nor in any other routine that can be called by it.

W. Chen et al. 13:9

negligible delay. This way, the tracer can promptly assess TPI violations and trigger any
correction countermeasure if necessary. Conversely, if the tracer lags significantly behind the
tracee, then it might be too late to act upon detected TPI violations – and one might as well
detect TPI violations at target completion instead.

What makes this challenging? The first issue might reside in the latency for the
propagation of TU-generated data to the tracer PE. As we evaluate in Section 8.1, it is not
an issue if the tracer and tracee are different PEs on the same SoC. A second (and more
problematic) issue is the limited bandwidth of the on-chip channels via which trace data
is streamed. Despite aggressive trace compression, allowing the TU to stream trace data
unrestrictedly leads to buffer overflows due to the performance gap between tracer and tracee
PEs. These overflows can occur both within the TU or at the interface between the TU
and the tracer, preventing any packet from reaching the tracer. Thus the naïve solution of
constantly streaming data from the TU and matching against MBBs does not work.

(C) Dynamic TU Reconfiguration. To reliably ensure milestone detection, we propose
to dynamically reconfigure the TU so that it is silent for most of the time and only emits
bare minimum packets when the event of interest happens – i.e., one of the next MBBs is
reached. At this point, a new set of MBBs to monitor is configured. The TU then becomes
silent again, waiting for the next milestone. In this paradigm, the TU only emits sporadic
and short-lived signals, thus consuming a fraction of the sustainable trace bandwidth. The
information of which MBBs to monitor after a given MBB is reached is expressed in the TMG.

5.2 Trace Blackout Window
Two milestones cannot be placed arbitrarily close to one another. This is a consequence of
the dynamic TU reconfiguration. Suppose MBB1 and MBB2 are adjacent, i.e., when the TU
has detected that tracee’s execution has reached MBB1, then the TU should be reconfigured
to detect tracee’s execution on MBB2. The reconfiguration typically consists of (1) disabling
the TU to reprogram the relevant registers, (2) identifying the MBB that has been reached,
(3) looking up in the TMG the next set of milestones to detect, and (4) resuming the TU.

Let t1 and t2 denote the time for tracee’s execution reaching MBB1 and MBB2 respectively.
From the time t1 at which MBB1 is reached and until the TU is brought back online to
monitor MBB2, there is a window of time during which milestones cannot be monitored. We
call this the trace blackout window and indicate it with the symbol Tr. If the best-case
path between MBB1 and MBB2 is such that (t2 − t1) < Tr, then detection of MBB2 cannot be
guaranteed. Our methodology avoids this issue by design.

Formally, call D(MBBi,MBBj) ∈ R+ the time-cost to reach MBBj starting from MBBi.
Clearly, this cost is a random variable that depends on the specific path taken and the
progress at which the target executes. Moreover, D(MBBi,MBBj) = ∞ if MBBj cannot be
reached from MBBi. We show that a lower-bound of this cost can be computed and impose
that, for any two valid MBBi,MBBj , it must hold that

min
i,j

{D(MBBi,MBBj)} > Tr. (1)

It is worth noting that the blackout window and the sizable progress requirement discussed
in the first challenge in Section 5.1 both require the distance between two milestones to
be sufficiently large. In practice, the blackout window is generally smaller – we derive this
parameter for our implementation in Section 8.1. Thus ensuring that enough progress occurs
between milestones implies that the constraint imposed by the blackout window is also met.

ECRTS 2023

13:10 Low-Overhead Online Assessment of Timely Progress as a System Commodity

V0 V1 V2 V3 V4

V7

V5

V6

(a) The extracted CFG. Red edges
are folding.

V0 V1 V2 V3 V4

V7

V5

V6

(b) Nodes satisfying the constraint
are colored red.

V0 V1 V5V3

V7

(c) Remove white nodes, add cor-
responding edges.

Figure 3 Illustrative MG generation for the main of the disparity benchmark.

5.3 Milestone Graph Construction (Step 1 and 2)

Figure 3 depicts the intuition behind the Milestone Graph (MG) construction procedure.
First, the CFG of the target application is extracted (Figure 3a). The CFG is annotated by
adding a weight on each edge that is indicative of the temporal distance between two nodes.
Then a subset of nodes satisfying the constraint expressed in Eq. 1 is selected – the red
nodes in Figure 3b. Finally, new edges are added to the red nodes to maintain reachability
relationships, as per Figure 3c. The resultant digraph is a valid MG.

(A) CFG Notation. Given a target black-box binary, the CFG is extracted (Step 1 in
Figure 2). This is a digraph GCF G = (V, E) where V and E are the set of all the vertices and
edges, respectively. Here a vertex vi ∈ V is a BB. An edge (vi, vj) ∈ E is either normal or
folding (Section 3)3. For any edge (vi, vj) ∈ E , we assign a per-edge weight w equal to the
lower bound on the time to execute the instructions in vi, including the folded function if
its out-edge is folding. A safe albeit inaccurate lower bound can be obtained by dividing
the number of instructions in vi by the maximum clock frequency of the tracee4. We define
D(vi, vj) for any two vertices in V as the cost of the path (if any) from vi to vj with the
minimum cost. This is used to lower-bound the minimum time needed to reach vj from vi.

(B) MG Notation. An MG GMG = (M, Q), is a digraph where M ⊆ V is the set of MBBs.
For each MBBi ∈ M, an edge (MBBi,MBBj) ∈ Q signifies that (1) MBBj is one of the next
milestones to detect after MBBi has been reached, and (2) Eq. 1 holds. Note: the edge (MBBi,
MBBj) might not exist in E because the corresponding BBs might not be in an immediate
predecessor/successor relationship in GCF G.

(C) Milestone Selection. The milestone selection problem is the following: (1) given a
blackout window Tr, color the vertices in GCF G either red or white; (2) ensure that for
any two red nodes, ri, rj ∈ V, D(ri, rj) > Tr; and (3) find the maximal set of red nodes.
Other optimization objectives and heuristics could also be used – e.g, minimizing the sum
of distances among red nodes. Finding the optimal solution is not the focus of this work
and left as future work; an algorithm that is guaranteed to find a solution (if one exists) is
presented here.

3 Folding all functions except for main can already produce meaningful milestone graphs for applications
under test. In practice, if the execution time of a function is long, unfolding it to allow milestones to be
placed inside can achieve better granularity.

4 We assume the CPI is greater or equal to one. Notice this might not be true for multi-issue processors.

W. Chen et al. 13:11

(D) Graph Coloring Heuristic. The proposed strategy (Step 2 in Figure 2) is described
in Algorithm 1. The algorithm first colors all of the vertices red (Line 6–8), then iterates
over any non-visited remaining red vertex in DFS search order – thus, starting from the
root BB (Line 9). Next, for each red vertex ri we compute the path with the shortest total
cost D(ri, rj) to all other red vertices in V (Line 12). If for some rj D(ri, rj) > Tr does not
hold (Line 14), color rj white (Line 15). The full adjacency map D for ri can be computed
using Dijkstra’s algorithm [22]. The only adaptation needed to the standard algorithm is to
correctly compute D(vi, vi), which is always 0 in the traditional algorithm. Instead, we must
compute the cost to come back into vi if vi was reached, which can be computed as

D(vi, vi) =
{

wi if (vi, vi) ∈ E
min(vi,vj)∈E{D(vj , vi) + wi} otherwise.

(2)

Algorithm 1 Constrained Directed Graph Coloring.
1 input:
2 GCF G = (V, E), Tr ◁ CFG graph and blackout window
3 output:
4 Colored GCF G ◁ CFG graph with red-colored marked MBB’s
5 init:
6 for each v ∈ V do
7 v.color ← red ◁ Color all nodes red
8 end
9 Rleft ← Topol(V) ◁ Red vertices to visit, in DFS search order

10 algorithm:
11 for each ri ∈ Rleft do
12 D ← Dijkstra(ri, GCF G) ◁ Get all shortest-paths from ri

13 for each rj ∈ V s.t. rj .color == red do
14 if D(ri, rj) ≤ Tr then
15 rj .color ← white ◁ rj unsafe milestone from ri

16 Rleft ← Rleft \ {rj} ◁ Remove rj from Rleft

17 end
18 end
19 Rleft ← Rleft \ {ri} ◁ Mark ri as visited
20 end

To finalize the MG GMG, we proceed as follows. M is created from the colored GCF G by
removing all the white vertices vi. To compute Q from E , we proceed as follows. For each
white vertex vi, remove any self-loop and say that incoming (resp., outgoing) edges are of
the form (vp, vi) (resp., (vi, vs)). Then, for each direct predecessor vp of an incoming edge,
we add all the edges of the form (vp, vs) for any direct successor vs of vi in Q.

(E) Degree Reduction. Recall that the number of address range registers available (noted
M∗) at the TU is limited (Section 3). Intuitively, M∗ constraint how many milestones can
be monitored by the TU after (one of) the current milestone is hit. After the MG has been
produced following the procedure described so far, there is no guarantee that the outdegree
(number of outgoing edges) of all the ri ∈ M is below M∗. Thus, a simple pruning strategy
is adopted. That is, for each ri with outdegree greater than M∗, randomly pick one of the
outgoing edges and color the vertex pointed by that edge white; then repeat the procedure to
remove white nodes. This is done until no vertex with outdegree greater than M∗ is found.

We call FinalizeMG(Colored GCF G, M∗) the routine that takes in input a colored
MG and performs edge construction plus MG pruning. Note that the selection of Tr and
computation of the weights w can affect the pessimism of Algorithm 1. Moreover, in the
presence of loops, the lack of static knowledge about the number of iterations that will be
executed at runtime forces the algorithm to assume that only the iteration lower bound is

ECRTS 2023

13:12 Low-Overhead Online Assessment of Timely Progress as a System Commodity

taken. Finally, error-handling branches that are never taken during nominal execution create
short-cut paths (e.g., from entry to exit in a routine) that prevent many intermediate BBs
from being colored in red. Nonetheless, the important advantage of this first step is that an
initial MG can be produced without the need to execute the application.

5.4 Milestone Graph Refinement with Concrete Runs (Step 3)

Refinement of the MG with concrete runs (Step 3 in Figure 2) mitigates the problems with
static MG construction described in Section 5.3. During refinement, the target is executed
on a set of representative inputs, potentially multiple times for each input. Techniques such
as symcretic execution that combine symbolic execution and concrete runs can be used to
automate the generation of representative inputs [23]. For the purpose of this work, we
assume that a set of representative inputs has been identified for the target application.

By executing the target application using representative inputs, we are able to measure
the temporal distance between two BBs in the CFG and gather additional information about
the path(s) taken by the target for each input. Importantly, we can now compute the
max/min number of times that each edge (vi, vj) ∈ E was taken, and thus the min/max
number of iterations of each loop is discovered. We record both observed minimum ai,j and
maximum bi,j number of times each edge is visited. We only preserve the number of visits,
but not their order, despite the trace data does provide the full history of the visited BBs.

These runs are a way to collect extra information about the target and belong to the
offline analysis phase of MB-TPA. In this phase, the TU is configured in a special mode
where the TU can slow down the tracee. This is because the high-bandwidth nature of the
trace data stream can overflow the internal buffer of the TU and cause information loss.
Thus the slowdown ensures that a complete trace from entry to exit of the target is acquired.
This is the only case in MB-TPA when the target is executed with a (possibly) heavy impact
on its runtime due to the activity of the TU.

(A) Branches as a Proxy of Distance. Since the exact temporal progress has been impacted,
we need a different metric that correlates (and lower-bounds) the temporal distance between
MBBs. The metric must be available from the traces and preserved when the runtime of the
application is impacted. Thus, we use the reported number of visited BBs – i.e., the number of
executed branch instructions. The advantage is threefold: (1) can be computed directly from
the acquired trace without interfacing with any other architectural unit – e.g., a performance
measurement unit; (2) when execution flows within the known CFG of the target, one can
always retrieve the number of instructions executed; (3) we can put a (conservative) weight
on branches to the outside of the CFG under analysis, such as calls to dynamically linked
libraries and system calls. From our experience, (2) is unnecessary since the newly acquired
information about the min/max number of loop iterations and the presence of never-observed
paths already enables much lower pessimism in the MG construction.

Under the new metric, the weight of every normal edge equals to one. The weight of a
folding edge depends on the number of branch instructions executed in the folded function
which can vary across different sample inputs. To ensure the blackout window condition
holds (Eq.1), the weight of a folding edge is assigned to be the minimum across all inputs.
Now the effective temporal distance D(ri, rj) is the shortest path from ri to rj . The following
two heuristics can further fold subgraphs with certain properties, so that extra milestones
can be placed.

W. Chen et al. 13:13

1 1

1e6

1e61

v1 v2 v3

v3v2v1

Number of
access

Finalized
weight

(a) The number of access are a1,2 = 1,
a2,3 = 1, and a2,2 = 106. After applying
the heuristic, the number of access for the
self-loop becomes the weight for (v2, v3),
i.e. w2,3 = 106.

entry
1

exit
1

... ...

... ...

... ...

entry exit
w = total number of branch instructions

executed in the subgraph

Number of
access

Finalized
weight

(b) No pair of nodes in the gray region
satisfies the constraint. Thus the total
number of branch instructions taken inside
the region becomes the weight for wen,ex.

Figure 4 Refinement by heuristics. The subgraphs before the heuristics applied are shown on
top, in which the number on an edge indicates the number of access ai,j . The subgraphs after the
heuristics applied are below, in which the number indicates the assigned weight wi,j .

(B) Simplify Self-Loops. We identify any BB vi having only (1) one incoming edge (vi−1, vi),
(2) one outgoing edge (vi, vi+1), and (3) one self-loop (vi, vi). All edges are normal. If the
incoming and outgoing edges are both accessed only once, then replace the temporal cost
wi,i+1 with the minimum number ai,i of self-edge accesses, and remove the self-loop, as
shown in Figure 4a. Without this simplification, a suitable milestone candidate v3 would not
be considered due to D(v1, v3) = 2.

(C) Simplify Sub-graphs. Consider any sub-graph GCF G
sub with a single entry vertex ven and

single-exit vex, in which all edges are normal. If it was unsafe to place any milestones within
GCF G

sub , then (1) remove all the vertices that belong to GCF G
sub except ven and vex; (2) add the

folding edge (ven, vex); and (3) set the temporal cost wen,ex = Wsub to the minimum number
of branches Wsub observed across all runs inside GCF G

sub , as shown in Figure 4b.
Besides the two heuristics above, the nodes/edges never accessed across all reference

inputs are also removed. For this work, we only apply the above refinements, but a large
space exists for more advanced heuristics.

5.5 Timed Milestone Graph Generation (Step 4)
By the end of Step 3 (Section 5.4), an MG refined using concrete runs is obtained. Recall
that the goal is to monitor the target’s progress online with negligible overhead. At this stage
(Step 5 in Figure 2), the (refined) MG is decorated with timeliness information. The output
of this step produces a Timed Milestone Graph (TMG) where each milestone is associated
with a notion of when the milestone should be completed for satisfactory progress.

(A) Milestone Timing. To associate timing information to milestones, the TU is configured
never to slow down the traced application. In this mode, allowing full trace generation might
result in unpredictable trace overflows, as discussed in Section 5.1. Instead, the refined MG is
used to wake up the TU and tracer only when a milestone is reached, as depicted in Figure 5.
In the considered example, the tracee is initially (Figure 5a) executing code within v2. The
TU is configured to remain silent; its address range filter registers (see Section 3) are set to
detect the arrival of execution into the next milestone (v3). When v3 is reached, the TU
emits trace activity towards the tracer (Figure 5b). The TU uses the MG to dynamically

ECRTS 2023

13:14 Low-Overhead Online Assessment of Timely Progress as a System Commodity

A

B

C

D E

F

G

H

Tracee Tracer

Wait for

v0

v1

v2

v3

v4

v5

v7

v6

v0

v1

v3

v5

v7

v3

PC

(a) Initially, assume that tracee’s
program counter (PC) is inside v2.
The TU is programmed to monitor
arrival at v3. The TU is silent until
then, and the tracer awaits a signal
from the TU.

A

B

C

D E

F

G

H

Tracee Tracer

TU Reconfig

TU sends signal

v0

v1

v2

v3

v4

v5

v7

v6

v0

v1

v3

v5

v7

PC

(b) As soon as the tracee starts
executing instructions in v3, the
TU signals the tracer. The tracer
reconfigures the TU to monitor the
next milestones v5 and v7 during
the blackout window.

A

B

C

D E

F

G

H

PC

Tracee Tracer

Wait for

or

v0

v1

v2

v3

v4

v5

v7

v6

v0

v1

v3

v5

v7

v5 v7

(c) The TU reconfiguration is com-
plete and the tracer is ready to
wait for tracee’s execution to enter
either v5 or v7. By design, tracee’s
execution has not yet reached
them.

Figure 5 Tracer-Tracee interaction for milestone detection and dynamic TU reconfiguration.

reconfigure the TU to detect the next milestones, in this case, v5 and v7. Upon completion
of the latter operation, the tracer goes back to waiting for an event from the TU (Figure 5c).
Whenever a control transfer between two milestones is observed, the tracer measures the
time – in terms of elapsed clock cycles – for the transfer.

(B) Milestone Timeliness Information. Using the measured milestone-to-milestone time,
timeliness information is added to the MG in two parts. (1) Each node in the MG is given a
tail time; (2) each edge in the MG is given a nominal time.

Tail time: The tail time Tt(MBBi) is the absolute time by which the target must hit
MBBi for the last time. This value is the maximum taken across all the timed runs on the
given set of representative inputs – worst-case in isolation. The tail time can be understood
as the WCET till a specific milestone. However, loops and alternative paths make the tail
time insufficient to assess a broader set of timeliness properties beyond WCET enforcement.
Consider the case where we want to detect timely progress via loop iterations. Even if each
iteration of the loop takes longer than usual, the tracer cannot detect per-iteration slowdowns
by only using the tail time. The nominal time is designed to overcome such a limitation.

Nominal time: Given an edge (MBBi,MBBj) ∈ Q, the nominal time Tn(MBBi,MBBj) is
a reference time the application is expected to spend to transfer from MBBi to MBBj . Once
again, the maximum is taken across all the timed runs. Even if the target runs in isolation
(all other PEs idle), fluctuations in the value of Tn can occur due to microarchitectural noise.
If (MBBi,MBBj) is part of a loop, nominal time is effective in detecting slower-than-expected
transfer between MBBi and MBBj . Thus the nominal time offers finer timeliness checking per
iteration.

5.6 Online Timely Progress Assessment (Step 5)

Once a TMG has been obtained, online TPA is possible, which is the focus of Step 5 in
Figure 2 and described below. The TMG is passed to the tracer when the target is launched.
The MBB0 that corresponds to the selected entry point for the target is programmed by the
tracer on the TU. Live tracking of the application under analysis is performed by employing
the same strategy described in Section 5.5 and illustrated in Figure 5.

W. Chen et al. 13:15

At runtime, we track two times: (1) the actual time Θ(i) and (2) the running nominal
time N(i). Let MBBi be the i-th milestone for which a hit has been detected. Θ(i) is updated
with the current time. Therefore, it tracks the time measured since MBB0 was hit and until
MBBi is reached. Conversely, N(i) is updated as N(i) = N(i − 1) + Tn(MBBi−1,MBBi).

At this point, everything is set to assess the timely progress of the target. Whenever a
milestone MBBi is hit, the tracer can check that Θ(i) ≤ min(Tt(MBBi), N(i)). If a controllable
amount of degradation – compared to the reference timing acquired in isolation – is accepted,
one can express the allowed slowdown as α > 1 and check the following condition instead:

Θ(i) ≤ α min(Tt(MBBi), N(i)). (3)

Importantly, all the elements are in place not only for the detection of TPI violations but
also to routinely report positive/negative current slack to the tracee PE. The slack at MBBi

can be calculated as slack(i) = min(αTt(MBBi), αN(i)) − Θ(i).

6 Use Cases for MB-TPA

We hereby provide three use-cases enabled by the ability of MB-TPA to provide runtime
timely progress assessment as a system commodity.

(A) Strict WCET Enforcement. Previous work has provided a methodology based on
code-level instrumentation to insert progress checkpoints (milestones in our notations) with
the goal of enforcing a target WCET for a high-criticality task under analysis [36–38,58]. The
capabilities of MB-TPA seamlessly support one such use case. Consider a mixed-criticality
system in which a critical task is scheduled exclusively on the main core, and low critical
tasks are scheduled on other cores. Kritikakou et al. [37] have proved that the following
regulation policy can guarantee the timeliness of the critical task5. Following their strategy,
low-criticality tasks are suspended if a checkpoint is reached and the slack is not sufficient as
indicated by the following condition:

RWCETiso(x) + RWCETmax + tRT > Dc − ET (x),

where RWCETiso(x) is the remaining WCET (measured in isolation) from the arrival at
watchpoint x until completion. In our MB-TPA, this is equivalent to Tt(MBBexit) − Tt(MBBx).
RWCETmax is the WCET from watch-point x to the next watchpoint when other low critical
tasks are present, which can be measured as Tn(MBBx,MBBx+1) according to Section 5.5 by
adding interference. tRT is the software interrupt overhead. Our MB-TPA does not use
interrupts, but to remain safe, the delay in the milestone detection at the tracer must be
considered. This term is evaluated in Section 8.1. Dc and ET (x) are deadline and actual
time at x. We refer to the latter as Θ(x). The required metrics for the regulation policy are
offered by MB-TPA, thus our method can also achieve strict WCET enforcement.

(B) Progress-aware Profiling. In this use case, we demonstrate that it is possible to acquire
application profiles about their interaction with the underlying hardware in a way that is
progress aware. This can be done by performing online tracking according to what described
in Section 5.6. In addition, the tracer is modified to interface with the performance monitoring

5 Due to space constraint, the proof is omitted here. The work also includes a treatment to regulate loop
components.

ECRTS 2023

13:16 Low-Overhead Online Assessment of Timely Progress as a System Commodity

unit of the tracee. By doing so, it is possible to measure the progression of architectural
events (e.g. cache misses, branch mispredictions, bus stalls) at the reached milestones. This
allows precise attribution of exhibited behaviors to specific code paths inside the target. More
importantly, it enables correlating slowdowns on specific milestones to root causes in terms
of platform behavior. And therefore, to identify hardware bottlenecks on a per-code-path
basis. We evaluate this use case in Section 8.2.

(C) Progress-aware Controlled Degradation. Lastly, we consider TPA-driven detection of
TPI violations due to contention over shared memory resources and perform regulation of
interfering PEs with the goal of tracking a degraded performance setpoint for the target.

In a nutshell, TPI violation is triggered if the target suffers a slowdown greater than
a selected α factor. At runtime, if Equation 3 does not hold, the tracer sends a signal to
the tracee to pause the activity of all the other PEs. After the interfering cores have been
stopped, the target might recover some slack. Thus, it might be possible to resume the
paused PEs. To decide when the interfering PEs should be resumed, we use an aggressiveness
parameter β ∈ [0, 1]. Whenever slack(i) > βαN(i), the interfering PEs are resumed. As
β decreases, the tracer resumes the co-runners as early as possible. When β increases, the
tracer becomes more conservative. We evaluate this use case in Section 8.2.

7 System Instantiation and Implementation Details

We performed a full-stack implementation of the proposed MB-TPA. We name our proof-
of-concept system instantiation Timely Progress Assessment with 0 Overhead (TPAw0v).
TPAw0v was implemented on the ZCU102 development board featuring a Xilinx UltraScale+
MPSoC. The target platform comprises two CPU clusters: (1) the APU cluster with four
ARM Cortex-A53 CPUs operating at 1.3GHz, used as the tracee; (2) the RPU cluster with
two ARM Cortex-R5 CPUs operating at 600MHz, used to implement the tracer. Following
the platform assumptions described in Section 4, the target platform features an ARM
Coresight infrastructure commonly with tracing capability.

Figure 6 illustrates the trace data path. Each tracee CPU has a TU, namely an ARM
Embedded Trace Macrocell (ETM) [10]. The ETMs produce trace data for the respective
core. The ETMs are capable of filtering the trace data by comparing the PC against a set of
4 range-address filters. Each filter uses two registers (TRCACVRn) for the address range’s
upper and lower ends. Trace data packets are generated whenever the PC falls within any of
the defined ranges.

The trace packets traverse multiple on-chip CoreSight components. The bare-metal
drivers used by the tracer to manage all these components were written from scratch. In
TPAw0v, the ETR is configured to asynchronously store trace packets to the RPU cluster’s
scratchpad (TCM), where a 2KB circular buffer is reserved. The TMG in binary format is
also stored on the TCM. The tracer implements all the modes to carry out the full MB-TPA
pipeline described in Section 5, including online tracking.

7.1 Constructing MB-TPA with ETM
To implement MB-TPA, the ETM is driven using a Finite State Machine (FSM) by the
tracer and composed of three states (solid circles), two transition states (dashed circles),
and several transitions as depicted in Figure 7. The controller starts in the Inactive state.
This state is the only one in which reconfiguring the ETM (modifying the address filtering
registers) is allowed, as the ETM is idle. Once reconfiguration is completed, the controller

W. Chen et al. 13:17

Figure 6 The Embedded Trace Macrocell (ETM) is the CPU-local device responsible for trace
generation. The Trace Memory Controller [8] can be configured into an Embedded Trace FIFO
(ETF) or Embedded Trace Router (ETR). The former serves as a buffer for the trace stream; the
latter routes trace data to memory. ARM AMBA Advanced Trace Bus (ATB) [9] is adopted for
trace data transmission. Funnels merge trace streams from potentially multiple ETMs and ATBs
into a single ATB. The Replicator duplicates trace data from a single master to two slaves [12].

Figure 7 Tracer’s controller
as a finite state machine.

Figure 8 Delivery time (cumulative) distribution.

activates the ETM by asserting the TRCPRGCTLR.EN register (A), leading to a transition
state to guarantee that the ETM is not idle. Here, the tracer waits for the TRCSTATR.IDLE
register to be cleared before moving to the Active-off state (B). In Active-off, the ETM
is monitoring the PC, but not generating informative packets6, because the PC has not
reached any addresses specified by the address filtering registers. I.e. the PC has not reached
any milestones yet. When the PC reaches any of the specified addresses, Three packets
are emitted in order by the ETM: a synchronization, a trace-on, and an address
packet. This sequence signifies that a milestone was hit and the address packet includes
the current value of the PC. Then, the controller moves to the Active-on state (C). Otherwise,
the controller stays in Active-off (!C). Similar to its “off” counterpart, the Active-on state
keeps the ETR actively waiting for the next packet (!D). Once the packet is finally captured,
the controller (1) identifies the milestone hit via the PC, (2) computes the negative slack, and
(3) propagates the latter to the tracee. The controller then moves back to the Active-off state
(D). In both active states, the controller is allowed to request a change of address range to
monitor. In such case, the ETM must be set to idle by clearing the TRCPRGCTLR.EN register
(D). Then, the controller enters a transition state where it awaits for the TRCSTATR.IDLE
register to be asserted, ensuring the ETM is idle (E).

6 In Active-off state the ETM still generates synchronization and address packet pairs at a very
low rate. These packet pairs can be ignored for our purpose.

ECRTS 2023

13:18 Low-Overhead Online Assessment of Timely Progress as a System Commodity

8 Evaluation

First, we evaluate TPAw0v to understand its performance in terms of milestone detection
delay, size of the trace blackout window, and overhead on the tracee. Next, we evaluate the
ability to enact progress-aware profiling and controlled performance degradation.

8.1 Progress Assessment Performance
(A) Delivery Time. Let t denote the time at which tracee executes the first instruction in
the monitored MBB. The TU generates a trace packet toward the tracer via on-chip buses.
Let t′ denote the time at which the tracer receives it. The delivery time ∆t = t′ − t has to
be comparably small so that the TPAw0v can operate effectively. To measure ∆t, we use a
synthetic benchmark on the tracee in which the cycle counter is periodically read. MBBs are
chosen as the BBs where the cycles are sampled. The tracer reads the same cycle counter
upon receiving the signal. For a given MBB, the application’s timestamp is t; the tracer’s
is t′. We sample 1500 data points, 50% in isolation and the rest with interference from
memory-intensive applications. Figure 8 shows the overall (cumulative) distribution. The
delivery time is upper-bounded by 5750 cycles, or 4.4µs on our 1.3GHz tracee.

Recall that software-based detection methods [38,58] inevitably introduce overhead due
to synchronous interrupt handling. In contrast, our method never interrupts the tracee. Due
to our monitoring scheme’s asynchronous nature, the delivery time is not an overhead term.
Nonetheless, it is informative to contrast the overhead for software-based detection to the
magnitude of our delivery time. A convenient way to obtain such measurement is to use
a widely-adopted Linux support for dynamic binary instrumentation, namely UPROBEs [3].
They allow hooks to be registered at different locations of a user application. A software
interrupt is issued when a hook is reached and time can be sampled. We measured the
overhead of UPROBEs at about 4µs.

(B) Blackout Window Size. The reconfiguration of the TU is solely handled by the
function reconfigure residing in the control logic of the tracer. Thus by reading the cycle
counter before/after the function call of reconfigure, the size of Tr can be measured. We
conduct such measurements while running TPAw0v normally with target applications from
the SD-VBS suite [63] which is a diverse collection of computer vision applications. The
characteristics of these benchmarks have been extensively studied by the community [51,52,61].
Our measurements show that Tr is around 3µs. Recall that we choose Tr in terms of number
of executed branch instructions. In the (very unlikely) worst case, all the instructions
executed during the blackout window are branch instructions. Thus, we conservatively set
Tr = 10000 given the 1.3GHz tracee.

(C) Overhead on Tracee. When the tracer only performs TPA but takes no regulation
actions, the target should only experience a negligible slowdown. Five SD-VBS benchmarks
were evaluated: disparity, texture_synthesis, mser, tracking, and sift.

We run benchmarks with their respective default inputs in two configurations: (1) without
TPAw0v, and (2) with TPAw0v but taking no regulation actions. Ten runs are conducted per
benchmark and in each configuration. The top section of Table 1 reports the slowdown caused
by TPAw0v on the benchmarks as a percentage of their runtime. Expectedly, the overhead is
low (< 0.6%). The low yet visible overhead in some applications might arise from interference
on the main interconnect between the tracer and the tracee CPUs. Implementing the tracer

W. Chen et al. 13:19

Table 1 Overhead (%) of tracer activity and TMG/trace size information.

Benchmark disparity text. mser tracking sift

Mean(%) 0.512 -0.009 0.250 -0.072 0.168
Max(%) 0.585 0.033 0.263 -0.110 0.194
Min(%) 0.483 0.085 0.225 -0.059 0.173

of MBBs in TMG 17 5 18 16 13
of MBB hit in execution 143 1169 20 18 19
of unfolding functions 1 1 1 1 2
TMG size (bytes) 340 108 408 320 324
Raw trace size (MB) 10 44.4 14 175.2 236.4
Filtered trace size (bytes) 1500 9400 210 350 300

on the on-chip FPGA might mitigate the issue [64] and further reduce the overhead. Negative
entries indicate that the applications run faster when traced. H. Shah et al. [56] observed
and theorized such counterintuitive timing anomalies.

(D) Application Considerations. The sum of delivery time and blackout window size
(∼ 7.4µs) indicates the responsiveness of the tracer in detecting and reacting to milestone
hits. Thus, TPAw0v is better suited for applications with execution times on the order of
103µs and above, e.g., data processing workloads. Approaches using software interrupts
would incur overheads of at least 4µs, as measured on our platform. Thus, for short-lived
applications, the overhead introduced by software instrumentation would significantly degrade
performance.

8.2 Evaluation of MB-TPA Use Cases
We hereby evaluate the last two use cases described in Section 6. For our evaluation,
we consider the same five aforementioned SD-VBS benchmarks. The memory-intensive
application bandwidth from IsolBench [62] is deployed on all the other cores to create
interference in both main memory and shared cache.

(A) TMG Construction. First, we provide information regarding TMGs and trace data in
the second section of Table 1. When a milestone is placed inside a loop, high granularity
regulation can be achieved. disparity and texture synthesis demonstrate such
granularity as the number of milestones hit is high. TMG size refers to the memory usage
for the tracer to store the binary TMG; raw traces are only used during the offline MG
refinement phase; the TU generates the filtered trace during online tracking.

(B) Progress-aware Profiling. When the execution reaches a milestone, we collect architec-
tural event statistics by directly reading the PMU event counters7. In this evaluation, the
architectural event monitored is the L2 data cache refill, i.e. we track last-level cache misses.
The benchmarks under evaluation run (1) in isolation and (2) with interference tasks. In each

7 ETM can also report architectural events in the trace stream. ETM can optionally implement external
inputs which connect to PMU event bus lines. Event packets can be inserted into the trace stream
whenever the monitored events occur.

ECRTS 2023

13:20 Low-Overhead Online Assessment of Timely Progress as a System Commodity

0 500 1000 1500 2000
Milestone Hit time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

L2
 C

ac
he

 R
ef

ill
Co

un
ts

1e7
Nominal
With co-runner

(a) Disparity.

0 200 400 600 800
Milestone Hit time (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

L2
 C

ac
he

 R
ef

ill
Co

un
ts

1e6
Nominal
With co-runner

(b) Mser.

200 400 600 800 1000 1200 1400
Milestone Hit time (ms)

0.0

0.5

1.0

1.5

2.0

2.5

L2
 C

ac
he

 R
ef

ill
Co

un
ts

1e6
Nominal
With co-runner

(c) Tracking.

Figure 9 Relationship between timeliness (x), L2 cache misses (y), and milestones (markers).

0 500 1000 1500 2000 2500 3000
Time (ms)

0

20

40

60

80

100

120

140

Nu
m

be
r o

f M
ile

st
on

e
Hi

t

Set-point
Regulated Run Time
Co-runners paused
Co-runners resumed
Nominal Time
Co-runner w/o Regulation

(a) Disparity.

100 200 300 400 500 600
Time (ms)

0

150

300

450

600

750

900

1050

1200

Nu
m

be
r o

f M
ile

st
on

e
Hi

t

Set-point
Regulated Run Time
Co-runners paused
Co-runners resumed
Nominal Time
Co-runner w/o Regulation

(b) Texture Synthesis.

0 200 400 600 800
Time (ms)

0
2
4
6
8

10
12
14
16
18

Nu
m

be
r o

f M
ile

st
on

e
Hi

t

Set-point
Regulated Run Time
Co-runners paused
Co-runners resumed
Nominal Time
Co-runner w/o Regulation

(c) Mser.

500 1000 1500 2000 2500
Time (ms)

0
2
4
6
8

10
12
14
16

Nu
m

be
r o

f M
ile

st
on

e
Hi

t

Set-point
Regulated Run Time
Co-runners paused
Co-runners resumed
Nominal Time
Co-runner w/o Regulation

(d) Tracking.

0 1000 2000 3000 4000 5000 6000 7000
Time (ms)

0
2
4
6
8

10
12
14
16

Nu
m

be
r o

f M
ile

st
on

e
Hi

t

Set-point
Regulated Run Time
Co-runners paused
Co-runners resumed
Nominal Time
Co-runner w/o Regulation
Solo Time

(e) Sift.

Figure 10 The TMG for disparity and texture synthesis captures appropriate loops,
achieving fine granularity. Despite a coarser control for mser, TPI is maintained.

case, the benchmark runs 20 times. The tracer reports the time and cache refill statistics at
each milestone hit. The relationship between elapsed time (x-axis), cumulative number of L2
misses (y-axis), and milestones hit (markers) – and therefore segments of executed code –
as captured for three SD-VBS applications is reported in Figure 9. The figure highlights
that disparity and tracking suffer only marginally from cache contention, while five
milestones in mser are significantly impacted by contention in L2.

The significance of relating the consumption of hardware resources to progress is twofold.
First, resource management decisions can be enacted proactively as opposed to reactively.
Second, by comparing the expected profile at a milestone to what is observed online, a system
can identify the root causes of performance degradation and enact appropriate corrective
actions. The combination of progress tracking and progress-aware resource management
requires extensive research.

(C) Controlled Performance Degradation. In this scenario, we evaluate the ability to
set a degraded performance setpoint for the application under analysis and stop/resume
interfering cores based on the online slack calculation reported by the tracer. The behavior of

W. Chen et al. 13:21

1 3 5 7 9 11 13 15 17 19
Target Deviation (%)

0

500

1000

1500

2000

Ti
m

e
(m

s)

Set-point
Nominal
Exec. Time
Ctrl. Ratio

1

0.5

Ct
rl.

 T
im

e
to

 To
ta

l T
im

e
Ra

tio

(a) Disparity.

1 3 5 7 9 11 13 15 17 19
Target Deviation (%)

0

100

200

300

400

500

Ti
m

e
(m

s)

Set-point
Nominal
Exec. Time
Ctrl. Ratio

1

0.5

Ct
rl.

 T
im

e
to

 To
ta

l T
im

e
Ra

tio

(b) Texture Synthesis.

1 3 5 7 9 11 13 15 17 19
Target Deviation (%)

0

250

500

750

1000

1250

1500

1750

2000

Ti
m

e
(m

s)

Set-point
Nominal
Exec. Time
Ctrl. Ratio

1

0.5

Ct
rl.

 T
im

e
to

 To
ta

l T
im

e
Ra

tio

(c) Tracking.

Figure 11 As target deviation β increases, the tracer becomes more conservative, and only
resumes the co-runner when a sufficient positive slack presents. Thus, the application follows the
set-point more closely for small β.

the five SD-VBS benchmarks is reported in Figure 10. We compare the runtime under tracer-
enforced regulation (“Regulated Run Time”) with two other cases: (1) the nominal case,
i.e., the worst-case progress in isolation, and (2) the progress under unregulated interference
(“Co-runner w/o Regulation”). We use α = 1.3 and β = 7%; the resulting progress reference
is labeled “Set point.” The history of accessed milestones in chronological order is reported
on the y-axis; the time elapsed between milestones is reported on the x-axis; the binary
decisions to suspend (red dot) or resume (green dot) the co-runners are reported.

In all the cases, the tracer was able to enforce a controllably degraded notion of TPI for
the target. Corrective measures are taken as soon as the detected progress falls below the
reference. The specific value of β we considered works well in most cases but becomes overly
conservative in the case of mser. In this case, preventing a slowdown in the early stages
(at milestones 2–4) is sufficient to ensure that the setpoint is met for the rest of the run.
The behavior of sift (Figure 10e) is interestingly different. The solo, uncontrolled, and
controlled progress nearly coincide. This indicates that sift is unaffected by the interference
tasks. The nominal progress, however, is slower than the above three. Recall that the
nominal time for each edge is taken as the maximum transfer time across all runs. But in a
single run, not all transfers take the worst-case time.

To better understand the impact of β on the behavior of the applications, we sweep
through values of β ∈ [1%, . . . , 19%] and present the results in Figure 11. The “Exec Time”
bar captures the runtime under contention and regulation. The “Ctrl. Ratio” bar reports the
fraction of time during which the real-time is below the set-point. As β increases, TPAw0v
becomes more conservative, and the aggressiveness of the regulation increases. sift is not
included since it does not suffer from performance degradation.

9 Conclusion

Prompted by the demand for high-performance embedded platforms, the design of modern
system-on-chip has gained in complexity at the expense of software predictability and
timeliness. We argue that reasoning on the progress of live applications must be a key
requirement to achieve Timely Progress Integrity. In this paper, we propose a method called
MB-TPA and present a prototype, TPAw0v, feasible on widely available commercial platforms
featuring tracing capabilities. Our experiments show that our prototype is successful in
tracking the progress of applications under test with near-zero overhead while operating on a
lower-performance core! Moreover, through its prototype implementation, we demonstrate

ECRTS 2023

13:22 Low-Overhead Online Assessment of Timely Progress as a System Commodity

the capability of our model to detect execution anomalies and enforce corrective measures
to preserve TPI. We envision that the contributions made by this work represent the first
building blocks towards elaborated real-time policies with TPI at their core.

References
1 Powertrace iii. https://www.lauterbach.com/powertrace3.html. Accessed: 01-03-2023.
2 Technology overview. https://www.ghs.com/products/probe.html. Accessed: 01-03-2023.
3 Uprobe-tracer: Uprobe-based event tracing. https://docs.kernel.org/trace/uprobetracer.

html.
4 Working draft of the risc-v processor trace specification. https://github.com/

riscv-non-isa/riscv-trace-spec. Accessed: 01-03-2023.
5 Jaume Abella, Carles Hernandez, Eduardo Quiñones, Francisco J. Cazorla, Philippa Ryan

Conmy, Mikel Azkarate-askasua, Jon Perez, Enrico Mezzetti, and Tullio Vardanega. Wcet
analysis methods: Pitfalls and challenges on their trustworthiness. In 10th IEEE International
Symposium on Industrial Embedded Systems (SIES), pages 1–10, 2015. doi:10.1109/SIES.
2015.7185039.

6 Seyed Mohammad Ali Zeinolabedin, Johannes Partzsch, and Christian Mayr. Analyzing
arm coresight etmv4.x data trace stream with a real-time hardware accelerator. In 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1606–1609,
2021. doi:10.23919/DATE51398.2021.9474035.

7 ARM. Coresight components technical reference manual, 2004. URL: https://developer.
arm.com/documentation/ddi0314/h/.

8 ARM. CoreSight trace memory controller technical reference manual, 2010. URL: https:
//developer.arm.com/documentation/ddi0461/b/.

9 ARM. AMBA ATB Protocol Specification, 2012. URL: https://developer.arm.com/
documentation/ihi0032.

10 ARM. Embedded trace macrocell architecture specification etmv4.0 to etm4.6, 2012. URL:
https://developer.arm.com/documentation/ihi0064/h/?lang=en.

11 ARM. Arm architecture reference manual for a-profile architecture, 2013. URL: https:
//developer.arm.com/documentation/ddi0487/latest.

12 ARM. ARM CoreSight SoC-400 Technical Reference Manual, 2015. URL: https://developer.
arm.com/Processors/CoreSight%20SoC-400.

13 S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela, S. van der Ster, and
L. Stougie. The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline
sporadic task systems. In 24th Euromicro Conference on Real-Time Systems (ECRTS 2012),
pages 145–154, Los Alamitos, CA, USA, July 2012. IEEE Computer Society. doi:10.1109/
ECRTS.2012.42.

14 S.K. Baruah, A. Burns, and R.I. Davis. Response-time analysis for mixed criticality systems.
In 2011 IEEE 32nd Real-Time Systems Symposium, pages 34–43, 2011. doi:10.1109/RTSS.
2011.12.

15 Andrea Bastoni, Björn B. Brandenburg, and James H. Anderson. Cache-related preemption and
migration delays : Empirical approximation and impact on schedulability. In Proceedings of the
6th annual workshop on. Operating Systems Platforms for Embedded Real-Time Applications,
volume 10 of OSPERT’10, pages 33–44, 2010.

16 Emiliano Betti, Stanley Bak, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Real-time i/o
management system with cots peripherals. IEEE Transactions on Computers, 62(1):45–58,
2013. doi:10.1109/TC.2011.202.

17 Reinder J. Bril, Sebastian Altmeyer, Martijn M. H. P. van den Heuvel, Robert I. Davis, and
Moris Behnam. Fixed priority scheduling with pre-emption thresholds and cache-related
pre-emption delays: integrated analysis and evaluation. Real-Time Systems, 53(4):403–466,
July 2017. doi:10.1007/s11241-016-9266-z.

https://www.lauterbach.com/powertrace3.html
https://www.ghs.com/products/probe.html
https://docs.kernel.org/trace/uprobetracer.html
https://docs.kernel.org/trace/uprobetracer.html
https://github.com/riscv-non-isa/riscv-trace-spec
https://github.com/riscv-non-isa/riscv-trace-spec
https://doi.org/10.1109/SIES.2015.7185039
https://doi.org/10.1109/SIES.2015.7185039
https://doi.org/10.23919/DATE51398.2021.9474035
https://developer.arm.com/documentation/ddi0314/h/
https://developer.arm.com/documentation/ddi0314/h/
https://developer.arm.com/documentation/ddi0461/b/
https://developer.arm.com/documentation/ddi0461/b/
https://developer.arm.com/documentation/ihi0032
https://developer.arm.com/documentation/ihi0032
https://developer.arm.com/documentation/ihi0064/h/?lang=en
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/Processors/CoreSight%20SoC-400
https://developer.arm.com/Processors/CoreSight%20SoC-400
https://doi.org/10.1109/ECRTS.2012.42
https://doi.org/10.1109/ECRTS.2012.42
https://doi.org/10.1109/RTSS.2011.12
https://doi.org/10.1109/RTSS.2011.12
https://doi.org/10.1109/TC.2011.202
https://doi.org/10.1007/s11241-016-9266-z

W. Chen et al. 13:23

18 Alan Burns and Robert Ian Davis. Mixed Criticality Systems – A Review (13th Edition,
February 2022). Universities of Leeds, Sheffield and York, February 2022. URL: https:
//eprints.whiterose.ac.uk/183619/.

19 M. Caccamo, G. Buttazzo, and Lui Sha. Elastic feedback control. In Proceedings 12th
Euromicro Conference on Real-Time Systems. Euromicro RTS 2000, pages 121–128, 2000.
doi:10.1109/EMRTS.2000.853999.

20 Hugues Cassé and Pascal Sainrat. OTAWA, a Framework for Experimenting WCET
Computations. In Conference ERTS’06, Toulouse, France, January 2006. URL: https:
//hal.science/hal-02270434.

21 Intel Corp. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3 (3A, 3B,
3C & 3D): System Programming Guide, 2022. URL: https://www.intel.com/content/www/
us/en/developer/articles/technical/intel-sdm.html.

22 Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,
1(1):269–271, 1959.

23 Peter Dinges and Gul Agha. Targeted test input generation using symbolic-concrete backward
execution. In Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, pages 31–36, New York, NY, USA, 2014. Association for
Computing Machinery. doi:10.1145/2642937.2642951.

24 Pontus Ekberg and Wang Yi. Outstanding paper award: Bounding and shaping the demand
of mixed-criticality sporadic tasks. In 2012 24th Euromicro Conference on Real-Time Systems,
pages 135–144, 2012. doi:10.1109/ECRTS.2012.24.

25 Lang Feng, Jeff Huang, Jiang Hu, and Abhijith Reddy. Fastcfi: Real-time control-flow integrity
using fpga without code instrumentation. ACM Trans. Des. Autom. Electron. Syst., 26(5),
June 2021. doi:10.1145/3458471.

26 Robert Gifford, Neeraj Gandhi, Linh Thi Xuan Phan, and Andreas Haeberlen. DNA: Dynamic
resource allocation for soft real-time multicore systems. In 27th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS ’21), May 2021. doi:10.1109/RTAS52030.
2021.00024.

27 Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich, and Rodolfo
Pellizzoni. A survey on cache management mechanisms for real-time embedded systems. ACM
Comput. Surv., 48(2), November 2015. doi:10.1145/2830555.

28 Xiaozhe Gu and Arvind Easwaran. Dynamic budget management with service guarantees for
mixed-criticality systems. In 2016 IEEE Real-Time Systems Symposium (RTSS), pages 47–56,
2016. doi:10.1109/RTSS.2016.014.

29 Xiaozhe Gu, Arvind Easwaran, Kieu-My Phan, and Insik Shin. Resource efficient isolation
mechanisms in mixed-criticality scheduling. In 2015 27th Euromicro Conference on Real-Time
Systems, pages 13–24, 2015. doi:10.1109/ECRTS.2015.9.

30 Jan Gustafsson. Usability aspects of WCET analysis. In 2008 11th IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC),
pages 346–352, 2008. doi:10.1109/ISORC.2008.55.

31 Damien Hardy, Benjamin Rouxel, and Isabelle Puaut. The Heptane Static Worst-Case
Execution Time Estimation Tool. In Jan Reineke, editor, 17th International Workshop on
Worst-Case Execution Time Analysis (WCET 2017), volume 57 of OpenAccess Series in
Informatics (OASIcs), pages 8:1–8:12, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/OASIcs.WCET.2017.8.

32 Augusto Hoppe, Jürgen Becker, and Fernanda Lima Kastensmidt. High-speed hardware
accelerator for trace decoding in real-time program monitoring. In 2021 IEEE 12th Latin
America Symposium on Circuits and System (LASCAS), pages 1–4, 2021. doi:10.1109/
LASCAS51355.2021.9459137.

33 Tai-Yi Huang, J.W.-S. Liu, and D. Hull. A method for bounding the effect of DMA I/O
interference on program execution time. In 17th IEEE Real-Time Systems Symposium, pages
275–285, 1996. doi:10.1109/REAL.1996.563724.

ECRTS 2023

https://eprints.whiterose.ac.uk/183619/
https://eprints.whiterose.ac.uk/183619/
https://doi.org/10.1109/EMRTS.2000.853999
https://hal.science/hal-02270434
https://hal.science/hal-02270434
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doi.org/10.1145/2642937.2642951
https://doi.org/10.1109/ECRTS.2012.24
https://doi.org/10.1145/3458471
https://doi.org/10.1109/RTAS52030.2021.00024
https://doi.org/10.1109/RTAS52030.2021.00024
https://doi.org/10.1145/2830555
https://doi.org/10.1109/RTSS.2016.014
https://doi.org/10.1109/ECRTS.2015.9
https://doi.org/10.1109/ISORC.2008.55
https://doi.org/10.4230/OASIcs.WCET.2017.8
https://doi.org/10.1109/LASCAS51355.2021.9459137
https://doi.org/10.1109/LASCAS51355.2021.9459137
https://doi.org/10.1109/REAL.1996.563724

13:24 Low-Overhead Online Assessment of Timely Progress as a System Commodity

34 Marine Kadar, Gerhard Fohler, Don Kuzhiyelil, and Philipp Gorski. Safety-aware integration
of hardware-assisted program tracing in mixed-criticality systems for security monitoring. In
2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 292–305, 2021. doi:10.1109/RTAS52030.2021.00031.

35 Raimund Kirner and Peter P. Puschner. Discussion of misconceptions about WCET analysis.
In Jan Gustafsson, editor, Proceedings of the 3rd International Workshop on Worst-Case
Execution Time Analysis, WCET 2003 – A Satellite Event to ECRTS 2003, Polytechnic
Institute of Porto, Portugal, July 1, 2003, volume MDH-MRTC-116/2003-1-SE, pages 61–64.
Department of Computer Science and Engineering, Mälardalen University, Box 883, 721 23
Västerås, Sweden, 2003.

36 Angeliki Kritikakou, Thibaut Marty, and Matthieu Roy. Dynascore: Dynamic software
controller to increase resource utilization in mixed-critical systems. ACM Trans. Des. Autom.
Electron. Syst., 23(2), October 2017. doi:10.1145/3110222.

37 Angeliki Kritikakou, Claire Pagetti, Olivier Baldellon, Matthieu Roy, and Christine Rochange.
Run-time control to increase task parallelism in mixed-critical systems. In 2014 26th Euromicro
Conference on Real-Time Systems, pages 119–128, 2014. doi:10.1109/ECRTS.2014.14.

38 Angeliki Kritikakou, Christine Rochange, Madeleine Faugère, Claire Pagetti, Matthieu Roy,
Sylvain Girbal, and Daniel Gracia Pérez. Distributed run-time WCET controller for concurrent
critical tasks in mixed-critical systems. In Proceedings of the 22nd International Conference
on Real-Time Networks and Systems, RTNS ’14, pages 139–148, New York, NY, USA, 2014.
Association for Computing Machinery. doi:10.1145/2659787.2659799.

39 Don Kuzhiyelil, Philipp Zieris, Marine Kadar, Sergey Tverdyshev, and Gerhard Fohler. Towards
transparent control-flow integrity in safety-critical systems. In International Conference on
Information Security, pages 290–311. Springer, 2020.

40 Chang-Gun Lee, Hoosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha, Seongsoo Hong,
Chang Yun Park, Minsuk Lee, and Chong Sang Kim. Analysis of cache-related preemption
delay in fixed-priority preemptive scheduling. IEEE Transactions on Computers, 47(6):700–713,
1998. doi:10.1109/12.689649.

41 Jaewoo Lee, Hoon Sung Chwa, Linh T. X. Phan, Insik Shin, and Insup Lee. Mc-adapt:
Adaptive task dropping in mixed-criticality scheduling. ACM Trans. Embed. Comput. Syst.,
16(5s), September 2017. doi:10.1145/3126498.

42 Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor Stefanov, and Wang Yi.
Edf-vd scheduling of mixed-criticality systems with degraded quality guarantees. In 2016 IEEE
Real-Time Systems Symposium (RTSS), pages 35–46, 2016. doi:10.1109/RTSS.2016.013.

43 Daniel Lo, Mohamed Ismail, Tao Chen, and G. Edward Suh. Slack-aware opportunistic
monitoring for real-time systems. In 2014 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 203–214, 2014. doi:10.1109/RTAS.2014.6926003.

44 Chenyang Lu, John A. Stankovic, Sang H. Son, and Gang Tao. Feedback control real-time
scheduling: Framework, modeling, and algorithms. Real-Time Systems, 23(1):85–126, July
2002. doi:10.1023/A:1015398403337.

45 Tamara Lugo, Santiago Lozano, Javier Fernández, and Jesus Carretero. A survey of techniques
for reducing interference in real-time applications on multicore platforms. IEEE Access,
10:21853–21882, 2022. doi:10.1109/ACCESS.2022.3151891.

46 Mingsong Lv, Zonghua Gu, Nan Guan, Qingxu Deng, and Ge Yu. Performance comparison
of techniques on static path analysis of wcet. In 2008 IEEE/IFIP International Conference
on Embedded and Ubiquitous Computing, volume 1, pages 104–111, 2008. doi:10.1109/EUC.
2008.178.

47 Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi. A survey on static
cache analysis for real-time systems. Leibniz Transactions on Embedded Systems, 3(1):05:1–
05:48, June 2016. doi:10.4230/LITES-v003-i001-a005.

https://doi.org/10.1109/RTAS52030.2021.00031
https://doi.org/10.1145/3110222
https://doi.org/10.1109/ECRTS.2014.14
https://doi.org/10.1145/2659787.2659799
https://doi.org/10.1109/12.689649
https://doi.org/10.1145/3126498
https://doi.org/10.1109/RTSS.2016.013
https://doi.org/10.1109/RTAS.2014.6926003
https://doi.org/10.1023/A:1015398403337
https://doi.org/10.1109/ACCESS.2022.3151891
https://doi.org/10.1109/EUC.2008.178
https://doi.org/10.1109/EUC.2008.178
https://doi.org/10.4230/LITES-v003-i001-a005

W. Chen et al. 13:25

48 C. Maiza, H. Rihani, J. Rivas, J. Goossens, S. Altmeyer, and R. Davis. A Survey of Timing
Verification Techniques for Multi-Core Real-Time Systems. ACM Comput. Surv., 52(3), June
2019. doi:10.1145/3323212.

49 R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-time
cache management framework for multi-core architectures. In 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 45–54, 2013.

50 Hemendra Singh Negi, Tulika Mitra, and Abhik Roychoudhury. Accurate estimation of cache-
related preemption delay. In Proceedings of the 1st IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, CODES+ISSS ’03, pages 201–206, New
York, NY, USA, 2003. Association for Computing Machinery. doi:10.1145/944645.944698.

51 Mattia Nicolella, Denis Hoornaert, Shahin Roozkhosh, Andrea Bastoni, and Renato Mancuso.
Know your enemy: Benchmarking and experimenting with insight as a goal. In 2022 IEEE
Real-Time Systems Symposium (RTSS), RTSS 2022, 2022. URL: https://cs-people.bu.edu/
rmancuso/files/papers/RTBench_RTSS22.pdf.

52 Mattia Nicolella, Shahin Roozkhosh, Denis Hoornaert, Andrea Bastoni, and Renato Mancuso.
Rt-bench: An extensible benchmark framework for the analysis and management of real-time
applications. In Proceedings of the 30th International Conference on Real-Time Networks and
Systems, RTNS 2022, pages 184–195, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3534879.3534888.

53 Alessandro Papadopoulos, Enrico Bini, Sanjoy Baruah, and Alan Burns. Adaptmc: A control-
theoretic approach for achieving resilience in mixed-criticality systems. In Sebastian Altmeyer,
editor, Proceeding ECRTS Conference, pages 14:1–14:22, Dagstuhl, July 2018. LIPICS. URL:
https://eprints.whiterose.ac.uk/133393/.

54 J. Ren and L. Xuan Phan. Mixed-criticality scheduling on multiprocessors using task grouping.
In 2015 27th Euromicro Conference on Real-Time Systems (ECRTS), pages 25–34, Los
Alamitos, CA, USA, July 2015. IEEE Computer Society. doi:10.1109/ECRTS.2015.10.

55 Gero Schwaricke, Rohan Tabish, Rodolfo Pellizzoni, Renato Mancuso, Andrea Bastoni, Al-
exander Zuepke, and Marco Caccamo. A real-time virtio-based framework for predictable
inter-vm communication. In 2021 IEEE Real-Time Systems Symposium (RTSS), pages 27–40,
2021. doi:10.1109/RTSS52674.2021.00015.

56 Hardik Shah, Kai Huang, and Alois Knoll. Timing anomalies in multi-core architectures due to
the interference on the shared resources. In 2014 19th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 708–713, 2014. doi:10.1109/ASPDAC.2014.6742973.

57 Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Audrey
Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel, and Giovanni
Vigna. SoK: (State of) The Art of War: Offensive Techniques in Binary Analysis. In IEEE
Symposium on Security and Privacy, 2016.

58 Soham Sinha, Richard West, and Ahmad Golchin. Pastime: Progress-aware scheduling for
time-critical computing. arXiv preprint, 2019. arXiv:1908.06211.

59 Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. E-warp: A system-wide
framework for memory bandwidth profiling and management. In 2020 IEEE Real-Time
Systems Symposium (RTSS), pages 345–357, 2020. doi:10.1109/RTSS49844.2020.00039.

60 J.A. Stankovic, Chenyang Lu, S.H. Son, and Gang Tao. The case for feedback control real-time
scheduling. In Proceedings of 11th Euromicro Conference on Real-Time Systems. Euromicro
RTS’99, pages 11–20, 1999. doi:10.1109/EMRTS.1999.777445.

61 Dharmesh Tarapore, Shahin Roozkhosh, Steven Brzozowski, and Renato Mancuso. Observing
the invisible: Live cache inspection for high-performance embedded systems. IEEE Transactions
on Computers, 71(3):559–572, 2022. doi:10.1109/TC.2021.3060650.

62 Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming non-blocking caches to
improve isolation in multicore real-time systems. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 1–12, 2016. doi:10.1109/RTAS.2016.
7461361.

ECRTS 2023

https://doi.org/10.1145/3323212
https://doi.org/10.1145/944645.944698
https://cs-people.bu.edu/rmancuso/files/papers/RTBench_RTSS22.pdf
https://cs-people.bu.edu/rmancuso/files/papers/RTBench_RTSS22.pdf
https://doi.org/10.1145/3534879.3534888
https://eprints.whiterose.ac.uk/133393/
https://doi.org/10.1109/ECRTS.2015.10
https://doi.org/10.1109/RTSS52674.2021.00015
https://doi.org/10.1109/ASPDAC.2014.6742973
https://arxiv.org/abs/1908.06211
https://doi.org/10.1109/RTSS49844.2020.00039
https://doi.org/10.1109/EMRTS.1999.777445
https://doi.org/10.1109/TC.2021.3060650
https://doi.org/10.1109/RTAS.2016.7461361
https://doi.org/10.1109/RTAS.2016.7461361

13:26 Low-Overhead Online Assessment of Timely Progress as a System Commodity

63 Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta, Christopher Louie,
Saturnino Garcia, Serge Belongie, and Michael Bedford Taylor. SD-VBS: The san diego
vision benchmark suite. In 2009 IEEE International Symposium on Workload Characterization
(IISWC), pages 55–64, 2009. doi:10.1109/IISWC.2009.5306794.

64 Xilinx. Zynq UltraScale+ Device Technical Reference Manual, 2023. URL: https://docs.
xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/Components.

65 H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. PALLOC: DRAM bank-aware memory
allocator for performance isolation on multicore platforms. In 2014 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 155–166, 2014.

66 Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memguard: Memory
bandwidth reservation system for efficient performance isolation in multi-core platforms. In
2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 55–64, 2013. doi:10.1109/RTAS.2013.6531079.

67 Matteo Zini, Giorgiomaria Cicero, Daniel Casini, and Alessandro Biondi. Profiling and
controlling I/O-related memory contention in COTS heterogeneous platforms. Software:
Practice and Experience, 52(5):1095–1113, 2022. doi:10.1002/spe.3053.

https://doi.org/10.1109/IISWC.2009.5306794
https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/Components
https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/Components
https://doi.org/10.1109/RTAS.2013.6531079
https://doi.org/10.1002/spe.3053

	1 Introduction
	1.1 Overview of Proposed System Design for MB-TPA

	2 Related Works
	2.1 Software-based Monitoring and Progress Assessment
	2.2 Run-time Monitoring via Hardware

	3 Background
	4 System Model and Assumptions
	4.1 System-level Assumptions
	4.2 Application-level Assumption

	5 Methodology for Milestone-Based Timely Progress Assessment
	5.1 Intuition of Key Challenges and Solutions
	5.2 Trace Blackout Window
	5.3 Milestone Graph Construction (Step 1 and 2)
	5.4 Milestone Graph Refinement with Concrete Runs (Step 3)
	5.5 Timed Milestone Graph Generation (Step 4)
	5.6 Online Timely Progress Assessment (Step 5)

	6 Use Cases for MB-TPA
	7 System Instantiation and Implementation Details
	7.1 Constructing MB-TPA with ETM

	8 Evaluation
	8.1 Progress Assessment Performance
	8.2 Evaluation of MB-TPA Use Cases

	9 Conclusion

