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Abstract
Safety-critical systems have to absorb accidental and malicious faults to obtain high mean-times-
to-failures (MTTFs). Traditionally, this is achieved through re-execution or replication. However,
both techniques come with significant overheads, in particular when cold-start effects are considered.
Such effects occur after replicas resume from checkpoints or from their initial state. This work aims
at improving on the performance of control-task replication by leveraging an inherent stability of
many plants to tolerate occasional control-task deadline misses and suggests masking faults just with
a detection quorum. To make this possible, we have to eliminate cold-start effects to allow replicas
to rejuvenate during each control cycle. We do so, by systematically turning stateful controllers
into instants that can be recovered in a stateless manner. We highlight the mechanisms behind this
transformation, how it achieves consensual resilient control, and demonstrate on the example of an
inverted pendulum how accidental and maliciously-induced faults can be absorbed, even if control
tasks run in less predictable environments.
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1 Introduction

Safety-critical systems used to be closed systems built from highly predictable components
and with accidental fault tolerance obtained through triple-modular redundancy (TMR) [37]
(e.g., in the time-triggered architecture (TTA) [31]). Although some systems continue to
be built along these lines, real-time systems, in general, became more open, networked,
functionally richer and dynamic and, as such, also more susceptible to accidental faults
and targeted attacks. Cyberattacks are a reality for real-time as well as safety-critical
systems [34, 11, 58, 69, 36, 70, 28, 56, 49, 53, 41].
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Fault and intrusion detection, paired with a mechanism to recover and re-execute faulty
tasks (see, e.g., Zou et al. [73]), as well as fault-masking through voting has been proposed
as application-agnostic techniques to mitigate accidental and intentionally-induced malicious
faults. However, these techniques come at high costs, in particular, due to cold-start effects
when running recovered tasks from their initial state or from a checkpoint. As control systems
become more complex, we observe recovery effects become more prominent. For example,
stopping and restarting (from its initial state) the perception module of an autonomous
driving stack may well lead to cold-start effects that require the vehicle to stop for several
seconds before environmental perception gets restored1.

In this paper, we address the performance problems of recovering tasks from a cold
state to allow them to rejuvenate each time the control task is invoked. We utilize this
possibility to rejuvenate to operate control with a quorum that is just large enough to detect
faults. We then leverage recent results from Maggio et al. [39] and Vreman et al. [65], which
state conditions under which a controlled system can tolerate missing up to m subsequent
actuations, to reach consensus over time. More precisely, in case the detection quorum is not
able to reach consensus immediately (which is the case if a fault manifests in a disagreement
of votes), we rejuvenate and re-execute control task replicas in the subsequent control periods
– which we call epochs. Rejuvenated tasks re-execute the original problem (i.e., sensor inputs
and state) to collect over up to k epochs the matching proposals we need to reach consensus.
We do so while ensuring k is bounded from above by the missable deadlines (i.e., k ≤ m).

More precisely, Maggio et al. [39] identified an inherent stability of many plants that
allows them to tolerate several deadline misses in a row without losing said stability, provided
no wrong actuator signal reaches the plant. Vreman et al. [65], further found that an even
larger number of deadline misses can be tolerated, provided the controller enters a subsequent
no-miss phase in which deadlines can be guaranteed to be met. Whereas the first result
allows operating the controller just with a detection quorum, reaching an agreement over
time, the latter gives rise to adjust the system’s resilience by switching from a detection to
a masking quorum, by adjusting its resilience to adapt to more critical failures [57] or by
engaging in more elaborate recovery actions.

The prerequisite for applying any of these techniques is the system’s ability to recover
faulty replicas extremely fast to allow rejuvenating them after each invocation. Naive recovery
would require creating a new instance of the control task, bringing it up to speed with the
state of its peers (e.g., by resuming it from a checkpoint and by replaying previous requests),
and configuring its privileges to participate in the consensus decisions instead of the faulty
task it replaces. The costs of these operations are high and challenging to bind from above.
In other words, such a recovery method is not suitable to be applied in between any two
invocations of the control task. Imagine instead the task would be stateless in the sense
of observing all required information by reading out the plant’s sensors. It would need to
maintain no other state from one invocation to another. Then, rejuvenation would amount
to a trivial reset of the task, its control flow and stack to the beginning of its control loop.
Unfortunately, most control tasks are not stateless and even seemingly stateless control
algorithms, such as the Linear Quadratic Regulator (LQR), may become stateful in case, not
all values can be directly observed from the plant.

This paper demonstrates how stateful tasks can be systematically transformed into
instances that can be recovered like stateless ones. This way, recovery becomes fast enough
to be executed before every invocation. Moreover, we show how consensual memory [19]
helps protect any state that needs to be maintained across control-task invocations.

1 Observation from injecting crash faults into Apollo’s perception system [14].
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We make the following contributions:
We introduce in Section 5 our Consensual Resilient Control (CRC) approach, capable of
masking up to f accidental faults every control period T (which we call epoch), including
some maliciously-induced faults as detailed in our system and fault model in Section 4.
To achieve this, we systematically convert stateful control tasks into statelessly recoverable
instances (see Section 5.1), which we execute in a replicated manner, but just with a
detection quorum of n = f + 1 replicas.
We equip replicas with a means to revert to the current and previous plant state (see
Section 5.2) and utilize the latter to reach consensus, in case this was not possible in a
single epoch.
We provide them with a trusted voter, which is simple enough to allow hardware or
FPGA implementations, but more importantly, which can be brought to a zero defect
target. The voter is used to actuate the plant after agreement has been reached, but
also to store data in consensual memory if this information needs to be carried across
control-task invocations (see Section 5.3). An FPGA implementation is not part of this
work.
And, we evaluate the performance of our approach against a non-resilient (singleton)
version of the control task, as well as against a classical Triple Modular Redundancy (TMR)
setup. To prevent adversaries from exhausting the healthy majority that TMR needs to
mask faults, we consider also the proactive rejuvenation of replicas that participate in
TMR (e.g., by operating with n = 4 replicas to tolerate one fault, even when one of the
four replicas is rejuvenated). We restart this replica from its initial state.

This paper is organized as follows: in Section 2, we present our evaluation vehicle and
running example (an inverted pendulum). We continue by relating our work to the works of
others (in Section 3) and by formally introducing our system and fault model (in Section 4).
In this work, we focus exclusively on faults pertaining to the execution of control tasks. We
assume (possibly fused) sensor data to be correct. In the future, we will then investigate the
interplay of resilience mechanisms for internal faults with measures, such as Choi et al.[12],
to cope with sensor failures.

2 Running Example: Inverted Pendulum

The inverted pendulum serves today as the text-book example in control-theory [3]. It
lies at the heart of many control theory problems ranging from self-balancing hover-boards
to stabilizing rocket propulsion systems. Indeed the inverted pendulum is investigated
throughout the scientific literature as a minimum-viable benchmark to study a myriad of
control problems present in neural-network based controllers [67], complex-simplex control
systems [42], and works in the real-time systems domain [54]. By virtue of its simplicity, we
chose the one-dimensional inverted pendulum model as the running example throughout this
paper. We evaluated our Consensual Resilient Control approach by using a custom-made
design (shown in Figure 1(a)). The pendulum consists of a moving mass (M) articulating
another mass (m) through a free falling rigid rod (of length L) along a one-dimensional axis. In
this work, we shall use the pendulum as an example to illustrate how our novel CRC approach
can mask faults in stateful controllers with just n = f + 1 replicas, which normally allow only
detecting the presence of a wrong actuation. For that, we restrict ourselves to the linear regime
where the inverted pendulum (in the literature referred to as the plant) state h(t) is proximal
at any moment t to its stable point i.e. h(t) = [x(t), ẋ(t), θ(t), θ̇(t)] → hs = [x0, 0, 0, 0]. Here
x is the position of the pendulum along the one-dimensional axis, ẋ its linear velocity, θ

ECRTS 2023



14:4 Consensual Resilient Control

(a) Custom-made inverted pendulum breadboard-based
setup and the PCB board that replaces it in the most
recent version. The pendulum uses a 12V DC motor
coupled with rotary encoders to measure position and
angle.

(b) Pendulum schematics and parameters
that govern the pendulum’s equations of mo-
tion.

Figure 1 Experimental setup of our inverted pendulum. A motor (2) provides a force u via a belt
on a rail-sliding mass M whose position along the x axis is determined by a rotatory encoder (4). A
secondary rotatory encoder (3) measures the angle θ of the rod (1) which has a length L.

its time-varying angle with-respect to the vertical axis and θ̇ the associated angular speed.
In this stability region and in the presence of a feedback control u(t) the fully non-linear
equation of motion approximately linearize and are given by θ̈ = 1

L

(
g cos θ(t) − u(t) sin θ(t)

)
.

The task of every feedback control system is to keep the state of the plant close to the stable
point by first sensing its current state and subsequently imparting a counter balancing force
u, in our case to the sliding mass M . Various control algorithms exist, the most common
ones used in order to stabilize the inverted pendulum are the Linear-Quadratic-Regulator
(LQR) and the Proportional–Integral–Derivative controller (PID).

LQR implements the control task by feeding back a force which is proportional to the
error of the current state with respect to the stable point such that uk = −K · δhk, where
δh = hk − hs and K is a matrix of constant weights that are fine-tuned as a function of the
plant’s dynamical properties.

PID takes a similar approach by adding two additional terms to the proportional term of
LQR uk = Kp · δhk + Ki ·

∑k
m=k−l δhm + Kd · dδhk

dk where the integral term accumulates
the k − m historic errors and the derivative term determines how fast the stable point is
reached2. One striking difference between PID and LQR is that the former needs to keep
track of the historic states in order to compute the integral term and is therefore referred
to as a stateful controller as opposed to LQR being a stateless controller. However, given
the technical specifications of our measurement devices3, instantaneous measures such as

2 We refer the reader to the corresponding control literature for further information on how to tune the
PID gains and K matrix for LQR.

3 Position and angle are sensed through two rotary encoders, which detect changes of the encoders’
rotation angle as quadratically shifted square waves in two channels. That is, angular changes are
reported as raising and falling edges of the square waves, whereby the shift between channels indicates
the direction of rotation.
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linear and angular speed are not immediately available for a given epoch but have to be
indirectly inferred through first recording past positions and angles and then computing the
temporal variation of the latter. Consequently, LQR becomes effectively stateful. Formally
for a given epoch k the forward function that models the control feedback loop can be written
as f(hk−l, ..., hk) = uk where for LQR l = 1 and PID l ≥ 1. The necessary state that the
controller needs to keep track of (h) would allow us to turn an effectively stateful controller
into a stateless recoverable instance (see Section 5.1).

For PID and LQR of an inverted pendulum, this state is trivially small for modern
computational devices as just a couple of variables are saved across invocations. However, for
this work, the actual algorithms are not relevant. We must observe that over the years, several
increasingly sophisticated control algorithms have been proposed to cope with increasing
plant complexities, including Model Predictive Controllers (MPC). One glaring example is
the electric microgrid, as exemplified by Huo et al. [27] where MPC optimizes the energy
generation and storage decisions based on a state as large as 420KB (at each step).

On the other hand, there is a theoretical possibility to optimize an MPC algorithm imple-
mentation on a 43KB-limited microcontroller [40], using techniques that enable satisfactory
control performance while respecting memory constraints.

3 Related Work

To the best knowledge of the authors, this is the first work to leverage application-specific
knowledge to optimize the more general resilience problem of tolerating up to f simultaneous
faults over extended periods of time (from at least n = 2f + 1 replicas – plus potentially
additional replicas to compensate for unavailable ones during rejuvenation – to n = f + 1
replicas). Several works contribute as individual building blocks for this work, which we
review in the following.

Hard and weakly hard real-time systems. Traditionally hard-real time systems consider
deadline misses fatal as they put safety at risk. However, this is not generally true. Weakly-
hard real-time systems [7] characterize systems by the number of deadlines that can be missed
during any given time window. The m − K model4 [2, 18, 23] allows up to m deadlines to be
missed among any K consecutive jobs of the task. In control, the parameters m and K can
be derived when analyzing the inherent stability of plants [39, 65]. In this work, we leverage
these results to operate under a detection quorum, respectively, in reduced tolerance settings
until the system can be adapted to mask faults immediately.

Fault tolerance and recovery. The Time-Triggered Architecture (TTA) [31] is among the
most advanced and elaborate bodies of work developed to tolerate faults in safety-critical
systems. TTA ensures message exchange in non-overlapping message slots and provides
membership, fault tolerance, and actuation voting by leveraging apriori knowledge about the
messages that replicas should send in the individual slots. TTA and its time partitioning
are required in many standards, including ISO 26262 (automotive), IEC 61508 (industrial
control), and DO-178C (avionics), and adopted by prominent industrial players, such as
Audi, Volkswagen, and Honeywell [51]. The fault tolerance layer [5] is based on cold restart
from the ground state (g-state) or history states (h-state). TTA is often used in conjunction
with other methods for fault tolerance, such as redundancy, re-execution, and self-healing, to

4 Not to confuse our K gain matrix of the LQR controller with a m − K model from the control literature.
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build robust and reliable real-time systems. Our CRC differs in that it ensures that both
recovery states, critical for preserving data integrity and consistency, are always accessible to
applications, even in case of a system failure or unexpected interruption.

One of the most popular methods used in fault tolerance is TMR [37], an instance of
active replication. Its purpose is to improve the reliability of a system by using three (or,
in general, n) functionally equivalent components to perform the same function, with the
system’s output being the majority vote of the three (n). TMR is commonly used in safety-
critical systems, such as aerospace [68], nuclear power plants [66], and medical devices [17],
where a single failure could result in severe harm or damage. The idea behind TMR is that
the probability of all three components failing simultaneously is extremely low, so the system
is highly reliable. While effective in improving system reliability, there are some downsides
such as increased cost, power consumption, and complexity, which may make it less practical
for some applications. Our CRC is an instance of active replication. It reduces the costs
of the system by reducing the number of nodes from n = 2f + 1 to n = f + 1. One of the
prerequisites for this reduction is the possibility of utilizing shared memory.

In addition to active replication, spare replicas can be kept hot, warm or cold, which
translates to different response times for taking over after a fault is detected and the spare
activated. Our approach applies active replication. Both active and passive replication will,
over time, exhaust the majority of healthy replicas [59], in particular when cyberattacks
persist. Our approach specifically address this concern by providing an extremely fast
rejuvenation scheme for control-task replicas. Rejuvenating active replicas normally requires
a cold restart of the faulty replica and additional replicas to compensate this downtime. Our
approach avoids both.

Re-execution [72, 25] is a fault recovery technique used to improve the reliability of
tasks by executing them multiple times and by selecting the correct output from multiple
executions. It uses slack time on the processor to detect faults locally at the end of task
execution and re-execute the task when a fault is detected. A faulty task can either be
re-executed from the start or restored from the most recent checkpoint before the fault
occurred [48]. Our CRC approach extends this technique by transforming control tasks to
always maintain a known healthy saved state from which we restart tasks. This is achieved
by not only voting on the result, but also on the state that must be maintained.

Other recent works in the intersection of fault tolerance and real-time systems include[32,
46, 10, 13, 1, 21].

Shared State. Replicated systems are typically constructed to avoid shared state due to the
vulnerabilities entailed with this state failing. However, since recent microcontroller product
families for safety-critical systems [61] offer ECC and RAID-protected shared memory [24, 64],
we will leverage such memory to allow control replicas to maintain state across epochs. In
particular, we will turn this memory into consensual memory, as exemplified by Gouveia et
al. [19]. Read-only shared memory is commonly used in hypervisor-based systems to isolate
VMs [43] (e.g., when deduplicating pages in their memory image). Our solution works in a
hypervisor or RTOS setup, but equally well also on a bare-metal configuration where replicas
receive read-only access to their shared memory. Read-only access suffices because, as we
shall see, updates are performed consensually through a voter.

ECC embeds the possibility to tolerate faults without exposing them to the application
and its state. It encodes values (e.g., into a hamming code) to tolerate a certain number
of bit flips by correcting them when reconstructing the original value. The same coding
can further be used to detect additional bit flips. As bit flips accumulate over time when
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unhandled, ECC should be frequently be overwritten with a technique called scrubbing to
restore its tolerance capabilities. Scrubbing overwrites the memory with the same value to
restore non-stuck bits to their correct encoding of the value, which allows tolerating the
original number of bit flips minus those that got stuck. We shall use ECC memory to protect
state in consensual memory.

Checkpoint Recovery. Macroscopically, our approach could be characterized as a checkpoint
recovery scheme albeit with an ultra-high checkpoint frequency and unconditional recovery
at the end of each epoch. However, when we compare to other checkpointing approaches,
such as [47, 71, 4], in more detail, there are substantial differences, which we characterize in
the following:

Checkpoints typically capture the entire state of a task in a consistent cut across all replicas
(updating the previous checkpoint with what has been modified since then), whereas in
our approach and using consensual memory, replicas propose only very selectively what
portion of that state they will need for future epochs. The remaining (writable) state is
simply discarded.
Computation of and agreement on a new checkpoint are typically separate operations.
Our approach combines both by only changing the shared state after f +1 healthy replicas
agree on the update.
Checkpoints are typically computed asynchronously to the execution of checkpointed
tasks (e.g., by marking modified pages as copy on write to create a consistent cut). This
is not necessary, since replicas end their activity in an epoch by proposing both what
should be updated in the shared state and how to actuate the plant. This further ensures
that the agreed-upon state corresponds to the latest plant actuation, since agreement is
reached on both simultaneously and the voter follows suite in applying the updates.
Recovery from a checkpoint is typically performed only after replicas have failed. This is
not sufficient as compromised replicas might remain stealthy and go undetected. For this
reason, we recover replicas after every epoch, by resetting them to the beginning of their
control loop.
Last but not least, checkpointing diversified replicas requires determining whether the
individual checkpoints denote the same progress, whereas agreeing just on the values to
be carried across control epochs, avoids such complications, because (i) the agreed upon
state needs not to be diversified (it can only be written consensually), and (ii) healthy
replicas agree on the same updates, despite computing them in a sufficiently different
manner.

CPS Attacks. Various studies have investigated attacks on CPSs, including sensor [60], GPS
spoofing [63, 26], and AI-related attacks [20]. In this work, we focus exclusively on tolerating
cyberattacks that may be successful in compromising up to f control replicas while assuming
adversaries cannot exceed that bound faster than Ta. Rejuvenating all replicas faster than
Ta allows us to tolerate such adversarial attacks over extended periods of time [59].

4 System and Fault Model

System Model. This work concerns the fault tolerant control of a plant by means of
replicating its control task across n nodes (see Figure 2). We assume nodes fail independently,
but are sufficiently closely coupled to access a voter through the IO channels it offers and to
access shared ECC and possibly RAID protected memory. These can be cores of a multi- or
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Figure 2 Replicated control architecture. Control task replicas sense the plant and have read-only
access to shared state. They propose an actuation signal and state update, which the voter applies
after reaching consensus.

many-core system (e.g., controlling a drone), multi-chip modules or more loosely coupled,
but close compute nodes. If cached, the minimum requirement for the shared ECC memory
is to invalidate cachelines upon writes, which as we shall see are updated exclusively by the
voter.

A minimal control task senses the state of the plant, executes a control algorithm and
proposes a signal for actuation. However, control tasks may also be more complex (e.g.,
structured as a directed acyclic graph of runnables) and involve filters, sensor aggregation
and models of the plan to compute hidden state. Our goal is to support plants that are
unaware of their controller’s replicated nature. As such, we introduce a voter, which is
trusted to consolidate control-task proposals into a singleton actuation signal. We shall also
use the voter to update shared memory after reaching a consensus on how this state should
be updated.

For simplicity, we assume a single control task having a single period is responsible for
actuating the plant. Replicas of that task are invoked periodically every T time units and
receive a consistent view of the plant state as far as this is observable through the plant’s
sensors. Supporting multi-periodic tasks (see e.g., Pagetti et al. [45]) is trivial as long as
actuations are independent one from another. By replicating the multi-periodic control
tasks individually and by introducing additional voters for each such group of replicas, one
can achieve the desired actuation rates in the absence of errors. However, under faults,
plants will have to tolerate missing some actuations for a number of epochs while others
keep arriving. A discussion of multi-periodic control tasks with dependent actuations, where
related actuations must not be passed to the plant if any of them cannot be performed at a
given time, is out of the scope of this paper. We return in Section 5.2 to demonstrate how
periodic activation and consistent sensing can be achieved using a trusted real-time operating
system (RTOS) but also on bare metal. We call the T -distant invocations control epochs.
Being invoked synchronously every T with a consistent view implies we operate under the
assumptions of a synchronous system model.

Our approach is parametric in the number of faults f it can tolerate in an epoch (see our
Fault model below for details) and in the number of epochs k by which we guarantee it to
reach consensus. The parameters f and k determine how many replicas are required. Maggio
et al. [39] found that many plants tolerate missing deadlines. The parameter k is bounded
from above by this number m of deadlines that can be missed. Some plants, such as electric
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steering can miss up to m = 17 deadlines. Our goal is to leverage this possibility to miss
deadlines to optimize the system by reducing the number of replicas n required. Immediate
masking (i.e., k = 1) within a single epoch (e.g., TMR) requires n ≥ 2f + 1 replicas. Our
goal is to reduce this number to as low as just n = f + 1 replicas, which can only detect
faulty invocations that manifest in deviating proposals passed to the voter. With n = f + 1
replicas, at least one replica is guaranteed to make a healthy proposal. More generally, we are
guaranteed to receive n − f such healthy proposals during each epoch. To reach consensus,
we have to collect f + 1 matching proposals including from at least one healthy replica.
Our fault model rules out reaching such a match without healthy replica. But with only
n − f healthy proposals in each epoch, we are sure to collect the f + 1 matching proposals
only after

⌈
f+1
n−f

⌉
epochs, which bounds k from below. TMR typically operates under the

assumption of f = 1, but there are systems deployed (e.g., for energy-grid safety), which
have to tolerate f = 5 or even more faults simultaneously.

Fault Model. As mentioned above, we aim to protect against both accidental faults and
intentionally induced, malicious faults (e.g., from cyberattacks). We shall therefore discuss
several classes of faults and how we represent them in our abstract fault model, which
is a slightly extended variant of the standard fault model for persistent and repeatedly
partially-successful cyberattacks originally introduced by Sousa et al. [59].

Our fault model and hence the system we propose is parametric in the number of
simultaneously occuring faults f that it can tolerate as well as in a few parameters (T f

fault−type)
which depend on the type of fault and which characterize when faults of that type may
reoccur. The combination of number of faults and time of re-occurrence is quite standard,
even in real-time systems. For example, the fault-tolerant time-triggered protocol by Kopetz
and Grundsteidl [30] already assumed such a model. TTP can tolerate one fault among four
synchronization replicas, provided the fault will not re-appear in the immediately following
synchronization interval.

These parameters f , k and T f
fault−type are related to the configuration of the system in

terms of the number of control-task replicas n that need to be deployed to tolerate this
number of faults, the time Trejuvenate to rejuvenate replicas and in the time Tagree until
agreement must be reached. The latter is further constrained by the number of subsequent
deadline misses m that the plant can tolerate.

Deploying a system in an environment where these constraints cannot be guaranteed
(e.g., because more than f faults of a class occur faster than T f

fault−type) constitutes a failure
in using the system. Fault tolerance and in consequence safety are no longer guaranteed once
the thresholds are exceeded.

In terms of accidental faults, we consider transient and correctable faults that manifest
in all parts of the system state, including in memory and in the internal and architecturally
visible registers of the CPU. Such faults include bit flips due to radiation, charge deposited
in flash memory cells, etc. We assume the RTOS frequently corrects such faults (e.g., by
overwriting registers with the correct value or by scrubbing ECC memory). In particular
we shall establish consensually-updated memory in ECC and possibly even RAID-protected
memory. This memory will be shared between replicas and must return the latest written
values, even in the presence of faults. If, on the other hand, bit flips occur only in a replica’s
memory and in not more than f over a period T f

accidental , leaving our consensual memory
unaffected, our system can handle these faults by collecting proposals from other replicas
and by rejuvenating the faulty replica.

ECRTS 2023
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Accidental faults typically follow well understood characteristics from which a mean-time-
to-failure (MTTF) can be derived and hence a high probability that faults will not reoccur
within a certain time period, which for accidental faults we call T f

accidental .
Faults of this nature often arise from external factors like radiation or fluctuations in

temperature and are generally considered to be random events. To model these faults,
stochastic processes, such as Poisson processes, are commonly employed. These models can
help estimate the likelihood of faults happening within a designated time frame [38].

In the case of alpha particles hitting memory, this phenomenon is known as soft errors
or single-event upsets (SEUs). Soft errors are transient faults that do not cause permanent
damage to the system. They occur when high-energy particles, such as alpha particles or
cosmic rays, strike the sensitive regions of semiconductor devices, causing bit flips in memory
cells [6].

Malicious faults result from an attacker redirecting the control flow and altering the task’s
state to serve its purposes. Notice that techniques, such as return-oriented programming [9,
50], allow deviating from the task’s intended control flow without modifying its code. This
can happen, for example, by exploiting vulnerabilities such as buffer overflows to push return
addresses that redirect the control flow to snippets of the task’s code that, when combined,
implement the adversary’s desire. We assume a strong adversary capable of identifying,
reaching, and exploiting such a vulnerability in control replicas.

Obviously, with identical replicas, no bound on the simultaneously affected replicas can
be guaranteed. Instead, replicas need to be sufficiently diverse such that an attack applied
to one replica cannot just be applied to another replica. Over time, adversaries may find
vulnerabilities in more than f replicas by analyzing their current state (e.g., how its address
space is randomized) and adjusting their exploit to the replicas state. This leads to two
durations, which characterize the adversary. The time T f

deploy required to deploy an attack
and compromise a replica in the desired way, and the time T f

exceed by which the adversary
has analyzed more than f replicas. In this work, we allow T f

deploy to become small (see
below). However, we shall assume, as recommended by Sousa [59], that the RTOS diversifies
all n replicas as part of the rejuvenation process faster than T f

exceed (e.g., by re-randomizing
their address space layout [8, 15] or by applying other diversification techniques [16, 35, 52]).
Notice also that fault statistics do not apply to malicious faults.

We shall not further discuss diversification in this paper, as this needs to be applied at a
different time scale5, but they can easily be merged with the rejuvenation process we will
introduce in Section 5.1 by not returning to the original binary’s control loop and instead
first activating a transition control loop after adjusting the address space of the task and
then to the diversified version’s control loop. See Section 5.4 for further details.

Rejuvenating replicas before each epoch to address faults, our approach can tolerate
accidental and malicious faults, provided (i) the overall number of accidental and malicious
faults will not exceed f and provided (ii) no more than f faults happen within any sliding
window of length kT . The second condition holds if T f

accidental > kT and if T f
deploy > kT . Of

course, mean-time-to-failure is a value derived from fault statistics, which means that with a
certain probability accidental faults can occur more frequently.

We shall not make such assumptions about accidental faults, but support more frequent
occurrence of accidental faults, by leveraging another characteristics of such faults, namely
that it is highly unlikely that two faults in two replicas will result in identical proposals. We

5 T f
exceed well exceeds the m epochs by which agreement needs to be reached.
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will further reduce the likelihood of this happening by requiring replicas to solve a challenge
for their proposal to be considered. Notice that this also addresses persistent faults, since
a replica experiencing such a fault is unlikely to solve the challenge. Of course, persistent
faults must be properly attributed in the overall number of faults and must be addressed by
replacing the affected replica, which is out of the scope of this work. We shall return to this
in Section 5.4.

It is also highly unlikely that adversaries will be able to predict accidental-fault intrinsics
of a replica that still is able to solve the challenge, such that it can predict what that replica
will propose. For application scenarios which can tolerate a low residual likelihood that the
system becomes unsafe in case such a combination of events happen, we can therefore also
deploy our solution in environments where up to f faults happen in each of the k epochs
and where from the fk total faults, at most f are maliciously induced.

While replicas may fail as described above, we shall assume that the voter, the RTOS and
the system clock will not fail in a similar manner. We assume they remain correct even in
the presence of accidental faults and cyberattacks. For the voter, this assumption is justified
by its simplicity, which allows implementing it entirely as custom logic in silicon or on an
FPGA. Implementing the RTOS itself in a fault tolerant manner [55, 19] allows lifting the
second assumption. Such a fault tolerant RTOS may then consensually update the system
clock to remain in synchrony with other nodes in the system. Our solution is not resilient to
physical attacks.

5 Consensual Resilient Control

In this section, we present our approach to consensual resilient control to tolerate up to
f faults with just a detection quorum of n ≥ f + 1 replicas. For now, let n = k = f + 1
and f = 1. That is, n replicas are periodically invoked with a consistent view of the plant
state and are expected to produce an actuation signal, which they pass to the voter, which
actuates the plant only after f + 1 replicas agree to the actuation value. In addition, to allow
extremely fast recovery from faults and to make it possible to rejuvenate replicas in between
any two subsequent invocations, they also vote on the state they would like to preserve across
epochs.

Figure 3 shows for f = 1 and n = k = 2 how such a majority for the state update
and actuation signal can be formed. In the first epoch, no faults happen, and the two
replicas propose the same state update and actuation signal, which the voter applies since the
f + 1 agreement has been reached. Even though replicas were correct, they are proactively
rejuvenated to also return compromised but stealthy replicas to a known good state. In
epoch 2, replica R1 becomes faulty (either due to an attack or accidentally) and proposes an
actuation value a′

2 instead. Without further knowledge about the plant, the voter cannot
discern which of the two proposed actuation signals is correct and will therefore not actuate
(while possibly holding the previous actuation value a1 if the plant requires that). It will
also not update the state, even though the replicas agree on this part of the proposal. This
is to avoid inconsistencies between the plant and the state maintained by the replicas. As for
now, the plant is not actuated, and we experience a deadline miss, which, since we so far
missed less than k deadlines, we assume the plant tolerates. After rejuvenating the replicas,
the replicas start. However, this time, no agreement could be reached in the previous epoch,
with the sensor information captured at the beginning of epoch 2. This time replica R2
fails in epoch 3. If the previous fault of R1 was due to a cyberattack, R2 could fail only
due to accidental causes because we assume adversaries cannot compromise more than f
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Figure 3 Example illustrating how f + 1 agreement can be achieved despite replicas failing.
Shown is a scenario with f = 1 and n = k = f + 1 = 2 over three epochs. In the first, correct replicas
agree. In the second epoch, no agreement can be reached due to replica R1 failing. In epoch 3, the
voter is able to collect f + 1 matching proposals after R1 rejuvenates, even if this time R2 fails.

replicas faster than the duration of k epochs. Also, by our fault model, the proposal of such
an accidentally failing replica will not match the proposal R1 made during epoch 2. If R1
fails accidentally, adversaries are unlikely to predict how the failure will manifest. In both
cases, the proposal from R1 in epoch 2 and R2 in epoch 3 will not already form a majority.
However, after k = 2 epochs, the voter collected two votes from correct replicas (from R2 in
epoch 2 and R1 in epoch 3). Finally, the voter is able to actuate again (with a2) and update
the state (with h2).

Moreover, operating the system with more than n = f + 1 replicas is possible. In this
case, n − f replicas are correct by our fault model, and the voter can collect n − f correct
proposals in each epoch. Therefore, the number of epochs k needed before f + 1 agreement
can be reached is k =

⌈
f+1
n−f

⌉
. As long as a plant can tolerate at least k deadline misses, n

and k will be a correct configuration to tolerate up to f faults for that plant. An important
prerequisite for this approach to work is that replicas can be recovered fast enough from
faults and rejuvenated between any two invocations.

In the following, we shall therefore discuss how to systematically turn stateful control
tasks into statelessly-recoverable instants (Section 5.1), how to invoke replicas with the
same plant state (Section 5.2), and how to design a voter that is capable of supporting
this construction and that is sufficiently simple to be implemented at the hardware level as
a trusted-trustworthy component (Section 5.3). Then in Section 5.4, we bring everything
together and discuss in Section 5.5 why it is safe to deploy our solution in an environment
that meets the conditions laid out in the fault model in Section 4.

5.1 Converting stateful replicas into statelessly-recoverable instants
Control tasks, like other applications, modify their internal state. For example, both single
and multi-threaded control tasks typically implement function invocation and local variables
using a stack, they use global variables and, at least during startup, they may allocate objects
on the heap. The easiest way of converting this state into easily recoverable information is
to make all state read only and to store it in ECC-protected memory. This way, accidental
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faults cannot manifest in the state and the error correcting code (ECC) captures accidental
faults that occur in the memory block. Moreover, by making state read only, adversaries
have no chance of modifying it without bypassing the processor’s protection mechanism6.

Indeed, it will not be possible to make the entire state of a control task read-only. At least
the stack must remain writeable to support function calls and local variables. Fortunately,
resetting the stack pointer to the location before a function call discards all values a previous
function call has pushed. Therefore, to trivially recover control tasks, we turn the control
loop of these tasks into a call to a function, which, as we shall see, will never need to
return. Instead, it checks the voter to see whether the previous epoch was successful, which
determines whether the current plant state should be considered or whether the replica needs
to execute the control problem of a previous epoch, by reaching to that epoch’s captured
state and sensor values, to reach consensus about this epoch’s control problem. It then
proposes the actuation value and whatever part of this dynamic state should be preserved for
the next epoch. Then, because we rejuvenate control tasks irrespective of their fault status,
the only remaining part is to return to the control loop function while resetting the stack
pointer. In other words, we turn the control loop function into a continuation and invoke it
after every rejuvenation of the control task.

As we have seen, the state that control algorithms need to carry across epochs may range
from a few values (such as the error and accumulator for PID) to several kilobytes of data
(as in the electric microgrid controller from Huo et al. [27]). Our strategy for protecting this
state is to store it in consensually-updated memory [19]. Consensually-updated memory is a
memory shared among several replicas. To read, replicas can directly access the memory as it
can be mapped read-only into the replica’s address space. However, writing requires agreeing
on which part of the memory should be updated and how. We leverage the voter to perform
also these updates. In particular, we propose simultaneously all updates and the actuation
signal to avoid inconsistencies due to partial updates. Also, since we collect proposals over k

epochs, we cannot go back in time to receive additional parts of a proposal from a replica.
Control tasks not specifically built for our system will include code to read and write

parts of this state. The transformation required to turn these control tasks into consensual-
resilient-control (CRC) aware tasks is as follows. We analyze the program and allocate space
on the stack in the context of the control-loop continuation. Upon the first write to a variable
in consensual memory, we create a copy in that space and modify this copy instead of the
original location7. Subsequent reads and writes then refer to this copy instead of the original
location, and finally, the value of this copy is proposed as part of the update that the voter
should apply. Transformations like the above are readily available in modern compilers (e.g.,
when constructing single-assignment form).

Figure 4 illustrates the above on an example address space layout of control task applica-
tions. Replicas receive a read-only copy of the plant state (see next section) and share as
read-only mapping the code, read-only data, and shared memory. Stack and the MMIO
interface to invoke the voter remain mapped in a writable manner. As part of the first write,
a copy of the consensually updated state is created in the space allocated in the control-loop
continuation’s context on the stack, and all subsequent reads and writes are directed to this
copy. The last operation of the control-loop continuation (fn_ctl) is to propose the copy as
part of the state update and with the actuation signal, which the voter applies once f + 1

6 We hope future safety-critical systems will be constructed from hardware components that are resistant
to protection-bypassing attacks, such as Rowhammer [29].

7 Being at the top of the stack, functions called from the continuation can reach this space.
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Figure 4 Address space layout of a control task replica. Shared state, code, and data are mapped
read-only into the address space. Dashed lines indicate the data flow for variables in the consensually
updated shared memory. Upon the first write, a copy is created on the stack and finally proposed to
update the state after reaching a consensus. After reset, the instruction pointer (IP) is reset to the
control loop function (fn_ctl) and the stack pointer (SP) to the beginning of the stack.

agreement with other replicas is reached. Irrespective whether or not fn_ctl terminates,
the control task will be resumed in the next epoch with that function, after resetting its
stack to remove any modifications an attack could have performed. This is important since
compromised replicas may fail in an arbitrary manner, including by not proposing or by not
terminating.

5.2 Sensing and control-task invocation
This section explains how we ensure replicas are invoked with the same view of the plant,
both in a hosted environment and on bare metal. We start by looking at the implications of
not invoking replicas with the same view of the plant. In this case, each replica would need
to sense the plant state individually and would produce slightly different actuation signals
and values to carry to the next epoch, even if we consider only correct replicas. Consequently,
the voter would now need to identify when values are sufficiently close, which adds extra
complexity to support this form of approximate agreement.

Instead of adding this complexity to the voter, it can also be added to the replicas by
either reaching agreement on the sensed values or by agreeing on the actuation value and
state update before presenting this to the voter. In either case, first reaching agreement
requires collecting the opinions of f + 1 healthy replicas, which can only be guaranteed to
happen after k epochs. Therefore, any additional agreement would require the plant to
tolerate an extra k epochs of deadline misses, which would severely limit the applicability of
our approach. In the following, we therefore present solutions that do not require additional
agreement rounds other than for actuating the plant and updating consensual memory.

5.2.1 Hosted environments
Assuming a trusted-trustworthy operating system (OS), OS-level drivers could read sensors
on the replicas’ behalf and provide them with the values they read. Since replicas may need
to revert to the past k elements, a k + 1 element ring buffer suggests itself as data structure,
which the RTOS can map to the replicas’ address spaces in a read-only manner.

Figure 5 shows the ring-buffer data structure used to grant the control task access to
past sensor values and the pseudocode for a very simple controller leveraging this data
structure. Retrieving from the voter the last epoch where votes were successful, replicas
either contribute to the current control problem at hand (if this was the previous epoch)
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(a) Ringbuffer’s W/R mechanism.

1 // control loop
2 fn_ctl () {
3 epoch = voter . last_successful_epoch + 1;
4
5 // read sensor values
6 input = ring_buffer . get_sensor (( epoch + 1) % k);
7
8 // compute controller response
9 <output ,new_state > = control (input , state );

10
11 // make proposal
12 propose ( voter . get_nonce (),epoch ,output , new_state );
13
14 // wait for next epoch
15 // ( resumes with continuation fn_ctl )
16 sleep ();
17 }

(b) Simple controller pseudocode.

Figure 5 Controller function fn_ctl and the ring buffer data structure used to refer back to
previous plant states in case the previous epoch was not successful.

or they contribute to forming a majority for a past control problem that has failed so far
to reach an agreement. As the code shows, with the ringbuffer in place, both cases can be
treated in the same way, by obtaining the sensor value from the buffer (Line 6), computing
the control output and state to carry over (Line 9) and by proposing both (Line 12) before
yielding or sleeping until the next invocation. Replicas will be woken up as part of the
rejuvenation process and resume at the beginning of the control loop captured in fn_ctl (at
Line 3).

1 on rotary_interrupt :
2 epoch = (now () - start_time ) / T;
3 angle [( epoch + 1) mod m] += direction ()
4 return from interrupt

Figure 6 Interrupt handler for decoding rotary controller interrupts from the rotary encoder
sensors of our pendulum into angular values (See also the pendulum in Section 2).

Let us illustrate the use of this data structure on an example with less cooperative sensors.
Rotary encoders do not reveal the angle directly, but instead signal a change of their rotation
angle by triggering interrupts. In our running example, we use the data structure shown
in Figure 5 to sample the angles of the rotary controllers from the interrupts they generate
at the rising and falling edge. To obtain the desired angle, rotary controllers require the
operating system to accumulate angular changes, which they notify through interrupts. The
interrupt handler code in Figure 6 shows this decoding of interrupts to angular values, where
angle is the ringbuffer shown in Figure 5(a) and direction returns +4 or -4, depending on
whether the encoder was turned right or left (i.e., depending on which of the two channels
preceded the other (see Section 2)).
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Figure 7 Layout of one of the voter buffers. The size s of the proposal and its inner structure in
the form of m address, size, value triples are stored consecutively for easier comparisson.

5.2.2 Bare metal

Not all control tasks run in a hosted environment. In the following, we therefore sketch how
replica invocation and sensing can be handled in a simple microcontroller for applications
running on bare metal. We assume that in such an architecture, we still have the possibility
to statically configure privileges (before the system starts critical operation) and to program
a non-maskable timer to enter a read-only interrupt service routine that executes the code
to activate the fn_ctl continuation at the beginning of the epoch and to reset the stack
accordingly (Line 2 in Figure 5(b)).

Without additional hardware support, replicas, in a bare-metal configuration, have to
sense themselves, which requires agreement and plants that tolerate at least 2k deadline misses
before actuation can be guaranteed. To avoid the overhead entailed with this agreement, we
suggest deploying capture hardware units [62] to periodically sample sensors in a reliable
way and store the sampled results in memory that gets mapped to the replicas’ address
spaces in a read-only manner. Deploying 2fccu + 1 such units, where fccu is the tolerated
fault threshold for these units allows replicas to immediately mask wrong sensor values and
proceed with their control tasks. In particular for interrupt-driven sensors, such as the rotary
controllers of our pendulum, the capture units should perform the accumulation task to
avoid replicas having to accumulate captured interrupts themselves.

5.3 Voting on state updates and actuation

Consolidating the replicas’ proposals into a single actuation output turns the voter into
a necessarily trusted component, which, to be trustworthy, should remain as simple as
possible. However, unlike voting in traditional TMR systems, not all proposals are available
simultaneously, which requires the voter to buffer requests before f +1 matching votes can be
extracted. In particular, we need nk buffers for n ≥ f + 1 replicas and for k =

⌈
f+1
n−f

⌉
epochs.

For our pendulum and most systems we have investigated, actuation amounts to writing
several memory-mapped registers, where the final write typically triggers the actuation.
Likewise, consensual memory updates of state that should be carried to the next epoch
also amount to writes to ECC-protected memory, respectively, to multiple locations in case
of RAID. These write locations are typically not consecutive and, as we have seen before,
proposals must be submitted in their entirety. Therefore an interface suggests itself where
replicas specify m writes as address-size-value triples, stored as s consecutive bytes, as shown
in Figure 7. This way, the f + 1 matching proposals can be identified by matching s and the
strings of size s in the respective buffers. Moreover, the voter can apply a successful vote (i.e.,
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one reaching f + 1 agreement) by performing the m writes to the specified locations. Aside
from maintaining the order of writes, we did not see any need for sophisticated consistency
models other than register consistency, since voter-initiated writes will typically happen
after replicas end their activity in an epoch and before the next epoch starts. In addition,
healthy replicas may identify state updates in progress, by means of simple sequence locks in
consensual memory.

To interface with the voter, we implement channels and map each channel to one replica.
Moreover, we make the voter aware of epochs by exposing two read-only registers to each
replica. The first contains the current epoch and is advanced every T . The second contains
the epoch number when the last successful vote has happened (see Line 3 in Figure 5(b)).
Making the voter aware of epochs avoids costly operations when resetting replicas, which
otherwise would require changing the permissions of a replica to use a different channel.
Upon receiving a message through the channel, the voter copies the proposal to the respective
buffer for this replica and the epoch it is executing in, rotating through buffers as epochs
advance.

As indicated in our fault model, we further complicate the case of faulty replicas reaching
f + 1 agreement by introducing a challenge response mechanism to the voter interface. At
the start of each epoch, after rejuvenating all replicas, the voter presents each replica a
different random value – called nonce, which they are asked to reflect to the voter by xor-ing
their proposal with this value. Then, rather than comparing the strings bytewise, the voter
first xors the proposed string with the replica’s current nonce, which returns the original
string and then tries to find f + 1 matching proposals. This way, accidentally faulty replicas,
in addition to adversaries needing to guess their proposal, must still be sufficiently correct
to encode both the state update and the actuation signal using the provided nonce and to
propose both to the voter before they are rejuvenated at the end of the epoch, which is
highly unlikely. Notice that because the nonce is random and different every epoch, replicas
which do not propose in an epoch are automatically considered as faulty replicas.

In preparation for changing the active replica set, we equip voters with more than n

channels and with buffers for more than k epochs. This way, the active set can be supported
with a subset of the resources available in the voter. A trusted replica manager can change
this subset and the parameters n, k, and f over time, should that be necessary. The active
subset is encoded in a bit vector with one bit per channel (considering those channels as
active whose bit is set). Replicas with access to an inactive channel may already propose,
but are ignored until their channel becomes active. This way, additional replicas can already
be started and allowed to participate while the previous set of replicas is still in control
of the plant. Then, once the new set of replicas are prepared, the trusted replica manager
atomically transitions to this set by means of writing a single register. The change will
become effective at the beginning of the next epoch. Figure 8 shows the channels, buffers,
epoch registers as well as the reconfiguration registers just described.

From the description above, it should be clear that such a voter can be implemented as a
service at the application level (waiting for signals from the replicas) as an operating-system
service (invoked by system calls) or as a fixed-function custom logic mapped to an FPGA
or implemented in silicon. In the latter two cases, replicas interface with the voter through
memory-mapped IO registers that are mapped into the replicas’ address spaces.

Notice also that while replicas must produce identical actuation signals and state updates
to reach agreement (given the same consensually updated state and sensor values), they may
(and in fact should to ensure fault independence) compute these proposals in a sufficiently
different manner, such that an attack of one replicas does not automatically apply to others.
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Figure 8 Voter internal structure. The voter provides one buffer per replica and epoch, which
the replica can access through a channel. The proposal communicated through the channel is copies
into the corresponding buffer of this replica for the current epoch. The voter reveals as well the
current epoch and the last epoch where f + 1 agreement could be reached and allows k, f and n to
be reconfigured by a trusted replica manager (if necessary).

5.4 Bringing it all together
With the above building blocks, we can now bring everything together. The system starts by
initializing the plant, the trusted replica-management service (if necessary), and the replicas,
which enter the control loop (fn_ctl) as a continuation. When the continuation starts, the
RTOS or capture units have already sensed the observable part of the plant and captured
that information in a ring-buffer. Therefore if the previous epoch was successful, the replica
can proceed with the current sensor values and the current state in consensual memory to
produce an actuation signal and update for the state that needs to be carried to the next
epoch. Both are proposed to the voter to reach an agreement.

If the previous epoch was unsuccessful, the replica performs the same steps but with
the sensor values for the epoch that precedes the last successful one. Notice that in this
case, the consensual memory has not been updated and contains the control parameters
(e.g., accelerator and previous value for PID control) required for that epoch. Once the voter
receives f + 1 matching proposals, it marks the current epoch as the last successful and
executes the agreed-upon sequence of writes, updating the consensual memory and actuating
the plant.

Healthy replicas end their activity in an epoch by sleeping. However, regardless of whether
a replica sleeps, the RTOS/non-maskable timer will signal a protected handler in the replicas,
which resets the replica by returning to the start of the control-loop continuation (fn_ctl)
and by resetting the replica’s stack.

5.5 Safe Deployment
In our fault model in Section 4, we have defined constraints for the safe deployment of
systems that implement our solution. If these constraints are met, control tasks will reach
an agreement, and the agreement is on a correct proposal only. System safety then depends
on correct control tasks proposing correct actuations in the given situation, which to ensure
is out of the scope of this work.

The constraints highlighted in Section 4 are that (i) no more than f total faults occur and
that (ii) the system addresses faults faster than kT with no further faults occurring before
that time. In particular, we have discussed that malicious faults must be constrained through
diversification such that not all replicas become faulty simultaneously, with the additional
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constraint that the time to re-deploy an attack remains above kT . We have also discussed
that persistent faults, which cannot be handled at that timescale need to be accounted for.
That is, if there are fpersistent < f faults, present, only up to f − fpersistent faults of another
kind may occur within the sliding windows of length at least kT .

With up to f faults over a time kT , at most f proposals may originate from faulty of
otherwise compromised replicas. Therefore, when f + 1 matching proposals are collected,
they are collected from at least one healthy replica. In particular, by the measures we discuss
in Section 5.2 and Section 5.3, we ensure that all replicas operate from the same state and
are invoked in a reliable manner after rejuvenation. This means (due to our assumption that
fused sensor values are correct) that any healthy replica will propose a correct proposal and
that agreement can only be reached on such a proposal.

It is always possible to reach agreement on such a proposal because over up to k epochs,
n − fk replicas are correct (possibly after rejuvenating them), which because k =

⌈
f+1
n−f

⌉
, is

larger or equal to f + 1. Hence the system is life.
To see why our system is also correct in case up to f faults occur during each epoch,

but with the additional constraints that (iii) among the fk faults over any sliding window
of length kT only up to f are malicious faults, (iv) that malicious faults do not propose
the same value as accidental faults and (v) no two accidental faults agree in their value,
we have to see that agreement cannot already be reached among faulty replicas. Condition
(iii) rules out agreement just by including malicious replicas and (iv) that malicious replicas
collude with an accidentally faulty replica, even if up to f malicious replicas agree in their
proposal. (v) avoids agreement among accidentally faulty replicas. Notice though that these
are probabilistic arguments and that, as mentioned in Section 4, systems cannot safely be
deployed if the residual likelihood of agreement among accidentally faulty replicas or if in
the targeted environment, the residual likelihood of malicious replicas guessing the fault
characteristics of an accidentally faulty replica, cannot be tolerated by the system. Our
challenge to require replicas to send their proposals by xor-ing a voter provided nonce, further
reduces these likelihoods, as accidentally faults replicas must remain able to do so, despite
the fault manifesting.

The above condition also ensures liveness in this setting, since n − f replicas remain
correct in each epoch, which, when collecting their proposals over k epochs sums up to at
least f + 1 proposals from correct replicas.

5.6 Distributed Control

Until now and for our evaluation, we have assumed systems that are sufficiently tightly
coupled so that communication through shared, ECC- and RAID-protected memory remains
possible. In such a setting, a voter can collect proposals, update consensual memory and
actuate the plant. The same applies to closely coupled nodes for the control task, but a
remote plant as long as communication between the voter and the plant is reliable.

To support distributed nodes for the control tasks and a remote plant, both the sensor
signals and the actuation signals must be communicated reliably to all notes in the system
(e.g., by using communication media that already have such a reliability built in [22] or by
running a suitable reliable transmission protocol [33, 44]. In such a setting, shared memory
will likely not be available and should therefore be replaced by consensually updating locally
accessible, read-only mapped memories and by reconstructing the state of such a memory
from its peers in case one of the nodes’ memory fails. Investigating the tradeoffs of such a
solution is out of the scope of this paper.
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6 Evaluation

To demonstrate that our approach to consensual resilient control is in fact robust, even in
the presence of errors, we have implemented the voter and two control algorithms (LQR and
PID) by leveraging Linux’s user-level driver infrastructure to sense and actuate our inverted
pendulum. In particular, we were interested in whether the ability to tolerate accidental
faults in the time domain allows controlling such an application from the less predictable
environment that standard Linux offers. For small epochs (T < 10ms), we had to use Linux’
“silent core” feature to limit OS activity on the cores to which we pinned our control tasks.

All measurements were conducted on a 4-core Raspberry 3 Model B+ with 1GB RAM,
running at 1.4 GHz, using the pendulum shown in Section 2. In addition, to evaluate the
scalability of our approach, we used a 4x6 core Intel Xeon Gold 6334 CPU, running at 3.4
GHz, and a software emulator of the pendulum (implementing its equation of motion and
random turbulence).

We have implemented the voter in software as a user-level task and have pinned replicas
and the voter each to a separate core. Replicas communicate with the voter through a
dedicated shared memory region, as depicted in Figure 4, which implements the voter’s
channel interface. We inject faults into randomly selected replicas and consider only faults
that manifest in proposing values that are different from those of healthy replicas. For
accidental faults, a random value is proposed. For maliciously-induced faults, we as well
select a random value but will use the same value for all compromised replicas. In addition,
for demonstration purposes, pressing a button on the Raspberry PI will as well cause a
random replica to fail.

6.1 Overhead

Since our approach is to re-execute replicas after rejuvenation for up to k epochs, the runtime
overhead in terms of time to agreement under faults is dominated by the number of epochs
required to collect f + 1 faults. In no faults occur, replicas actuate within a single epoch
and the worst-case time to agreement is the WCET of the control task plus the overhead to
propose and update the state that needs to be preserved across epochs.

We measured this overhead for PID and LQR on the Raspberry PI and with our inverted
pendulum (f = 1, n = 2) to be 0.39 µs for the time that the replica needs to preserve the state
for the next epoch, by proposing the error and accumulator (PID) and the measured angles
to calculate angular velocities (LQR). The voter required 0.034 µs to update consensual
memory and actuate the plant.

In addition, we performed a series of microbenchmarks on our x86-based simulator of
the pendulum to understand these overheads for different controllers that require preserving
increasing amounts of state across epochs. Figure 9 shows these results for the same scenario
(f = 1 and n = 2). Shown are the maximum observed (bars), average (green dot) and P95
(top) and P05 (bottom) percentiles of these execution-time overheads.

As can be seen, the overhead of turning control tasks into statelessly-recoverable instants,
by pushing all state that needs to be maintained across epochs to consensual memory, is
negligible for controllers with small state and well below 2ms for controllers that operate on
a significant amount of dynamic state (such as the one from Huo et al. [27]). It should be
noted that typical book-keeping tasks can also be performed on consensual memory, with
little additional overhead for logging system states in consensual memory.
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Figure 9 Overhead of consensual resilient control (in µs) broken down into the overhead on the
replica side to propose the actuation value and update of the state that should be preserved for the
next epoch and into the voter overhead of applying this update and the actuation signal. Shown is
the scenario for f = 1, n = 2.

6.2 Breakdown of Voting Overheads
Figure 10 further breaks down the overhead for voting into the different operations that a
software-level voter needs to perform. Hardware implementations can avoid buffering costs
by directing inputs directly to the current epoch’s buffer and they may parallelize agreement
checks. Figure 10(a) investigates for n = 2 replicas how the voting overhead scales with the
size of the state that needs to be preserved across epochs. Figure 10(b) shows these results
for increasing n and therefore also for increasing f and a fixed state size of 200KB.

As can be seen, updating consensual memory, copying to the buffer and checking for
agreement is linear in the size of the proposal, given that the number of replicas is fixed
to n = 2 for these measurements. Similarly, updating consensual memory and copying to
the buffer are constant for a fixed-size message, irrespective of the number of replicas and
the agreement check linear in the number of replicas (and hence faults tolerated) in case
no faults occur (as shown in 10(b)) and quadratic (n · k) when f + 1 agreement must be
collected over up to k epochs. This is because whenever a replica proposes, the voter checks
this proposal to all buffers that already contain a proposal for the voted-upon epoch.

6.3 Actuation Signals
Figure 11 shows the sensor (Channel 2–4) and actuation signal (Channel 1) of the inverted
pendulum, controlled over three epochs with a consensual resilient PID controller. The
scenario depicted in the figure roughly resembles the situation presented in Figure 3. During
the first epoch, actuating at vertical line (4), no faults happen and the DC motor gets
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(a) Breakdown of the overhead of voting for n = 2. (b) Scalability of voting overhead for larger f
and n. Shown are the results for a 200KB cross
epoch state.

Figure 10 Voting overhead for the constant invocation of T = 25ms.

configured to a 66% duty cycle, as seen in the wider pulse width in Channel 1. As a response
to this actuation, the rate of change of the angle drops, as can be seen from the longer
distances between the rising and falling edges on Channel 2 and 3. Therefore, the control
algorithm selects a lower duty cycle to reduce motor velocity and slow down the cart and
thereby also the pendulum motion even further, with the idea of reaching the stable point
where the pendulum is pointing straight to the top. Unfortunately, a replica fails during that
epoch (since we injected a fault). In consequence, after the voter receives f + 1 proposals at
the point in time denoted by vertical line (5), no agreement can be reached and the voter
will hold the previous duty cycle of 66%. In the following epoch, we again inject a fault
into one of the replicas, but this time, f + 1 agreement can be reached by combining the
proposals of the current and the previous epoch. The voter applies the proposal and adjusts
the duty cycle to 8.3%, as can be seen in the change of the pulse-width encoded signal. We
also see slight variations between the actuation points. This is due to the control replicas
executing with slightly different actual execution times within the 7ms epochs.

6.4 Rejuvenation costs
A central contribution of this work is the reduction of rejuvenation costs to just resuming
the control loop continuation (fn_ctl) and resetting the stack, which both have overheads in
the single to double-digit cycle range. In addition, we induce a maximum observed overhead
of 0.39µs (with LQR and PID) for proposing and updating the state in consensual memory
that must be preserved across epochs.

To compare and contrast these costs, we have also measured the average-case overhead
when rejuvenating replicas traditionally by creating a new process (329.06µs), a new thread
(13.28µs) and by mapping the voter interface to this replica (100.82µs). In addition, such a
replica would experience cold start effects and need to catch up to the state of other replicas.
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Figure 11 Sensor and actuation signals of the pendulum were evaluated using a logic analyzer.
Shown are the points in time of actuation (vertical lines) for three epochs (marked on the top as 4, 5
and 6). The individual channels show DC motor actuation (1), encoded as a pulse-width modulated
signal, the two channels of the rotary encoder which measures the angle of the pendulum (2) and
(3), as well as the two channels measuring the position (4) and (5).

However, as can already be seen from the reported numbers, the costs of rejuvenating replicas
traditionally are significant. It should also be noted that it is difficult to bind these costs
from above, which is why typically, real-time systems only use these operations while they
have to guarantee timeliness. Notice that rejuvenation will also be required in systems, such
as TMR, that are capable of masking faults. This is because persistent attacks exhaust the
healthy majority over time. Rejuvenation restores this majority.

7 Conclusion

This paper presents Consensual Resilient Control, a framework specifically designed to ensure
the resilience of control tasks to accidental and malicious faults. We have shown how stateful
control tasks can be systematically transformed into statelessly-recoverable instances by
protecting in consensual memory any state that must be preserved across epochs (such as
the PID controller’s error and accumulator for derivative and integral control). This allows
masking faults just with a detection quorum of n ≥ f + 1 replicas, provided f + 1 agreement
can be collected over k =

⌈
f+1
n−f

⌉
epochs and provided the plant can tolerate up to k deadline

misses.
We discuss several intricacies of applying consensual resilient control to a real-life applic-

ation scenario by demonstrating its operation with our self-made inverted pendulum. In
addition, we have evaluated our approach in the less predictable setting of running controllers
as user-level Linux processes with user-level drivers for sensing and actuating the plant. We
have also conducted several microbenchmarks to assess the behavior of consensual resilient
control when increasing amounts of state have to be preserved across epochs (up to the
420KB required for the MPC electric microgrid controller by Huo et al. [27]) as well as for
increasing f and n.

In the future, we plan to investigate scenarios requiring a change of the control algorithm,
as well as simplex/complex controller interplays in a fault-tolerant setting.
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