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Abstract
As time-critical systems require timing guarantees, Worst-Case Execution Times (WCET) have to
be employed. However, WCET estimation methods usually assume fault-free hardware. If proper
actions are not taken, such fault-free WCET approaches become unsafe, when faults impact the
hardware during execution. The majority of approaches, dealing with hardware faults, address
the impact of faults on the functional behavior of an application, i.e., denial of service and binary
correctness. Few approaches address the impact of faults on the application timing behavior, i.e.,
time to finish the application, and target faults occurring in memories. However, as the transistor
size in modern technologies is significantly reduced, faults in cores cannot be considered negligible
anymore. This work shows that faults not only affect the functional behavior, but they can have a
significant impact on the timing behavior of applications. To expose the overall impact of faults,
we enhance vulnerability analysis to include not only functional, but also timing correctness, and
show that faults impact WCET estimations. As common techniques to deal with faults, such as
watchdog timers and re-execution, have large timing overhead for error detection and correction, we
propose a mechanism with near-zero and bounded timing overhead. A RISC-V core is used as a case
study. The obtained results show that faults can lead up to almost 700% increase in the maximum
observed execution time between fault-free and faulty execution without protection, affecting the
WCET estimations. On the contrary, the proposed mechanism is able to restore fault-free WCET
estimations with a bounded overhead of 2 execution cycles.

2012 ACM Subject Classification General and reference → Reliability; General and reference →
Measurement; Hardware → Error detection and error correction; Hardware → Transient errors and
upsets; Hardware → Safety critical systems; Computer systems organization → Real-time system
architecture

Keywords and phrases Transient faults, Timing impact, Near-zero WCET error detection and
correction, Vulnerability analysis

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2023.15

Supplementary Material Software (Source Code): https://gitlab.inria.fr/srokicki/Comet/-/
tree/FSR_comet?ref_type=heads

Funding This work has been funded by the French National Research Agency (ANR) through the
FASY research project (ANR-21-CE25-0008).

1 Introduction

1.1 Context
Time-critical systems, such as safety-critical and mixed-criticality systems, consist of hard
real-time applications. For such applications, timing guarantees must be provided, i.e.,
their worst-case response time must be less than their respective deadlines and/or the total
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15:2 Impact of Transient Faults on Timing Behavior

execution does not exceed a given latency requirement [47]. To rigorously provide such
guarantees, a safe estimation of the Worst-Case Execution Time (WCET) [20] has to be
employed during the system design. The estimation of WCET is performed through (i)
measurement-based approaches, where the task is executed on the platform under study,
and (ii) static analysis approaches, where the software source code and the platform under
study are automatically examined, before the application runs [16]. The majority of WCET
estimation approaches assumes that the underlying hardware is fault-free, i.e., during WCET
estimation no faults occur in the hardware of the target platform [24, 48].

However, in reality, a system is threatened by phenomena that can lead to several
permanent or temporary faults, occurring during execution. Especially due to the reduced
transistor sizes and lower supply voltages of modern technologies [26, 17], systems are
becoming more and more sensitive to environmental sources [39], such as ionization, radiation,
and high-energy electromagnetic interference, leading to temporary reliability violations,
called transient faults. Transient faults can affect the system behavior by corrupting the
system information. Therefore, as systems become more and more prone to faults during
execution [21], fault-free WCET bounds cannot be considered safe anymore [48].

1.2 Motivation
To deal with hardware faults, existing approaches apply fault-tolerant techniques to the
system. The majority of these works focuses on the impact of faults on the functional
behavior of the applications. Functional behavior refers to denial of service, i.e., no outcome
is generated because the application is hanged or crashed, and to binary correctness, i.e., the
application outcome is different than expected [40].

Fault mitigation considering real-time aspects is usually achieved through scheduling
techniques applied at the task-level, such as replication of tasks [27, 5] and task check-
pointing/re-execution [12, 51, 50, 27]. When fault tolerance techniques are inserted into the
system, their timing impact on WCET has to be taken into account, in order to still provide
timing guarantees. To do so, the fault-free WCET is extended with the timing overhead
of the applied fault tolerance techniques. However, faults impact not only the functional
behaviour, but also the timing behaviour, i.e., the application finishes within a given time,
but its execution time is different compared to the fault-free execution. This fault impact
is bound by the denial of service, i.e., when the execution time exceeds a threshold, it is
considered as not responsive. Such application hangs are detected by a watchdog-timer
and they are remedied by resetting the system and restarting execution. However, such
approaches have significant time overhead, since the transient fault is detected much later
than occurred, e.g., when the application finishes execution or the watchdog timer expires. To
deal with this limitation, low-level fault-tolerant techniques can circumvent the fault impact,
at the time instance when the fault occurs, leading to remedies with significantly lower and
bounded time overhead than watchdog timers and less area overhead than replicating the
complete processor.

Few approaches address the impact of hardware faults on the timing behaviour of
applications. Existing work addresses hardware faults occurring in cache memories, while
the rest of the architecture is assumed fault-free. Approaches focus on estimating the timing
impact by accounting for the hardware degradation of the cache memory due to the presence
of faults, e.g., additional misses due to faulty cache lines [23]. Some approaches have been
extended to incorporate the timing impact of inserted fault tolerant techniques to detect,
correct or mitigate faults in memories, e.g, when a parity bit is used for error detection [11].
Other works focus on mitigating the hardware degradation in caches, due to occurring faults,
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using redundant hardware, e.g., through a shared reliable buffer [24]. As a result, the timing
impact of faults on the execution time, and thus the WCET, is mitigated and the timing
characteristics of the memory hardware are maintained, leading to a timing behavior close
to the fault-free one, despite the presence of faults. However, existing works mainly focus on
permanent faults occurring to memories. Nevertheless, with technology size reduction, faults
occurring inside the cores cannot be considered negligible anymore [32, 43]. Such faults can
significantly affect the execution time of an application.

1.3 Contributions
The contribution of this work is to expose the following key aspect: transient faults affecting
the cores impacts not only the functional behavior of an application, but it also has a
significant impact on its timing behavior, affecting WCET estimations. To achieve that, we
leverage typical fault-free WCET estimations to be fault-aware, by taking into account the
impact of transient faults occurring on cores. More precisely, we firstly perform a vulnerability
analysis on a target system through extensive fault injection. The analysis verifies not only
functional correctness, but also timing correctness of applications, when executed on a core.
Then, we apply a typical measurement-based WCET estimation method to verify the impact
of faults on WCET estimation. A RISC-V core, named Comet, is used as a case study [41].
Comet is an on open-source High Level Synthesis (HLS) implementation of RV32I base ISA1.

From the obtained results, we observe that the application execution time can be signific-
antly increased under the presence of transient faults, up to 700%, compared to the application
execution time without faults. Furthermore, the distribution of execution time traces is
significantly modified, compared to the fault-free distribution. The above observations have
direct consequences; the time required to finish execution under faults can be significantly
higher than the fault-free WCET. Thus, existing approaches should use watchdog timers, in
order to bound the impact of transient faults on the application execution time, and keep
safe the overall schedule. When the timer expires or an error is detected, the application
requires to be re-executed, fully or partially, depending on the approach, leading to high
error detection and correction timing overhead. To deal with this limitation, we propose a
mechanism with near-zero and bounded overhead (two clock cycles) that circumvents the
faults as soon as they occur – before being propagated and affecting the execution time –
and thus restores WCET estimations close to the faulty-free one.

The paper is organized as follows. Section 2 describes the methodology followed to
obtain fault-aware WCET estimations, based on functional and timing vulnerability analysis
combined with a measurement-based WCET approach. Section 3 describes the proposed
fault-tolerant mechanism and bounds its timing overhead. Section 4 presents and analyzes
the experimental results. Section 5 discusses the related work. Finally, conclusion is presented
in Section 6.

2 Fault-aware WCET estimation methodology

This section describes the methodology followed to obtain WCET estimations under transient
faults occurring on cores. To obtain realistic fault analysis, hardware fault injection is needed.
Thanks to this, faults can be injected in the actual hardware structures, and not only in
application variables as done by software fault injection [37]. Hence, a measurement-based
WCET estimation method is required in order to be able to analyze the timing impact,
when faults are injected in the hardware, compared to a static analysis. Therefore, firstly
we perform a vulnerability analysis through hardware fault injection. Then, we apply a

1 https://gitlab.inria.fr/srokicki/Comet/-/tree/master
ECRTS 2023
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Figure 1 Illustration of LESR mechanism.

typical Measurement Based Probabilistic Timing Analysis (MBPTA) to analyze the impact
of faults on WCET. The MBPTA is a mathematical method for estimating the extreme
values probability of rare events [18, 13]. This method allows us to see the tail behaviour
and determine the probabilistic WCET (pWCET) for a set of execution time traces. Note
that, the goal of the fault-aware WCET estimation methodology is not to propose a new
method to obtain tighter bounds, but to study typical measurement-based WCET estimation
approaches in presence of faults. The next paragraphs describe the steps of the fault-aware
WCET estimation methodology.
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Figure 2 Overview of fault-aware WCET estimation methodology.

2.1 Data collection through vulnerability analysis

During the data collection step, we need to obtain the execution cycles describing the timing
behaviour of the application, under transient faults occurring on the core.

To achieve that, we design a functional and timing vulnerability analysis and study the
impact of transient faults to the functional and timing correctness of an application executed
on the core. This is performed through a Cycle-Accurate Bit-Accurate (CABA) simulator,
where transient faults are injected based on a given fault model at the pipeline registers of
the core. In order to expose the timing impact of faults, we need to monitor any difference
between the execution cycles, required for the fault-free execution, and the observed execution
cycles under the presence of faults. Therefore, we remove any other source that may lead to
variation of the application execution cycles [16], i.e., the application is executed in isolation,
with the caches disabled and the initial state of the processor are forced to be the same
among executions. Figure 2a illustrates the data collection step. Prior to any fault injection,
we execute the application under study with a given set of input data without faults, in order
to obtain a set of golden references: i) the application output, ii) the system state (core
registers), and iii) the number of cycles required for the execution of the application with the
given set of input data. Then, the core simulator is extended with fault injection capabilities
in order to execute the application and to inject faults, based on the considered fault model,
to the registers, while the application runs. The cycle to inject the faults is chosen randomly
between the first cycle and the total number of cycles needed for the fault-free execution for
the given set of data. The location, where the faults are injected, is driven by the size of the
logic of each pipeline stage. The larger the area, the higher its probability to be selected.
After the fault injection and upon application termination, the observed results are compared
to the golden references to categorize the impact of faults as:

ECRTS 2023
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Execution Cycles Mismatch (ECM): The execution cycles of the application are different
than those of the golden reference.
Hang (H): The execution time of the application has exceeded a waiting threshold, and
thus, it is assumed that it has entered an infinite loop. A cycle counter is used to stop
the current execution, when the counted cycles exceed the given threshold.
Crash (C): The execution of the application has terminated unexpectedly and an exception
has been thrown (out of bound memory access, misaligned PC, hardware trap, etc.)
Application Output Mismatch (AOM): The application output is different than the golden
reference.
Internal State Mismatch (ISM): The system state (registers) are different than the golden
reference.
Functionally Masked (FM): The application has finished execution, with no AOM and no
ISM.

By using the aforementioned vulnerability analysis with several random inputs, we obtain
the required set of execution cycle traces under faults to be used for the WCET estimation.

2.2 Data grouping, distribution fitting and pWCET estimation
After the collection of the execution cycle traces under faults, the next step is to group the
data, so as to select the tail values, perform distribution fitting and estimate the pWCET, as
illustrated in Fig 2b.

To select the tail values, we use the Block Maxima (BM) approach, one of the two
common methods used, along with Peak-Over-Threshold. Following the BM approach, the
data collected from the vulnerability analysis are grouped into blocks of equal size. Note
that, grouping of data is performed in the order the values have been collected, without
applying any shuffling or sorting. Then, the maximum value is picked from each data block
to obtain the BM block, to be used for the distribution fitting. The most commonly used
distributions for pWCET estimation are Weibul, Gumbel and Frechet [13], and our approach
currently uses the Gumbel distribution, as it is one of the most representative ones [45].

Note that, the way the data is grouped affects the distribution fitting, which affects the
pWCET estimation. Selecting a big block size may result into having very few values in
the BM block, while selecting a small block size may result into taking into account all the
values, some of those may not be representative values as tail values. The proposed approach
performs block size exploration in order to select the best representative size considering
the Gumbel distribution. In order to qualify the fitting of the distribution, we use the
Kolmogorov-Smirnov (KS) test to get the p-value and the ks-statistic value of BM block.
The KS test compares the Cumulative Distribution Function (CDF) of the empirical data
with the CDF of the theoretical distribution. The p-value tests the null hypothesis H0 that
the data came from the fitted distribution. With a significance level of α = 0.05, the H0 can
be rejected, meaning that the data does not come from the fitter distribution, if the p-value
is bellow α. However, if the p-value is higher than the significance level, the H0 cannot be
rejected. The ks-statistic value is the maximum absolute difference between the two CDFs,
the smaller the value the better the fit. Thus, we select the configuration with the smallest
ks-statistic value that does not reject the hypothesis of having a Gumbel distribution, as the
most fitting configuration.

The selected configuration gives the distribution parameters, such as the scale (σ), the
location (µ) and the shape (ξ). These values are used, along with a given threshold value,
to derive the maximum value that we can observe using the Percent Point Function (PPF)
(inverse of cdf – percentiles).
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3 Fault-tolerant mechanism with near-zero WCET overhead

This section describes the proposed fault-tolerant mechanism with near-zero WCET overhead
based on Lock-step Execution and Shadow Register (LESR) and reports the upper bound of
the error detection and correction time.

Overview. Figure 1 illustrates the proposed LESR mechanism. Two identical cores are
working in lock-step, executing the same instruction at each clock cycle. Each pipeline stage
stores the result of its logic computation in a pipeline register. The error detection and
correction logic is the following: in each clock cycle, we compare the pipeline registers of
the two cores, containing the results of the computation of the previous cycle. If no error is
detected, all the pipeline registers are copied to a BacKuP copy (BKP) and the execution
continues normally (Figure 1a). Otherwise, if a fault impacted the logic during the cycle
(Figure 1b) or the pipeline register itself, a wrong result is stored in the register. In this
case, a flag is raised, the results of the current computation are discarded and the pipeline
registers of both cores are restored with the values in BKP (Figure 1c). In this way, in the
next cycle, the pipeline re-executes the cycle that was impacted by a fault (Figure 1d).

To illustrate the proposed mechanism with a simple example, let us consider the C code
of listing 1. Listing 2 depicts the assembly code snippet that corresponds to the subtraction
($1 – $4), multiplication ($5 – $6) and the addition ($7 – $9) instructions, considering a
RISC-V core with 5 pipeline stages, i.e., Fetch (F), Decode (D), Execute (EX), Memory
(MEM) and WriteBack (WB), as the one used in our case study in Section 4.

Listing 1 C program.
# include <stdio.h>
int a = 10; int b = 20; int c = 0; int d = 0;
int main () {

d = a-b;
c = a+b*4;
return 0;

}

Listing 2 Assembly code of illustration example program.
0001018 c <main >:

---
$1 101 a8: lw a4 ,a(r0) ;load word ( variable a)
$2 101 ac: lw a5 ,b(r0) ;load word ( variable b)
$3 101 b0: sub a5 ,a4 ,a5 ; subtraction operation
$4 101 b4: sw a5 ,d(r0) ;store word ( variable d)
$5 101 b8: lw a5 ,b(r0) ;load word ( variable b)
$6 101 bc: slli a5 ,a5 ,0x2 ; logical left shift by 2
$7 101 c0: lw a4 ,a(r0) ;load word ( variable a)
$8 101 c4: add a5 ,a4 ,a5 ; addition
$9 101 c8: sw a5 ,c(r0) ;store word ( variable c)

---

Table 1 (left part) shows a snapshot of the processor pipeline stages during a fault-free
execution of this program. Let us suppose that, at the end of cycle n − 1, the computation
had no errors. As highlighted in the right part of Table 1, at the beginning of cycle n the
pipeline registers are compared and no error is detected; hence, the content of the pipeline is

ECRTS 2023
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Table 1 Pipeline status for Listing 2 example.

Fault-free execution Execution under faults with LESR
Pipeline stage n-1 n n+1 n+2 n+3 n-1 n n+1 n+2 n+3

F $5 $6 $7 $8 $9 $5 $6 $7 $6 $7
D $4 $5 $6 $7 $8 $4 $5 $6 $5 $6

EX $3 $4 $5 $6 $7 $3 $4 $5 $4 $5
MEM $2 $3 $4 $5 $6 $2 $3 $4 $3 $4
WB $1 $2 $3 $4 $5 $1 $2 $3 $2 $3

copied to the BKP registers. Let us now suppose that a transient fault impacts the D stage
logic during cycle n. In cycle n + 1, the pipeline registers of the two cores are compared and
an error is detected, due to the fault in cycle n. In detail, the error is detected by comparing
input registers of stage EX, which are also output registers of stage D. Thus, the results of
the computations are discarded and the content of BKP is copied back. Finally – in cycle
n + 2 – the cycle impacted by the fault can be re-executed and the computations goes back
to normal.

Bound WCET overhead. The LESR approach entails a constant overhead of two clock
cycles, namely the cycle where the fault occurred, and the cycle where the fault is detected
and the values of the core registers are restored from the BKP registers, for processors with
hardware function units that require one cycle to execute the instruction. Further discussion
is provided in Section 4.3.

4 Evaluation for RISC-V case study

4.1 Experimental setup
Our case study is Comet, an open-source HLS 32-bit RISC-V processor [41], which supports
the RV32I base ISA2. Note that, by using HLS, a unique high-level synthesis and simulation
C++ model is used to design the processor. The model is used to generate both the hardware
target design through High-Level Synthesis, as well as a Cycle-Accurate Bit-Accurate (CABA)
simulator through software compilation. The processor consists of a standard 5-stage pipeline,
including a forwarding mechanism and a register file with 32 registers in the write-back stage,
as illustrated in Figure 3. Table 2 depicts the area of each pipeline stage of the core.

Table 2 Area of RISC-V pipeline stages.

Pipeline stage Fetch Decode Execute Memory WriteBack
Area 6.01% 11.02% 35.47% 5.10% 42.41%

The LESR approach has been implemented in the RISC-V CABA simulator, and it is
available in FSR_comet branch from the Comet repository. We have enhanced both the
unprotected and the protected version of the RISC-V core with hardware fault injection
capabilities. The used fault model is a bit-flip. A framework based on pythons scripts has
been designed in order to perform the data collection with and without fault injection, obtain

2 https://gitlab.inria.fr/srokicki/Comet/-/tree/master

https://gitlab.inria.fr/srokicki/Comet/-/tree/master
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Figure 3 RISC core with 5-stage pipeline, forward mechanism, and data and instruction
caches [41].

the vulnerability metrics and execution cycle traces, perform the data grouping, distribution
fitting and pWCET estimation. Note that, the threshold for considering that an application
is not responsive is set to eight times the execution cycles without faults.

In this first step towards the exploration of the impact on the execution time and
WCET estimation of transient faults occurring inside the processor, we used as benchmarks
typical kernels, applied in many application domains, such as multimedia, automotive, image
processing etc. The goal is to first explore the fault impact on the kernels, before dealing
with more complex applications. Five benchmarks with different complexities and execution
cycles have been analyzed. More precisely, Binary Search (BS) searches an index in a
sorted array of a size equal to 15 and Prime checks whether two input integers are prime or
not. Both benchmarks are taken from the TACLeBench suite. Qsort sorts the elements of
an array of size 10 and its implementation is inspired from MiBench. Moving Average (MA)
makes the average of nearby pixels of an 8x8 matrix and is inspired from AxBench. Matmult
multiplies two 4x4 matrices and it is taken from Polybench. The app, kernel, sequential
and test benchmarks from TACLeBench, except those with floating point operations, have
been successfully compiled and executed on the proposed lockstep version and fault injection
campaigns will be performed in the future. The source code of the benchmarks is available in
the FSR_comet3 branch of the Comet repository. For the data collection step, based on [13],
we use 650 different inputs for each benchmark, in order to obtain the data for the benchmark
timing behavior, leading to 650 fault-free executions per benchmark. The inputs are generated
by selecting each integer randomly between the integer range [INTMIN , INTMAX ], except for
Prime, where we used positive numbers.

For the estimation under faults, note that, exhaustive fault injection is not computationally
possible, due to the prohibitive number of fault injection points during the execution of an
application. The different fault injection points are given by the number of different register
bits of the processor and the number of cycles required for the fault-free benchmark execution.
Thus, the vulnerability analysis is based on statistical fault injection, as in the the state-
of-the-art approaches. The number of faults N to be injected in order to have statistically
confident results is defined based on the required confidence level of the statistical analysis

3 https://gitlab.inria.fr/srokicki/Comet/-/tree/FSR_comet/tests/basic_tests
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as N = t2 × p × (1 − p)
e2 , where t is the critical value related to the statistical confidence

interval, e the error margin, and p the percentage of the possible fault population individuals
that are assumed to lead to errors [29, 53]. With p = 0.5, we obtain the maximum number
of faults to be injected in order to have statistically confident results, considering infinite
number of fault injection points. Based on the above formula, we have injected 250,250
faults per benchmark, which lead to results with a 99.8% confidence interval and a 0.3%
error margin. More precisely, we have injected 385 faults per different input, providing 5%
confidence interval and a 5% error margin [53] for each input, considering 650 different inputs.
Note that, to keep the collected data independent and identically distributed, we keep the

maximum clock cycle observed out of the 385 injections on every input generated to be used
for the pWCET estimation.

4.2 Experimental Results
This section presents the execution cycle traces, the best selected configuration for the BM
and the WCET estimation for: i) the unprotected version without faults, as currently done in
the State-Of-the-Art, ii) the unprotected version under faults, and iii) the protected version
using the LESR mechanism under faults. Furthermore, we provide the functional and timing
vulnerability metrics, as discussed in Section 2.1, for the last two set-ups.

Table 3 shows the each vulnerability metric for the unprotected version under faults in
absolute values and Figure 4 schematically illustrates the corresponding percentages. For
instance, for the Matmult benchmark, 2.5% of the fault injections has led to application
hangs, 2.72% to application crashes, 8.31% to wrong output, 0.32% to wrong internal state,
3.85% to both wrong application output and wrong internal state, and 82.28% were masked.
Similar are the results for the rest of the benchmarks. On average, 3.02% of the fault
injections has led to application hangs, 3.45% to application crashes, 3.95% to wrong output,
4.16% to wrong internal state, 1.99% to both wrong application output and wrong internal
state, and 83.43% were masked. Regarding timing correctness, all benchmarks experienced
mismatches in their number of execution cycles. More precisely, the benchmark affected the
least is Binary search, where 6.25% of the total benchmark executions, under the presence
of faults, lead to a different number of execution cycles compared to the fault-free execution.
The most affected benchmark is Prime, where 8.10% of the benchmark executions under
faults lead to ECM. On average, 7.14% of the executions under faults lead to ECM among
all benchmarks. For the protected version with LESR, mechanism, all faults have been
corrected.

Figures 5, 6, 7, 8 and 9 show the distribution of execution cycles for the five benchmarks.
In each figure, the subfigures (a), (b) and (c) correspond to unprotected version without faults,
the unprotected version with faults and the protected version with faults, respectively. For
the experimental set-up with faults, the distribution shows the execution cycles for 250, 250

Table 3 Functional and timing vulnerability metrics (absolute value).

Benchmark AOM ISM AOM & ISM Hang Crash Masked ECM
Qsort 3,284 12,573 4,216 7,424 10,501 212,252 19,429
Prime 107 18,868 262 7,582 8,497 214,934 20,276

BS 883 18,975 1,548 10,387 9,719 208,738 15,646
Matmult 20,800 816 9,637 6,257 6,829 205,911 16,232

MA 24,351 894 9,102 6,105 7,671 202,127 17,832



P. R. Nikiema, A. Kritikakou, M. Traiola, and O. Sentieys 15:11

Matmult Qsort BS MA Prime
Benchmark

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Pe

rc
en

ta
ge

Functional Error per benchmark
AOM
ISM
AOM_ISM

Hang
Crash
Masked

(a) Functional correctness.

Matmult Qsort BS MA Prime
Benchmark

0%
2%
4%
6%
8%

10%
12%
14%
16%

Pe
rc

en
ta

ge

Timing Error per benchmark
ECM

(b) Timing correctness.

Figure 4 Functional and timing Errors for the five benchmarks under study.

executions (excluding the Crash and Hangs cases for the unprotected version). Note that,
for the unprotected version as the value variations are high, the histogram is presented in
logarithmic scale. The overall observation among all benchmarks is that, when faults impact
the unprotected core, the distribution is modified significantly, both in shape and location,
as shown by Figures 5b, 6b, 7b, 8b, and 9b. Note that, the x-axis for the unprotected
version under faults is significantly larger than the unprotected version without faults and
the protected version with faults. Furthermore, the high peak observed in the unprotected
version under faults corresponds to the execution cycles obtained for the executions where
the faults have been masked.

Let’s further analyze this impact using the Binary search, which is the simplest bench-
mark. The execution time of binary search depends on the position of the index of the sorted
array and it is upper bounded by log2(M), with M the size of the array. This statement is in
line with the observations during the experiments, as Binary search searches in an array of
15 elements, and thus, 4 different values are observed during the 650 executions, as depicted
in Fig. 5a. However, when faults are injected in the unprotected version, the distribution of
collected execution traces is significantly modified. On the contrary, the protected version,
using the proposed LESR mechanism, it is able to maintain a distribution very close to the
original one under faults, i.e., the number of execution cycles is increased by two cycles.

To illustrate the applied methodology, Figure 10a depicts the histogram of the BM block,
along with the Gumbel distribution, and Figure 11a the Quantile-Quantile plot for Matmult
benchmark, which is one of the benchmarks with higher complexity. We observe a rather
good resemblance to the line x = y, which means that the collected data follows the Gumbel

(a) Unprotected without faults. (b) Unprotected under faults. (c) Protected under faults.

Figure 5 Binary search: Collected data regarding execution cycles for all processor versions.
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(a) Unprotected without faults. (b) Unprotected under faults. (c) Protected under faults.

Figure 6 Prime: Collected data regarding execution cycles for all processor versions.

(a) Unprotected without faults. (b) Unprotected under faults. (c) Protected under faults.

Figure 7 Qsort: Collected data regarding execution cycles for all processor versions.

(a) Unprotected without faults. (b) Unprotected under faults. (c) Protected under faults.

Figure 8 Moving Average: Collected data regarding execution cycles for all processor versions.

(a) Unprotected without faults. (b) Unprotected under faults. (c) Protected under faults.

Figure 9 Matmult: Collected data regarding execution cycles for all processor versions.
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distribution. However, when faults are injected in the unprotected version, the shape of the
BM histogram is modified (Figure 10b), as shows Figure 11b. On the contrary, the protected
version with LESR is able to keep the shape of the distribution similar to the fault-free
distribution (Figure 10c) and obtain a similar fitting (Figure 11c). Table 4 shows the best
configuration obtained during experiments.

(a) Unprotected without faults. (b) Unprotected under faults. (c) Protected under faults.

Figure 10 Matmult: Block Maxima and Gumbel distribution for all processor versions for the
best configuration.

(a) Unprotected without faults. (b) Unprotected under faults. (c) Protected under faults.

Figure 11 Matmul: Q-Q plot of the distribution for all processor versions for the best configuration.

Table 4 Best BM configuration per version and benchmark.

Benchmark Binary search Prime Qsort Moving Average Matmult
Unprotected without faults

Number of blocks 3 108 650 44 50
Block size 217 6 1 15 13

Unprotected under faults
Number of blocks 24 18 39 5 3

Block size 28 36 17 130 217
Protected under faults

Number of blocks 3 81 217 50 41
Block size 217 8 3 13 16

Table 5 illustrates the pWCET estimation, using the best configuration shown in Table 4,
and the maximum observed value during experiments, for all versions and benchmarks. The
red (green) color highlights pWCET estimations that have a lower (higher) value than the
maximum observed one. As long as the pWCET is lower than the maximum observed
value, we increase the threshold until we are able to obtain an estimation higher than the
maximum observed during experiments. From Table 5, we observe that typical WCET
estimation approaches are able to tightly bound the unprotected version without faults.
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However, when faults impact the processors, such methods provide less tight bounds with
respect to the maximum observed value. This is due to the impact of the faults in the
execution cycle distribution, which modifies the shape and the location. Overall, we observe
that the difference between the pWCET and the maximum observed value is higher for
the majority of the benchmarks. Furthermore, this difference is more significant as the
complexity of the benchmark increases, e.g., as shown by the difference that progressively
increases with the benchmark complexity, from Binary Search to Matmult. On the contrary,
the proposed LESR protection mechanism is able to restore the execution cycle distribution
close to the fault-free distribution, with an impact in the number of execution cycles equal
to two. As a result, we are able to obtain pWCET estimations similar to the fault-free
execution. Furthermore, the two cycles difference can be observed in the difference between
the maximum observed value of the unprotected version without faults and the maximum
observed value of protected version under faults.

4.3 Discussion

For the lock-step processor core that we implemented based on Comet [41], the proposed
fault-tolerant mechanism entails a number of additional cycles bounded to two (one cycle
to detect the fault and one to restore the correct pipeline register values), as confirmed by
the experimental results. For other processor versions, the bound of two cycles will hold for
similar cores, where the function units require one cycle for the instruction execution. To
support a processor with the different extensions, capable of executing more complicated
instructions in hardware, two approaches exist, i.e., insert a hardware function unit or
implement multi-cycle operations sharing existing function units. In the first case, the
proposed mitigation approach will be applied without modifications. Note that, different
execution cycles will still be observed in the fault-free execution for applications that have
different execution paths, which are selected based on data values. In the second case, the
multi-cycle instruction is broken down into small control steps and is expressed as Finite
State Machines (FSM). Each state of the FSM corresponds to a computation cycle. For
instance, in the case of the multiplication, there is a state for each bit (or group of bits) in
the operand. Note that, when a multi-cycle opcode enters the execution stage, the pipeline
will be stalled until the FSM has reached its final state and the result is produced. We expect
that this behavior will not jeopardize the fact that the proposed approach is bounded. To
implement the proposed approach on a processor with a multi-cycle operation, a shadow
register is required to be added in the internal register that accumulates the partial results.
If the proposed approach is applied as it is, the bound is expected to increase from two cycles
to the number of cycles required for the instruction, in the worst case. Therefore, there is a
trade-off in the processor design between the overhead of inserting an additional hardware
function unit and the overhead of the fault recovery approach.

As future work, we will leverage the proposed approach for different extensions of the
RISC-V core and perform extensive fault injection campaigns for more complex applications.
We expect that the results will be of similar nature, in the sense that, the more complex the
application is, the more execution paths we expect to have, and thus, more execution cycle
traces are expected.
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Table 5 pWCET estimation (cycles) based on the best fitting configuration for different threshold
value, the maximum observed cycle and their difference (%).

Benchmark threshold Max
0.9 0.99 0.999 observed

Unprotected without faults

Binary Search
Cycles 2,334 2,334 2,334 2,334Difference (%) 0 0 0

Prime
Cycles 4,972 5,976 6,962 5,093Difference (%) -2.37 17.33 36.39

Qsort
Cycles 4,811 5,267 5,715 5,436Difference (%) -11.50 -3.11 5.13

Moving Average
Cycles 20,592 20,702 20,810 20,700Difference (%) -0.52 ≈ 0 0.53

Matmult
Cycles 21,073 21,257 21,438 21,211Difference (%) -0.65 0.22 1.07

Unprotected with faults

Binary Search
Cycles 18,696 18,826 18,953 18,671Difference (%) 0.13 0.83 1.51

Prime
Cycles 34,873 45,176 55,291 37,381Difference (%) -6.70 20.85 47.91

Qsort
Cycles 34,444 43,480 52,351 35,085Difference (%) -1.82 23.93 49.21

Moving Average
Cycles 107,264 163,318 218,353 151,384Difference (%) -29.14 7.88 44.24

Matmult
Cycles 170,521 267,413 362,545 129,179Difference (%) 31.79 107 180

Protected under faults

Binary Search
Cycles 2,336 2,336 2,336 2,336Difference (%) 0 0 0

Prime
Cycles 5,047 5,959 6,855 5,095Difference (%) -0.94 16.95 34.54

Qsort
Cycles 4,984 5,387 5,783 5,438Difference (%) -8.35 -0.94 6.34

Moving Average
Cycles 20,582 20,686 20,788 20,702Difference (%) -0.58 -0.08 0.41

Matmult
Cycles 21,077 21,231 21,383 21,213Difference (%) -0.64 0.08 0.80

5 Related Work

The state-of-the-art, relevant to our work, concerns i) real-time approaches for WCET
estimation and fault-tolerant techniques under the presence of faults, ii) lock-step techniques,
with focus on RISC-V related implementations, and iii) vulnerability analysis approaches.
Table 6 summarizes the related work using the following criteria:
1. Hardware faults under study are Permanent Faults (PF) or Transient Faults (SE).
2. Hardware faults under study impact the Memory (M) or Core (C) of the target platform.
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3. The Functional Behaviour (FB) or Timing Behaviour (TB) of the applications is checked.
Functional behaviour refers to Denial of Service (DS), i.e., no outcome is generated
because the application hanged or crashed, and to Binary Correctness (BC), i.e., the
application’s outcome is different than expected [40]. Timing behaviour refers to an
application execution time that is different than the fault-free execution, due to a hardware
fault.

4. Vulnerability analysis is performed through SoftWare (SW) or HardWare (HW) fault
injection or placing the platform under Radiation Beam (RB).

5. WCET estimation assumes that hardware faults do not have a timing impact on execution,
i.e., Fault-Free (FF), or not, i.e., Fault-Aware (FA).

Table 6 Summary of related work and positioning.

Fault Fault Fault Vulnerability WCET
model location detection analysis estimation

Ref. PF TF M C DS BC TB SW HW RB FF FA
[52, 22, 1, 16, 57, 44]

√

[14, 3, 36, 25, 12, 54]
√ √ √ √

[5, 27, 50]
√ √ √ √

[19]
√ √ √ √

[35]
√ √ √ √ √ √

[23]
√ √ √

[48]
√ √ √ √

[24, 9, 2]
√ √ √ √

[11, 10, 49]
√ √ √ √ √

[56]
√ √ √ √ √

[33, 34, 30]
√ √ √ √ √

[38, 55, 8, 37, 4]
√ √ √ √ √

[28]
√ √ √ √ √ √

[6]
√ √ √ √

[46, 31]
√ √ √ √ √

[59]
√ √ √ √ √ √

[15, 58]
√ √ √ √ √ √ √

This work √ √ √ √ √ √ √

Regarding WCET estimation approaches, the estimation is performed through safe
measurements, based on application execution, or static analysis of the programs [16]. For
instance, a number of static analysis methods have been proposed, such as [52, 22], focusing on
caches, and measurement-based approaches, such as [16, 44, 1]. A more detailed description
of WCET estimation methods and tools is available in surveys, such as [57]. The majority of
existing approaches does not consider faults, since the hardware of the target platform is
assumed to be fault-free, during WCET estimation [24, 48].

To protect the system from faults, real-time approaches apply fault tolerant techniques.
The faults under study usually lead to application execution failure or to erroneous outputs.
To deal with these issues, the majority of real-time approaches focus on fault mitigation,
through scheduling techniques applied at the task-level, such as replication of tasks [14] and
task check-pointing/re-execution [19], while the fault detection is assumed to be performed
by the hardware. When fault techniques are inserted to the system, their timing impact
on WCET has to be taken into account, in order to still provide the timing guarantees.
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To do so, existing approaches extend the fault-free WCET with the time overhead of
the applied fault tolerant techniques. Works analyse this overhead by exploring how the
applied fault tolerant technique impacts schedulability and providing schedulability analysis,
e.g., for task replication techniques [5, 3, 36, 25] and task re-execution/check-pointing
techniques [12, 27, 50]. Probabilistic worst-case schedulability analysis are also presented,
e.g., for active and passive replicas [35]. Last, other works consider faults are rare events,
and thus, the WCET should not consider the time overhead for recovery to avoid over-
dimensioning the system, and fault recovery is modeled as an overshoot [54]. The above
works can have significant time overhead, since the transient fault is detected very late,
potentially after fault-free WCET bound is exceeded.

Few approaches address the impact of hardware faults on the timing behaviour of
applications. Existing works focus on hardware faults in cache memories, while the rest
of the architecture is assumed fault-free [7]. Approaches focus on estimating the timing
impact, by accounting for the hardware degradation due to the presence of faults. For
instance, static analysis probabilistically quantifies the WCET impact of permanent faults
at instruction caches. The probability of an SRAM cell to be faulty is used to evaluate the
additional cache misses that may occur [23]. A measurement-based approach for permanent
faults occurring to caches provides the WCET impact, when cache lines are disabled due to
faults [48]. Such approaches have been extended to incorporate the timing impact of inserted
fault tolerant techniques to detect, correct or mitigate faults. For instance, the computation
of the worst-case additional misses, due to defected cache lines, and the use of a parity bit
for error detection [11]. Static probabilistic timing analysis is performed with fault detection
mechanisms that periodically checks caches for faults and disable faulty cache blocks, under
permanent faults [9] and also soft errors [10]. The maximum delay, introduced by error
detection and correction codes, is computed in [49]. Other approaches focus on mitigating
the hardware degradation, due to occurring faults, using redundant hardware. As a result,
the timing impact of faults on WCET is mitigated and the timing characteristics of hardware
are maintained, leading to WCET estimations close to fault-free WCET ones, despite the
presence of faults. For instance, timing analysis considers a reliable victim cache to replace
faulty entries [2], an extra reliable cache way per set and a shared reliable buffer [24]. Existing
works mainly focus on permanent faults occurring to memories. Nonetheless, with technology
size reduction, faults inside the processors cannot be considered negligible anymore [32].

Regarding vulnerability estimation approaches, existing approaches mainly focus only
on estimating the functional correctness of the system under study. To achieve that, they
apply fault injection at the software level and at the hardware level or put the device
under radiation. Software fault injection is hardware agnostic. It is capable of flipping
bits only in the data structures of the application [33, 34, 56, 30]. To improve accuracy,
vulnerability analysis approaches have to consider the hardware details and perform bit-
flips [38, 55, 8, 4, 37, 15, 46, 31]. Other approaches place the platform under radiation to
analyze its behavior [15, 59]. However,the majority of existing vulnerability approaches focus
on functional behaviour, i.e., checking for functional interruptions and erroneous values of
the system under study [56, 38, 55, 8, 4, 37, 15]. However, not only the functional behaviour,
but also the timing behaviour must be taken into account during vulnerability analysis for
safety-critical systems. Few recent studies explore the impact of soft errors on the timing
behaviour. They use software fault injection and their application domain is limited to
iterative methods, e.g., the performance impact is given by the number of iterations required
for iterative solvers to converge [34, 33] and their execution time [30], and hardware fault
injection [28] using a single input. However, such approaches focus on the average behavior,
neglecting WCET aspects.
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Other fault tolerant approaches exist, which, however, do not focus on WCET aspects.
Regarding lock-step execution, it can be based on non-intrusive and intrusive approaches.
Non-intrusive approaches do not modify the processor architecture, and are typically used
when the internal architecture details are hidden or difficult to modify, e.g., Commercial
Off-The-Shelf (COTS) processors. For instance, lockstep approach uses ARM A9 as hard
core and RISC-V as soft core [15]. Lockstep execution is achieved by inserting checkpoints in
the application, where a synchronisation module is activated to check for mismatch between
the status of the cores and apply roll-back. However, to perform lockstep with hard cores,
processors should have specific architecture support. However, this functionality is not present
on all processors [15]. Intrusive approaches modify internally the processor architecture.
Hence, when rollback mechanisms are applied, they do not require to insert checkpoints
at the application level. For instance, RISC ISA SH-2 processors and rollback are used to
achieve error correction [59]. Interleaved multithreated execution is used to implement a dual
lockstep approach using two virtual RISC-V cores [46]. Other approaches extend the pipeline
registers with error detection and correction codes, e.g., a RISC-V core with Single Error
Correction Double Error Detection (SECDED) [31]. Last, approaches triplicate components
inside the RISC-V core to enhance its reliability. For instance, Control and Status Registers,
Program Counter and the register file [6], FFs, LUTs, BRAMS, and DSPs [58], and the
arithmetic and logic unit (ALU) are triplicated [42]. However, existing approaches do not
focus on providing simple mechanisms with low WCET bounds regarding the error detection
and correction time.

Compared to the state of the art, this work leverages vulnerability analysis approaches
with timing correctness for transient faults occurring in processors. Through extended
set of experiments, it exposes the fault impact to both functional and timing behavior of
the application. Such vulnerability analysis is combined with measurement-based WCET
estimation, leading to fault-aware WCET estimations. Last, a mechanism is proposed
to remedy the impact of transient faults, with a bounded and near-zero timing overhead,
compared to existing approaches, without the need of triplicating the complete processor.

6 Conclusion

This work leverages architectural vulnerability analysis to include not only functional correct-
ness, but also timing correctness, under the presence of transient faults on cores. Using this
analysis, we show that the number of execution cycles of an application, under the presence
of transient faults, may increase significantly, compared to the fault-free execution. Through
a measurement-based WCET estimation approach, we show that impact on the WCET
estimation. Compared to common approaches, based on watchdog timers and re-execution
with long error detection and correction time, we propose a fault tolerant technique with
near-zero WCET overhead that circumvent the fault, as soon as it occurs, before being
propagated and affects the execution time.
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