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Abstract
Real-time locking protocols are typically designed to reduce any priority-inversion blocking (pi-
blocking) a task may incur while waiting to access a shared resource. For the multiprocessor case, a
number of such protocols have been developed that ensure asymptotically optimal pi-blocking bounds
under job-level fixed-priority scheduling. Unfortunately, no optimal multiprocessor real-time locking
protocols are known that ensure tight pi-blocking bounds under any scheduler. This paper presents
the first such protocols. Specifically, protocols are presented for mutual exclusion, reader-writer
synchronization, and k-exclusion that are optimal under first-in-first-out (FIFO) scheduling when
schedulability analysis treats suspension times as computation. Experiments are presented that
demonstrate the effectiveness of these protocols.
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1 Introduction

In recent years, a number of suspension-based multiprocessor real-time locking protocols have
been developed that provide asymptotically optimal bounds on priority-inversion blocking
(pi-blocking) under suspension-oblivious (s-oblivious) schedulability analysis, which treats
suspension time analytically as computation time [11,13,14]. For mutual-exclusion (mutex)
sharing, most (if not all) known asymptotically optimal locking protocols ensure a per-task
s-oblivious pi-blocking bound of 2m−1 request lengths on an m-processor platform under job-
level fixed-priority (JLFP) scheduling [11,13].1 The commonality of this bound is somewhat
surprising as these protocols include ones that target different scheduling strategies (e.g.,
partitioned, global, and clustered scheduling) and employ different mechanisms to cope with
pi-blocking (e.g., priority inheritance vs. priority donation [11,13]).

In contrast, under s-oblivious analysis, the current best lower bound yields a worst-case
per-task pi-blocking bound of at least m − 1 request lengths [11]. This gap between the
existing lower bound and upper bound raises an obvious question: is a pi-blocking bound of
2m − 1 request lengths fundamental under JLFP scheduling?

In this paper, we answer this question negatively by showing that, under s-oblivious
analysis, the existing lower bound of m − 1 request lengths is tight under first-in-first-out
(FIFO) scheduling. To show this, we give a suspension-based locking protocol for mutex
sharing that ensures a per-lock-request s-oblivious pi-blocking bound of at most m−1 request

1 We refine this statement later by distinguishing between request blocking and release blocking.

© Shareef Ahmed and James H. Anderson;
licensed under Creative Commons License CC-BY 4.0

35th Euromicro Conference on Real-Time Systems (ECRTS 2023).
Editor: Alessandro V. Papadopoulos; Article No. 16; pp. 16:1–16:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shareef@cs.unc.edu
https://orcid.org/0000-0002-9290-4896
mailto:anderson@cs.unc.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2023.16
https://github.com/Tamal10/fifo-lock
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


16:2 Optimal Multiprocessor Locking Protocols Under FIFO Scheduling

lengths under FIFO scheduling, matching the lower bound. Our protocol is designed for
clustered scheduling, so it can be applied under global and partitioned scheduling as well.
To our knowledge, this is the first truly optimal suspension-based multiprocessor locking
protocol under any practical scheduling algorithm.

In designing our protocol, we exploit the fact that independent (non-resource-sharing)
tasks are non-preemptive under FIFO scheduling. Such non-preemptivity is a property of the
scheduler itself and does not have to be otherwise enforced: under FIFO scheduling, a newly
released instance of a task cannot cause any other task instance to have insufficient priority
to be scheduled. Asymptotically optimal locking protocols such as the C-OMLP [13] enforce
such a property via an explicit progress mechanism. We show that such mechanisms are not
required under FIFO scheduling.

Our locking protocol strengthens the case for using FIFO scheduling on multiprocessors.
In addition to enabling a tight pi-blocking bound, FIFO scheduling has low overheads, ensures
bounded response times (and hence bounded deadline tardiness in soft real-time systems)
without capacity loss [2, 22], and is sustainable with respect to execution times, meaning
that it is safe to perform schedulability analysis assuming all instances of a task take its
worst-case execution time (WCET) to complete. Moreover, non-preemptive execution also
eases the determination of WCETs, which is challenging on modern multiprocessors [31].
According to a recent survey, around 30% of industrial respondents reported using FIFO
scheduling [3].

Contributions. Our contributions are fourfold.
First, we propose a suspension-based mutex locking protocol called the optimal locking

protocol under FIFO scheduling (OLP-F). The OLP-F restricts a task from issuing a resource
request until it has high enough priority. Together with properties of FIFO scheduling, this
ensures that the OLP-F has a tight s-oblivious pi-blocking bound under FIFO scheduling.

Second, we consider an extension of mutex sharing called k-exclusion sharing, which
permits k simultaneous lock holders. For k-exclusion, we propose the optimal locking protocol
for k-exclusion under FIFO scheduling (k-OLP-F) and show that it has a tight s-oblivious
pi-blocking bound under FIFO scheduling.

Third, we expand even further beyond mutex sharing by considering reader-writer (RW)
sharing, where exclusive resource usage is only required for write accesses and concurrent read
accesses are permitted. For RW sharing, we propose the read-optimal RW locking protocol
under FIFO scheduling (RW-OLP-F), which provides a tight s-oblivious pi-blocking bound for
read requests under FIFO scheduling. Additionally, under the RW-OLP-F, the pi-blocking
bound for write requests is just under two request lengths of optimal.

Finally, we provide experimental results that show the benefits of our locking protocols.

Organization. In the rest of this paper, we provide needed background (Sec. 2), delve
further into s-oblivious pi-blocking (Sec. 3), establish a FIFO-based progress property for
resource sharing (Sec. 4), present the above-mentioned protocols (Secs. 5–7), present our
experimental results (Sec. 8), more fully review related work (Sec. 9), and conclude (Sec. 10).

2 System Model and Background

In this section, we provide needed definitions; Tbl. 1 summarizes the notation given here.

Task model. We consider a system of n sporadic tasks τ1, τ2, . . . , τn to be scheduled on m

identical processors by a FIFO scheduler. Each task τi releases a potentially infinite sequence
of jobs Ji,1, Ji,2, . . .. (We omit job indices if they are irrelevant.) Each task τi has a period Ti
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Table 1 Notation summary.

Symbol Meaning Symbol Meaning
n Number of tasks ℓq qth shared resource
m Number of processors Nq

i Maximum number of requests for ℓq by τi

τi ith task Lq
i Maximum request length for ℓq by τi

Ji,j jth job of τi Lq
max max1≤i≤n{Lq

i }
Ti Period of τi Lmax max1≤q≤nr Lq

max

Ci WCET of τi R A request
Di Relative deadline of τi ri,j Release time of Ji,j

ui Utilization of τi fi,j Finish time of Ji,j

nr Number of resources Lq
sum,h sum of the h highest Lq

i values

specifying the minimum spacing between consecutive job releases. Each task has a relative
deadline Di. Task τi has an implicit deadline if Di = Ti, a constrained deadline if Di ≤ Ti,
and an arbitrary deadline if no relationship between Di and Ti is assumed. Each task has a
WCET denoted Ci. Task τi’s utilization is defined as ui = Ci/Ti.

The release time (resp., finish time) of a job Ji,j is given by ri,j (resp., fi,j). Ji,j is
pending at time t if ri,j ≤ t < fi,j . Jobs of a task τi are sequential, i.e., Ji,j+1 cannot
commence execution before Ji,j finishes. Job Ji,j is eligible to execute at time t if Ji,j is
pending at time t and t ≥ fi,j−1 holds (if j > 1). An eligible job is either ready (when it can
be scheduled) or suspended (when it cannot be scheduled).

We assume time to be discrete and a unit of time to be 1.0. All scheduling decisions are
taken at integer points in time. We also assume all task parameters to be integers.

Multiprocessor scheduling. Multiprocessor scheduling approaches can be broadly classified
into two categories: partitioned and global. Under partitioned scheduling, a task is statically
assigned to a processor and cannot migrate to another processor. Global scheduling allows a
task to execute on any of the m processors. Clustered scheduling is a hybrid of partitioned
and global scheduling. Under clustered scheduling, all m processors are partitioned into
m/c ∈ N clusters (without loss of generality, we assume m is an integer multiple of c) each
containing c processors.2 Each task is assigned to a cluster and can migrate only among the
processors of the cluster. We consider clustered scheduling, as both partitioned and global
scheduling are special cases (c = 1 and c = m, respectively).

Under a job-level fixed-priority (JLFP) scheduler, each job is assigned a fixed priority
throughout its execution, but a task’s priority may change over time. Common JLFP
schedulers include earliest-deadline-first (EDF), FIFO, and fixed-priority scheduling algorithms.
When such algorithms are employed with clustered scheduling, the c highest-priority ready
jobs (if that many exist) of each cluster are scheduled on the processors of that cluster. In
this paper, we consider clustered FIFO (C-FIFO) scheduling where, within a cluster, jobs
with earlier release times have higher priority. We assume ties are broken arbitrarily but
consistently. Hereafter, we assume all schedules to be C-FIFO unless otherwise stated.

Resource model. We consider a system that has a set {ℓ1, . . . , ℓnr } of shared resources.
For now, we limit attention to mutual exclusion (mutex) sharing, although other notions of
sharing will be considered later. Under mutex sharing, a resource ℓq can be held by at most

2 Our results can be adapted for non-uniform cluster sizes at the expense of additional notation.
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Table 2 Asymptotically optimal locking protocols for mutex locks under s-oblivious analysis.

Scheduling Protocol Release blocking Request blocking
Global JLFP OMLP [11] 0 (2m − 1)Lq

max

Clustered JLFP C-OMLP [13] mLmax (m − 1)Lq
max

Clustered JLFP OMIP [7] 0 (2m − 1)Lq
max

C-FIFO OLP-F (This work) 0 (m − 1)Lq
max

one job at any time. When a job Ji requires a resource ℓq, it issues a request R for ℓq. R
is satisfied as soon as Ji holds ℓq, and completes when Ji releases ℓq. R is active from its
issuance to its completion. Ji must wait until R can be satisfied if it is held by another job.
It may do so either by busy-waiting (or spinning) in a tight loop, or by being suspended by
the operating system (OS) until R is satisfied. We assume that if a job Ji holds a resource
ℓq, then it must be scheduled to execute.3 A resource access is called a critical section (CS).

We assume that each job can request or hold at most one resource at a time, i.e., resource
requests are non-nested. We let Nq

i denote the maximum number of times a job of task τi

requests ℓq, and let Lq
i denote the maximum length of such a request. We define Lq

i to be 0
if Nq

i = 0. Finally, we define Lq
max = max1≤i≤n{Lq

i }, and Lmax = max1≤q≤nr {Lq
max}, and

let Lq
sum,h be the sum of the h largest Lq

i values. We assume all Lq
i and Nq

i to be constant.

Priority inversions. Priority-inversion blocking (or pi-blocking) occurs when a job is delayed
and this delay cannot be attributed to higher-priority demand for processing time. Under a
given real-time locking protocol, a job may experience pi-blocking each time it requests a
resource – this is called request blocking – and/or upon its release and each time it releases a
resource – this is called release blocking.

On multiprocessors, the formal definition of pi-blocking actually depends on how schedulab-
ility analysis is done. Of relevance to suspension-based locks, schedulability analysis may be
either suspension-oblivious (s-oblivious) or suspension-aware (s-aware) [11]. Under s-oblivious
analysis (the focus of this work), suspension time is analytically treated as computation time.

Blocking complexity. Request lengths are unavoidable in assessing maximum pi-blocking,
as a request-issuing job may have to wait for a current resource-holder to complete before
its request can be satisfied. As such, maximum pi-blocking bounds are usually expressed
as an integer multiple of the maximum request length, i.e., the number of requests that are
satisfied while a resource-requesting job is pi-blocked.

Asymptotically optimal locking protocols. For mutex locks, Brandenburg and Anderson
established a lower bound of m − 1 request lengths on per-request s-oblivious pi-blocking
under any JLFP scheduler [11]. Thus, under s-oblivious analysis, an asymptotically optimal
locking protocol achieves O(m) per-job pi-blocking. Locking protocols such as the OMLP [11],
the OMIP [7], and the C-OMLP [13] are asymptotically optimal under JLFP scheduling.
Tbl. 2 provides a summary of existing asymptotically optimal locking protocols.4

3 This is a common assumption in work on synchronization. It is needed for shared data, but may be
pessimistic for other shared resources such as I/O devices.

4 Note that, for the C-OMLP, the 2m − 1 bound mentioned in Sec. 1 comes from a combination of release
and request blocking.
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Time
Ji,j+1

Ji,j
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Release Deadline Completion Execution CS
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Figure 1 A schedule illustrating s-oblivious pi-blocking for arbitrary-deadline tasks.

Optimal locking protocols. We call a locking protocol optimal under a scheduling algorithm
if it ensures a pi-blocking bound that is tight, i.e., it matches the lower bound on pi-blocking
under that scheduling algorithm.

3 Suspension-Oblivious Pi-Blocking

Under s-oblivious schedulability analysis, each task’s WCET is inflated by the amount of
worst-case s-oblivious pi-blocking any of its jobs may suffer. Such s-oblivious pi-blocking
was originally defined for implicit-deadline hard real-time systems [11]. In this section, we
show that this definition needs refinement for systems with arbitrary deadlines or soft timing
constraints. We also provide a refined definition that works under such cases. We begin by
reviewing the original definition of s-oblivious pi-blocking under clustered scheduling.

▶ Definition 1 ([11]). Under s-oblivious schedulability analysis, a job Ji incurs s-oblivious
pi-blocking at time t if Ji is pending but not scheduled and fewer than c higher-priority jobs
are pending in its cluster.

If tasks have arbitrary deadlines or can miss their deadlines due to soft timing constraints,
Def. 1 may inappropriately identify certain delays due to the sequential execution of tasks as
s-oblivious pi-blocking. The following example illustrates this.

▶ Example 2. Fig. 1 illustrates two consecutive jobs Ji,j , and Ji,j+1 of a task τi with Ti = 7
and Di = 11. Job Ji,j+1 is released at time 7 and job Ji,j finishes execution at time 10.
Thus, job Ji,j+1 is pending but not eligible during the time interval [7, 10). Assume that
both Ji,j and Ji,j+1 are among the c highest-priority pending jobs in their cluster during
[7, 10). Assuming c > 1, by Def. 1, Ji,j+1 is s-oblivious pi-blocked during the interval [7, 10).
However, Ji,j+1’s delay during [7, 10) is not due to a locking-related suspension. Under
s-oblivious schedulability analysis, it is not necessary to inflate τi’s WCET to include such a
delay. In fact, doing so may cause a circular problem, i.e., the inflated WCET may cause
additional delays, which can then necessitate further inflation.

The above example motivates refining the notion of s-oblivious pi-blocking as follows.

▶ Definition 3. Under s-oblivious schedulability analysis, a job Ji incurs s-oblivious pi-
blocking at time t if Ji is eligible but not scheduled and fewer than c higher-priority jobs are
eligible in its cluster.

▶ Example 2 (Cont’d). Ji,j+1 is pending but not eligible during the interval [7, 10). Thus,
it is not s-oblivious pi-blocked during that interval. However, Ji,j+1 is eligible during
[12, 13). Assume that Ji,j+1 is among the c highest-priority eligible jobs during [12, 13), but
is suspended. Then, by Def. 3, Ji,j+1 is s-oblivious pi-blocked during [12, 13).

ECRTS 2023
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4 Resource-Holder’s Progress Under FIFO Scheduling

Any real-time locking protocol needs to ensure a resource-holding job’s progress whenever
a job waiting for the same resource is pi-blocked, for otherwise, the maximum per-job
pi-blocking can be very large or even unbounded. To ensure that the maximum pi-blocking
is reasonably bounded, real-time locking protocols employ progress mechanisms that may
temporarily raise a job’s effective priority. One such mechanism is priority inheritance [26,28],
which raises the effective priority of a job holding resource ℓq to the maximum of its priority
and the priorities of all jobs waiting for ℓq. Another alternative is priority donation [14],
which ensures that a job Ji can only issue a request when its priority is high enough to
be scheduled. Moreover, if a job Jj ’s release causes Ji to have insufficient priority to be
scheduled, then Jj “donates” its priority to Ji. This ensures that a resource holder is always
scheduled. This property makes priority donation particularly effective under clustered
scheduling.

Progress under FIFO scheduling. The above-mentioned progress mechanisms can be
utilized to design multiprocessor locking protocols that are asymptotically optimal under
any JLFP scheduling policy [11, 14]. Interestingly, for the case of C-FIFO scheduling, no
such progress mechanism is required to design optimal locking protocols. In fact, the C-FIFO
scheduling policy itself has properties that ensure the progress of a resource-holding job. The
key property that enables such progress is given in the following lemma.

▶ Lemma 4. Under C-FIFO scheduling, if a job Ji,j becomes one of the c highest-priority
eligible jobs in its cluster at time th, then it remains so during [th, fi,j).

Proof. Assume for a contradiction that t is the first time instant in [th, fi,j) such that Ji,j

is not one of the c highest-priority eligible jobs in its cluster. Then, t > th holds. By the
definition of time t, there are at most c − 1 (resp., at least c) eligible jobs with higher priority
than Ji,j at time t − 1 ≥ th (resp., t) in Ji,j ’s cluster. Thus, there is a task τu that has an
eligible job Ju,v with higher priority than Ji,j at time t, but has no such job at time t − 1.

Since Ju,v’s priority exceeds Ji,j ’s, ru,v ≤ ri,j holds. Since Ji,j is eligible at time th,
ri,j ≤ th holds. Thus, ru,v ≤ th and Ju,v is pending at time t − 1. We now consider two cases.
Case 1: v = 1. In this case, Ju,v is also eligible at time t − h. Thus, τu has an eligible job

with higher priority than Ji,j at time t − 1, a contradiction.
Case 2: v > 1. Since Ju,v is not eligible at time t − 1, job Ju,v−1 is eligible at time t − 1.

We have ru,v−1 < ru,v ≤ ri,j . Thus, τu has an eligible job with higher priority than Ji,j

at time t − 1, a contradiction.
Therefore, we reach a contradiction in both cases. ◀

Utilizing Lemma 4, we have the following lemma.

▶ Lemma 5. If a job Ji,j issues a request R when it is one of the c highest-priority jobs in
its cluster, then Ji,j is always scheduled from R’s satisfaction to completion.

Proof. Let tr, ts, and tc be the time instants when R is issued, satisfied and complete,
respectively. Thus, tr ≤ ts ≤ tc holds. Since Ji,j is one of the c highest-priority eligible jobs
in its cluster at time tr, by Lemma 4, Ji,j remains one of the c highest-priority eligible jobs
in its cluster throughout [tr, tc). Since R is satisfied at time ts ≥ tr, Ji,j is ready throughout
[ts, tc). Thus, Ji,j is scheduled during [ts, tc). ◀
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Figure 2 A schedule illustrating the OLP-F.

Thus, by requiring a request to be issued only when the request-issuing job is one of
the top-c-priority jobs in its cluster, we can ensure a resource-holder’s progress under FIFO
scheduling. We exploit this property in designing our protocols. Note that the C-OMLP
ensures this property by employing priority donation as its progress mechanism at the expense
of additional release blocking that may be incurred by a job even if it does not require any
resource [13]. Due to this, our protocols have features in common with the C-OMLP.

5 Mutex Locks

In this section, we introduce the optimal locking protocol for mutual exclusion sharing under
C-FIFO scheduling (OLP-F), which achieves optimal pi-blocking under C-FIFO scheduling. To
match the lower bound on pi-blocking, the OLP-F ensures that each job suffers pi-blocking
for the duration of at most m − 1 request lengths and incurs no release blocking.

Structures. For each resource ℓq, we have a FIFO queue FQq that contains requests for ℓq.
A request R is satisfied if and only if R is the head of the FQq.

Rules. When a job Ji attempts to issue a request R for a resource ℓq, it proceeds according
to the following rules.
M1 Ji is allowed to issue R only if it is one of the c highest-priority eligible jobs in its cluster.

Ji suspends if necessary to ensure this condition.
M2 When Ji issues R, R is enqueued in FQq. If Ji becomes the head of FQq, then it is

immediately satisfied. Otherwise, it suspends.
M3 R is satisfied when it is the head of FQq. R is removed from the FQq when it is complete.

▶ Example 6. Fig. 2 illustrates a C-FIFO schedule of three jobs on a two-processor cluster.
J1 and J2 are released earlier (hence, have higher priorities) than J3. Both J1 and J2 issue
requests for resource ℓq at time 3 and J1’s request is enqueued first. Assuming no job in
a different cluster holds ℓq, J1 acquires ℓq at time 3 by Rule M2. At time 3, since J2 is
suspended, J3 starts to execute. At time 4, J3 attempts to issue a request for ℓq, but it is
suspended due to Rule M1 as it is not one of the top-2-priority jobs at that time. At time 6,
J1 releases ℓq and J2’s request is satisfied according to Rule M3. Since J3 becomes one of
the top-2-priority jobs when J1 completes, it issues a request for ℓq at time 7.

Analysis. To derive an upper bound on the pi-blocking suffered by a job, we first show that
FQq contains no more than m requests at any time.

▶ Lemma 7. Under the OLP-F , at any time, FQq contains at most m requests.

ECRTS 2023
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Time
R

t1 t2 t3 t4

Ji is not one of the c

highest-priority eligible
jobs it its cluster

Ji is one of the c

highest-priority eligible
jobs in its cluster

CS
Suspension
Lock Release
Request Issuance

Figure 3 Timeline of a request under the OLP-F.

Proof. Assume that t is the first time instant when FQq contains more than m requests.
Each job has at most one active request at any time. Thus, at time t, FQq must contain a
request R issued by a job Ji that is not one of the c highest-priority eligible jobs in its cluster.
Let t′ ≤ t be the time instant when Ji issues R. By Rule M1, Ji is one of the c highest-priority
eligible jobs in its cluster at time t′. Since Ji is not complete at time t, by Lemma 4, it is
one of the c highest-priority eligible jobs in its cluster at time t, a contradiction. ◀

We now determine an upper bound on the request blocking suffered by job Ji when it
issues a request R for resource ℓq. Fig. 3 depicts the timeline of R from when Ji attempts
to issue R to when R completes. Let t1 be the time instant when job Ji attempts to issue
request R. Let t2 be the first time instant at or after time t1 when Ji, becomes one of the
top-m-priority eligible jobs. Therefore, by Rule M1, R is issued at time t2. Let t3 and t4 be
the time instants when R is satisfied and completes, respectively.

▶ Lemma 8. During [t1, t3], Ji incurs pi-blocking for at most Lq
sum,m−1 time units.

Proof. By the definition of t2, Ji is not one of the top-c-priority eligible jobs in its cluster
during [t1, t2). Hence, Ji is not pi-blocked during that time. By Lemma 4, Ji is pi-blocked
throughout [t2, t3). By Lemma 5, Ji is continuously scheduling during [t3, t4). Thus, from t1
to t4, Ji is only pi-blocked during [t2, t3).

By Lemma 7, at most m − 1 other requests precede R in FQq at time t2. By Rule M3
and Lemma 5, each job at the head of FQq is continuously scheduled until its request is
complete. Since each task has at most one eligible job and each job has at most one request
at any time, t3 − t2 is not more than Lq

sum,m−1 time units and the lemma follows. ◀

We now show that the OLP-F does not cause any release blocking under C-FIFO scheduling.

▶ Lemma 9. Under the OLP-F , no job incurs release blocking.

Proof. Since a resource-holding job is scheduled only when its priority is among the top c in
its cluster, a resource request R does not cause pi-blocking to any job (within and across
cluster boundaries) that does not issue a request during the time R is satisfied. ◀

▶ Theorem 10. Under the OLP-F , Ji is pi-blocked for at most bi =
∑nr

q=1 Nq
i · Lq

sum,m−1
time units.

Proof. Follows from Lemmas 8 and 9. ◀

Thus, the OLP-F is an optimal locking protocol under C-FIFO scheduling.



S. Ahmed and J. H. Anderson 16:9

Table 3 Asymptotically optimal locking protocols for k-exlcusion locks under s-oblivious analysis.

Scheduling Protocol Release blocking Request blocking
Clustered JLFP CK-OMLP [11] maxq{⌈m/kq⌉Lq

max} (⌈m/kq⌉ − 1)Lq
max

Global JLFP OKGLP [18] 0 (2⌈m/kq⌉ + 4)Lq
max

Global JLFP R2DGLP [30] 0 (2⌈m/kq⌉ − 2)Lq
max

C-FIFO k-OLP-F (This work) 0 (⌈m/kq⌉ − 1)Lq
max

6 k-Exclusion Locks

k-exclusion generalizes mutual exclusion by allowing up to k simultaneous lock holders; thus,
mutual exclusion is equivalent to 1-exclusion. In this section, we give an optimal k-exclusion
locking protocol under C-FIFO scheduling. We assume that a resource ℓq can be concurrently
held by up to kq ≤ m jobs. We begin by reviewing lower bound results for k-exclusion.

Lower bound on pi-blocking. For k-exclusion, Elliot et al. showed that a task system and
a release sequence for it exist such that a job requesting a resource ℓq incurs s-oblivious
pi-blocking for the duration of ⌈ m−kq

kq
⌉ request lengths under any JLFP scheduler [18].

Asymptotically optimal locking protocols. Under s-oblivious analysis, the CK-OMLP [11],
the OKGLP [18], and the R2DGLP [30] ensure asymptotically optimal pi-blocking for k-
exclusion. Tbl. 3 summarizes these protocols.

The k-OLP-F. We now introduce the optimal locking protocol for k-exclusion under C-FIFO
scheduling (k-OLP-F), which achieves optimal pi-blocking for k-exclusion under C-FIFO
scheduling. The k-OLP-F ensures that a job suffers pi-blocking for the duration of no more
than ⌈ m−kq

kq
⌉ request lengths for each request for ℓq and incurs no release blocking.

Structures. For each resource ℓq, we have a FIFO queue FQq that contains waiting requests
for ℓq. We also have a queue SQq of length at most kq that contains the satisfied requests
for ℓq. Initially, both queues are empty. A request R is satisfied if and only if R is in SQq.

Rules. When a job Ji attempts to issue a request R for a resource ℓq, it proceeds according
to the following rules.
K1 Ji is allowed to issue R only if Ji is one of the c highest-priority eligible jobs in its cluster.

Ji suspends if necessary to ensure this condition.
K2 If the length of SQq is less than kq when Ji issues R, then R is enqueued in SQq and is

immediately satisfied. Otherwise, R is enqueued in FQq and Ji suspends.
K3 When R completes, it is removed from SQq. If FQq is non-empty at that time, then the

head of FQq is dequeued, enqueued in SQq, and satisfied.

▶ Example 11. Fig. 4 shows a schedule of five jobs that share a resource ℓq with kq = 2.
Jobs J1, J2, and J3 (resp., J4, and J5) are FIFO scheduled on a two-processor cluster G1
(resp., G2). Since SQq is initially empty, by Rule K2, J4 and J1 acquire ℓq at times 2 and 3,
respectively. Since both J2 and J5 are one of the top-2-priority eligible jobs in their clusters,
by Rule K1, they issue requests for ℓq at times 4 and 5, respectively. At time 5, J3 attempts
to issue a request for ℓq, but is suspended, by Rule K1. At time 5, J4 releases ℓq and is
removed from SQq by Rule K3. J2’s request is at the head of FQq at time 5, so by Rule K3,
it is removed from FQq, enqueued in SQq, and satisfied. At time 7, J1 completes and J3
becomes one of the top-2-priority jobs in G1 and issues its request, by Rule K1.
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Figure 4 A schedule illustrating the k-OLP-F. Concurrent resource accesses are shaded differently.

Analysis. We now derive an upper bound on the pi-blocking suffered by a job under the
k-OLP-F. We first derive an upper bound on the number of waiting requests in FQq.

▶ Lemma 12. Under the k-OLP-F , FQq contains at most m − kq requests.

Proof. Assume otherwise. Let t be the first time instant such that FQq contains more than
m − kq requests. Thus, a new request R′ is enqueued in FQq at time t. By Rule K2, SQq

contains kq requests at time t. Thus, the number of active requests (either satisfied or
waiting) is more than kq + m − kq = m at time t. Since each job has at most one active
request at any time, there is an active request R issued by a job Ji that is not one of the
c highest-priority jobs in its cluster. By Rule K1, Ji is one of the c highest-priority jobs
in its cluster when it issues R at time t′ ≤ t. By Lemma 4, Ji remains as one of the c

highest-priority jobs in its cluster at time t, a contradiction. ◀

We now determine an upper bound on request blocking. We consider a job Ji that issues a
request R for resource ℓq. As in Fig. 3, let t1, t2, t3, and t4 be the time instants corresponding
to when Ji attempts to issue R, and when R is issued, satisfied, and complete, respectively.

▶ Lemma 13. For request R, Ji suffers request blocking for at most Lq

sum,⌈ m−kq
kq

⌉
time units.

Proof. By Def. 3, Ji does not suffer any pi-blocking during [t1, t2) and [t3, t4). By Lemma 4
and the definition of t2, Ji suffers pi-blocking during the entire duration of [t2, t3), so it suffices
to upper bound (t3 − t2). If SQq contains fewer than kq requests at time t2, then t3 − t2 = 0
holds by Rule K2, so assume otherwise. At time t2, no two requests in SQq and FQq are from
the same task. By Rule K3, R is satisfied when it is dequeued from FQq. Thus, by Lemma 12,
at most m − kq requests are required to be dequeued to satisfy R. By Rule K2, kq jobs
hold ℓq throughout [t2, t3). By Rule K1 and Lemma 5, each resource-holding job is always
scheduled. Thus, per Lq

sum,h time units during [t2, t3) at least h · kq requests complete – and
hence, by Rule K3, at least h ·kq requests are dequeued from FQq. Dequeuing m−kq requests
from FQq thus requires at most Lq

sum,⌈ m−kq
kq

⌉
time units, so t3 − t2 ≤ Lq

sum,⌈ m−kq
kq

⌉
. ◀

Similar to the OLP-F, no release blocking occurs under the k-OLP-F. Therefore, by
Lemma 13, we have the following theorem.

▶ Theorem 14. Under the k-OLP-F , Ji suffers pi-blocking for at most bi =
∑nr

q=1 Nq
i ·

Lq

sum,⌈ m−kq
kq

⌉
time units.

Thus, the k-OLP-F is optimal for k-exclusion locking under C-FIFO scheduling.
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7 Reader-Writer Locks

Some resources can be read without alteration. For such resources, it may be desirable to
support reader-writer (RW) sharing. Here, writers have mutually exclusive access to the
resource, but multiple readers can access the resource simultaneously.

Under RW sharing, it is often desirable to ensure fast read access. However, enabling fast
read access may cause write requests to starve. This can happen under a read-preference
RW lock that never satisfies a write request if a read request is active. More generally, these
observations give rise to an important question: what is the minimum request blocking a
read request can incur without causing a write request to starve?

Lower bound on read request blocking. As we show next, ensuring a read request delay of
2Lq

max − 2 time units can in fact cause writer starvation.
▶ Theorem 15. For m ≥ 8, a task system and a release sequence for it exist such that any
locking protocol that ensures request blocking of at most 2Lq

max −2 time units for read requests
causes unbounded request blocking for write requests under any work-conserving scheduler.
Proof. We give an example task system Γ and a release sequence for it supporting the claim.
Let τ1, τ2, . . . , τm be m sporadic tasks scheduled on m processors. All tasks have WCETs of
L + 1 time units with 2 ≤ L ≤ (m − 2)/3. Fig. 5 illustrates this for m = 8 and L = 2. Each
job’s execution consists of 1.0 time unit of non-CS execution followed by L time units of CS
execution. Tasks τ1, τ2, . . . , τm−1 issue read requests for resource ℓq, while τm issues a write
request for ℓq. The periods of all tasks are m − 1. Each task has an implicit deadline.

Feasibility of Γ. We show that Γ is feasible under a write-preference RW lock. Such lock
does not satisfy any read request if a write request is waiting. Since τm is the only writer task,
under a write-preference RW lock, τm’s jobs acquire ℓq immediately (if no reader jobs hold
ℓq) or immediately after the currently satisfied read requests complete (otherwise). Thus,

E each of τm’s jobs acquires ℓq within L time units of its request issuance.

Since there are m tasks, a processor is always available for τm. Thus, with a WCET
of L + 1 and resource acquisition time of at most L, each job of τm completes within
L + 1 + L = 2L + 1 ≤ 2(m − 2)/3 + 1 < m − 2 + 1 = m − 1 = Tm time units after its release.

For reader tasks τ1, τ2, . . . , τm−1, a read request R issued at time t is satisfied immediately
if there is no waiting write request. Otherwise, by (E), the pending write request by τm’s
job is satisfied by time t + L and complete by time t + L + L = t + 2L (as a processor is
available). Since τm is the only writer task, after completion of the write request, there is no
pending write request. Thus, R is satisfied by time t + 2L. With a WCET of L + 1, the job
issuing R completes within L + 1 + 2L = 3L + 1 ≤ 3(m − 2)/3 + 1 = m − 2 + 1 = m − 1 = Ti

time units after its release. Therefore, Γ is feasible.

Release sequence for Γ. τm releases its jobs periodically from time 1. τ1 releases its first
job at time 0 and its subsequent jobs’ release times are defined as r1,j+1 = fm−1,j − L. The
release times of τi’s jobs with 2 ≤ i < m are ri,j = fi−1,j − L. Thus, for 2 ≤ i < m, we have

ri,j = fi−1,j − L

≥ {Since Ji−1,j executes for L + 1 time units}
ri−1,j + L + 1 − L

= ri−1,j + 1. (1)
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Figure 5 A schedule illustrating Theorem 15.

Similarly, for τ1, it can be shown that

r1,j+1 ≥ rm−1,j + 1. (2)

We now show that consecutive jobs of τi with i < m are released at least Ti time units apart.
For 2 ≤ i < m, by (1), we have

ri,j+1 ≥ ri−1,j+1 + 1
≥ {Applying (1) repeatedly for i − 2 times}

r1,j+1 + 1 + (i − 2)
≥ {By (2)}

rm−1,j + 1 + (i − 1)
≥ {Applying (1) repeatedly for m − 1 − i times}

ri,j + (m − 1 − i) + i

= ri,j + m − 1
= ri,j + Ti. (3)

Similarly, we can show that consecutive jobs of τ1 are released at least T1 time units apart.
We now show that each job of τi with i < m is eligible when it is released by showing

that Ji,j completes before Ji,j+1’s release. For 2 ≤ i < m − 1, in the third step of the
derivation of (3), applying (1) repeatedly for m − 2 − i times instead of m − 1 − i times,
we have ri,j+1 ≥ ri+1,j + (m − 2 − i) + i = ri+1,j + m − 2. Since L ≤ (m − 2)/3 < m − 2
and ri+1,j = fi,j − L, we get ri,j+1 > ri+1,j + L = fi,j . For i = m − 1, the first step in the
derivation of (3) yields rm−1,j+1 ≥ r1,j+1 +1+(m−1−2) = r1,j+1 +m−2 > r1,j+1 +L. Since
r1,j+1 = fm−1,j − L, we get rm−1,j+1 > fm−1,j . For i = 1, applying (1) in (2) repeatedly for
m − 3 times, we have r1,j+1 ≥ r2,j + m − 2 > r2,j + L = f1,j . Thus, ri,j+1 > fi,j for i < m.

Finishing up. We now prove the theorem by showing that Jm,1’s write request is never
satisfied if the request delay for read requests is at most 2L − 2. Assume that Jm,1’s request
is satisfied at time t. We have t > 2, as Jm,1 issues its request at time 2 and J1,1 holds
ℓq then (under a work-conserving scheduling policy, J1,1 acquires ℓq at time 1). Since the
scheduling policy is work-conserving, a job Ji,j must release ℓq at time t. Thus, fi,j = t.
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Figure 6 A schedule illustrating Theorem 16. Read and write CSs are shaded differently.

By the job release pattern of τ1, τ2, . . . , τm−1, there exists a job Ju,v such that ru,v =
fi,j − L = t − L. Since each job is eligible when it is released and there are m tasks, Ju,v

issues a read request R at time ru,v + 1 = t − L + 1 < t (as L ≥ 2). Since Jm,1’s write request
is satisfied at time t, R cannot be satisfied before time t + L. Since the task count is m, Ju,v

is pi-blocked for a duration of at least t + L − (t − L + 1) = 2L − 1 time units. Thus, request
blocking for read requests exceeds 2L − 2 time units, reaching a contradiction. ◀

Thus, read request blocking of at least 2Lq
max − 1 time units is fundamental to avoid

writer starvation. We now establish a lower bound on write request blocking when read
requests suffer request blocking for at most 2Lq

max − 1 time units.5

▶ Theorem 16. For m ≥ 4, there exists a task system and a release sequence for it such
that any locking protocol that ensures at most 2Lq

max − 1 read request blocking causes write
request blocking of (2m − 5)Lq

max − 1 time units under any work-conserving scheduler.

Proof. Let τ1, τ2, . . . , τn be n tasks scheduled on m ≥ 4 processors, where n = 2m − 4. Each
task has a WCET of L + 1 time units with L ≥ 1. Fig. 6 illustrates this for m = 5 and
L = 3. Each job’s execution consists of 1.0 time unit of non-CS execution followed by L

time units of CS execution. Tasks τ1, τ2, . . . , τm−2 issue write requests for resource ℓq, while
τm−1, τm, . . . , τ2m−4 issue read requests for ℓq. Each task’s period is T ≥ (2m − 4) · (L + 1).
The task WCETs sum to (2m − 4) · (L + 1), so assuming implicit deadlines, the task system
can be scheduled by sequentially executing the jobs on a single processor (i.e., it is feasible).

Tasks τ1, τ2, . . . , τm−2 release their first jobs at time 1. Task τm−1 releases its first job
at time 0. For i > m − 1, the release time of Ji,1 is determined as ri,1 = fi−1,1 − 1. Hence,
from time 0, there is always an eligible first job of a task until all first jobs are complete.
Since all WCETs sum to (2m − 4) · (L + 1), under a work-conserving scheduler, the first job
of each task completes by time (2m − 4) · (L + 1) ≤ T . Subsequent job release times can be
easily defined so that each task’s consecutive job releases are at least T time units apart.

We now prove that each first job Ji,1 always incurs pi-blocking when it is waiting for ℓq.
For any job Ji,1 with i > m, we have ri,1 = fi−1,1 − 1 ≥ ri−1,1 + L + 1 − 1 = fi−2,1 − 1 + L.
Since L ≥ 1, we have ri,1 ≥ fi−2,1. Thus, at most two first jobs of the last m − 2 tasks are
pending at the same time. Therefore, at most m − 2 + 2 = m first jobs are pending at any
time, which implies that a job Ji,1 incurs pi-blocking if it is waiting.

5 Assuming higher read request blocking would yield a smaller lower bound on write request blocking.
Note that deriving tight lower bounds for RW locks is much more complicated than for the other locks
considered in this paper because much leeway exists regarding the interplay between readers and writers.
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Table 4 Asymptotically optimal locking protocols for RW locks under s-oblivious analysis.

Scheduling Protocol Release
blocking

Read request
blocking

Write request
blocking

Clustered JLFP CRW-OMLP [11] 2mLmax 2Lq
max (2m − 1)Lq

max

C-FIFO RW-OLP-F (This work) 0 2Lq
max − 1 (2m − 3)Lq

max

Finally, we prove the claim of the theorem by showing that there is a writer job that incurs
pi-blocking for the duration of (2m − 5)L − 1 time units. Job Jm−1,1 issues a read request at
time 1 and acquires ℓq (as the scheduling policy is work-conserving). Fig. 6 illustrates this.
Each job Ji,1 with i < m − 1 issues a write request at time 2.

Each job Ji,1 with i > m − 1 (e.g., the jobs of τ5 and τ6 in Fig. 6) is released 1.0 time unit
before Ji−1,1 completes and issues a read request when Ji−1,1 completes. Thus, Ji,1’s read
request cannot be delayed to satisfy two or more pending write requests without incurring
read request blocking of at least 2L time units. As a result, at most one write request can
be satisfied between two consecutive read requests. Thus, there is a write request from a job
Ju,1 with i < m − 1 (e.g., τ3’s job in Fig. 6) that must be satisfied after all read and write
requests of each job Ji,1 with i ̸= u complete.

Since Ju,1 issues its request at time 2 and Jm−1,1 (e.g., τ4’s job in Fig. 6) acquires ℓq at
time 1, Jm−1,1 pi-blocks Ju,1 for L − 1 time units. The stated job release pattern ensures
that no two of the remaining m − 3 read requests (e.g., those by τ5 and τ6 in Fig. 6) overlap,
so they pi-block Ju,1 for (m − 3)L time units. Finally, Ju,1 is pi-blocked by each of the other
m − 3 write requests (e.g., those by τ1 and τ2 in Fig. 6) for (m − 3)L time units. Thus, Ju,1
incurs pi-blocking for L − 1 + (m − 3)L + (m − 3)L = (2m − 5)L − 1 time units. ◀

For simplicity, Theorems 5 and 16 are stated for work-conserving scheduling. However,
both theorems are also true under a wider class of schedulers and locking protocols that are
top-c-work-conserving. On a c-processor cluster, a top-c-work-conserving scheduling ensures
that any top-c-highest priority ready job immediately acquires a shared resource (including
processor) if such a resource is idle. Note that a work-conserving scheduler and locking
protocol combination is also top-c-work-conserving.

Asymptotically optimal RW locking protocols. For RW locks, the CRW-OMLP is an
asymptotically optimal locking protocol under clustered JLFP scheduling [11]. The CRW-
OMLP is a phase-fair RW locking protocol. Phase-fair RW locks satisfy read and write
requests in alternating phases [12]. At the beginning of a reader phase, all waiting read
requests are satisfied simultaneously, while at the beginning of a writer phase, a single waiting
write request is satisfied. Tbl. 4 summarizes the CRW-OMLP.

The RW-OLP-F. We now introduce the read-optimal RW locking protocol under C-FIFO
scheduling (RW-OLP-F ), which achieves optimal pi-blocking for read requests under C-FIFO
scheduling. The RW-OLP-F is a phase-fair RW locking protocol that achieves 2Lq

max − 1
(resp., (2m − 3)Lq

max) request blocking for read (resp., write) requests – here, however, we
only prove a bound of 2Lq

max for reads due to space limitation. Unlike the CRW-OMLP, the
RW-OLP-F has no release blocking under C-FIFO scheduling.

Structures. For each resource ℓq, we have two queues RQ1
q and RQ2

q that contain read
requests for ℓq, and a FIFO queue WQq that contains write requests for ℓq. One of the read
queues acts as a collecting queue and the other acts as a draining queue. The roles of RQ1

q

and RQ2
q alternate, i.e., each switches over time between being the collecting queue and being

the draining queue. Initially, RQ1
q is the collecting queue and RQ2

q is the draining queue.
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Reader rules. Assume that a job Ji attempts to issue a read request R for resource ℓq. Let
RQc

q and RQd
q be the collecting and draining queues, respectively, when Ji issues R.

R1 Ji is allowed to issue R only if it is one of the c highest-priority eligible jobs in its cluster.
Ji suspends if necessary to ensure this condition.

R2 If WQq is empty when Ji issues R, then R is immediately satisfied and enqueued in
RQd

q . Otherwise, Ji suspends and R is enqueued in RQc
q.

R3 If R is in RQc
q, then it is satisfied (along with all other requests in RQc

q) when RQc
q

becomes the draining queue (see Rule W3). If RQc
q becomes the draining queue at time t

and a read request is issued at time t, then that request is enqueued in RQc
q before making

it the draining queue. R is removed from RQc
q when it is complete. If RQc

q becomes
empty because of R’s removal, then the head of WQq (if any) is satisfied.

Writer rules. When a job Jw attempts to issue a write request R for a resource ℓq, it
proceeds according to the following rules.
W1 Jw is allowed to issue R only if it is one of the c highest-priority eligible jobs in its cluster.

Jw suspends if necessary to ensure this condition.
W2 If RQ1

q, RQ2
q, and WQq are empty when R is issued, then R is immediately satisfied

and enqueued in WQq. Otherwise, R is enqueued in WQq and Jw suspends.
W3 Let RQd

q and RQc
q be the draining and collecting queues, respectively, when R is the

head of WQq. R is satisfied when R is the head of WQq and RQd
q is empty. When R

is complete, R is dequeued from WQq and if RQc
q is non-empty, then RQc

q (resp., RQd
q)

becomes the draining (resp., collecting) queue. Otherwise (RQc
q is empty), the new head

of WQq (if any) is satisfied.

Analysis. We now determine an upper bound on request blocking. For m ≤ 2, by Lemma 4
and Rules R1 and W1, there are at most two active requests and at most one waiting request
at any time, so request blocking is at most Lq

max time units for both reads and writes.
Henceforth, we assume m ≥ 3. The following lemma follows from Lemma 4 and Rules R1
and W1; we omit its proof as it is similar to Lemma 7.

▶ Lemma 17. The total number of requests in RQ1
q, RQ2

q, and WQq is at most m.

We now give two helper lemmas.

▶ Lemma 18. If a write request R is the head of WQq at time t, then it is satisfied by
time t + Lq

max.

Proof. Let RQc
q and RQd

q be the collecting and draining queue, respectively, at time t. If R
is not satisfied at time t, then by Rule W3, RQd

q is non-empty at time t. By Rule R3, jobs
with requests in RQd

q hold ℓq at time t. Let t′ be the time instant when all such requests
are complete. By Lemma 5 and Rule R1, t′ ≤ t + Lq

max. By Rule R2, no read requests are
enqueued in RQd

q during [t, t′). Thus, RQd
q becomes empty at time t′. By Rule W3, R is

satisfied at time t′. Thus, the lemma holds. ◀

▶ Lemma 19. If a write request R is the head of WQq at time t, then it is complete by
time t + 2Lq

max.

Proof. By Lemma 18, R is satisfied by time t + Lq
max. By Lemma 5 and Rule W1, R

completes within Lq
max time units after being satisfied. Thus, the lemma holds. ◀
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We now determine an upper bound on the request blocking suffered by a job when it
issues a read request. We consider a job Ji that issues a read request R for resource ℓq. As
depicted in Fig. 3, let t1, t2, t3, and t4 be the time instants corresponding to when Ji attempts
to issue R, and when R is issued, satisfied, and complete, respectively. In the lemma below,
for simplicity, we show that request blocking for read requests is at most 2Lq

max. A tight
bound of 2Lq

max − 1 can be established by a detailed analysis involving multiple cases.

▶ Lemma 20. For a read request R, Ji suffers request blocking for at most 2Lq
max time units.

Proof. Ji suffers pi-blocking for the duration of [t2, t3). Let RQc
q and RQd

q be the collecting
and draining queue, respectively, at time t2. If WQq is empty at time t2, then t2 = t3 holds
according to Rule R2, so assume otherwise. By Rule R2, R is enqueued in RQc

q. Let R′ be
the request at the head of WQq at time t2. Let t′

2 be the time instant when R′ completes.
By Lemma 19, t′

2 ≤ t2 + 2Lq
max holds. By Rule W3, RQc

q becomes the draining queue at time
t′
2. Thus, by Rule R3, all requests in RQc

q, including R, are satisfied at time t′
2, implying

t3 = t′
2. Therefore, we have t3 − t2 ≤ 2Lq

max. ◀

Finally, we give an upper bound on the request blocking incurred by a job when issuing a
write request. Let Jw be a job that issues a write request R at time t.

▶ Lemma 21. For a write request R, Jw incurs request blocking for at most (2m − 3)Lq
max

time units.

Proof. If no request holds ℓq at time t, then by Rule W2, R is immediately satisfied. This
leaves two cases.

Case 1. A job with a read request holds ℓq at time t. By Lemma 17, RQ1
q, RQ2

q, and WQq

hold at most m requests at time t. Since there is an active read request, at most m − 2 write
requests precede R in WQq. By Rule W3, each of those write requests becomes the head
of WQq when its preceding write request completes. By Lemma 19, a write request at the
head of WQq completes within 2Lq

max time units from when it becomes the head. Thus, all
m − 2 write requests that precede R in WQq are complete by time t + 2(m − 2)Lq

max. By
Lemma 18, after becoming the head of WQq, R is satisfied within an additional Lq

max time
units. Thus, R is satisfied by time t + (2m − 3)Lq

max.

Case 2. A job with a write request R′ holds ℓq at time t. We consider two subcases.

Case 2a. WQq contains m requests at time t. Thus, m − 1 requests precede R in WQq.
By Lemma 5 and Rule W1, R′ completes within Lq

max time units from t. By Lemma 4 and
Rules R1 and W1, no requests are issued before R′ completes. Thus, by Rule W3, the write
request R′′ following R′ is satisfied when R′ is complete. By Lemma 5 and Rule W1, R′′

completes within Lq
max time from when it is satisfied. Thus, the top two requests in WQq

are complete by time t + 2Lq
max. By Lemma 19, each of the remaining m − 3 write requests

preceding R is complete within 2Lq
max time units after becoming the head of WQq. Thus,

R becomes the head of WQq by time t + 2Lq
max + 2(m − 3)Lq

max = t + 2(m − 2)Lq
max. By

Lemma 18, R is satisfied within Lq
max time units after becoming WQq’s head. Thus, R is

satisfied by time t + (2m − 3)Lq
max.

Case 2b. WQq contains at most m − 1 requests at time t. Thus, at most m − 2 requests
precede R in WQq. By Lemma 5, R′ completes within Lq

max time units from t. By Lemma 19,
each of the remaining m − 3 write requests preceding R′ completes within 2Lq

max time units
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from when it becomes the head of WQq. Thus, R becomes the head of WQq within
Lq

max +2(m−3)Lq
max = (2m−5)Lq

max time units from t. By Lemma 18, R is satisfied within
Lq

max time units after becoming WQq’s head. Thus, R is satisfied by time (2m−4)Lq
max. ◀

Similar to the OLP-F, no job suffers release blocking due to a resource-holding job under
the RW-OLP-F. By Lemma 20 and 21 and letting Nq,r

i and Nq,w
i denote the maximum

number of read and write requests for ℓq by τi, we have the following.

▶ Theorem 22. Under the RW-OLP-F , Ji is pi-blocked for at most

bi =
nr∑

q=1
(Nq,r

i · 2Lq
max + Nq,w

i · (2m − 3)Lq
max) .

As mentioned already, the 2Lq
max term above can be replaced by 2Lq

max −1 at the expense
of more lengthy analysis. By Rules R1, R2, W1, and W2, FIFO scheduling and RW-OLP-F
ensures top-c-work-conserving property. Thus, by Theorems 15 and 16, the RW-OLP-F
ensures optimal request blocking for read requests, while ensuring that the request blocking
for write requests is just under two request lengths of optimal.

8 Experimental Evaluation

In this section, we present the results of experiments we have conducted using the SchedCAT
toolkit [1] to evaluate our proposed locking protocols.

Task system generation. Our task-system generation method is similar to that used in
prior locking-related schedulability studies [6,9,32]. We generated task systems randomly for
systems with {4, 8, 16} processors. For each processor count, we generated task systems that
have a normalized utilization, i.e.,

∑n
i=1 ui/m, from 0.2 to 0.9 with a step size of 0.1. We chose

the number of tasks uniformly from [2m, 150]. We generated each task’s utilization uniformly
following procedures from [19]. We chose each task’s period randomly from [3, 33]ms (short),
[10, 100]ms (moderate), or [50, 500]ms (long). We set each task’s WCET Ci to Ti · ui rounded
to the next microsecond.

We considered {m/4, m/2, m, 2m} number of shared resources. For each τi and resource
ℓq, we selected τi to access resource ℓq with probability pacc ∈ {0.1, 0.25, 0.5}. If so selected,
τi was defined to access ℓq via Nq

i ∈ {1, 2, . . . , 5} requests. For each Nq
i > 0, we chose

the maximum request length Lq
i randomly from three uniform distributions ranging over

[1, 15]µs (short), [1, 100]µs (medium), or [5, 1280]µs (long). A chosen Lq
i value was decreased

accordingly if it caused the sum of all request length of τi to exceed Ci. For each combination
of m, normalized utilization, Ti, Lq

i , pacc, and nr, we generated 1,000 task systems. We call
each combination of these parameters a scenario.

Experiment 1. In our first experiment, we considered mutex sharing. Each task had a soft
timing constraint, meaning that it was deemed schedulable if its response time was bounded.
We considered resource synchronization under the OLP-F, the OMLP [11], the C-OMLP [13],
the OMIP [7], and the FMLP [5]. For the OLP-F, each task system’s schedulability was tested
under global FIFO scheduling [22]. For the remaining protocols, s-oblivious schedulability
tests were performed under global EDF scheduling [16].6 For each scenario, we assessed
acceptance ratios, which give the percentage of task systems that were schedulable under
each locking protocol. We present a representative selection of our results in Fig. 7.

6 The same schedulability test also applies for a wider class of global schedulers including FIFO.
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Figure 7 Experimental results.

▶ Observation 1. The average improvement under the OLP-F over the OMLP, the C-OMLP,
the OMIP, and the FMLP was 20.2%, 14.9%, 16.4%, and 27.5%, respectively.

This can be seen in insets (a) and (b) of Fig. 7. Unsurprisingly, schedulability was
improved under the OLP-F because of lower pi-blocking compared to the other protocols.
In some cases, as depicted in Fig. 7(b), all protocols had similar schedulability. This can
happen when the number of request-issuing jobs for each resource is small (e.g., less than
the number of processors), in which case all protocols have similar pi-blocking bounds.

Experiment 2. This experiment pertains to RW sharing. To generate task systems, we used
one additional parameter pwrite ∈ {0.1, 0.2, 0.3, 0.5, 0.7}. We defined each resource access to
be a write (resp., read) access with probability pwrite (resp., 1 − pwrite). In this experiment,
we considered soft real-time scheduling with resource synchronization under the RW-OLP-F,
the CRW-OMLP [13], and the OLP-F. Each task system’s schedulability was tested under
global FIFO scheduling when the OLP-F and the RW-OLP-F were employed, and under global
EDF scheduling otherwise. We have the following observation.

▶ Observation 2. The RW-OLP-F improved schedulability over the CRW-OMLP across all
scenarios. The RW-OLP-F had less schedulability than the OLP-F when write accesses were
more frequent, i.e., high pwrite values.

This can be seen in Fig. 7(c). The improved pi-blocking bound enabled higher schedulab-
ility under the RW-OLP-F. The RW-OLP-F had better or equal schedulability than the OLP-F
across 90% of the total scenarios. Since the RW-OLP-F has higher write request blocking
compared to the OLP-F (which does not have optimal read request blocking), the OLP-F had
better schedulability than the RW-OLP-F when pwrite values are high, e.g., pwrite = 0.7.
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Experiment 3. In this experiment, we considered hard real-time scheduling under mutex
locks. For each task τi, we randomly chose a relative deadline between [Ti, 2Ti]. We considered
partitioned scheduling because of the lack of hard real-time schedulability tests for global
FIFO scheduling. We used the worst-fit bin packing heuristic to partition each task system.
We compared schedulability under the OLP-F and partitioned FIFO scheduling with the
partitioned OMLP (the C-OMLP with c = 1) and partitioned EDF scheduling.

▶ Observation 3. The partitioned OMLP had better schedulability compared to the OLP-F .

This can be seen in Fig. 7(d). Despite having lower pi-blocking and bounded response
times, the partitioned OMLP enabled better schedulability because of the optimality of
uniprocessor EDF in scheduling hard real-time workloads. Note that, unlike for EDF, the
employed FIFO schedulability test was non-exact [4].

9 Related Work

The literature on suspension-based multiprocessor real-time locking protocols is quite vast
(e.g., [7, 11, 13–15,17, 20, 21, 23–25,27, 29]). An excellent recent survey is given in [10]. Below,
we comment further on a few specific relevant protocols.

In work on mutex locks, the FMLP [5] was the first multiprocessor locking protocol to be
studied under s-oblivious analysis. While relatively simple, the FMLP has O(n) pi-blocking
under s-oblivious analysis. The first mutex protocols that were shown to have asymptotically
optimal s-oblivious pi-blocking were the OMLP and its variants, which include protocols
applicable under partitioned, global, and clustered JLFP scheduling [11,13,14]. In later work,
the OMIP [7] was presented; it upholds an independence preserving property that results in
asymptotically optimal s-oblivious pi-blocking under clustered JLFP scheduling.

The first multiprocessor mutex locking protocols were designed to be studied under
s-aware analysis. Many of these protocols (e.g., the MPCP [27], the PPCP [17], the PIP [26],
etc.) were inspired by classical uniprocessor locking protocols. The FMLP+ [9] is an extension
of the FMLP that has been shown to have asymptotically optimal s-aware pi-blocking under
clustered JLFP scheduling. In other work, linear-programming techniques were proposed
that enable improved s-aware analysis of various protocols, including the PIP, the PPCP, and
the FMLP, under global and partitioned fixed-priority scheduling [8, 32].

10 Conclusion

In this paper, we have presented optimal suspension-based multiprocessor locking protocols
for mutex, k-exclusion, and RW synchronization. In particular, we have shown that the
s-oblivious lower bound of m − 1 request lengths for mutex locks is indeed tight under FIFO
scheduling. We have also provided a tight s-oblivious lower bound on read-request blocking
for RW locks. All three locking protocols presented herein can be used together in the same
system without jeopardizing the presented analysis. Moreover, spin-based versions of these
protocols can be easily obtained by following the same design principles.

For some non-FIFO JLFP schedulers, it may be possible that 2m − 1 request lengths is
indeed a tight lower bound on s-oblivious pi-blocking for mutex locks. Showing this would
require a new lower-bound proof. As seen in Sec. 7, finding task systems that justify such a
lower bound can be quite difficult. The results of this paper show that any task system used
to justify a 2m − 1 lower bound must necessarily not be FIFO-scheduled. In some sense, this
is unfortunate, as FIFO schedules are somewhat easier to deal with in lower-bound arguments,
given that having “top-c” priority is a stable property for FIFO-scheduled jobs.
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