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Abstract
To facilitate the safe adoption of multi-core platforms in real-time systems, a plethora of recent
research efforts aim at bounding the delays induced by interference upon accessing the shared
memory resources in these platforms. These efforts, despite their value, are scattered, with each
one focusing solely on only one of these resources with the premise that latency bounds separately
driven for each resource can be added all together to provide a safe end-to-end memory bound.
In this work, we put this assumption to the test for the first time by 1) considering a realistic
multi-core memory hierarchy system, 2) deriving the bounds for accessing the shared resources in
this system, and 3) highlighting the limitations of this widely-adopted approach. In particular, we
show that this approach leads to not only excessively pessimistic but also unsafe bounds. Motivated
by these findings, we propose GRROF: a novel approach to predictably and efficiently schedule
memory requests while traversing the entire memory hierarchy through coordination among arbiters
managing all the resources in this hierarchy. By virtue of this novel mechanism, we managed to
exploit pipelining upon analyzing the latency of the memory requests for tightly bounding the
worst-case latency. We prove in the paper that GRROF enables us to derive a drastically tighter
bound compared to the common additive latency approach with more than 18× reduction in the
end-to-end memory latency bound for a modern Out-of-Order quad-core platform. The reduction is
further improved significantly with the increase in the number of cores. The proposed solution is fully
prototyped and tested in a cycle-accurate simulation. We also compare it with real-time competitive
state-of-the-art and performance-oriented solutions existing in modern Commercial-off-the-Shelf
(COTS) platforms.
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17:2 A Tight Holistic Memory Latency Bound

1 Introduction

With the increasing performance requirements and amounts of data to be processed by
modern real-time systems, adopting multi-core platforms becomes favorable, if not necessary.
One of the main roadblocks to this adoption is the architectural complexity of these platforms,
which threatens the timing analyzability of the system and the ability to derive safe yet tight
Worst-Case Execution Time (WCET) for real-time tasks. In particular, the several memory
resources among the cores pose a significant challenge in bounding the interference-induced
delays suffered upon accessing these resources. Therefore, the real-time community has
recently invested significant (but somewhat scattered) efforts to address this challenge at each
of the different memory resources, including interconnects [14,25,42], caches [8,11,27,28,37,41],
and main memories [1, 6, 9, 20]. Each of these efforts focused solely on one of these resources
with the premise that latency bounds separately driven for each resource can be added
altogether to provide a safe end-to-end memory bound, which we refer to as the additive
latency approach [10].

In this work, we assess this assumption by conducting the following contributions.
1. We consider a comprehensive and realistic multi-core memory hierarchy system modeled

after Commercial-off-the-Shelf (COTS) platforms, where they are independent resources
that can be accessed in parallel. This includes a split-transaction interconnect between
private L1 caches and the shared Last Level Cache (LLC) composed of a request and
a response bus, a realistic cache model with write buffers and non-blocking support to
enable several requests to be serviced in parallel, a bankized LLC with several independent
banks that can be accessed in parallel, and a system bus to carry requests from the
LLC misses and write backs to the memory controller to be sent to the off-chip memory.
Section 3 elaborates on this system model.

2. We derive the bounds for the resources in this system following the aforementioned
additive latency approach by considering each resource independently. We then use this
step to highlight two limitations of this approach. In particular, a) on the one hand, it
leads to excessively pessimistic bounds to the level that they reach several thousands of
cycles for one request and hence becomes practically useless. This is due to the aggressive
reordering and parallelism deployed in these COTS platforms. b) On the other hand,
it leads to unsafe bounds due to the fact that each separate resource has to make local
assumptions about the ordering of requests that does not necessarily align with the actual
request orders in the system. These two limitations are further discussed in Section 2.2
and are illustrated with a numerical example in Section 4.

3. To address this problem, we propose the Global Round Robin Oldest-First (GRROF) as a
novel methodology to predictably and efficiently schedule memory requests upon traveling
through the entire memory hierarchy. Instead of managing resources independently and
analyzing them in isolation from each other, GRROF enables arbiters to operate fully in
parallel yet coordinate by sharing and updating a centralized engine that tracks states
about requests currently in the system. More details about this approach are provided in
Section 4.

4. We use this coordination to conduct a novel analysis that derives a bound, for the first
time to the best of our knowledge, on the end-to-end latency suffered by a request upon
accessing the memory hierarchy including accessing the interconnect, the LLC, the system
bus to the off-chip DRAM, if it is a miss in the LLC, and all the way until it returns to
its requesting core and retires. This novel analysis leverages GRROF to pipeline requests
among these resource and apply the delay composition theorem originally proposed in [21].
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Table 1 DDR4-2400U Timing Constraints [38]. l and s refer to the large (same bank group) and
small (different bank groups) timing constraints, respectively.

Inter-Bank Constraints Intra-Bank Constraints
Description Cycles Description Cycles

tRRD ACT to ACT l=6, s=4 tRL RD to DATA 18
tF AW 4 ACT Window 26 tW L WR to DATA 12
tW T R WR DATA to RD l=9, s=3 tW R WR DATA to PRE 18
tW toR WR to RD 25 tRP PRE to ACT 18
tRT W RD to WR 12 tRCD ACT to CAS 18
tBUS DATA 4 tRT P RD to PRE 9
tCCD CAS to CAS l=6, s=4 tRC ACT to ACT 57

tRAS ACT to PRE 39

This leads to a drastically tighter bound compared to the common additive latency
approach. This reaches more than 18× reduction in a modern Out-of-Order quad-core
platform. The analysis is derived in Section 5.

5. We prototype this whole memory system in a cycle-accurate simulator in addition to
three other approaches. The first two are modeled after predictable hard-ware real-time
solutions, such as Round-Robin (RR) [7,36] and Round-Robin Oldest-First (RROF) [30,33],
while the third represents a First-Ready First-Come First-Serve (FRFCFS) approach
that reorders requests to increase system performance and is commonly used in COTS
platforms. Section 6 discusses the detailed results of these comparisons. And finally,
Section 7 is the conclusion.

2 Background and Related Work

2.1 DRAM Memory Background

DRAM device is the off-chip main memory that communicates with on-chip processing
elements through a Memory Controller (MC). The device consists of multiple banks of 2D
array structure that are indexed by row and column addresses and accessed through data,
address, and command buses. Accessing data from a DRAM bank is generally a two-stage
process. 1) The row address is provided to activate the requested row through an activation
(ACT) command. 2) The column address is provided to conduct the requested read/write
operation through a CAS (RD/WR) command. Each DRAM bank also has a row buffer that
holds the most recently accessed row from that bank. This enables future accesses to the
same row by read/write from the buffer directly without re-activating the row (row hit), and
that only requires a CAS command. On the other hand, if a request accesses a row different
than the one in the buffer (row miss), the MC has first to pre-charge the row through a PRE
command, and then issues the ACT and CAS commands. Those commands (PRE, ACT,
and R/W CAS) should be separated by the timing constraints defined in the DRAM JEDEC
standard [38] to ensure a correct behavior from the DRAM. Table 1 shows the relevant timing
constraints. Some of these constraints apply to the commands of the same bank (intra-bank),
while others apply to the commands among different banks (inter-bank). A command is
considered intra-ready or inter-ready when it satisfies its intra-bank or inter-bank constraints,
respectively, and it becomes ready when both constraints are met.

ECRTS 2023



17:4 A Tight Holistic Memory Latency Bound

2.2 Motivation: State-of-The-Art Limitations

The current paradigm to calculate the total WCET of a task in a multi-core platform
while accounting for the interference along the memory hierarchy is to use the additive
latency approach [10]. In this approach, every resource that is subject to contention is
analyzed separately (i.e., independent of other resources) to derive an upper bound on
the latency suffered upon accessing that resource. Afterwards, all latency bounds of all
resources can be added together to provide an overall safe bound. Most of the existing work
in bounding memory-related interference follows that approach; for instance, by focusing on
caches [12,13,18,23,33], DRAM [15,16,30,31], or memory interconnect [14,17]. Thus, we
make two critical observations about this approach.

1) On the one hand, this analysis conducted separately at each resource has
to assume the maximum possible interference at this resource. This has to be
applied to all considered resources leading to very pessimistic bounds when all added together.
For example, for a multi-core system with M Out-of-Order (OoO) cores, each of which
can have Npend possible outstanding requests, the analysis has to assume the maximum
possible interfering requests from all other cores on the resource under analysis, which is
(M − 1) · Npend. For example, existing work in analyzing DRAMs has considered this number
of possible competing requests [15, 43]. We make the observation that this is due to the
fact that COTS platforms, to optimize performance, deploy aggressive parallelism among
these resource and reorderings among requests targeting them. They do not maintain a global
ordering view that is shared by all these resources. Using this observation, we show that by
providing such global ordering, GRROFenables us to derive a considerably tighter bound
by making a holistic analysis of all the resources amenable. 2) On the other hand, the
conducted analysis considering only one resource can lead to unsafe assumptions.
In particular, in the case of analyzing requests from an OoO core with multiple outstanding
requests, the analysis has to consider the request that arrives first to the resource under
consideration to be the oldest from that core. This is, for example, what is conducted in the
existing analysis for DRAMs [32] and caches [33]. Although this is true from this resource
perspective, it is not necessarily valid from the real (core issuance) perspective. For instance,
in a real multi-core platform, where there exists parallelism in the memory hierarchy, a
younger request can arrive at a resource before an older one from the same core. This simply
destroys the notion of older request from a core perspective, which can entail significant
delays to that request upon being arbitrated at one of the resources. The only way to derive
a safe bound on such a case is to always assume that the request under analysis arrives at
this resource last after the maximum possible number of earlier requests from the same core.
This further pushes the pessimism of the analysis leading to extremely significant latency
bounds. We will discuss these limitations more with an illustrative example in Section 4 and
analytically bound the delays using the additive latency approach in Section 5.3.

2.3 Delay Composition Theorem for Real-Time Pipelines

Our analytical bounds use the delay composition strategy first introduced in [21] and apply it
to the whole memory hierarchy. While this analysis method has been introduced to compute
the worst-case latency of distributed real-time jobs, it has also been previously applied to
obtain upper latency bounds for DRAM requests [15,16,43]. In detail, the analysis considers
a set of jobs, which we will equate to hardware requests, executing on a given sequence
of resources (or pipeline stages). Each request has a known worst-case execution time on
each stage; once a request finishes executing on a stage, except the last, it immediately
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becomes ready for the next stage. The total latency of a request is defined by the difference
between the time it finishes execution on the last stage in the pipeline, and the time at
which it arrives on the first stage. At each stage, requests are scheduled according to either a
fixed-priority preemptive or a fixed-priority non-preemptive policy; in this paper, we employ
the latter since it matches the behavior of hardware resources. The main result in [21] is
that pipelining allows us to constrain the interference caused by higher priority requests on a
given request under analysis rua: such interference is limited to the longest execution time
of a higher priority request r on any stage, rather than the sum of r’s execution times on all
stages. Intuitively, the idea is that once r “gets ahead” of rua, it will become ready and start
executing on successive stages ahead of it; therefore, it cannot cause maximum interference
on rua on each stage.

However, for this property to hold, the theorem requires the relative priority of requests
to remain the same on all stages: if r temporarily drops its priority below that of rua on
a stage, it might be delayed by other lower-priority requests on that stage; and once it
regains its higher priority on a later stage, it might interfere again with rua. One of the main
contributions of this paper is proposing a novel architecture that enables the coordinated
management of all memory resources (i.e., stages) such that this property is satisfied. As
a result, this enables us to leverage the pipelining feature from the theorem to derive a
significantly tighter holistic memory latency bound.

Finally, the original delay composition analysis in [21] assumes that all requests traverse
the same pipeline stages. This is not generally the case for a modern memory hierarchy
where requests of different types can access resources in a different order. Consider, for
example, a demand miss request from a core compared to a write-back request of an evicted
line from either L1 or LLC. We will thus use the improved analysis in [22], which supports
such an extension. The key idea in the analysis is to split every higher priority interfering
request into a set of segments: each segment represents the execution of that request on a
sequence of consecutive stages in the path of the request under analysis, encountered either
in the same or exactly in reverse order.

3 System Model

3.1 Architecture
This section introduces the hardware architecture considered in this paper, as shown in
Figure 1a.

Processing Cores. We consider a multi-core system with M cores P1, .., Pi, .., PM ,
which can be In-order (IO) or OoO cores. OoO cores can have multiple outstanding
memory requests. We denote the maximum number of such in-flight requests as Npend,
which is usually determined by the number of available entries in the Miss Status Holding
Registers (MSHRs) in the platform’s caches [41,43].
Caches. We assume each core has exclusive access to a private cache (L1), and all the
cores share an on-chip Last-Level Cache (LLC). In line with related work, we assume a
partitioned LLC to eliminate data interference between cores at the LLC level [8]. Our
proposal does not require a particular technique for partitioning; however, for the analysis,
we assume a set-partitioned LLC. L1s and LLC are write-back write-allocate caches and
implement Least Recently Used (LRU) replacement policy. Unlike state-of-the-art works
in cache analysis in the real-time domain, a critical aspect of this paper is that we consider
a more realistic cache model that employs several of the optimizations commonly deployed
in COTS cache systems to improve system performance. 1) MSHRs. In order to leverage

ECRTS 2023



17:6 A Tight Holistic Memory Latency Bound

(a) System model. (b) Cacheline hit in
LLC (T1).

(c) Cacheline hit in
the write-back buffer
of LLC (T2).

(d) Cacheline hit in
the MC requests buf-
fer (T3).

(e) Cacheline miss
in LLC and hit in
DRAM (T4).

(f) Write-back an
evicted Cacheline
from L1 cache (T5).

(g) Evict dirty
Cacheline from LLC,
Clean state in L1
(T6).

(h) Evict dirty Cach-
eline from LLC, Dirty
state in L1 (T7).

Figure 1 Considered system model (a) and different request types for both demand (b – e) and
write-back (f – h) requests.

the performance gain from the OoO cores, we also consider a non-blocking cache that
can service multiple requests at a time. Non-blocking cache is an old concept [26] that
is widely adopted in modern COTS platforms. The considered caches allow both a
hit-over-miss and a miss-over-miss (i.e., servicing hits and misses while there is a pending
miss), subject to the number of MSHR entries. 2) Allocate-on-Fill. We consider an
allocate-on-fill cache, where cache lines that miss in the cache are allocated in the data
array only upon receiving the data from the lower memory. This avoids unnecessary early
eviction of cache lines and hence can enable more hits [2]. 3) Write Buffer. Caches
employ a write buffer where it places dirty lines upon eviction to be written to the lower
memory level. This enables a faster allocation for the new cache line without waiting for
the evicted line to be written to that lower memory. Similar to MSHR, write buffering is
a standard technique in modern COTS platforms [39] including Intel’s [19] and ARM’s [3].
It does not only exist in high-end platforms, but even the low-end ones usually used in
real-time embedded systems such as the ARM M4 includes some form of a write buffer [4].
4) Write Buffer Hits. Furthermore, the cache controller allows hitting in its write-back
buffer if it receives a request to a dirty cache line that exists in the write buffer; hence,
preventing unnecessary high miss latency. Upon hitting in the write buffer, the cache
controller takes two simultaneous actions to serve such requests: it sends the requested
data to the requestor and saves the data again in the cache’s data array. 5) Bankized
LLC. We consider a multi-bank LLC where data is distributed over N cache banks;
B1, .., BN . LLC banks are independent and can serve different requests in parallel; hence,
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they are modeled as separate resources, and the process time of the data in/out the data
arrays of a bank is cBANK . Since each LLC bank is independent, it will have its own set
of write buffer and MSHRs. We assume that both write buffers and MSHRs in shared
LLC are not source of interference among cores. This is because their sizes in COTS
platforms are usually set large enough to accommodate the maximum number of possible
outstanding requests from all cores in the system. Even in the case that this assumption
does not hold for some particular platform, existing works can be used to eliminate the
effect on request latency such as the work in [41] for MSHRs and in [5] for write buffers.
6) Miss Forwarding. The caches deploy a common optimization to reduce the miss
penalty, where requests can be determined to be whether a hit or a miss by checking the
tag/status bits. This tag checking can be done in parallel to and independent of accessing
the cache data array. Consequently, upon a miss, the cache controller forwards the miss
to be filled from the lower level memory without accessing the data array, which reduces
miss penalty. Additionally, once the data refill arrives from the lower memory, it can be
immediately forwarded to the requesting core on the response bus (subject to arbitration
as detailed later on), while simultaneously placed to be written also to the cache data
array. 7) Immediate Back Invalidation. We also assume that back invalidation from
a lower level of memory uses a dedicated special bus, and hence, do not interfere with
demand requests on the request bus.
Interconnect Bus. The system model considers a split-transaction shared bus between
the L1 caches and the LLC. This bus comprises two independent buses: a request bus
for sending requests from the L1s to the LLC and a response bus for data transmissions.
This architecture allows a concurrent operation for the requests and data responses on
the buses, where the transmission latency of packets on the request and the response
buses are cREQ and cRESP , respectively.
System Bus. The system bus is the interconnect between the LLC and the main
memory, and used for transmitting requests and data. A packet on the bus can contain a
request, data, or both, and its transmission latency is cSBUS . In our model, we assume
a full-duplex system bus, as shown in Figure 2, which consists of two buses: one is for
packets that are sent from LLC to the main memory (LLC-DRAM bus), and the second
is for the way back from the main memory (DRAM-LLC bus).
Memory Controller and DRAM. Accesses to the off-chip DRAM memory are managed
through an on-chip MC, as explained in Section 2.1. The MC stores incoming requests
from the system bus in per-requestor buffers. We consider a DRAM with n private
banks: b1, .., bn, where the MC maps every request to a bank that is assigned to its core.
Afterwards, the MC translates each request into its corresponding set of commands and
buffers them into the per-bank command queues. The MC arbitrates between the ready
commands based on the arbitration scheme order. Two more COTS features we consider
in our system model. 1) Write Data Queue Hit. We assume that the MC allows
demanding requests to hit in its request data buffers in order to reduce the memory
latency. This means that if a demanding request reaches the request buffers of the MC
while the required data is in one of the outstanding write requests, the data is read
from the buffers directly. 2) Clock Domain Crossing (CDC) Effect. Since off-chip
DRAM can generally operate at a different frequency than the on-chip core one, in our
end-to-end latency calculations, we have to consider the clock domain crossings that
requests suffer upon traversing the memory hierarchy. This can be done simply by doing
clock transformations (or calculating latencies at all stages in terms of absolute nano

seconds). For convention, we refer to the DRAM and core clocks as tDRAM
CLK and tCP U

CLK ,
respectively.

ECRTS 2023



17:8 A Tight Holistic Memory Latency Bound

Arbitration. Arbiters are required in the system to regulate access to shared resources.
The considered resources for arbitration are the request bus, the response bus, each
bank of the LLC, the LLC-DRAM bus, and the three stages of the main memory (PRE,
ACT, CAS). The DRAM-LLC bus does not require an arbiter as it does not incur any
contention. This is because the DRAM-LLC bus is an on-chip bus between the DRAM
memory controller and the LLC; therefore, its data transfer time is much lower than that
of the off-chip DRAM access time. The arbitration scheme we propose to coordinate all
these resources is discussed in detail in Section 4.1.

3.2 Latency Model
For any request r, let ta

r be the time at which r arrives in the system and tf
r the time at

which r finishes executing. Formally, request r is outstanding in interval [ta
r , tf

r ]. As discussed
in Section 3.1, an OoO core can have multiple outstanding requests. Hence, it is essential
to clarify how to compute the latency of a request. Using the same approach as in [31],
we say that r is oldest at time t if it is the earliest arrived request of its core that is still
outstanding at t. Note that because our architecture model allows multiple outstanding
requests to execute in parallel and complete out-of-order, a request r might never become
the oldest. However, if it does, it remains oldest until its finish time tf

r . Furthermore, it
must become oldest either at ta

r , if there is no other outstanding request of the same core, or
at the latest finish time of a request of the same core that arrived before r. The processing
latency of a request is then the time during which it is oldest or zero if it never becomes
oldest. Intuitively, this ensures that we do not count in the latency of a request the queuing
delay caused by other requests of the same core that arrived before it. Note that when a core
generates multiple concurrent requests, the time required to complete executing all requests
is bounded by the sum of their processing latencies.

3.3 Request Model
In line with the delay composition theorem summarized in Section 2.3, we model each request
r as executing on a sequence of stages corresponding to hardware resources in our system
where requests are scheduled based on an arbiter. For LLC and interconnections, such
resources comprise each of the N LLC banks, which we denote with BANK, the request bus
REQ, the response bus RESP, and the LLC-DRAM bus SBUS. Note that the DRAM-LLC
bus is not modeled as a pipeline stage since it is not subject to arbitration, as explained in
Section 3.1.

Similar to [15,16,43], we model DRAM as consisting of three stages: PRE:ACT:CAS.
Each stage models the interference of other requests on commands of the corresponding type.
Note that because we assume private banks in DRAM, such interference can only be caused
by intra-stage DRAM constraints. We define the execution time on any s stage of these
stages as cs. For instance, the execution time on the REQ stage is cREQ, and on the SBUS
stage is cSBUS .

3.4 Request Types
Following the described request model, we classify requests into a set of request types; the
type T (r) of request r determines the list of stages/resources traversed by r. We notice that
requests are issued to the memory system for two main reasons: a load/store request for data
that is miss in the L1 cache or a write-back request for a victim dirty cache line to the lower
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memory level. Thus, the request types are split into two groups. The first one contains the
demanding requests that are miss in the L1 cache, in which a core broadcasts a load/store
request on the request bus and waits for the demanding data to be sent on the response bus
(T1, T2, T3 and T4). This is denoted in Figures 1b – 1e. On the other hand, Figures 1f – 1h
show the write-back requests of a dirty evicted cache line from L1 and LLC, which compose
the second group (T5, T6 and T7). We now explain each of the request types in detail.

T1) REQ:BANK:RESP. This type explains the path for a request demanding a cache line
that exists in the LLC. After the core broadcasts a request on the request bus, the data is
read from the LLC bank and then sent to the core on the response bus (Figure 1b).

T2) REQ:RESP/BANK. In this case, the request hits into data that is found in the
LLC write buffer. Based on the miss forwarding optimization discussed in Section 3.1, the
requested cache line will be sent to the core on the response bus while simultaneously being
rewritten to the LLC bank (Figure 1c).

T3) REQ:SBUS:RESP/BANK. This represents the case of a request that misses in the
LLC bank but hits in the MC. This happens when this request targets a cache line that
has been recently evicted from the LLC and sent to the DRAM; and hence, not yet written
into the DRAM banks. Therefore, the system will fetch the data directly from the memory
controller, and send it back to be simultaneously processed on the corresponding LLC bank,
while also being sent to the requesting core through the response bus similar to the previous
type. This is depicted in Figure 1d.

T4) REQ:SBUS:PRE:ACT:CAS:RESP/BANK. This represents the case where the request
needs to fetch the data from the DRAM device. Accordingly, once the request is issued in the
request bus, and misses in the LLC, the request will be sent to the DRAM on the system bus.
Afterwards, the data will be fetched from the DRAM bank through the PRE:ACT:CAS
stages. Then, the fetched data will be sent to the LLC bank to be written to its data
array and simultaneously to the requesting core through the response bus as illustrated in
Figure 1e.

T5) REQ:RESP:BANK. This type corresponds to a write-back request from L1 to the LLC
due to the eviction of a dirty line. It first sends a request on the request bus to notify the
LLC that it is going to update a cache line, and then it puts the data on the response bus to
the LLC. Finally, the LLC bank gets the data and processes it as delineated in Figure 1f.

T6) SBUS:PRE:ACT:CAS. This type represents the write-back from LLC to DRAM due to
the eviction of a dirty up-to-date cache line from the LLC bank. The LLC sends concurrently
an invalidation message to the L1 caches and a write-back request to the DRAM through
the SBUS. Please note that as aforementioned, the back invalidation to the L1s happens in
its dedicated bus, and hence, is not subject to arbitration. Therefore, it does not have a
dedicated stage. In contrast, the write to the DRAM after traversing the SBUS, requires the
three DRAM stages: PRE:ACT:CAS. This type is shown in Figure 1g.

T7) RESP:SBUS:PRE:ACT:CAS. Similar to T6, this type represents an LLC write-back
of a dirty evicted line to the DRAM. However, unlike T6, the evicted line in this case is
stale, which means that it is updated in the L1 cache. Thus, when the L1 cache receives the
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17:10 A Tight Holistic Memory Latency Bound

Figure 2 The architecture of GRROFproviding the global view for all arbiters.

invalidation message, it sends the updated version of the line to the LLC on the response
bus. The cache controller stores the line in its write buffer until the data is received from L1
and then sends a write request to the main memory. Therefore, it requires RESP stage from
L1 to the LLC, SBUS stage from LLC to the DRAM, and then the three DRAM stages:
PRE:ACT:CAS. This type is shown in Figure 1h.

Two important general notes to make about the request types. First, requests of type T2,
T3 and T4 execute in parallel on two stages (BANK and RESP ) instead of a linear sequence
of stages which is the supported model by the existing pipelining analysis in [21]. To be able
to pipeline, we apply the delay analysis to the two possible sequences and take the one that
leads to the worst-case latency. More details on how to apply the delay analysis to such
requests are in Section 5. Second, for the request types accessing the DRAM (namely, T4, T6
and T7), we assume a request targeting a closed row in the DRAM bank. This assumption
is mandatory to provide safe worst-case latency bounds. This is because as explained in
Section 2, requests targeting a closed DRAM row suffer larger delays compared to requests
targeting an open row.

4 GRROF: Coordinating Management of All Memory Resource

In this section, we introduce the proposed architecture to coordinate all arbiters in the
memory hierarchy, enabling us to apply the pipelining idea from the delay composition
theorem. The high-level diagram of the proposed architecture is shown in Figure 2, and we
use Figure 3 as a running example to explain its operation.

Since one of the motivations of this work is the inherent pessimism in considering each
memory resource separately and then applying the additive latency approach, we start with
an illustrative example that highlights this pessimism. Figure 3 considers a system with three
cores P1 – P3 where each Pi issues three requests ri,1-ri,3 to the cache hierarchy. Request’s
arrival to the system is modeled by the up arrows ↑. For example, r1,1, r1,2, and r1,3 from
P1 arrive at the timestamps 1, 9, and 17, respectively. The system has multiple arbitration
stages REQ, BANK0−6, and RESP. In Figure 3a, each stage employs an independent RR
arbiter. Requests r1,1, r2,1, and r3,1 target BANK0, while the other requests are distributed
over the other banks. According to the given scenario and the separate RR arbitration,
request r1,1 incurs a significant delay on RESP stage despite being the oldest request from P1
and does not finish up until timestamp 58 (modeled by the down arrow ↓). More importantly,
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if we use the additive latency approach naively without considering the fact that r1,1 while
being the oldest for P1 might not be the local oldest at each separate resource, the bound
will be the maximum possible interference due to requests from other cores in addition to the
service time of r1,1 itself in each resource. Since this is RR, it will be 2 × 3 + 10 × 3 + 5 × 3=
51 cycles. This is less than the actual suffered bound; and hence, is in fact an unsafe bound.
The only possible way to derive a safe bound is to assume that the request under analysis
is always arriving last to each resource after the maximum number of requests from the
same core. As explained in Section 2.2, this provides a safe bound at the expense of being
extremely pessimistic.

4.1 GRROF: Coordinated Management of All Memory Resources
Motivated by these observations about the existing direction in analyzing memory resources
in multi-core real-time systems, we propose GRROF: a methodology to coordinate all the
arbitration decisions across all resources in the memory hierarchy of a modern multi-core
platform. This includes shared interconnects (request, response, and system buses), shared
cache(s), and shared off-chip DRAM. The key idea behind this methodology is to enable
all the arbiters in the memory hierarchy to use a shared state of the system to make a
coordinated scheduling decision. It is important to emphasize that under GRROF, every
resource in the memory hierarchy still deploys its own dedicated arbiter, which is essential
for parallelism. This is in contrast to assuming a unified global arbiter that manages all the
memory resources. We observe that, for instance, most of the existing works in cache analysis
combine all interconnect resources to the shared cache as well as the shared cache itself into
one resource that is arbitrated using one arbiter (e.g. [14, 24, 42]). Instead, in GRROF and as
explained in Section 3, every resource has its own arbiter. So, there is a dedicated arbiter for
the request bus, response bus, each LLC bank, system bus to the DRAM, and the DRAM
memory controller. However, all these arbiters operate in coordination using a global view of
the state of different requests in the system.

We now detail the operation of GRROF. The global view is maintained using the GRROF
Engine in Figure 2. This engine maintains the following state.

1) RR Order. It maintains a RR order among the cores. Arbiters arbitrate among cores
according to this RR order. Therefore, all arbiters see the same RR order view. A core gets
pushed into the RR order queue if it has issued a request to the system (e.g., upon an L1
miss in our system model). Once a core is at the head of the RR order, it keeps that order
until its oldest request retires from the system. For example, in Figure 3b, P3 maintains
its position at the top of the RR order despite having r3,2 retired at timestamp 24. This is
because the oldest request from P3 is r3,1, which still needs to finish. This is vital to provide
tight guarantees for the oldest requests. The intuition is that the oldest memory request is
the one stalling the pipeline [34,35]; and hence, contributing to the task’s WCET [33]. In
the same example in the figure, by keeping its RR position, P3 manages to finish its oldest
request r3,1 at timestamp 29 compared to what happens for uncoordinated arbitration where
P3 loses its RR order in Figure 3a leading r3,1 to wait for another slot for P3 in the response
bus resource and finishes at 39.

2) Per-Core FIFO Order. For arbiters to be able to determine the relative order of requests
from the same core, the GRROF Engine maintains one First-In First-Out queue (FIFO) per
core. Upon arrival to the system, a request ID is pushed in the corresponding core’s FIFO.
The request ID is removed from such FIFO upon retiring from the system. Accordingly,
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(a) Uncoordinated RR arbitration.

(b) Proposed GRROF solution. The bottom of the figure shows the state tracked
by the GRROF Engine, including the per-core FIFO order and the RR order
among cores.

Figure 3 An example that shows the behavior of GRROF compared to separated RR. The assumed
system contains three cores P1−3 that share resources REQ, BANK0−6, and RESP. Access latencies
for the REQ, BANK, and RESP resources are assumed to be 2, 10, and 5 cycles, respectively.

the FIFOs keep state about this relative order for requests from the same core. Again, all
arbiters have access to these FIFOs and hence, can decide accordingly which request to elect
for service at the arbitrated resource.

The arbiters deploy Round Robin Oldest First (RROF) arbitration [33]. They first
conduct a RR among the oldest requests of the cores. Only if no older requests are ready
to be serviced at that resource the arbiter conducts RR among younger requests (in the
order of the FIFO for the same core and RR among cores). In the example in Figure 3b, the
response bus (RESP) arbiter elects r1,1 at timestamp 34 because it is the oldest request from
the core at the top of the RR order. On the other hand, at 19, the RESP arbiter cannot
issue any of the oldest requests (r1,1, r2,2, r3,1) since none of them is ready for this resource.
Accordingly, it picks r3,2 as the only ready non-oldest request.

The important and novel aspect here is that this RROF at each resource uses the global
system state from the GRROF Engine (Namely, RR Order and per-core request FIFO order).
As a result, the relative request priorities remain the same for all arbitrated resources (stages
in delay composition theorem terminology); hence, we can apply the pipelining from the
theorem. We prove in our analysis in Section 5 how this enables us to significantly reduce the
worst-case latencies suffered by the oldest requests in the system. Considering r1,1 in Figure 3,
we observe that r1,1 arrives at the RESP bus resource last among all the requests since it
has been delayed by r2,1 and r3,1 in the Bank0 stage. As a result, in the uncoordinated RR
baseline in Figure 3a, according to the local RR arbiter at the RESP stage, this request has
to wait for all the requests to finish, including the non-oldest requests from the same core.
We see in Figure 3a that r1,1 suffers interference from requests from the two other cores
in all the stages (REQ, BANK, and RESP) (Observation 1 in Section 2.2). Moreover, r1,3
is serviced by the RESP before r1,1 since locally, r1,3 is considered older (Observation 2 in
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Section 2.2). This overall leads r1,1 to finish at timestamp 58. On the other hand, GRROF,
in Figure 3b, is aware of the global order of all requests, thus once r1,1 arrives at the RESP
stage, it gets the highest priority among all P1 requests since it is the oldest. Additionally,
P1 is at the top of the RR queue since its oldest request still needs to finish. As a result, r1,1
is serviced at timestamp 39 instead of 58.

4.2 The Proposed Memory Controller

To be able to apply the pipelining from the delay composition theorem across the entire
memory hierarchy, the schedulers inside the DRAM MC have to apply the exact arbitration
mechanism described in Section 4.1. Therefore, we also propose an MC scheduler that utilizes
the global request state from the GRROF Engine. In detail, we employ three distinct RROF
arbiters for PRE, ACT, and CAS commands, which follow the global order maintained by the
centralized GRROF Engine. If multiple commands from different arbiters are selected at the
same time, a command bus conflict may happen. The MC handles this conflict by prioritizing
CAS commands over ACT, and ACT over PRE commands, which is the common approach
followed by COTS MCs. The intuition is that CAS commands are for row hit requests and
hence prioritizing them will increase the overall system performance. However, the proposed
MC strictly applies the RROF scheme between CAS commands and handles reads and writes
equivalently. This is in contrast to DuoMC [32], which deploys read/write batching, where
several read (write) commands are scheduled together as a batch and executed in a read
(write) round, and rounds are alternating types. The reason for avoiding read/write batching
is we find this to break the property required by the delay composition theorem. Basically, by
read/write batching, requests no longer keep their relative priority across the different stages
in the memory hierarchy. For example, a write might have a higher priority than a read in
one of the cache levels (according to GRROF orders) but the write gets deprioritized at the
MC (e.g. if it is executing a read batch upon its arrival to its request queues). Breaking this
property hinders our goal of being able to apply pipelining to the memory latency analysis.
Instead, by handling reads and writes in a similar fashion, we are able to apply the pipelining
among DRAM command stages. This pipelining at the DRAM has been explored by previous
works [15,16,43], albeit they considered DRAM only.

It is important to notice that deploying the same GRROF arbitration methodology at all
memory resources including within cache hierarchy as well as in DRAM enables us to apply
the delay composition theorem since all requests maintain their relative order throughout
the resources. Without this coordination, 1) suffered delays at different stages cannot be
overlapped by applying to the pipeline, and 2) the oldest request at one resource can become
non-oldest at another resource and hence can be significantly delayed. This is similar to the
clarified example in Figures 3a and 3b.

5 Latency Analysis

In this section, we show how to obtain a latency bound Lua on the worst-case processing
latency of the oldest request under analysis rua of a given type, following our described
GRROF arbitration in Section 4.1 and MC in Section 4.2, and based on the delay composition
framework.
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Figure 4 The delay composition for the request under analysis.

5.1 Main Memory Latency Analysis
Based on the proposed MC arbitration, we next determine an upper bound to the delay
that the oldest request under analysis rua can suffer in the main memory. In the worst-case
scenario, rua and all interfering requests require to issue three commands: PRE, ACT, and
CAS. Figure 4 shows how to decompose the latency of rua based on two types of terms: 1)
intra-bank constraints between commands issued to the same bank, or between command
and data, and 2) inter-bank constraints caused by the same type of command issued to
other banks. Since we assume private banks, intra-bank constraints can only be caused
by commands of the core that issued rua, while requests of other cores cause inter-bank
constraints. This section aims to derive the worst-case latency components of the three
DRAM stages, which we will then use in Section 5 in order to calculate the total worst-case
request latency. These components are as follows:
1. For the PRE stage: DP RE is the maximum latency of PRE from the time it becomes

intra-ready until it is issued, caused by interfering PRE commands of other cores.
2. For the ACT stage: DACT is the maximum latency of ACT from the time it becomes

intra-ready until it is issued, caused by interfering ACT commands of other cores.
3. For the CAS stage: DCAS is the maximum latency of CAS from when it becomes

intra-ready until it is issued, again caused by interfering CAS commands of other cores.

We next derive bounds on DP RE , DACT and DCAS as a function of the numbers NP RE ,
NACT and NCAS of higher priority requests whose PRE, ACT and CAS commands, respect-
ively, interfere with the commands of rua. However, since, as aforementioned applying the
pipelining from the delay composition theory to these three DRAM stages is not novel, and
the latency components have already been derived in several previous works [15,43], we do
not formally prove their derivation and instead use the values directly from those works.
That said, for comprehensiveness in the paper, we intuitively explain each equation.

For the PRE stage, Equation 1 calculates DP RE , which uses the same analysis as in [43]
(Equation 2). The intuition behind Equation 1 is as follows. Since there is no inter-bank
timing constraint between PRE commands, each interfering PRE contributes one clock cycle
of delay; however, we have to add an additional cycle per command to account for the effects
of command bus conflicts.

DP RE(NP RE) = 2 · NP RE · tDRAM
clk (1)

For the ACT stage, ACT commands have two inter-bank timing constraints, tl
RRD which

applies between successive commands, and tF AW which applies every 4 commands. Hence, the
bound must consider the maximum of the two constraints. The value of each timing constraint
is increased by one clock cycle to account for bus conflicts caused by CAS commands. That
is one difference between Equation 2 below and Equation 3 in [43]. In the latter, each
timing constraint is instead increased by two clock cycles because ACT commands can suffer
bus conflicts due to both PRE and CAS commands, while for our proposed controller, as
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explained in Section 4.2, ACT will not suffer command bus contention from PRE. Finally,
in Equation 2, tF AW − 3 · tl

RRD − tDRAM
clk represents the maximum delay caused by ACT

commands of lower-priority requests issued as late as possible before the ACT of rua becomes
intra-ready.

DACT (NACT ) = tF AW − 3 · tl
RRD − tDRAM

clk + max
(

NACT · (tl
RRD + tDRAM

clk ),

⌊NACT /4⌋ · (tF AW + tDRAM
clk ) + (NACT %4) · (tl

RRD + tDRAM
clk )

)
(2)

Finally, for the CAS stage, Equations 3 and 4 calculate DCAS for read (RD) and write
(WR) requests, respectively. Since in our controller, CAS commands have the highest priority
for accessing the command bus; they cannot suffer command bus conflicts. Also, since in
our controller RD and WR commands are scheduled fairly, contrary to [43] and similar
to [15], the NCAS interfering commands can comprise both RD and WR. Inter-bank timing
constraints between CAS commands are longer when switching between RD-to-WR (tRT W )
and WR-to-RD (tW L + tBus + tW T R) compared to issuing two RD or two WR commands
back-to-back (tl

CCD); this is because the data bus needs this time to change the direction of
the data sent on the bus. Hence, to bound the worst-case latency for a CAS command, we
consider the maximum alternation between RD and WR commands. Again, a lower-priority
CAS command can be issued one clock cycle before the CAS of rua becomes intra-ready;
hence, the total number of interfering requests is NCAS + 1. Noticing that the last constraint
must be a WR-to-RD switch if rua is an RD (Equation 3), and an RD-to-WR switch if rua

is a WR (Equation 4).

DRD
CAS(NCAS) =

⌊NCAS + 1
2

⌋
· tRT W +

⌈NCAS + 1
2

⌉
· (tW L + tBus + tW T R) − tDRAM

clk (3)

DW R
CAS(NCAS) =

⌈NCAS + 1
2

⌉
· tRT W +

⌊NCAS + 1
2

⌋
· (tW L + tBus + tW T R) − tDRAM

clk (4)

In addition to the latency of each of these stages, there are additional across-stage delays
a request can suffer. These are as follows. 1) tINIT is the worst-case latency from the
time rua arrives at the MC to PRE becoming intra-ready. In the worst case depicted in
the figure, a non-oldest request r of the same core as rua could issue an ACT command
one cycle before rua arrives at the MC. In such a case, although rua preempts r, the ACT
command imposes an ACT-to-PRE timing constraint tRAS . Thus, in the worst case we have
tINIT = tRAS − tDRAM

clk . Additionally, intra-bank constraints impact when a request can
become ready at a particular stage. Namely, 2) tRP is the PRE-to-ACT timing constraint,
and 3) tRCD is the ACT-to-CAS timing constraint. We now show how to use all these
components to derive the total end-to-end worst-case latency of a memory request.

5.2 Holistic Memory Latency Bound
To maximize Lua, we assume that rua becomes oldest at the earliest possible time ta

rua
. Since

we have several request types for rua as well as for interfering requests. Proving the worst-case
Lua for all scenarios is impossible within the paper space. Instead, we developed a brute-force
algorithm that covers all possible scenarios and calculates their latency to ensure that we
correctly compute the latency bound for every request type and values of timing parameters
and corresponding valid values of NREQ, NSBUS , NP RE , NACT , NCAS , NRESP , NBANK

1. It

1 source code is available here: https://gitlab.com/FanosLab/endtoend_wcl_cases_matlab/
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is worth noting that the running time of this brute-force machinery is in the range of few
seconds. That said, it is done offline; therefore, the exact run-time complexity is irrelevant to
the proposed solution. In the rest of this section, we focus on deriving the global worst-case
Lua across all scenarios, which corresponds to a rua of type T4, which traverses the most
stages and has the highest latency for our system. First note that as pointed out in Section 3.4,
requests of type T4 (as well as those of type T2, T3) execute simultaneously on BANK and
RESP, rather than traversing a linear sequence of stages. Since BANK and RESP are
the last stages on which rua executes, its latency depends on which of the two stages it
last finishes execution on. If rua finishes executing on BANK after RESP, then we can
obtain a latency bound by analyzing its execution along path (REQ, SBUS, PRE, ACT,
CAS, BANK); otherwise, by analyzing path (REQ, SBUS, PRE, ACT, CAS, RESP).
Therefore, we can compute Lua by applying the delay composition analysis to both stage
sequences and taking the maximum obtained bound.

Second, as discussed in Section 2.3, we use the improved delay composition analysis
in [22] to support requests of different types. This analysis’s key idea is to split every higher
priority interfering request r into a set of segments: each segment represents the execution of
r on a sequence of consecutive stages in the path of the request under analysis encountered
either in the same or exactly in reverse order. We consider the path (REQ, SBUS, PRE,
ACT, CAS, RESP) as an example since we find it to lead to the maximum possible Lua in
our system. Then, the following segments must be considered:

Each request of type T1, T2 or T5 is split into a segment (REQ) and a segment (RESP).
Note that no segment can represent execution on BANK since this stage is not part of
the analyzed path of rua.
Each request of type T3 is split into a segment (REQ, SBUS) and a segment (RESP).
Each request of type T4 corresponds to a single segment (REQ, SBUS, PRE, ACT,
CAS, RESP).
Each request of type T6 corresponds to a single segment (SBUS, PRE, ACT, CAS).
Each request of type T7 is split into a segment (RESP) and a segment (SBUS, PRE,
ACT, CAS).

Lua is obtained by summing the following terms:
1. Ltrav

ua : this is the time required by rua to traverse its required stages (based on type),
assuming it suffers no interference at all. For each stage, this is the maximum time
required to move to the next one along the path or the time needed to finish executing
the last stage.

2. Llp
ua: this is the latency component caused by low-priority requests. For each stage,

the maximum interference is caused by a single lower-priority request. In GRROF, such
request must start executing no later than one clock cycle before rua or any higher-
priority request becomes ready at that stage, otherwise the arbiter will not select the
lower-priority request; therefore, the maximum interference is equal to the execution time
of any lower-priority request on that stage minus one clock cycle.

3. Lhp
ua: this is the latency component caused by higher-priority requests. For every segment,

its maximum execution time on any one stage on which it executes.

We begin by discussing Ltrav
ua . Here, we are interested in the time between a request

starting execution on a stage and becoming ready to be arbitrated on the next stage. Since
the request becomes ready on SBUS immediately after finishing executing on REQ, the time
from REQ to SBUS is simply the execution time cREQ on REQ. Similarly, the time to finish
executing on RESP is cRESP . However, in the case of DRAM stages, we have to consider the
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effect of intra-bank DRAM constraints. As discussed in Section 5.1, the time from PRE to
ACT is tRP and the time from ACT to CAS is tRCD. For the time from SBUS to PRE, we
have to consider three time components: (a) the time cSBUS required to execute on SBUS;
(b) the time tcross required to cross clock domains since the system bus and the DRAM
controller use different clocks. In the worst case, we assume that such time equals one clock
cycle of the destination domain, i.e., tcross = 1. (c) The time tINIT = tRAS − 1 required
for the request to become ready on PRE after arriving at the memory controller. Hence,
the required time is equal to cSBUS + tRAS . Finally, for CAS to RESP, the time includes
tRL + tBUS to obtain the data after issuing the CAS command, tcross = 1 to cross back into
the CPU clock domain 2, and cSBUS to send the data back through the DRAM-LLC bus,
for a total of tRL + tBUS + 1 + cSBUS . Summing over all stages, for our example, we obtain
a total of:

Ltrav
ua =cREQ + cSBUS + 1+(

(tRAS − 1) + tRP + tRCD + tRL + tBUS

)
· (tDRAM

CLK /tCP U
CLK) + cSBUS + cRESP .

(5)

Next, we consider the interference of lower and higher-priority requests/segments
(Lintf

ua = Lhp
ua + Llp

ua). Let NREQ, NSBUS , NP RE , NACT , NCAS to denote the number of
segments that interfere on the corresponding stage, subject to the constraint that each
segment interferes on only one stage. Then including the effect of a lower-priority re-
quest, the total interference on REQ, SBUS and RESP is equal to DREQ(NREQ) =
cREQ −1+NREQ ·cREQ, DSBUS(NSBUS) = cSBUS −1+NSBUS ·cSBUS , DRESP (NRESP ) =
cRESP − 1 + NRESP · cRESP ; while the interference on PRE, ACT and CAS is equal to
DP RE(NP RE), DACT (NACT ) and DRD

CAS(NCAS) as computed in Equations 1, 2, 3. The
total interference is thus calculated by Equation 6 maximized over all possible values of
NREQ, NSBUS , NP RE , NACT , NCAS , NRESP .

Lintf
ua =DREQ(NREQ) + DSBUS(NSBUS) + DRESP (NRESP )+(

DP RE(NP RE) + DACT (NACT ) + DRD
CAS(NCAS)

)
· (tDRAM

CLK /tCP U
CLK) (6)

Note that based on our GRROF arbitration, at most M −1 requests can have higher priority
than rua. For the system settings employed in our evaluation, Equation 6 is maximized
when all M − 1 requests are of type T7, yielding M − 1 segments of type (RESP) with
NRESP = M − 1 and M − 1 segments of type (SBUS, PRE, ACT, CAS) interfering on
CAS (i.e., NCAS = M − 1), for a resulting interference:

Lintf,GRROF
ua =DREQ(0) + DSBUS(0) + +DRESP (M − 1)+(

DP RE(0) + DACT (0) + DRD
CAS(M − 1)

)
· (tDRAM

CLK /tCP U
CLK). (7)

Summing Equations 5 and 7 then yields a latency bound for path (REQ, SBUS, PRE,
ACT, CAS, RESP), which again based on our system setting, is the latency bound Lua for
requests of type T4 (Equation 8).

LGRROF
ua = Ltrav

ua + Lintf,GRROF
ua (8)

2 Note that for the system in Section 6, we assume that the CPU clock has double the frequency of the
DRAM clock and that the two clocks are synchronized. Under such assumption, we can take tcross = 0.
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Finally, note that when analyzing a path through BANK, the maximum interference is
similarly equal to DBANK(NBANK) = cBANK − tCP U

CLK + NBANK · cBANK . It is important
to consider that here NBANK represents the number of segments that interfere on the same
LLC bank as rua. However, a higher-priority request might also target a different LLC bank.
For example, when T (rua) = T1, a higher priority request r also of type T1 would yield a
single segment (REQ, BANK, RESP) if it targets the same bank as rua, and two segments
(REQ) and (RESP) if it targets a different bank. If cBANK ≥ cREQ + cRESP , then the first
case results in higher interference; otherwise, the second.

5.3 Effect of Additive Latency Approach

After deriving the latency bounds for GRROF and using the pipelining analysis from the
delay composition theorem, this section shows how pessimistic the resulting bounds are
upon considering resources separately and follow the additive latency approach even when
pipelining has been considered at one or more of the components in the system but not at the
holistic level of the memory. In doing so, we first derive this bound for two systems that apply
the latency additive theorem at different scale. Please note that to derive a safe bound using
this approach, we follow the direction discussed in Section 2.2 by assuming the maximum
possible delay from younger requests of the same core at each resource. As explained in
Section 2.2, this provides a safe bound at the expense of being extremely pessimistic. We
first define the two systems as follows. Discrete-RR is a system that deploys traditional RR
arbitration at the REQ, RESP, and BANK stages, while it uses the MC model proposed
in Section 4.2 deploying the RROF arbitration at the three DRAM stages: PRE, ACT,
and CAS. Split-RROF is a system that deploys RROF arbitration locally at DRAM stages
using the MC model proposed in Section 4.2 and at the cache stages. However, there is
no coordination between the DRAM subsystem and the cache subsystem stages. We use a
DRAM with a pipelined stages model for the two systems since the state-of-the-art analysis
in DRAM already applies the delay composition theorem [15,16,43]. The Discrete-RR system,
on the other hand, is using a traditional RR arbiter at each of the remaining three stages:
REQ, BANK, and RESP. In contrast, the Split-GRROF goes one step further and even
pipelines these three stages together. The reason for choosing this model is to show that even
when pipelining resources at one of the levels and not at the system level, latency bounds
are still quite pessimistic.

The latency bound Lua for Discrete-RR, LDRR
ua can be calculated as follows. First, the

latency of each of the REQ, RESP, BANK, and SBUS stages has to be separately calculated.
Since each of these stages adopts a RR arbiter and each core has a maximum of Npend

pending requests. The worst-case for rua is to assume that it arrives at the stage after
Npend − 1 requests from Pua and that Pua is last in the RR order. This yields a total of
M · Npend · cs, where s is any of the REQ, RESP, BANK, or SBUS stages, which includes
the execution of rua itself in s. For the DRAM stages, there is one clock cycle for domain
crossing. Afterwards, in contrast to GRROF since the relative priority of requests can no
longer be assumed to be the same between the cache and the DRAM subsystems, rua has to
assume that it arrives at the DRAM in worst-case as the last request similar to all other
stages. Therefore, it has to wait for Npend−1 requests to finish from Pua, which in worst-case
are all write requests. This is the second line in Equation 9. Afterwards, rua itself can suffer
M − 1 requests from other cores due to RR order. This is the third line in Equation 9. Since
DRAM is pipelined, we maximized the delay over the ACT, PRE, and CAS stages, which
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happens to be that in worst-case all the M − 1 interfering requests are contributing to the
CAS stage similar to GRROF in Equation 7. Applying the additive latency theorem, this
gives a total delay for the Discrete-RR as follows:

LDRR
ua = M · Npend · (cREQ + cSBUS + cBANK) + 1 + cSBUS(
(Npend − 1)(DP RE(0) + tRP + DACT (0) + tRCD + DW R

CAS(M − 1) + tW L + tBUS + tW R)+

DP RE(0) + DACT (0) + DRD
CAS(M − 1) + tRL + tBUS

)
· (tDRAM

CLK /tCP U
CLK). (9)

The latency bound Lua for Split-RROF, LSRROF
ua can be calculated as in Equation 10.

One important observation to highlight is that because of the pipelining effect in the cache
subsystem, Split-RROF has to account only for interference from M − 1 requests instead of
the M ·Npend in Discerete-RR case. However, because Split-RROF does not pipeline the cache
and the DRAM subsystems together, a special consideration has to be paid for what requests
interfere with rua in the cache subsystem. In particular, because there are now requests
that will hit in the BANK and requests that miss and go to the DRAM, requests will take
different paths in the cache pipeline stage. The hit requests will be REQ, BANK, and RESP,
while the miss requests (from the cache pipeline perspective) will be REQ, then go off the
system (to DRAM), then come back to execute RESP and BANK in parallel. Due to this
fact, rua can indeed suffer interference both at the REQ stage and at the BANK stage. This
is accounted for in the second line in Equation 10. The first line represents the traversing
latency similar to Equation 5 for GRROF. It basically goes through REQ, SBUS, then cross
to DRAM (one cycle for clock domain crossing), and then comes back from DRAM through
SBUS and then is processed in BANK. The third and fourth lines are accounting for DRAM
interference very similar to Equation 9. The last line accounts for one low-priority request at
each stage rua traverses.

LSRROF
ua = cREQ + cSBUS + 1 + cSBUS + cBANK+

DREQ(M − 1) + DSBUS(0) + DBANK(M − 1)+(
(Npend − 1)(DP RE(0) + tRP + DACT (0) + tRCD + DW R

CAS(M − 1) + tW L + tBUS + tW R)+

DP RE(0) + DACT (0) + DRD
CAS(M − 1) + tRL + tBUS

)
· (tDRAM

CLK /tCP U
CLK)+

(cREQ − 1) + (cSBUS − 1) + (cBANK − 1) (10)

6 Evaluation Results

We implement the proposed solution as well as the two systems we compare against (Discrete-
RR and Split-RROF from Section 5.3) on a cycle-accurate simulation platform integrating
the cache subsystem simulator provided in [17] with MCsim as a main memory system
simulator [29], in order to mimic the whole path of a request. By this way, we are able to
accurately obtain end-to-end latency for memory accesses.

Experimental Setup. Unless otherwise specified, in all our experiments we use a quad-core
system clocked at 2.4 GHz, where each core is OoO with up to 16 Npend and a 32 KB 4-way
set-associative private L1 cache. Through a split-transaction interconnect, the cores share
access to a 4 MB 8-ways set-associative bankized LLC that comprises 8 separate banks. Both
L1s and the LLC are write-back write-allocate non-blocking caches with a cache line size of
64 bytes and an LRU replacement policy. The LLC is set-partitioned such that each core has
its own private sets. Nonetheless, all cores can access all LLC banks. To map the requests to
the different LLC banks, the cache controller uses the Least-Significant-Bits (LSBs) in the

ECRTS 2023



17:20 A Tight Holistic Memory Latency Bound

tag address bits to denote the bank number, such that a core can access all banks within its
private sets. We use a DDR4-2400U for the main memory with a single-channel single-rank
DRAM device. DRAM banks are partitioned such that each core accesses its own private set
of banks. We assume that processing L1 hit requests takes a single cycle and processing data
in the LLC data array takes ten cycles (cBANK = 10). We also configure processing time
on request and response buses to 2 and 5 cycles, respectively (tREQ = 2, tRESP = 5). The
system bus between the LLC and the MC has a latency of (tSBUS = 5) in either direction
LLC-DRAM or DRAM-LLC.

Workloads. We use SPEC CPU benchmark [40]. While running a SPEC workload on one
of the cores, the other cores are running a stressing microbenchmark to generate the most
interference on the task under analysis. For these stressors, we use the latency benchmark
from the IsolBench suite [41].

Compared Systems. In addition to the two real-time systems of (Discrete-RR and Split-
RROF, we compare GRROF against COTS high performance arbiter using FRFCFS arbitration
for all resources.

Figure 5 Per-request worst-case latency both Observed (solid bars) and analytical (T-shape) for
SPEC workloads.

6.1 Per-Request Worst-Case Latency
Figure 5 delineates both the observed and analytical WCL suffered by any memory request
for all the systems. Note that the high performance FRFCFS is theoretically unbounded
(assuming that there is no threshold for requests reordering), thus there is no estimated bound
for it. The figure shows that: 1) the analytical bounds for Split-RROF and Discrete-RR are
very pessimistic. Compared to the observed WCL, they reach up to 26× (namd) and 30×
(astar) for Split-RROF and Discrete-RR, respectively. This clearly shows the pessimism of
the additive latency approach, as discussed throughout the paper. 2) GRROF manifests the
lowest observed WCL per-request for all the workloads. For the worst-case observed latency
across all the workloads, GRROF shows 8× and 18.4× reduction compared to Split-RROF
and Discrete-RR, respectively. 3) The analytical bound of GRROF is the tightest latency
bound which does not exceed than 2× of the experimental latency (namd). In fact, GRROF
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achieves a 14.8 and 17.5 reduction on the analytical latency bound compared to Split-RROF
and Discrete-RR, respectively. This experiment clearly emphasizes that using conventional
per-resource real-time arbitration schemes alongside the additive latency approach suffers
from excessively pessimistic latency bounds and that coordinating these resources such that
pipelining analysis can be applied has a huge potential as an alternative.

Figure 6 Per-task observed memory latency for SPEC benchmarks (solid bars), compared to the
analytical memory processing time (T-shape). Values in y-axis are in logarithmic scale.

6.2 Per-Task Worst-Case Memory Latency
In this experiment, we evaluate the total task Memory Latency and compute the analytical
total task’s worst-case memory latency (WCML). Figure 6 shows the experimental total
memory latency for SPEC benchmarks. Additionally, it shows the analytical WCML as T-bar.
The analytical bound for each task is obtained by summing up the following components:
1) the number of L1 hit requests multiplied by the L1 hit latency, 2) the number of LLC
hit requests multiplied by the WCL of a request hitting in LLC (this is type T1 in this
case), and 3) the number of DRAM access requests multiplied by WCL of a miss (this
is type T4 as driven in Equation 8). Please note that write-backs are not considered in
this task analysis since they are neither stalling core pipeline nor in the critical path of
the requests based on the considered system architecture in Section 3.1. From the figure,
we observe that, the observed total memory time for the three systems are very close for
the SPEC benchmarks. When investigating the reason for this, we found that most of the
SPEC BMs exhibit a very high L1 hit rate. However and more importantly from a real-time
prespective, in terms of predictability, the calculated bounds for Split-RROF and Discrete-RR
are drastically pessimistic. In case of Split-RROF, the analytical WCML varies between
2×-36× of the observed latency. And for Discrete-RR, it varies between 4×-48×. This wide
variability makes them poor in predictability and entails bounds not very useful. By looking
at GRROF bounds, on the other hand, it is clear that it provides the tightest WCML, which
does not overrun 1.5× and can be as close as 16% of the actual experimental latency.

6.3 Sensitivity Test
In this section, we conduct two experiments that study the request worst-case latency while:
1) increasing number of cores in the system (Figure 7a), and 2) increasing the size of MSHR
buffer entries (and hence, the Npending from each core) (7b). In both figures, we show the
results for only one SPEC benchmark (mcf ). We observe similar trend for all the other
benchmarks. For the first experiment, we experiment with 1, 4, 8, 16 and 32 core systems.
Figure 7a emphasizes that the bound of GRROF increases linearly with number of cores.
Likewise the previous experiment, we run SPEC workload aside with a stressing workloads. It
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(a) Increasing number of cores. (b) Increasing Npend.

Figure 7 Per-request worst-case latency of mcf workload from SPEC benchmark. Column and
T-shape bars denote experimental and analytical values, respectively.

Figure 8 The bandwidth of SPEC workloads in a quad-core system.

is clear that GRROF’s estimated latency is tightly bounded and very close to the experimental
results, which does not exceed 0.6× of the observed WCL, in the most interfering setup
of 32-cores. However, Split-RROF and Discrete-RR systems shows very large execution
time which increases dramatically with increasing number of interfering cores, up to 8× and
32× of the observed WCL of GRROF. For the second experiment, it conveys the results for
increasing number of Npend entries as 1, 4, 8 and 16. In Figure 7b, the latency for GRROF
is fixed and independent of the number of the Npend entries. This is because, regardless of
Npend, GRROF ensures that the latency of any request can suffer interference delays from
only one request from every other core as shown in Section 5. On the other hand, although
Discrete-RR can provide a bound on the WCL for memory accesses, it is quadratically
increased by the increasing number of outstanding requests on OoO systems. Requests may
suffer up to 165× of their latency on an IO system. Split-RROF reduces this large variance,
however the requests can suffer up to 12× of their latency on an IO system.

6.4 Average Performance
In this experiment, we evaluate the average-performance of GRROF. Figure 8 shows the
average memory bandwidth of SPEC benchmarks running on GRROF and FRFCFS-COTS,
and normalized on FRFCFS-COTS performance. Comparing the average-performance with
the high-performance system, we make these observation points: 1) the memory bandwidth
of GRROF is on-par with the COTS solution and performs even slightly better (2.9%) on
average results. The reason for this improvement is that GRROF introduces more fairness to
all benchmarks by prioritizing the oldest requests from all cores over younger ones. This
protects tasks from severe interference from other co-running aggressor tasks.
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7 Conclusions

In this paper, we introduce a coordinating management mechanism for the holistic memory
system in order to sustain priorities of requests across all the shared resources in the memory
system. By virtue of this novel mechanism, we could tightly bound the estimated per-request
and per-task memory latency. And by comparing the proposed solution to the conventional
real-time solutions, we made the point their analysis model is not convenient nor reliable for
tightly bounding the latencies. In addition, we show that our system drastically reduces the
WCL with more than 18× reduction in memory latency and tightly bounds the estimated
latency by not exceeding 16% of the experimental latency.
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