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Abstract
We present here the main features and lessons learned from the first edition of what has now
become the ECRTS industrial challenge, together with the final description of the challenge and a
comparative overview of the proposed solutions. This verification challenge, proposed by Thales,
was first discussed in 2014 as part of a dedicated workshop (FMTV, a satellite event of the FM 2014
conference), and solutions were discussed for the first time at the WATERS 2015 workshop. The use
case for the verification challenge is an aerial video tracking system. A specificity of this system lies
in the fact that periods are constant but known with a limited precision only. The first part of the
challenge focuses on the video frame processing system. It consists in computing maximum values
of the end-to-end latency of the frames sent by the camera to the display, for two different buffer
sizes, and then the minimum duration between two consecutive frame losses. The second challenge
is about computing end-to-end latencies on the tracking and camera control for two different values
of jitter. Solutions based on five different tools – Fiacre/Tina, CPAL (simulation and analysis),
IMITATOR, Uppaal and MAST – were submitted for discussion at WATERS 2015. While none of
these solutions provided a full answer to the challenge, a combination of several of them did allow to
draw some conclusions.
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1 Introduction

Many model-based techniques and tools have been developped for the timing estimation
and verification of critical real-time systems. One can classify these approaches into three
categories: simulation, model checking and response-time analysis. The many existing tools
apply to different but sometimes similar models and may provide different types of guarantees.
This makes it difficult for researchers and practitioners to understand the advantages and
drawbacks of one approach compared to another, or even simply to figure out which tools
can perform a given type of analysis on a given system.

The WATERS industrial challenge was introduced in 2015 to address this issue by
providing an opportunity for researchers to try their favorite tool on a practical problem. For
Thales, who proposed the first challenge, this was an opportunity to better understand how
various analysis methods and tools proposed by the research community can be applied to
the large variety of real-time requirements of the Thales products (ranging from hard to soft
real-time requirements). For the research community, the main motivation for participating
to the challenge was to address concrete timing analysis problems issued from real industrial
case studies. Such a challenge thus promotes discussions and closer interactions between
research and industry.

A preliminary version of the challenge was presented and discussed at the FMTV 2014
workshop (FMTV standing for “Formal Methods for Timing Verification”), a satellite event
of FM 2014 (the 19th International Symposium on Formal Methods) [11]. An improved
version was then proposed for WATERS 2015 (the 6th International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems) [22], a satellite event of
ECRTS 2015. Five solutions, representing all model-based timing analysis techniques (model
checking, response-time analysis and simulation), were submitted that year. Interestingly, no
tool was able to solve all subchallenges, which shows that there is currently no unique solution
that fits every timing verification problem. The combined use of several tools, however, led
to better results than those provided by each individual tool, while increasing the confidence
in the produced results.

The first WATERS industrial challenge provided Thales, the solution providers as well
as all WATERS 2015 attendees with a better understanding of the various techniques and
tools, and in particular of their strengths and weaknesses with respect to several aspects,
such as: ease of modeling, level of automation of the verification process, verification time,
reliability of the results, etc. Based on the feedback given by the solution providers with
respect to the description of the challenge, Thales were also able to provide a consolidated
version of the challenge including a corresponding model in Papyrus [13], for which solutions
could subsequently be submitted (see e.g., [21]).

Although this challenge is quite ancient now, we believe that the lessons learned from this
experience and the research perspectives that it opened are still relevant today. The purpose
of this paper is therefore to share that knowledge and to make available to the community

https://doi.org/10.4230/DARTS.9.1.4
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Figure 1 Subsystems of the aerial video tracking system.

the final description of the challenge and a comparative overview of the proposed solutions.
The authoritative model of the challenge as well as the code for several of the solutions is
available as additional material submitted together with this paper.

2 Presentation of the verification challenge

The use-case provided by Thales consists of an aerial video system to detect and track
moving objects, e.g., vehicles on a roadway. Aerial video tracking systems are mission critical
real-time systems since they embed intelligence, surveillance, reconnaissance, tactical and
security applications characterized by strict constraints on timing. The main system tasks
consist in:

displaying high quality video images to the user;
following the tracked object even when it is temporarily hidden from view (e.g., the
vehicle proceeds in and out of a tree obstructed area) through motion prediction;
detecting patches of the image that may be moving differently from the background by
combining image registration and motion prediction.

For simplicity, the use-case is limited to the timing related aspects of two subsystems of
the aerial video tracking system, as represented in Figure 1: a video frame processing system
and a tracking and camera control system. As suggested by its name, the first subsystem
processes the video frames sent by the camera. This includes embedding tracking data into
the video, converting the frames to the required format and displaying a high quality video
running at 25 frames per second on the monitor. The second subsystem performs motion
prediction for the tracked object. Based on this prediction and the aircraft sensors data
(position, direction, speed, etc.) it calculates new camera angles and sends instructions to
control the camera.

We propose timing verification challenges related to each subsystem of the aerial video
tracking use-case.

2.1 Challenge 1: Video Frame Processing
The functional view of the video frame processing subsystem is illustrated in Figure 2. It
consists of a sequence of 4 functions processing the video frames from the camera to the
display. The Pre-processing function removes reflections from the frames and normalizes the
intensity of the individual pixels. The Processing function embeds tracking information into

ECRTS 2023



19:4 Lessons Learned from the First Verification Challenge at ECRTS

Figure 2 Functional view of the video frame processing subsystem.

Figure 3 Architectural view of the video frame processing subsystem.

the pre-processed frames and executes zoom-in and zoom-out instructions. The Filtering
function resizes the processed frames and removes noise. Finally, the D/A converting
function converts the frames from digital to analog and sends them to the monitor.

For simplicity, we assume that each function is executed by a single task Ti, as illustrated
in Figure 3. All tasks are assumed to be mapped onto a different processor. Table 1 shows
the execution time for tasks T1, T3 and T4 and the response time for task T2.1

Each frame sent by the camera activates task T1. The frames are sent strictly periodically
with period P1, i.e., the time distance between two consecutive frames sent by the camera is
constant. The exact value of P1 is however unknown since it may slightly vary from camera
to camera. We know, however, that it ranges between 40 ms − 0.01% and 40 ms + 0.01%.
This constant but unknown value is a key aspect of the challenge.

1 We need a response time rather than an execution time for T2 because it is running concurrently with
other tasks that will be described in Challenge 2.
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Table 1 Execution/response times of tasks from the video frame processing subsystem.

Task Execution time
T1 bcet1 = wcet1 = 28 ms
T3 bcet3 = wcet3 = 8 ms
T4 bcet4 = 1 ms ; wcet4 = 10 ms

Task Response time
T2 bcrt2 = 17 ms ; wcrt2 = 19 ms

After each execution, T1 sends a frame through its output that activates task T2. A
register R is used for the communication between T2 and T3. At the end of each execution,
T2 overwrites the register content with the new frame.

When activated, task T3 reads the current frame stored in the register R. For simplicity,
we assume that there are no conflicts between read and write accesses to R. The activation
of T3 is strictly periodic, i.e., the value of period P3 is constant. However, due to minor
uncertainties in the clock implementation, the exact value of P3 is unknown: it ranges between
40
3 ms − 0.05% and 40

3 ms + 0.05%. Note that, since task T3 is activated more frequently than
task T2, it will process the same register content more than once.

At the end of each execution, task T3 produces a frame. Frames originating from the
same register content are identical copies and are therefore assigned identical indices. The
frames are inserted into a buffer Buf read by T4. Buffer Buf has size n. For each frame, the
following conditions must be met to get actually stored in Buf:
1. It is not full.
2. No other frame having the same index (i.e., identical copy) has already been stored in

the buffer.

Otherwise, the frame is discarded. We call this a smart insert function. The time required
to discard a frame or to store it in Buf can be ignored.

Task T4 is activated strictly periodically, i.e., the value of period P4 is constant. As
for T1 and T3, the exact value of P4 is again unknown, but we know that it is in the range
40 ms ± 0.01%. Each activation of T4 leads to an execution. If buffer Buf is empty, the
execution of T4 takes 1 ms. Otherwise, T4 consumes a single frame from the buffer, and in
this case, its execution takes exactly 10 ms. Once a frame has been processed, task T4 sends
it (at the end of its execution) to be displayed on the monitor.

Communication between processors, access to register R between T2 and T3 and access to
buffer Buf between T3 and T4 are considered to not consume any time.

Challenge 1A

The first part of the video frame processing timing verification challenge is to analyze
the latency E2E1A (standing for end-to-end delay) of the frames sent by the camera that
successfully reach the display.
1. Compute E2E1A

max , the maximum value of this latency, for a buffer size n = 1.
2. Compute E2E1A

max for a buffer size n = 3.
Upper bounds for E2E1A

max are also of interest.

ECRTS 2023
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Figure 4 Functional view of the tracking and camera control subsystem.

Challenge 1B

Due to the small size of the buffer read by T4, it may happen that all frames with identical
indices (i.e., all copies originating from the same register content between T2 and T3) are
discarded at its entrance, e.g., when the period of T4 is smaller than the period of T1
(remember that the periods of T1, T3 and T4 are fixed, but their exact values are unknown).
That is, no copy of the corresponding frame produced by the camera will ever reach the
display. Losing frames is not very critical. However above a certain limit this may have an
impact on the video quality and may be detected by the human eye.

The second part of the video frame processing timing verification challenge is therefore
to analyze the distance between two frames produced by the camera that will be discarded
at the buffer entrance, called dist. This distance dist may be expressed as a time distance
or as a number of frames produced between two successive losses:
3. Compute the minimum loss distance distmin for a buffer size n = 1.
4. Compute distmin for a buffer size n = 3.

2.2 Challenge 2: Tracking and Camera Control
The functional view of the tracking and camera control subsystem is illustrated in Figure 4.
It consists of 3 functions. The Tracking control function processes the aircraft sensors
data (position, direction, speed, etc.), controls the whole tracking process and generates
alerts and various tracking data. The Target position prediction function receives data
about the aircraft speed, position and direction from the Tracking control function and
performs motion prediction for the tracked object. The Camera control function receives
data about the position of the tracked object from the Tracking control function and
calculates a new angle for the camera based on the aircraft position, speed and direction and
the tracked object motion prediction.

For simplicity, we assume that each function is executed by a single task, as illustrated in
Figure 5. All tasks are mapped to a same processor GPP1 to which task T2 (which belongs
to the video frame processing subsystem) is also mapped. All tasks are triggered by the
arrival of data at their inputs. We assume fixed priority preemptive scheduling on the GPP1
with the following priority order: T2 > T6 > T5 > T7.
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Figure 5 Architectural view of the tracking and camera control subsystem.

Figure 6 Sequence diagram of the functions on GPP1.

ECRTS 2023



19:8 Lessons Learned from the First Verification Challenge at ECRTS

Table 2 Execution times of the individual functions and function segments by the tasks.

Function Corresponding Execution Time
[bcet, wcet] in ms

Tracking control
Segment 1 [4, 4]
Segment 2 [9, 10]
Segment 3 [4, 5]

Target position prediction [4, 7]
Camera control [11, 14]

Processing [17, 17]

Figure 6 represents the sequence diagram of the functions on GPP1. The Tracking
control function is activated periodically every 100 ms. Its periodic activation can however
deviate by a jitter value jitter. As in Challenge 1, the Process function is activated strictly
periodically, i.e., the time distance between two consecutive frames is constant. The exact
value of the period is however unknown since it may slightly vary from camera to camera.
However, we know that it ranges between 40 ms − 0.01% and 40 ms + 0.01%.

A first segment of the Tracking control function is executed by task T6. Then the
Tracking control function performs a synchronous call to the Target position prediction
function and is suspended waiting for the answer. At the end of the Target position
prediction function, task T6 resumes executing a second segment of the Tracking control
function. An asynchronous call is then performed to the Camera control function executed
by T7 while the last segment of the Tracking control function is executed by T6. All
execution times by the tasks of the individual functions and function segments are given in
Table 2.

Challenge 2A

The first part of the tracking and camera control timing verification challenge is to compute
the best-case and worst-case end-to-end latencies from the activation of T6 to the termination
of T7, E2E2A

min and E2E2A
max for different values of jitter:

1. Compute E2E2A
min and E2E2A

max for a jitter value jitter = 0 ms.
2. Compute E2E2A

min and E2E2A
max for a jitter value jitter = 20 ms.

Challenge 2B

Let us now assume that T2 and T5 have access to a shared resource (because the prediction
requires information from the image). The resource is mutually exclusive and is protected by
a priority ceiling protocol. The access to the shared resource takes 2 ms for both tasks. The
second part of the tracking and camera control timing verification challenge is again to:
1. Compute E2E2B

min and E2E2B
max for a jitter value jitter = 0 ms.

2. Compute E2E2B
min and E2E2B

max for a jitter value jitter = 20 ms.
3. Compute the optimum priority assignment minimizing the worst-case latency wcrt for

jitter values jitter = 0 ms and jitter = 20 ms.

2.3 Discussion about the challenge
The challenge proposed by Thales is taken from a real industrial application. While the
behavior described in the first part of the challenge conforms to a real application (only some
execution times were modified), the second part of the challenge was synthesized based on
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real timing behaviors encountered in several Thales real-time applications. A model of the
application and its real-time behavior based on the Papyrus Modeling Environment and the
MARTE profile was made available as a result of the WATERS 2015 workshop [13].

The second part of the challenge represents a classical scheduling verification problem
that can be solved even manually by timing verification experts. This eases the evaluation of
the quality of proposed solutions. The first part of the challenge, however, is rather untypical
and more difficult to solve, thus requiring a tooled solution. In particular, the fact that
the exact period for the arrival/sending of the video frames along the processing chain is
constant but unknown represents a challenge for existing verification techniques. In addition,
while the loss of data is usually not considered in classical scheduling problems, video frames
may be discarded in the first part of the challenge depending on the buffer status.

3 Overview of the solutions provided

The proposed solutions fall into three categories: model checking, simulation and scheduling
analysis. More specifically, the proposed solutions were based on the following tools:

the timed model-checker Uppaal (Section 3.1);
the parametric timed model-checker IMITATOR (Section 3.2);
the timed model-checking framework Fiacre/Tina (Section 3.3);
the tool for real-time systems schedulability analysis MAST (Section 3.4); and
the simulation environment of CPAL (Section 3.5).

None of the proposed solutions could fully address the challenge, and it turned out that
there were some misinterpretations of the model description, leading to very different answers
for some of the solutions. In the rest of this section, we provide an overview of the various
approaches. The objective is not so much to underline each individual contribution (some of
which are outdated by now) than to provide a summary of the discussions that this challenge
raised, and of the conclusions that were reached.

3.1 Solution using UPPAAL
The Uppaal solution [19] uses timed model checking as the main technique for answering
challenge 1. The input formalism is timed automata (Ta) [2] – a dense-time extension of finite-
state automata with a set of clocks measuring time – and the software used is Uppaal [14],
a tool for the analysis of real-time systems described by a system of communicating timed
automata.

A solution to challenge 1 was proposed2 by a straightforward representation of the task
system that almost directly maps to an implementation: each task is represented as a
Ta executing a simple time- or event-triggered loop. Frames are represented by indexes
counted modulo a sufficient3 window size Nw. For answering the challenge questions, for each
frame id, an observer Ta Thread(id) is defined, which starts counting time when the frame
is created and follows its progress through the tasks until the frame is lost or successfully
processed. The variable execution time of task T2 is expressed by a time interval that is
handled symbolically by the verification tool.

2 Uppaal can also express Challenge 2, but the use of a schedulability analysis tool seemed to us a more
obvious choice for that.

3 The window size defines the number of frames which may be “in the system” simultaneously. In
practice, we fix a size Nw, and prove that it is sufficient by verifying that no frame lives longer than the
corresponding time window P1 × Nw (a new frame is created every P1 time units).

ECRTS 2023



19:10 Lessons Learned from the First Verification Challenge at ECRTS

In order to model the assumed uncertainty about the periods of the different tasks, for
each period, an integer constant (a “parameter”4) is defined, which is instantiated with a set of
relevant values. This may be considered as a limitation, as the challenge specification specifies
that the periods can take any value within some interval. Still, explicitly distinguishing
different cases provides some insight: that only cases where P1 < P4 will lead to losses was
not really a surprise, but the fact that even large deviations of P3 (of 1

3 or more) have only
very little influence on the results obtained, was probably less evident. The regularity of the
results obtained for decreasing deviations (Table 3 shows results for 1

3 , 1
6 , 1

12 ) allows us to
extrapolate the results for smaller deviations.

The basic verification with Uppaal can be considered in the present case as a sort of
compromise between simulation and parametric verification as proposed by Section 3.2. It
provides exact results for given parameter instances, and there was no issue with scaling to
compute minimal or maximal E2E or dist when excluding the first few hundred frames (600
and 1000 frames respectively in the results reported in Table 3). The solution uses the basic
model-checking algorithms of Uppaal based on a symbolic clock representation. This allows
us to achieve exact verification results for the model under study. Using relevant properties,
a set of timings can thus be derived. The simulation capacities of Uppaal were also used
but only to get some initial understanding or for debugging. Results were then confirmed by
model checking.

3.2 Solution using IMITATOR
The IMITATOR solution [20] uses parametric timed model checking as the main technique
to derive the end-to-end timings for answering Challenge 1. The underlying formalism is
parametric timed automata [3], an extension of timed automata [2] with unknown timing
parameters, in addition to the clocks used in timed automata invariants and guards. The
software used is IMITATOR [5], a parametric timed model checker taking as input networks of
parametric timed automata augmented with useful features such as rational-valued variables,
stopwatches, etc.

The key solution to solve Challenge 1A is to consider a single arbitrary frame processing.
Thanks to the symbolic representation of the state space offered by IMITATOR, the system
can start from an arbitrary state, and perform a finite number of discrete actions simulating
this arbitrary frame. Measuring the time from its input to the output, IMITATOR therefore
derives a (parametric) best and worst case time. Parameters (i.e., unknown constants)
are used to model the uncertain periods; an additional parameter E2E ≥ 0 is also used to
represent the end-to-end latency of the target frame. And, for a given run, this value is
unique as a single frame is considered.

The key aspect of this solution is the use of rational-valued timing parameters to model
perfectly the unknown (but constant) periods. This solution is correct, as opposed to intervals
– in which case the actual period can vary at each cycle, which is not the intended specification
in the challenge. The solutions to Challenge 1A (see Table 3) for both buffer sizes are exact,
while the proposed solution to Challenge 1B is only approximated, due to the increased
system complexity.

In addition, a solution is derived for Challenge 2A by the same authors [20] using analytical
methods, and then confirmed by IMITATOR. The extension of the solution to Challenge 2B
was not modeled in [20] due to lack of time but seems straightforward to the authors.

4 Note that this is different from the timing parameters (unknown constants) that will be described
in Section 3.2, as they are handled manually here.
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Finally, this way of modeling the solution was a source of inspiration for subsequent work
on addressing scheduling problems under uncertainty using (extensions of) parametric timed
automata [6].

3.3 Solution using Fiacre and Tina
The Tina approach [8] relies on several models to answer questions from Challenge 1, defined
using either Time Petri Nets (TPN) [16] or Fiacre [7], a component-based specification
language that extends TPN with data and priorities. All our models derive from a common
specification, but are each specifically instrumented in order to check a given property:
minimal and maximal traversal time; influence of different clock rates; possibility to lose
frames; etc.

Our results are computed using the model-checking tool sift, part of the Tina toolbox [9],
that provides state-space exploration and reachability algorithms for both TPN and Fiacre
models. Like with IMITATOR and Uppaal, our approach is based on a dense-time hypothesis.
We are not totally faithful to the specification though. In particular, we decided to use time
intervals to model the uncertainty on the period instead of a fixed value inside an interval.
This means that, inside the same execution trace, the periods of a task may vary. Because of
this, each experiment that we perform only returns approximate results. Nonetheless, by
using several iterations, and by using together methods that over- or under-approximate
the possible behaviors, we were able to compute results within a given accuracy threshold
(we use 10µs in Table 3). It would have been possible to derive an “exact” model using an
extension of TPN with stopwatches, but this is way more computationally expensive and not
usable in practice.

The frame processing challenge turned out to be a very interesting case study for our
model-checking toolbox. First, since the description is highly modular, it is well-suited for
component-based modeling languages. Also, it provides a good motivation for the use of
high-level data structures in a specification language. In our Fiacre models, for instance, we
use a queue of identifiers with a dedicated insertion function to model an unbounded number
of frames. As a result, in the case n = 3, we can prove that there can be at most 5 different
frames traveling at a given time in the pipeline, without the need to provide a bound a priori.
Finally, many requirements can be reduced to safety properties, that is, checking that some
“bad state” cannot occur. In this case, we often do not need to explore the whole state space
of the system to return a meaningful result. We can also use more aggressive abstractions,
that are able to speed up our computations. We give an example of such optimization in [8]
that was able to reduce some model-checking tasks by a factor of ×250 (from about 100s to
less than 0.4s).

3.4 Solution using MAST
This approach [15] is based on the Modeling and Analysis Suite for Real-Time Applications
(MAST) [12], which is an open source set of tools for developing real-time applications to
perform various kinds of schedulability analysis.

For Challenge 1, the authors focused on a different research question than the one posed by
Thales, namely finding the worst-case conditions under which the system is still schedulable
(i.e., it loses no frame). Under these assumptions, 3 out of the 4 questions can be answered
by combining the information directly provided by MAST and ad-hoc external methods. In
particular when n = 3, results for the required latencies and distances can be calculated as
the maximum number of frames enqueued is 2. Furthermore, distance between two frames
can be calculated for n = 1 based on the MAST method for calculating the buffer size.

ECRTS 2023
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The relevant characteristics for modeling Challenge 2 are: Each function is mapped to
one task. All tasks are in the same processor using FP preemptive scheduling with priority
order: T2 > T6 > T5 > T7. All tasks are triggered by the arrival of data at their inputs. T7 is
invoked from an action in the middle of T6. Here the authors need to define the models
to explore timing responses and priority assignments for tasks in GPP1 that encompass a
fork, activation jitter for one of the two concurrent flows of execution, and shared resources.
The approach in this case is to adapt the models used to the sets of equivalent cases for the
relative values of priorities and the capacities of the analysis techniques available.

The presence of a fork leads to a multipath model for which only the holistic technique
was available [15]. If the fork is decomposed using the values of the priorities to linearize it,
then, this linear model is analyzed using offset-based techniques. A newer technique enabling
the offset-based analysis of the multipath model has been more recently published in [4].

3.5 Solution using CPAL

This approach [1] is based on CPAL (Cyber Physical Action Language) [10], a language
meant to model, simulate, verify and program Cyber-Physical Systems (CPS). CPAL does
not provide any fully automatic analysis to compute a solution to the FMTV challenge.
However, it helps to identify and validate best and worst-case scenarios. Thus, the language
features of CPAL used for solving the challenges are the formal description, the edition,
graphical representation and simulation of CPS models. The two challenges as specified in the
original description of the FMTV challenge could come out as a little ambiguous: the CPAL
model in contrast must be unambiguous and adhere to the well-defined semantics of the
execution and simulation environment. Furthermore, the models can be written directly in
the graphical CPAL editor, providing an immediate feedback on where and in which aspects
the informal problem descriptions were underspecified. Since CPAL is a domain-specific
language with native support for real-time scheduling, the modeling effort is small, and the
risk of translation errors is limited.

4 Discussion

Let us now discuss briefly the results obtained using the different tools, and provide some
overall conclusions. Table 3 shows an overview of the results for Challenge 1, and Table 4
those for Challenge 2. A first outcome is that no tool solved all challenges, even with an
approximate solution. Challenge 1A is the one with the highest number of answers, with 4 out
of 5 tools being able to make some answers – this challenge also has the highest diversity rate
in terms of results (see below). Then, Challenge 1B had 4 out of 5 tools offering a solution,
while the other challenges (2A and 2B) had 3 out of 5 tools being able to provide a (partial)
solution. A second outcome is that the range of solutions is highly diverse: that is, different
tools obtained different answers. This is not entirely surprising, as several tools knowningly
analyzed slightly different problems (as detailed in Section 3), leading to completely different
answers. Still, a certain (partial) consensus can be obtained by looking closely at the results,
as will be discussed later.

5 P1 = P4 = 3 × P3.
6 All measured results were below or equal to 146, the true worst-case is thus at least 146ms.
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Table 3 Overview of the results for Challenge 1.

Tool 1A: E2E or E2Emax 1B: dist or distmax

ms ms or frames
n = 1 n = 3 n = 1 n = 3

Uppaal
no deviation5 [63, 118.33] ms [63, 118.33] ms none none
P4 = P1 − 1

3 [63, 118] ms [63, 118] ms none none
P4 = P1 + 1

3 [63, 145.33] ms [63, 226] ms [42, 240] frames [79, 480] frames
after ≥ 600 fr [90, 145.33] ms [170.66, 226] ms [79, 161] frames [79, 161] frames
P4 = P1 + 1

6 [63, 145.16] ms [63, 225.66] ms [84, 480] frames [159, 958] frames
after ≥ 1000 fr [89.84, 145.16] ms [162.66, 225.66] ms [159, 321] frames [159, 321] frames
P4 = P1 + 1

12 [63, 145.08] ms – – [319, −] frames
IMITATOR [63, 145.008] ms [63, 225.016] ms – < 5, 000 frames

Fiacre/Tina [89.66, 145.33] ms [89.66, 225.33] ms 2 frames between 35 and
4085 frames

MAST –
If P1 ≥ 39.996 ms
and n ≥ 2
[63, 118.344] ms

55.344 ms

28 ms for the
highest possible
frame production
rate of P1 = 28 ms

CPAL simulation ≥ 146 ms 6 ≥ 220 ms 2 frames 4 400 frames

CPAL analysis
[89.6656, 146] ms
(E2Eminis 63 ms
for the 1st frame)

[89.6656, 226] ms
(E2Eminis 63 ms for
the 1st frame)

– –

Table 4 Overview of the results for Challenge 2.

Tool 2A: [bcrt,wcrt] 2B: [bcrt,wcrt]
jitter jitter jitter jitter Optimization
= 0 ms = 20 ms = 0 ms = 20 ms

Uppaal – – – – –
IMITATOR [49, 74] ms [49, 94] ms – – –

Fiacre/Tina – – – – –

MAST [32, 74] ms [32, 94] ms [32, 78] ms [32, 98] ms

T5 > T7 > T6 > T2;
if jitter = 0 ms
then wcrt = 39 ms;
if jitter = 20 ms
then wcrt = 59 ms

CPAL – – – – –
simulation

CPAL [33, 75] ms [33, 112] ms [33, 75] ms [33, 112] ms T7 > T6 > T5 > T2
analysis (37 ms)
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4.1 Modeling
One important lesson from this challenge is related to the fact that there were ambiguities
in the description, leading to misinterpretations (the same problem was understood and
interpreted differently by different participants to the challenge). This shows the importance
of providing unambiguous models to avoid misunderstandings. Based on this observation,
Thales published a consolidated version of the challenge [13] including a Papyrus model
annotated with MARTE.

A second observation related to modeling is that the ease of modeling differed quite a
lot between the different tools. Some were quite well adapted to the nature of the challenge
while others required quite heavy work to address the problem at hand. This made it difficult
to validate the correctness of the proposed models.

4.2 Different solutions
Focusing on the solutions that did model the constant, yet unkown period parameter, a
certain (partial) consensus can be obtained on some results.

For Challenge 1A, the lower bound for both n = 1 and n = 3 is around 89 ms, which is
obtained by most tools (with some differences due to rounding approximations). The value
63 ms found by IMITATOR and Uppaal corresponds to the first frame, which has a specific
behavior.

In addition, 4 out of 5 tools agree that the upper bound is between 145 and 146 ms for
n = 1, and between 225 and 226 ms for n = 3. Most importantly, the solution obtained by
simulation for n = 1 (CPAL: 146 ms), and that acts as a lower bound on the desired maximum,
matches the result obtained by parametric model checking (IMITATOR: 145.008 ms), which
acts as an upper bound on the desired maximum. (The fact that the “lower” upper bound
found with simulation by CPAL is lower than the upper bound found by model-checking
comes from the discrete-time setting of CPAL simulation tool.) That is, the desired maximum
is necessarily in (145, 145.008] ms.

Concerning Challenge 1B, results are completely different. This challenge was the most
difficult according to the participants. The actual value is probably around the result of
CPAL, i.e., 4 400 frames, according to the participants, but no conclusion has been reached.

Although it was considered easy according to the participants, results for Challenges 2A
and 2B vary quite a lot and more research would be needed to converge towards a consensual
answer.

4.3 No perfect tool
The developers of the challenge were hoping to have a single tool being able to solve all
sub-challenges immediately. Instead, it turned out that different tools solved parts of the
challenge, and that had different strengths and weaknesses: ease of modeling, level of
automation of the verification process, computational complexity of verification, reliability of
the results, etc.

An additional lesson learned from the challenge is that the use of different techniques
to solve the same timing verification problem may increase the confidence in the produced
results. For example by applying simulation to an execution scenario identified by scheduling
analysis as worst-case, we may determine if the analysis results are too pessimistic or not and
thus evaluate the analysis quality. This point is very important in the industrial development
of real-time systems since overestimation margins are usually small (over approximation up
to 20 % are in general accepted in industry, larger over-approximations are refused due to
the cost of the corresponding over dimensioned solutions).
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For example, in Challenge 1A, combining the formal methods based result of IMITATOR
(a possibly overapproximate result) with the simulation based result of CPAL (a possibly
underapproximate result, due to the weakness of simulation) allowed us to confirm the
exactness of both methods. Similarly, in [17], two different formalisms (parametric timed
Petri nets and parametric timed automata) were used in academic software developed by two
different teams in order to solve a problem close to the problem described in the current paper.
The fact that both solutions led to the same result increases significantly the confidence
we can have in these results. Finally, some tools could potentially be used together in a
sequential manner: for example, the results of IMITATOR could be fed into non-parametric
tools such as Uppaal or CPAL, so as to first infer a set of possible solutions, and then verify
them using non-parametric methods. It remains an open question whether we can easily
derive a holistic tool that solves the complete challenge.

5 Conclusion and perspectives

In this paper, we have presented the main features and lessons learned from the first edition of
what has now become the ECRTS industrial challenge. This verification challenge, proposed
by Thales, was first discussed in 2014 as part of a dedicated workshop (FMTV, a satellite
event of the FM 2014 conference), and solutions were discussed for the first time at the
WATERS 2015 workshop.

The use case for the verification challenge is an aerial video tracking system. The first
part of the challenge focuses on the video frame processing system. It consists in computing
maximum values of the end-to-end latency of the frames sent by the camera to the display,
for two different buffer sizes, and then the minimum duration between two consecutive
frame losses. The second challenge is about computing end-to-end latencies on the tracking
and camera control for two different values of jitter. Solutions based on five different tools
– Fiacre/Tina, CPAL (simulation and analysis), IMITATOR, Uppaal and MAST – were
submitted for discussion at WATERS 2015. While none of these solutions provided a full
answer to the challenge, a combination of several of them did allow to draw some conclusions.

From Thales’ point of view, the timing verification challenge was a success. The submitted
solutions to the challenge represent all three model-based timing verification techniques:
timing simulation, scheduling analysis and model checking using timed automata. This gave
Thales the opportunity to evaluate these techniques and better understand their strengths
and weaknesses. As a direct result of the challenge, point to point collaborations were set-up
with several participants. Thales and RTaW set-up a research project (FUI WARUNA)
focusing on timing verification and its integration into the industrial design process. The
solution using IMITATOR was further evaluated by a trainee at Thales and the results were
published in a joint paper [17]. Another joint paper between Thales and UNICAN about the
integration of response-time analysis and optimization in the industrial design process was
also published [18].

From an academic perspective, we also consider this first edition as a success. This
event provided a unique opportunity for researchers to try out their pet tool on a problem
of industrial relevance, and to discuss and compare its performance and limitations with
colleagues in a collaborative way. Although the challenge was fairly simple in its formulation,
it was sufficient to underline the gap that exists between academic tools and industrial
real-time systems. Still, the proposed verification problem did strike a difficult balance
between practical relevance and feasibility: it was challenging, yet within reach of academic
tools. Furthermore, the fact that a combination of solutions could provide a much better
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answer to the challenge than any single tool opens up a scientific line of research that has not
been explored since: when is it useful to combine different formalisms and analysis techniques
to solve a verification problem, and how can this be done in an efficient manner?

This first positive experience triggered a series of subsequent industrial challenges at
WATERS, most notably two iterations by Bosch GmbH. The WATERS challenge has now
grown to become a full-fledged event of the ECRTS conference.

Let us conclude this paper by a few general comments. We believe that the noncompetitive
way in which the challenge was organized contributed a lot to its success. The review process
focused on clarifying assumptions and limitations of the proposed solutions and did not
intend to declare a winner. In fact, participants to the challenge were invited to review other
submissions, considering that they were the best suited for this. This process ensured that
everyone could focus on the scientific discussions without the additional burden of organizing
or participating in a competition.

More generally, events like this help bringing closer researchers in academia and industrial
practitioners from different application domains. For real-time systems research, which tends
to measure its success by its practical relevance and transfer to industry, this is obviously very
useful. Now, this raises an interesting question, which is rarely discussed by the community:
how much research should focus on addressing the needs of industry? A useful expansion of
the challenge in future years could experiment with other types of collaborative efforts, e.g.,
research approaches that would investigate alternative trajectories to those of immediate
interest to industry – for example, approaches that would strike a different balance between
predictability and complexity – or even focusing on society’s needs via another proxy than
industry – for example by collaborating with nonprofit organizations. In any case, one can
only hope that more use cases will be made available to the community in the future, and
that venues for discussing them and potential solutions will spread.
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