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Abstract
The use of integrated architectures, such as integrated modular avionics (IMA) in avionics, IMA-SP
in space, and AUTOSAR in automotive, running on Multi-Processor System-on-Chip (MPSoC)
is on the rise. Timing isolation among the different software partitions or applications thereof in
an integrated architecture is key to simplifying software integration and its timing validation by
ensuring the performance of each partition has no or very limited impact on others despite they
share MPSoC’s hardware resources. In this work, we contend that the increasing hardware support
for Quality of Service (QoS) guarantees in modern MPSoCs can be leveraged via specific setups
to provide strong, albeit not full, isolation among different software partitions. We introduce the
concept of Quasi Isolation QoS (QIQoS) setups and instantiate it in the Xilinx Zynq UltraScale+.
To that end, out of the millions of setups offered by the different QoS mechanisms, we identify
specific QoS configurations that isolate the traffic of time-critical software partitions executing in
the core cluster from that generated by contender partitions in the programmable logic. Our results
show that the selected isolation setup results in performance variations of the partitions run in the
computing cores that are below 6 percentage points, even under scenarios with extremely high traffic
coming from the programmable logic.
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1 Introduction

MPSoCs are progressively used in safety-critical domains, like avionics and space, to cater for
augmented performance requirements. Besides the sheer computational power they provide,
MPSoCs increasingly incorporate substantial Quality of Service (QoS) features [60, 44]. QoS

© Sergio Garcia-Esteban, Alejandro Serrano-Cases, Jaume Abella, Enrico Mezzetti, and
Francisco J. Cazorla;
licensed under Creative Commons License CC-BY 4.0

35th Euromicro Conference on Real-Time Systems (ECRTS 2023).
Editor: Alessandro V. Papadopoulos; Article No. 5; pp. 5:1–5:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sergio.garcia@bsc.es
https://orcid.org/0000-0002-9417-3011
mailto:alejandro.serrano@bsc.es
https://orcid.org/0000-0001-9794-8495
mailto:jaume.abella@bsc.es
https://orcid.org/0000-0001-7951-4028
mailto:enrico.mezzetti@bsc.es
https://orcid.org/0000-0002-1886-2931
mailto:francisco.cazorla@bsc.es
https://orcid.org/0000-0002-3344-376X
https://doi.org/10.4230/LIPIcs.ECRTS.2023.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 Quasi Isolation QoS Setups to Control MPSoC Contention

Figure 1 IMA setup with multiple applic-
ations and Design Assurance Levels.

Figure 2 Representation of interference mitiga-
tion impact under a QIQoS setup.

support was originally designed for performance optimization and load balancing, but is
increasingly considered as a means to better control contention effects among co-running
tasks and enforce a more deterministic timing behavior [48, 50]. QoS support is provided as
software-controlled “knobs” that allow to intentionally bias the execution towards a given
task by providing it with privileged access to hardware shared resources, more bandwidth in
an interconnect, reserved space in stateful hardware resources, and the like.

When an MPSoC is used to support exclusively a monolithic application using several or
all underlying cores (e.g. a single ARINC 653 partition), deployed for example by a single
avionics original equipment manufacturer or TIER1 provider, the contention each process can
suffer can be bounded already in early software development stages: contender information
is available as they are part of the same monolithic application. In such scenario, different
QoS setups may be explored to find a setup that satisfies the performance requirements of
all processes [48].

However, this is seldom the case and instead an IMA-MPSoC setup is deployed: multiple
applications from different software providers are typically integrated on the same target
MPSoC, with a view to reducing integration and validation costs. In this line, integrated
architectures 1 like IMA [12] build on time and space partitioning concepts, as defined by the
ARINC 653 [4] open standard, to simplify the allocation of computing resources to different
applications. This effectively allows integrating several applications onto less computing
hardware, as illustrated in Figure 1. While IMA time partitioning ensures each application
receives a given amount of CPU time, the actual progress made by an application in the
time window also depends on the share of hardware resources the application receives.

MPSoC timing interference arises on contending accesses to shared hardware resources [19,
39, 55], which causes an application’s execution time to depend on the use of resources made
by applications in other software partitions. Waiting until late development and integration
stages, when all providers make their applications available, to address the timing dimension
and assess timing interference has opposing effects. On the positive side, only the system’s
intended final configuration [1, 18, 21] is considered, which reduces the risk of overestimating
the contention impact. On the negative side, there is a non-negligible risk of detecting
software timing violations too late in the validation and verification stages, when reacting to
time misconfigurations can result in unaffordable changes to the applications, system design
and schedule, and the entailed regression testing.

1 For instance, Integrated Modular Avionics (IMA) for avionics, IMA for Spacecrafts (IMA-SP) [56] in
space, and AUTomotive Open System ARchitecture (AUTOSAR) [13].
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In IMA-MPSoC scenarios, QoS support can be leveraged to anticipate late timing
issues related to multicore contention by preserving partition-level time budgets against the
interference of (unknown or partially known) contender applications. This is, in fact, aligned
with CAST-32A [18] advisory circular and A(M)C 20-193 [21] for multicore certification in
the avionics domain, establishing that separate determination of the WCET of an application,
without any other applications executing, is only valid if the applicant can demonstrate that
they build on a multicore Platform with robust partitioning or that time interference from
other applications is avoided or mitigated for that application.

Concept. We contend that existing hardware QoS solutions can be used to enforce setups
under which timing interference is mitigated and the execution time of an application is less
exposed to contention from other co-running applications. We aim at devising a set of QoS
setups, which we call Quasi Isolation QoS setups or QIQoS, that guarantee a high-degree
of isolation (performance guarantees) to the applications regardless of the contention its
co-runners put on MPSoC’s hardware shared resources, hence meeting IMA assumptions
and requirements. QIQoS setups are meant to reduce the impact on execution time when
varying the contender loads on the system shared resources. Figure 2 illustrates the effects
of a given QIQoS setup in reducing the sensitivity to contention scenario by enforcing an
upper bound to the incurred timing interference. As an immediate effect, the enforcement of
a proper QIQoS setup will increase the representativeness of early time budgets, typically
obtained by running the application against synthetic aggressors, making them much tighter
and stable. The gap between the multicore interference empirically observed during the
timing verification campaign by deploying synthetic worst-case contention scenarios and that
observed in the final system configuration will be sensibly narrowed.

Realization. In this work, we instantiate our QIQoS approach on the Xilinx Zynq UltraS-
cale+ [60, 59] to address contention arising on accesses to the DDR main memory. The DDR
memory controller (DDRMC) provides DDR access to the different computing elements
on the MPSoC through its six ports, and offers a complex multi-layer QoS mechanism to
control the traffic coming through each port. This includes traffic classes, port throttling,
and per-traffic class resource allocation. Hence, the QoS of the DDRMC allows millions
of configurations that are remarkably challenging to master for the end users [48]. Our
first step is then, identifying several specific DDRMC QIQoS configurations that allow,
to different degrees, isolating DDR traffic of critical tasks from that generated by other
tasks. Subsequently, we expose the specific characteristics of the identified QIQoS from the
standpoint of the type and degree of isolation they can assure.

When facing the increasing QoS support in modern MPSoCs, the challenge lies in making
effective and consistent use of the available features. One of the proposed QIQoS setups
exploits the timeout features at the port level, while the second QIQoS instead mainly builds
on starvation prevention features. Both QIQoS setups use traffic classes and transaction
throttling. Other common features to both include preventing specific settings for the
DDRMC that, if wrongly set, could defy the benefits achieved through the QoS layer. These
include limiting the allowed DDR memory commands that can be sent out of order to the
DDR device, and preventing critical and non-critical tasks from sharing the same memory
port.

Our results show that the proposed DDRMC QIQoS configurations can effectively isolate
the execution of the critical tasks that run in the A53 and the R5 cores from the load coming
from the programmable logic (PL) in the access to memory, despite the latter produces in our
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experiments huge amounts of DDR accesses. The degree of isolation can be configured based
on a set of parameters provided for each QIQoS setup, which allows end users to achieve
the desired balance between isolation and performance. Under the most aggressive QIQoS
setups, the performance variation across substantially different loads that the PL put on the
DDRMC is as low as 6 percentage points.

The rest of this paper is organized as follows. Section 2 presents the related works.
Section 3 introduces our target platform. Section 4 presents the principles of QIQoS setups
and describes their application on the target platform. Section 5 provides the experimental
results. Finally, Section 6 presents the main conclusions of this work.

2 Related Works

Domain-specific safety standards and support documents specifically identify the need for
controlling and reducing the impact of contention arising on shared resources accesses as a
fundamental requirement for certification [1, 18, 21, 34]. Massive research efforts have been
devoted to cope with the impact of multicore timing interference on system performance and
predictability [46, 48]. Whereas custom hardware designs have been proposed to balance
predictability and performance [42, 30, 54, 37], in this work we focus on a COTS MPSoC
and analyze the predictability of its memory controller.

Several works pursue analytically bounding the worst-case interference suffered by each
application [17, 19, 24, 39, 57]. Regardless of the tightness of the adopted method, contention
can be too large (e.g. some works report more than 20x performance degradation [55]),
which ultimately leads to severe system under-utilization. While we are still interested in
analyzing the timing interference, our main focus is to enforce a-priori control of contention
via appropriate QoS configurations.

Controlling the impact of contention by determining how resources are shared among
applications, as opposed to just analyzing it, allows to reduce the impact of contention and is
a fundamental enabler for the analyzability of multicore systems [48, 43, 28]. Time and space
partitioning of shared resources has been explored building on top of existing hardware and
software solutions, typically handled either as part of the static system configuration [4, 28],
or as part of more or less complex run-time monitoring of resource usage at RTOS or
Hypervisor level [43]. Software solutions, in particular, constraint applications usage of
shared resources, like the last level cache and DRAM [29, 16], to predetermined quotas. In
this work, we do not focus on specific run-time support, which is in fact dependent on the
full software stack, but we only focus on exploiting the existing hardware QoS support. In
fact, software-based are deployed on top of existing hardware support for QoS and need to
be consistent and compatible with the underlying QoS configuration at the risk of obtaining
suboptimal or even counter intuitive results. For example, while it is possible to regulate
the memory bandwidth of each core by constraining read/write requests, for example with
MemGuard [16], the actual operation of bandwidth regulation and prioritization mechanism
can be jeopardized by a QoS configuration assigning low priority in the memory controller to
the high bandwidth thread. Nonetheless, QoS features can also be leveraged to support and
improve the effectiveness of more complex software-level paradigms.

Hardware providers are increasingly aware of the importance of regulating the impact of
contention and are providing hardware level solutions for controlling and apportioning the
usage of shared resources such as Intel Resource Director Technology (RDT) [33] and ARM
Memory System Resource Partitioning and Monitoring (MPAM) [9]. Initial assessment of
those solutions from the standpoint of timing predictability has been conducted in [49, 63]
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arising some concerns on the effectiveness of design and implementations of such modules. A
custom FPGA implementation to regulate memory accesses in the Zynq UltraScale+ platform
has also been proposed in [32]: despite its effectiveness, the approach entails non-negligible
performance overheads due to routing core DDR requests via the PL.

More recently, the availability of increasingly-powerful QoS features [6, 7] in COTS
platforms has prompted the exploitation of QoS elements, traditionally used for performance
balancing and tuning, as an effective means to control multicore timing interference [48].
An adequate degree of software controllability of such QoS features is also a mandatory
requirement [22]. An initial study on the QoS features in a representative platform for the
avionics domain has been reported [48], providing evidence of how the manifold QoS features
provide sufficient malleability to enforce different resource sharing scenarios. While sharing
with [48] the focus on the Zynq UltraScale+ memory controller, in this work we focus on
defining quasi isolation envelops for critical tasks against non-critical activities generated
from the PL rather than exploring different performance trade-offs among software partitions.
In fact, while the work in [48] fits the monolithic application scenario, where the goal is
finding a setup that satisfies the performance requirements of all processes, it cannot be used
in IMA-MPSoC scenarios to increase the representativeness of early time budgets by devising
a set of QoS setups that guarantee a high-degree of performance isolation.

Partial explorations of the impact of SMT-related QoS modules on execution time
performance have been conducted in [15, 31] for IBM and Intel processors respectively. The
QoS support in the UltraScale+ platform is partially addressed in [41] where a specific QoS
setup for the memory controller is used to explore possible throughput configurations for the
DDR memory module. These works are focusing on preventing performance degradation
rather than exploiting contention control for enabling stronger performance guarantees.

Finally, some works attempt to analytically model the effect of configuring QoS features
and contention regulation mechanisms in general. The work in [32] builds on profile-based
analytical predictive models to enforce a bandwidth regulation policy, including the use of
a set of QoS parameters to regulate traffic from the PL logic. An analytical model of the
QoS-400 module in the Zynq UltraScale+ is analyzed in [64]. Despite the expected higher
accuracy of analytical characterization approaches, they are often building on partial and
potentially misleading information on the hardware modules they are meant to model [14],
due to increasing hardware complexity and poor documentation. For this reason, they can
be useful for deriving early time estimates, they cannot be generally considered a robust and
generic alternative to more empirical approaches, as the one proposed in this work.

3 Target System

We focus on an MPSoC IMA setup in which a system integrator is in charge of deploying in the
same computing platform multiple applications with different functional safety requirements
from different software providers. These systems are typically scheduled following a layered
approach where the first level, either provided by an executive layer or a hypervisor, is
responsible for scheduling the different software partitions and each partition is in turn
responsible for executing single applications or processes. However, no or limited information
is available on software components from other providers unless in the very final stage of system
development. In particular, we do not consider relatively simpler monolithic system designs
where software components are responsibility of a single provider, and hence simultaneously
available for timing analysis purposes, including the early characterization of contention
impact and the exploration of different system configurations and QoS setups [45, 48].
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In an MPSoC IMA scenario, instead, different software modules are incrementally made
available and integrated into the final intended configuration. The lack of early and precise
information on the different software modules requires the application of compositional
approaches for the analysis of multicore timing interference. Hence, timing budgets can
be consolidated before the whole system is available and do not need to be re-determined
whenever a new component is integrated.

One practical approach for early characterization of timing interference consists in using
synthetic ’aggressor’ programs [35] during early stages to test representative contention
scenarios despite some software modules may not be available. These synthetic applications
can be exploited to generate high load on shared resources. Thus, by running each application
against aggressors already in early development stages, early figures on the impact of high
contention scenarios on the application’s execution time can be produced. However, as the
amount of shared resources in multicore processors used in embedded domains is constantly
increasing, the impact of aggressors on application’s execution time is potentially huge (20x
and higher) [36, 55], resulting in overly pessimistic execution time budgets.

In this IMA-MPSoC scenario, tighter figures on contention impact of each module can
only be provided by limiting the amount of interference possibly suffered by the application
or module under analysis, regardless of (or with limited correlation with) the co-runners.
In this work, we show how available QoS support in modern MPSoCs can be exploited to
enable early consolidation of tight contention-aware time budgets by providing quasi-isolation
scenarios where the impact of contention is bounded by specific QoS configurations.

3.1 Introduction to the Zynq UltraScale+

The Zynq UltraScale+ MPSoC [60, 59] comprises four main types of hardware blocks:
computing elements (CEs), communication elements, memory, and I/O controllers.

The CEs, see Figure 3(a), include a high-performance CPU cluster (called APU or
application processing unit) comprising 4 Arm Cortex A53 cores [8], a real-time CPU cluster
(called RPU or real-time processing unit) with 2 Arm Cortex R5 cores [10], an Arm Mali-400
GPU [11], and a programmable logic (PL) block that in real-time systems is usually deployed
to synthesize components to support I/O or computing acceleration of some functionalities.

In terms of memories, the MPSoC includes an on-chip memory (OCM), the DDR SDRAM
memory controller (DDRMC), and interfaces to access ROM and flash memories, which are
generally not used for the normal operation of end-user applications and hence excluded from
our discussions in the rest of the paper. The MPSoC also includes a complex I/O system
that handles accesses to generic (e.g USB) and specific controllers (e.g CAN).

An Arm AXI-based distributed network orchestrates the communications among all
elements – usually from (to) CE to (from) memory or I/O. It includes the cache-coherent
interconnect (CCI) hardware block that controls aspects related to coherence and distrib-
uted memory; top-level switches like the RPU switch; and smaller or secondary switches –
highlighted with an ’X’ in Figure 3(b). The interconnect is heterogeneous and distributed
meaning that the set of switches that each CE has to traverse to reach a given destination
varies per CE. For instance, Figure 3(b) shows an abstraction of most relevant connection
between the different elements in the system. It shows the interconnect IP blocks each CE
has to traverse to reach the DDRMC. This path can be configured, e.g. the APU can use
one or two ports to access memory, while the RPU can also send requests to the DDRMC
via the CCI using a single DDRMC port.
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(a) Computing elements (left), inter-connect (b) Paths from computing elements
(middle), and memories and I/O (right). to the DDR MC.

Figure 3 Different block diagrams of the Zynq UltraScale+ MPSoC.

3.2 Hardware support for QoS
The UltraScale+ offers a variety of hardware QoS mechanisms that help shaping the speed at
which the requests are sent conveyed from source to destination. The most relevant ones are:
Static QoS. Every AXI request in a point-to-point communication is tagged with a QoS

value (AXQoS) from 0 to 15 that the target of the communication can use to prioritize it
(the higher the AXQoS value, the higher the priority).

Dynamic QoS. Different interconnect elements, when they can receive requests from different
sources, can apply mechanisms that dynamically adjust the static QoS value to reach a
given target metric like controlling the maximum number of outstanding requests.

QVN. QoS virtual networks (QVN) use tokens to control transaction flows to ensure that a
transaction can always be accepted at its destination before it is sent by a source.

DDRMC QoS. The QoS at the memory controller offers a complex multilayered prioritization
system that we analyze more in detail in the following section.

QoS on the interconnect is especially relevant when dealing with request flows from
different CEs to different destinations, like DDRMC and I/O [64, 50]. However, when
different CEs target the same destination, the speed at which the target processes the
requests of each flow is the main factor determining the QoS each flow receives. In this work,
we focus on memory contention on the DDR memory as it is one of the major bottlenecks
in real-time systems [36, 55]. In fact, it is the last arbitration tier in charge of contain
contention when other mechanism failed to provide isolation or timing guarantees. This trend
continues [38] as more AI software is used in real-time systems processing huge amounts of
data coming from different sensors like video cameras and radars. Hence, in this work, we
focus on the QoS in the DDRMC, fix the same static QoS for all requests, and disable all
dynamic QoS and QVN mechanisms.

3.3 The DDRMC in the Zynq UltraScale+
The DDR memory subsystem encompasses the DDR memory controller (DDRMC) – which
comprises a DDR QoS module – and the DDR Physical Interface (DFI), see Figure 4. The
former receives the AXI requests from the distributed interconnect via six different ports and
converts them into DDR commands. The latter translates the DDR commands into signals
to the external DDR3/4 compliant device.

3.3.1 DDRMC
The DDRMC dynamic scheduling optimizes bandwidth and latency using a programmable
QoS controller. Traffic (i.e. flows of AXI requests) arrives to the DDRMC via the six AXI
ports (XPI ), referred to as Pi in Figure 3(b).

ECRTS 2023
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(a) Main QoS-related components of the DDRMC. (b) XPI configurations.

Figure 4 Block diagram of the DDR Memory subsystem in the Zynq UltraScale+.

Traffic Classes. Reads are classified into low, high, or video traffic classes (LPR, HPR, and
VPR). Meanwhile writes into low or normal (LPW =NPW ) and video (VPW ).

Expired commands. VPR/VPW commands behave as low priority when they have not
expired (i.e. there is not a transaction timeout). Once expired, they are promoted to a
priority higher than that of the HPR/NPW commands. The timeout period for VPR and
VPW transactions (RTOUT and WTOUT, respectively) is configured via control registers.

CAMs. DDR commands (or simply commands) translated from incoming AXI requests are
stored into the content addressable memories (CAMs) both shared by all ports.

A 64-entry write CAM or wCAM that is shared by all traffic classes (and all ports).
A 64-entry read CAM or rCAM split into two partitions based on traffic type.

The first partition (hpr rCAM ) is used for HPR traffic classes.
The second partition (lvpr rCAM ) is used for LPR/VPR traffic classes.

There is a single rCAM so that all ports with HPR traffic share the hpr rCAM and all
ports with LPR/VPR traffic share the lvpr rCAM. The size of the hpr rCAM and lvpr rCAM
is controlled by configuration registers: hprSIZE and lvprSIZE respectively. Each partition
can be configured to have from 1 to 64 entries, with the constraint that their addition must
be equal to the rCAM size, 64. Hence, for instance, if hprSIZE = 24 then lvprSIZE = 40.

CAM allocation is performed by the Port Arbiter (PA) that selects from all DDR ports
the command to issue to the CAMs based on several levels of arbitration.
1. Reads are prioritized while there are VPR expired, or there are reads and no expired VPW.

Writes are served when there are no reads, and if there are expired VPW and no expired
VPR. The expiration period can be configured via setting timeouts for VPR/VPW.

2. HPR traffic has higher priority than LPR/VPR on the read channel and NPW/VPW
has the same priority on the write channel, with VPR/VPW prioritized if they time out.

3. Priorities are given on per-command based on their static QoS (AXQOS signals).
4. Conflicts are resolved using round-robin arbitration.

Port throttling changes this behavior by throttling ports that has their throttle-enable
control register set, when certain occupancy-related conditions are met:

When the available entries in the hpr rCAM partition are below an availability threshold,
set via a control register (hprAVAIL), those ports with read traffic mapped to the HPR
class can be throttled, if their port hpr throttling is enabled.
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Likewise, when the number of available entries in the lvpr rCAM is below an availability
threshold (lvprAVAIL), those ports with read traffic mapped to the LPR class can also
be throttled, if their port lpr throttling is enabled.
When the count of wCAM available entries is below wAVAIL, those ports with write
traffic mapped to the LPR=VPR class can also be throttled, if their port write throttling
is enabled.

Note that ports with traffic mapped to the VPR/VPW class cannot be throttled. Naturally,
and beyond the port throttling control, all ports are stalled when any CAM or any other
internal resource of the DDRMC is exhausted.

Other. There are other DDRMC features that we have not used because their interaction
with the ones we actually use is hard to control, as described in Section 4. These features
are port aging (that moves a port to the highest priority when an outstanding request is not
served after the established time); urgent transactions (indicating that there is a read/write
urgent transaction); and regions, defined at port level to help mapping AXI static priorities
and traffic classes.

3.3.2 DFI
When issuing commands from the CAMs to the DFI, command reordering is allowed to favor
page hits, potentially causing out-of-order execution of the commands. A regulator limits
the issue to up to 4 out-of-order commands. When it is disabled, no restriction is applied,
resulting in no control over the number of out-of-order commands executed.

CAM deallocation. On the egress side of the CAMs, depicted as scheduler in Figure 4(a),
the SoC allows setting a maximum starve period that a CAM can be without issuing a
command to the DFI. There is one period per CAM (hpr rCAM, lvpr rCAM, and wCAM )
before the queue goes into a “critical” state and it gets priority to send commands to the
DFI. Note that reduced starving periods increase the switching among queues.

3.4 Software Partition Setup
The most natural and efficient way to use the Zynq UltraScale+ in IMA-MPSoC real-time
systems is by consolidating different software partitions (SWP), ensuring that the needed
mechanisms to simplify integration and testing are in place. All main real-time operating
systems and hypervisors build on the concept of separation kernels that enable different
software partitions to achieve the required safety and security goals. Examples include Lynx
Secure [40] and DDC-I Deos [20], which are compliant with the highest-criticality levels in
Avionics, i.e. DAL A in DO-178C [47]. SWPs are usually executed in a disjoint set of the
available CEs in the underlying platform to reduce timing interactions among them, see
Figure 1. In the Zynq UltraScale+, a SWP can span from using a single R5 or A53 core to
use a subset of the R5 cores, A53 cores and integrate some acceleration in the PL.

To perform a reasoned exploration of configuration setups, we define the application
deployment scenarios (ADS) shown in Table 1. We focus on two classes of applications,
depending on whether they comprise critical tasks (CT) or not (NCT). In each ADS, we
assume up to two SWPs with CT applications being deployed in the CPU clusters and NCT
ones in the PL. Applications are assumed to be independent or share data via predictable
communication channels [4]. The goal is to isolate the performance of the applications of the
critical SWPs from the traffic coming from the PL, so that they can be analyzed in isolation.
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Table 1 SWP active in each core under each ADS.

R5 R5 A53 A53
ADS1 SWP1 – – –
ADS2 – – SWP1 –
ADS3 SWP1 – SWP1 –
ADS4 – – SWP1 SWP2
ADS5 SWP1 SWP2 SWP1 SWP2

Other deployment scenarios are possible in which the PL is not used and the NCT runs,
for instance, in the A53 cores. In that case, the NCT running in the A53 can be mapped to
one port (e.g., P1), while the CT in the R5 can use a different port (e.g., P2), see Figure 3(b).
This port selection is a configurable option [48]. In that scenario, the very same principles we
describe in this work apply. In fact, the scenarios we address, with the NCT running in the
PL, are more challenging since both, the R5 and A53, limit the number of requests in-flight,
which further limits the pressure on memory. In particular, the R5 cores allow one in-flight
load/store per core and the A53 allows a maximum of 3 in-flight loads per core. Instead, the
PL can exploit more ports to memory, and we are able to instantiate several AXI Traffic
Generators per port, allowing many more independent requests, hence resulting in higher
pressure on memory (more details on the setup are provided in Section 5.1).

4 Quasi Isolation QoS Setups

4.1 Context and Approach
Meeting safety standards requirements against the complexity of current and upcoming
MPSoCs is a challenging endeavor. Evidence must be provided that the contention tasks
generate on each other is anticipated and controlled. Unfortunately, such evidence cannot be
derived by acquiring full information about hardware behavior to build a comprehensive and
accurate model on how resources are shared among co-running tasks. While reasonable, such
approach is deeply invalidated in practice.

On the one hand, it is extremely improbable, if at all possible, that IP providers give full
access to the currently-confidential technical documentation as required to derive detailed
contention models. The number of examples in this direction are endless: from the very
limited information on NoCs (e.g. the functional behavior of the Arm NIC-400 [5] is limited
to few pages and, similarly, the description provided by NXP of its CoreNet Coherence Fabric
in the T2080 TRM [26] is minimal and includes no information about its internal behavior
in terms of buffering or prioritization), to the almost non-existent information about GPU
timing behavior [11]. Such trend is not expected to change in the near future, with recent
architectures like the NXP LX2160 [44] and the Xilinx Versal [62] equipping increasingly
complex components with increasingly limited descriptions of their functional and timing
behavior. The Zynq UltraScale+, target of this work, is not an exception: even just the
memory controller exhibits several levels of prioritization (see Section 3.3.1) and there is not
available information to derive the exact way the scheduler sends requests to the DFI, how
exactly the drain of the CAMs occurs when a CAM goes critical, and many other details.

On the other hand, even if enough information was available, modern MPSoCs include a
score of dynamic features that make modeling extremely hard without resorting to overly-
pessimistic (conservative) assumptions. The Zynq UltraScale+ is a clear example of such
scenario as it includes a relevant set of dynamic features that are triggered based on the
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(dynamic) behavior of the traffic. Dynamic features include, among others the read and
write timeout feature, which depends on how long a command is waiting until being served;
the port throttling mechanism, which is triggered based on the availability of the partitions
of the rCAM; the wCAM, which in turn, depends on the (dynamic) traffic coming via the
different port to the DDRMC; and the prioritization mechanism in the PA, which builds on
the status of expired/not expired commands.

Overall, while several reverse engineering and characterization of specific features have
been carried out (from SMT processors, cache, memory, and GPUs), the complexity of
the current MPSoCs, the limited information, and the number of different IP components
intervening in the computation and communication, prevent the definition of a precise
contention-aware functional and timing model in practice.

Hence, the challenge for the real-time research community and original equipment man-
ufacturers and TIER1/2 companies in critical domains is to make the system as safe as
possible building on the (limited) available information supported by empirical evidence. The
remaining uncertainty (risks) are covered by specific mechanisms defined in safety standards
like safety nets that can assume control of the system if the main MPSoC fails either in
terms of hardware reliability or in terms of execution time violations [21].

4.2 Concepts and Benefits
Building on the considerations above, in this work, we do not attempt to develop a model that
describes how the different QoS mechanisms work and make predictions for other applications,
or how the current application would behave under a different QoS setup. Instead, in our
target IMA-MPSoC setup (see Section 3.3.1) we aim at enforcing a high-degree of performance
isolation. A Quasi Isolation QoS setup, QIQoS for short, is a particular configuration (setup)
of the QoS mechanisms in the underlying platform that provides performance guarantees
to a particular set of tasks running in different CEs. That is, QIQoS helps containing the
impact that MPSoC contention generated by the NCT can have on the CT, and hence makes
early time budgets more representative under a set of QoS setups.

We assess the quality of a specific QIQoS along three main axes: first, for performance
guarantees, we look at the slowdown of the CT (the lower the better); second, for timing
predictability, we evaluate CT’s performance variability when run against different NCT (the
lower the better), for instance different aggressor benchmarks that put variable high load on
the shared resources; finally, for overall performance and fairness, we consider the average
performance of the NCT (the higher the better). This last dimension can be used as a tie
breaker among comparable QIQoS setups. We will formalize relevant metrics for evaluating
QIQoS setups in Section 5.2.1.

When deployed, a QIQoS setup simplifies incremental integration by reducing the con-
tention impact that co-runners (NCT) can have on the analysis tasks (CT). QIQoS allows
deriving timing budgets that are robust against contention scenarios and do not build on any
specific run-time support on commercial MPSoCs. Both aspects together are fundamental
enablers for the integration and reuse of software modules from different vendors in mixed-
criticality systems. The achieved quasi-isolation guarantees the applications’ timing behavior,
partially consolidated in the early development stages, will be confirmed at integration,
reducing the risk of unexpected timing misbehavior and commercially disruptive rollbacks.
The proposed QIQoS approach contrasts with previous works that assuming that both CT
and NCT are known and focus on exploring different QoS setup that satisfies performance
requirements [48]. That is while QIQoS focus on IMA-MPSoC setups, previous works [48]
target a monolithic application as presented in Section 1.
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4.3 Application to the DDRMC
We instantiate the QIQoS approach on the DDRMC by developing two specific and well-
justified QoS isolation setups, each one exploiting a different set of QoS mechanisms at the
DDRMC level. QIQoS1 exploits the timeouts defined at port level; QIQoS2 leverages CAM
draining features (starving) in the DDRMC. A comprehensive overview of QIQoS parameters
for each ADS is provided in Table 2.

4.3.1 Common elements to QIQoS1 and QIQoS2
We first develop on the main common features to both QIQoS. These arose from a series of
empirical observations on how to configure some QoS features, since other configurations
would prevent enforcing performance guarantees.

Use of private ports. Each CT uses a private port to memory that is not shared with
any other CT or NCT. We do so because some QoS features, like traffic class and port
type, are set at the port level, so sharing the same port can produce uncontrolled CT’s
performance drop. Taking Figure 3(b) as a reference, ports P0-P2 are reserved for the
CT that run in the R5 and/or A53 cores, and P3-P5 for the PL.
Reduced command reordering. In all QIQoS we set the maximum number of out-
of-order commands that can be sent from the CAMs to the DFI to the minimum value
allowed (4). Without this limitation, the DDRMC is allowed to prioritize many memory
commands over an older memory command if they hit in an open page. This is done for
performance-improvement reasons obtained by enabling the DDRMC to increase page hits.
However, if the memory command that are bypassed by more recent commands belongs to
the CTs, out-of-order commands may have disruptive effects on CTs predictability [36, 55].
Avoidance of incoherent QoS setups. We prevent the incoherent QoS setups [48]
by configuring the port type in accordance with the traffic class. Best Effort (BE) ports
type are mapped to LPR and LPW traffic classes (respectively for reads and writes), low
latency (LL) ports to HPR and LPW traffic classes, and video priority (VP) ports to
VPR and VPW traffic classes. This setup is summarized in Figure 4(b). In Table 2, port
type and traffic assignments follow these rules for every port (Pi) and under any ADS
and QIQoS.
Maximization of resource usage. In the same line, we force the number of entries
assigned to HPR and LPR/VPR traffic in the rCAM to match the total number of entries.
In particular, we assign 32 of the 64 entries to each partition (hprSIZE = lvprSIZE =
32). In Table 2 we see that this criterion holds for all ADS.

Another commonality of all QIQoS setups is that some additional QoS features of the
DDRMC are not considered, namely: port aging, urgent transactions, and regions defined
at port level. While these features provide additional capabilities to control the ingress of
requests to and the egress of memory commands from the DDRMC, they are hard to master
in conjunction with the other QoS mechanisms in use. On the one hand, the number of
possible QoS configurations increases exponentially. On the other hand, their use can easily
produce non-linear effects or even jeopardize the effect of other QoS features, ultimately
precluding any chance to achieve the required isolation [48].

4.3.2 QIQoS1
The first QIQoS setup leverages on controlling the ingress of requests to the CAMs to provide
isolation for the CT. To that end, QIQoS1 builds on the timeout feature at port level, while
the egress prioritization (i.e. the starving feature) is not used. The rows (ADSi, QIQoS1)
in Table 2 summarize the parameters enforced under QIQoS1 for each ADS.
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Table 2 Parameters of each QIQoS for the DDRMC of the Zynq UltraScale+ for each ADS.

CT. Read requests from the CT are assigned the VPR traffic class. QIQoS1 sets the timeout
values for reads coming from the port(s) used by the CT to one RT =RTOUT =1 as read
operations are usually blocking and any delay they can suffer directly affects performance.

Write operations (e.g. stores) instead are assigned the VPW traffic class. They can be
processed “off-line” by the A53 as they are not blocking – to a certain extent. For this
reason, we set variably high WT =WTOUT values, symbolized with X in QIQoS1 entries
in Table 2. The lower the value of WTOUT, the more frequently requests of the CT –
mapped to the VPR/VPW traffic classes – will transition into expired mode and, therefore,
will be prioritized over the other requests. Hence, by varying WTOUT we aim to achieve
different balance points between CT isolation and NCT performance.

NCT. Read traffic of the NCT is set as HPR. This allows to segregate requests from the
CT and NCT in the rCAM with a view to favor isolation: the HPR traffic from the NCT
will use the HPR part of the rCAM, while the VPR traffic from the CT will exploit the LPR
part of the rCAM. It should be noted that, under normal operation, the NCT HPR traffic
do have a higher priority than CT VPR traffic. However, the use of sufficiently small values
for RTOUT and WTOUT ensures that the CT VPR traffic is steadily expired and hence its
priority is promoted to surpass that of the NCT.

By varying the number of entries that must be available in the hpr rCAM partition
(hprAVAIL), symbolized with Y in QIQoS1 entries in Table 2), it is possible to control the
contention generated by the NCT. With high availability thresholds, the port assigned to
the NCT will be throttled down more frequently (and vice versa), hence stalling NCT’s
generated traffic.

Write traffic of the NCT is set as LPW=NPW traffic classes that are not subject to
timeout (only VPR/VPW classes are). For the wCAM availability (wAVAIL) we apply the
same value (Y) set for hprAVAIL to control the write traffic of the NCT by stalling write
traffic from the ports of the NCT (P3-P5) more frequently for low wAVAIL values. Also note
that as the CT port (P0-P2) type is video priority, CT traffic will not be stalled due to low
availability values (it will only when the CAM gets fully occupied).
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4.3.3 QIQoS2
Unlike QIQoS1, that relies on the timeout feature to isolate the requests from the CT,
QIQoS2 builds on CAM egress control.

Traffic classes. In particular, the read/write requests of the CT are respectively set to
HPR/LPW traffic class and the read/write requests of the NCT to the LPR/LPW traffic
class (respectively). Hence, since there is no VPR/VPW traffic class, the timeout feature is
not used. The main rationale behind QIQoS2 is that no request is upgraded due to a timeout
and hence under the default traffic class arbitration policy HPR traffic class is prioritized
over LPR and VPR traffic classes.

Starving control. QIQoS2 combines traffic class control as presented above with the CAM
egress control feature, or starvation control, to ensure that the time commands of CT are in
the CAMs is bounded. In particular:

We set the starving attribute of the rCAM’s hpr partition to 1 (ShprrCAM = 1) so as
to make reads of the CT to be served as soon as possible.
The read traffic of the NCT is mapped to the lvpr rCAM partition for which we set a
maximum starving period of 40 cycles (SlvprrCAM = 40).
Finally, we explore different values for the starving period of the wCAM, which is shared
by writes from all ports, to assess its impact on predictability and performance. This is
symbolized as Z in QIQoS2 entries in Table 2.

Like QIQoS1, QIQoS2 controls CAM availability (Y in QIQoS2 entries in Table 2): with
high availability thresholds causing the port assigned to the NCT to be throttled down more
frequently, hence stalling NCT traffic. Also note that, under QIQoS1, NCT reads and CT
reads are respectively mapped to the hpr and lpr rCAM partitions, as opposed to QIQoS2,
where the hpr rCAM partition holds the CT reads and the lpr rCAM partition holds NCT
reads.

4.3.4 Generalization
The concept of QIQoS, i.e. exploiting specific QoS setups to guarantee a high-degree isolation
of some applications regardless of the contention co-runners may generate on MPSoC’s shared
resources, can be extended to other QoS mechanisms and resources. However, the concrete
instantiation requires some adaptations with respect to what has been presented in this work.

In this work we focused on the realization of QIQoS on the Zynq UltraScale+. This
decision is motivated not only by the complexity of the QoS mechanisms in its DDRMC,
but also because of the industrial relevance of the Zynq UltraScale+, which is already
considered for avionics certification when running different functionalities (subsystems) [59].
In terms of potential reuse, the Zynq UltraScale+ instantiates the Synopsis Universal
DDRMC(uMCTL2) [51] which is quite configurable, allowing designers to tailor it for
optimizing latency, bandwidth, and area. Any MPSoC implementing the same DDRMC can
directly benefit from the results of this work.

5 Experimental Setup and Results

In this work we focus on a ZCU102 Evaluation Board that comes as part of the Zynq
UltraScale+ MPSoC ZCU102 Evaluation Kit [58]. The board is equipped with a Xilinx Zynq
UltraScale+ MPSoC [60]. We run on bare-metal (no operating system) and the external
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code reduces to the First Stage Boot Loader (FSBL) provided by Xilinx toolchain (Vitis-
2019.2). This contributes reducing non-hardware interference (noise) in the experiments. We
developed low-overhead software to configure the board by writing to specific control registers
and read execution cycles. Under ADS4 and ADS5, we force each SWP to access a different
subset of the L2 cache sets, preventing them from evicting each other’s data in the LLC. The
NCTs were synthesized as accelerators on the PL, which has a direct connection to the three
uppermost DDRc ports using the high-performance non-coherent ports (hp0_lpd, hp1_fpd,
hp2_fpd, hp3_fpd) in its default configuration. The board has different clock domains, and
each of them was configured to its maximum allowed frequencies, i.e., PL 250MHz, APU
1200MHz, LPD-interconnect/RPU 500MHz, and FPD-interconnect/DDRc 533.500MHz.

5.1 Experimental Setup

Kernels. We have reviewed different performance-demanding applications relevant for
existing and forthcoming safety-critical systems, such as those providing object detection
and navigation capabilities. While some of those applications can be run in accelerators,
many of them are run on the CPU, either because accelerators are too busy, or because
their working set is not overly large and the overheads to issue kernels and transfer data
do not pay off [48]. For instance, radar-based object detection uses small matrices, and
LiDAR-based object detection may find accelerators busy running heavier camera-based
object detection. Hence, both are examples of data-intensive workloads often run in the CPU.
The schematic of the hierarchy of their components is shown in Figure 5. A key element in
many of those applications is the use of Convolutional Neural Networks (CNNs) for camera
and LiDAR-based object detection [52, 2, 3]. In those CNNs, a central element is matrix
multiplication (MMB) [52], which has been shown to account for most of the execution
time (between 67% and 98.5% across deployments [23, 25]). Along with MMB, some other
compute-intensive CNN layers rely on image-to-columns (I2C) used for tensor lowering to
enable matrix convolutions needed by neural networks, and the rectifier (RELU) function in
neural networks defined as the positive value of its argument [3]. Libraries for CNNs also
include other matrix-based operations such as the pervasive vector-multiply-add (VMA) and
matrix transpose (MT) [52]. Those kernels are also present in other key applications such
as, for instance, commercial automotive radar applications [27, 53], which build upon MMB
to compute the (self) covariance of the input radar data. Overall, as CT applications, we
deploy the following benchmarks: MMB, I2C, RELU, VMA, and MT.

Figure 5 Hierarchy of applications and their components with mapping to specific kernels.
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NCT. In the PL, as NCT (i.e. aggressor benchmarks), we instantiate one or several AXI
Traffic Generator [61] (ATG) modules to generate variable traffic to stress the DDR. The
ATG generates read and write traffic with a burst size of 16 bytes. Operations are strided so
they access all DDR banks to maximize the chance of generating page misses on the kernels
(CT). Note that it is generally not possible to know the exact memory access patterns of the
kernels. Likewise, it is not feasible to interleave the request of the kernels and the NCT at
will. For instance, if the kernel accesses banks (B0, B0, B0, B1, B1, B2) it is not possible to
force the NCT to access the same bank as the kernel but few cycles before to ensure that
the kernel suffers a page miss on every memory access. The degree of controllablity required
is not achievable in real hardware platforms, not only because of the noise incurred by the
RTOS on the NCT but also due to the inherent hardware jitter arising from execution in
out-of-order execution processor pipelines and multi-level cache systems.

We define four configurations where NCT (i.e. ATGs) produces an increasing load: Low,
Medium, High, and Very high. Under each of these ATG setups, we instantiate an increasing
number of ATG units per port (P3, P4, and P5), see Figure 3(b). In particular we instantiate
1 (L), 3 (M), 5 (H), 9 (V) ATGs per port, each one constantly accessing all banks. Hence,
the pressure they put in the memory controller is huge and much higher than expected by a
regular accelerator, which combines memory accesses phases with computing phases.

When run in isolation, the PL achieves the following bandwidth results (in brackets the
relative percentage of the peak bandwidth measured in giga transfers per second): 6.1 GT/s
(14%) for L, 17.5 GT/s (40%) for M, 27.8 GT/s (64%) for H, and 43.2 GT/s (100%) for V.

5.2 Experimental Results

5.2.1 Evaluation metrics

QIQoS aim at providing guarantees on the performance of the CT under different loads
generated by the NCT. We use three main metrics to assess the effectiveness of a QIQoS
setup.

M1. Minimize the slowdown, i.e. maximize the relative performance (rperf), of the CT.
A rperf of X means a slowdown of 1/X (e.g., rperf=50% means 2x slowdown).

M2. Reducing CT’s rperf variability across different loads that the NCT (the PL in our case)
can put on the DDRMC. Note that M1 and M2 contribute to the primary goal of finding
a QoS setup that satisfies the performance requirements of all processes and increase
the representativeness of early time budgets by achieving high-degree of performance
isolation.

M3. A secondary goal is maximizing NCT rperf, in particular preventing that the NCT
receive no service, as long as the target minimum thresholds set for M1 and M2 are
achieved.

In terms of M1 and M3, when a SWP encompasses several tasks either as CT or NCT, as
it is the case in ADS3 and ADS5, we report the average rperf of all CT tasks and the average
of all NCT tasks, respectively. For instance, under ADS3 we report as CT rperf the average
of the rperf of the R5 and A53 tasks in each SWP (i.e., SWP1 and SWP2). Likewise, as
rperf of the NCT the average of the rperf of all ATGs. Our results show that in all scenarios
our results show that the variability in the rperf of the tasks is less than 7 percentage points.
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Figure 6 rperf of the CT (kernels) without any QIQoS setup.

5.2.2 Uncontrolled contention
When running the different kernels under the default QoS setup (i.e. no QIQoS) in the Zynq
UltraScale+ increasing the traffic load sent from the PL to the DDRMC (L, M, H, and V), we
observe that the impact of DDRMC contention on the performance of the benchmarks is huge,
see Figure 6. The reported results have been collected while running the benchmarks in one
core of the A53 (ADS2), but exactly the same trend is also observed when the benchmarks
are run in an R5 core. Even under the smallest PL, i.e. ATG, load (L), rperf drops down to
the range 0.60 − 0.75 for the different benchmarks. As we increase the load, the DDRMC
saturates reducing the rperf of the CT down to the range of 0.10 − 0.25 for V.

5.2.3 Detailed Analysis
In this section, we analyze the challenging ADS4 setup that comprises two SWPs whose
tasks are CT, and the ATGs in PL set as NCT, so all traffic coming from ports P3, P4
and P5 belongs to the NCT. For the sake of conciseness, we also focus on the kernel VMA,
for which we provide detailed explanations. The results obtained for ADS1, ADS2, ADS3,
and ADS5 and the wider set of kernels are explained in Section 5.2.4. Under ADS4 the
baseline performance is that of a single copy of VMA running in isolation. This allows us to
discriminate between the performance slowdown caused by deploying a second instance of
VMA in another A53 core and the slowdown due to the traffic coming from the PL.

5.2.3.1 QIQoS1

The rperf variation observed for both CT and NCT in ADS4 scenario under QIQoS1 is
reported in Figure 7. QIQoS1 parameters values are mapped to the x-axis, reporting different
CAM availability thresholds (Y = hprAV AIL = wAV AIL) within 1 and 12, and different
X=WTOUT values from 2048 down to 32 (as defined in Table 2 for ADS4-QIQoS1). Note
that for QIQoS1 we refer to both hprAV AIL and wAV AIL as AV AIL for simplicity.

CT performance. Figure 7(a) focuses on VMA rperf under QIQoS1. Note that the rperf
results are the same for both VMA copies, each running in a different A53 core. The different
series represent an increase load of the PL: L, M, H, and V. We observe the following:
1. Under the PL load L (dashed black line), the impact of the NCT traffic on the CT is

notably reduced: the slowdown is quite small and stable with rperf around 90% under all
WTOUT and AV AIL setups. This slowdown, that is even observed under the highest
isolation configurations (i.e. high AV AIL values and low WTOUT values) is caused by
the contention the two VMA copies generate on each other.
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Figure 7 VMA (CT) and NCT rperf for
ADS4 under QIQoS1.

Figure 8 VMA (CT) and NCT rperf for
ADS4 under QIQoS2.

2. Under the PL load M (solid black line) results are also quite stable, though in this case
CT’s rperf sits between 80% (specially for small AV AIL values) and 90%. Under both
loads, L and M , the variability across setups is limited because the DDRMC can handle
requests of both the PL and both VMA copies running in two A53.

3. Under the loads H and V , the impact of the PL traffic increases with higher variability
across AV AIL and WTOUT setups. In particular, as we increase AV AIL, the ports
used by the PL (NCT) are throttled more frequently, reducing their impact on the CT.
When AV AIL is set to 8−12 entries, the slowdown NCT cause on the CT is considerably
reduced and the variability across loads also heavily reduces. Also, for any AV AIL value,
as we decrease the value of the WTOUT , the CT gets less contention from the NCTs
as CT requests are more frequently under expired mode and hence are prioritized over
NCTs’ requests.

NCT performance. Figure 7(b) shows the rperf of the PLs. We see that the impact of
varying WTOUT and AV AIL is reduced, with the variability mainly arising because of
different PL loads. Under L the PL suffers limited slowdown (i.e. its rperf is high) since the
memory controller can comfortably provide the performance required. As we increase the
load of the PL to M , H, and V the rperf decreases: for L the rperf stays over 60% while for
V it stays below 40%. This is so because heavier loads saturate the DDRMC so they are
more affected by the memory activity of the A53. Instead, lighter loads left some bandwidth
unused allowing the A53 to inject their traffic with limited impact. As it can be observed,
under M and L loads NCT performance is quite similar, even with higher performance under
M than under L. Our results seem to suggest that this is due to arbitration among ports
that cause higher ID ports to receive comparatively less service under lighter loads.

5.2.3.2 QIQoS2

Figure 8 shows the rperf variation for the CT and NCT in ADS4 scenario under QIQoS2.
QIQoS2 relevant parameters are mapped to the x-axis, reporting different CAM availability
thresholds (Y = lvprAV AIL = wAV AIL) within 1 and 12, and different wCAM starving
(Z=SwCAM) values, from 64 down to 1 and no starving (as defined in Table 2 for ADS4-
QIQoS2). Note that for QIQoS2 we refer to both lvprAV AIL and wAV AIL as AV AIL

for simplicity.
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Table 3 Analysis of the rperf of the CT and NCT under various benchmarks on ADS4 (AV AIL=
12 and W T OUT =32 for QIQoS1; and AV AIL=12 and SwCAM =1 for QIQoS2).

VMA
L M H V

QIQoS1 CT 0.90 0.88 0.88 0.87
NCT 0.64 0.59 0.38 0.27

QIQoS2 CT 0.85 0.82 0.83 0.81
NCT 0.62 0.60 0.39 0.25

(a)

MT MMB
L M H V L M H V

QIQoS1 CT 0.99 0.97 0.96 0.95 0.91 0.88 0.88 0.88
NCT 0.51 0.27 0.15 0.11 0.62 0.36 0.24 0.19

QIQoS2 CT 0.88 0.85 0.84 0.83 0.82 0.76 0.76 0.76
NCT 0.59 0.47 0.29 0.19 0.60 0.38 0.23 0.17

RELU I2C
L M H V L M H V

QIQoS1 CT 0.96 0.97 0.92 0.97 0.94 0.91 0.89 0.89
NCT 0.46 0.37 0.12 0.14 0.51 0.29 0.18 0.12

QIQoS2 CT 0.81 0.81 0.80 0.79 0.81 0.77 0.76 0.75
NCT 0.58 0.42 0.27 0.19 0.59 0.30 0.19 0.14

(b)

CT performance. Regarding the rperf of the CT (VMA), see Figure 8(a), we extract two
main conclusions. On the one hand, for the “no starving” case, we see that the impact of the
PL is higher. It is particularly relevant the V load for which the experiment, after executing
more than 100x times its duration in isolation, did not finish. Hence, we concluded that
starving must be enabled and do not further discuss “no starving” results. It is noted that
while starving prevention is enabled by default, it is one of the parameters whose impact we
wanted to explore and hence decided to observe the impact of disabling it. On the other
hand, as we increase AV AIL we see how the rperf of the CT slightly increases. CT’s rperf
also increases as we decrease the starvation threshold as CT requests are kept shorter in the
CAMs when AV AIL is 1 or 2 (this effect reduces and even disappears for M and L, arguably
because the load of the NCT on the DDRMC decreases). When AV AIL goes beyond 2 (i.e.
4, 8, 12), it cancels out the impact of starvation prevention. Anyways, the impact on rperf is
relatively small, so QIQoS keeps high quality results (high values for rperf and low variability
of rperf across load) under all explored variations.

NCT performance. In Figure 8(b) shows the rperf of the NCT. Other than for the “no
starving” setup that, as pointed out before, we exclude from the discussion, the variability
is very small across the explored AV AIL and SwCAM values, with a slight decrease with
higher values of both parameters. This is so because lower loads of the PL do not saturate
the DDRMC, thus leaving some bandwidth for the A53 and R5 to execute with less impact
on the PL. The major difference appears across PL loads, with rperf drop values around 30%
for L, 40% for M , 60% for H, and 70% for V .

5.2.3.3 Metrics M1, M2, and M3

We assess the quality of QIQoS1 and QIQoS2 using metrics M1, M2, and M3 as defined in
Section 5.2.1. For both QIQoS we choose the aggressive isolation setups: AV AIL = 12 and
WTOUT = 32 for QIQoS1 and AV AIL = 12 and SwCAM = 1 for QIQoS2.

Results are shown in Table 3(a), comparing the QIQoS setups on VMA rperf for variable
PL load, yet focusing on the specific scenario ADS4. Regarding M1, for VMA we see that the
rperf of the CT is slightly higher with QIQoS1, varying from 0.87 to 0.90, than for QIQoS2
for which CT rperf varies from 0.81 to 0.85. For both QIQoS rperf is quite high. In terms
of variability (M2) both are quite similar being 3 percentage points for QIQoS1 and 4 for
QIQoS2. The results for M1 and M2 provide evidence that the developed QIQoS are very
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competitive, achieving good rperf and isolation figures. This, in fact, allows to define SWPs
timing budgets during early stages of the development process of a IMA-SoC product, with
high confidence that those bounds are going to hold at operation. In this line, it is worth
recalling that under the V load there are 9 ATGs per port constantly accessing memory to
different banks. This is arguably a much higher load than an accelerator would put on the
DDRMC. Finally, the performance of the NCT (M3) is quite similar across both setups.

5.2.4 Wider result set
Figures 7 and 8 provided a detailed set of results and analysis of the proposed QIQoS setups
for one specific benchmark (VMA) under a single scenario (ADS4). In this section, we extend
the analysis of results to all kernels and all ADS scenarios but, for the sake of conciseness,
we restrict our focus on a specific PL load (L) and fixing the parameters AV AIL = 12 and
WTOUT = 32 for QIQoS1 and AV AIL = 12 and SwCAM = 1 for QIQoS2. In any case,
results for variable loads and kernels under ADS4 are reported in Table 3(b), as will be
commented next.

Figure 9 shows the rperf of the CT (left) and the rperf of the NCT (right) for all
benchmarks under all ADS scenarios, with PL load set to L. In both charts, results for each
kernel under QIQoS1 and QIQoS2 are shown in consecutive bars. For instance, bars 1 and 2
compare the result of QIQoS1 and QIQoS2 for ADS1, bars 3 and 4 for ADS2, bar 5 and 6
for ADS3, and so on so forth. We observe that:

In terms of the rperf of the CT (left chart), in general QIQoS1 provides slightly better
performance than QIQoS2. The rperf reduces for more aggressive ADS staying between
0.5 and 0.8.
In terms of the rperf of the NCT (right chart), in general results are quite similar across
the proposed setups, with QIQoS2 slightly outperforming QIQoS1.

Regarding metrics M1, M2, and M3, under ADS4 the same conclusions derived for VMA
under different PL loads generally hold for the other kernels, as reported in Table 3(b). First,
QIQoS1 provides higher CT’s performance than QIQoS2 (M1). Second, the variability of
CT’s rperf (M2) is quite similar for both QIQoS: 5 percentage points in the worst case for
QIQoS1 and 6 for QIQoS2. And third, in terms of the rperf of the NCT both setups provide
similar results with rperf gradually increasing as the load of the PL moves from L to V .

Overall, we conclude the same trends observed for VMA holds for the rest of the kernels
and configurations, confirming that the proposed QIQoS achieved the intended goals.

6 Conclusions

In this work we have shown how hardware QoS support can be exploited in modern MPSoCs
with the goal of providing a high degree of isolation to selected applications. We instantiate
Quasi Isolation QoS setups (QIQoS), introduce and explain two particular QIQoS to achieve
isolation in the DDR memory controller of the Zynq UltraScale+. The main lessons learned are
that transaction timeout (QIQoS1) and CAM starving control (QIQoS2), both underpinned
by traffic classes and port throttling, provide good isolation results. Overall, the proposed
QIQoS guarantee that applications’ execution time is much less sensitive to co-runners’
contention, and hence, the timing estimates obtained when running the application against
aggressors in early development stages become much tighter and stable across integrations.
Our future work includes exploiting more features of the DDR memory controller to further
isolate APU and RPU cores from the PL traffic, and also isolate cores in the APU and the
RPU from each other.
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Figure 9 Minimum rperf for the CT (left chart) and NCT (right chart), for QIQoS1 and QIQoS2
under L load of the PL (AV AIL = 12 and W T OUT = 32 for QIQoS1; and AV AIL = 12 and
SwCAM = 1 for QIQoS2).
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