
FusionClock: Energy-Optimal Clock-Tree
Reconfigurations for Energy-Constrained
Real-Time Systems
Eva Dengler #

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Phillip Raffeck
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Simon Schuster
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Peter Wägemann
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Abstract
Numerous embedded real-time systems have, besides their timing requirements, strict energy
constraints that must be satisfied. Examples of this class of real-time systems are implantable
medical devices, where knowledge of the worst-case execution time (WCET) has the same importance
as of the worst-case energy consumption (WCEC) in order to provide runtime guarantees. The
core hardware component of modern system-on-chip (SoC) platforms to configure the tradeoff
between time and energy is the system’s clock tree, which provides the necessary clock source to all
connected devices (i.e., memory, sensors, transceivers). Existing energy-aware scheduling approaches
have shortcomings with regard to these modern, feature-rich clock trees: First, with their reactive,
dynamic (re-)configuration of the clock tree, they are not able to provide static guarantees of the
system’s resource consumption (i.e., energy and time). Second, they only account for dynamic
voltage/frequency scaling of the CPU and thereby miss the reconfiguration of clock sources and
clock speed for the other connected devices on such SoCs. Third, they neglect the reconfiguration
penalties of frequency scaling and clock/power gating in the presence of the CPU’s sleep modes.

In this paper, we present FusionClock, an approach that exploits a fine-grained model of
the system’s temporal and energetic behavior. By means of our developed clock-tree model,
FusionClock processes time-triggered schedules and finally generates optimized code for a system
where offline-determined and online-applied reconfigurations lead to the worst-case–optimal energy
demand while still meeting given timing-related deadlines. For statically determining these energy-
optimal reconfigurations on task level, FusionClock builds a mathematical optimization problem
based on the tasks’ specifications and the system’s resource-consumption model. Specific components
like transceivers of SoCs usually have strict requirements regarding the used clock source (e.g.,
phase-locked loop, RC network, oscillator). FusionClock accounts for these clock-tree requirements
with its ability to exploit application-specific knowledge within an optimization problem. With
our resource-consumption model for a modern SoC platform and our open-source prototype of
FusionClock, we are able to achieve significant energy savings while still providing guarantees for
timeliness, as our evaluations on a real hardware platform (i.e., ESP32-C3) show.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases energy-aware scheduling, device-aware whole-system analysis, clock tree

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2023.6

Supplementary Material Software (ECRTS 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.1.2
Software (Source Code): https://gitlab.cs.fau.de/fusionclock

Funding by the Deutsche Forschungsgemeinschaft (DFG) – 502947440 (WA 5186/1-1, Watwa).

Acknowledgements We thank Tim Rheinfels for sharing his expertise with the energy measurements.

C
o
n
si
st

en
t *
Complete * W

ell D
o
cu
m
ented * Easy t

o R

eu
se
 *

 *
 Evaluated

 *
 E
C
R
T
S
 *

 Ar
tifact *

 A
E

© Eva Dengler, Phillip Raffeck, Simon Schuster, and Peter Wägemann;
licensed under Creative Commons License CC-BY 4.0

35th Euromicro Conference on Real-Time Systems (ECRTS 2023).
Editor: Alessandro V. Papadopoulos; Article No. 6; pp. 6:1–6:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dengler+ecrts23@cs.fau.de
https://orcid.org/0009-0001-3444-852X
https://orcid.org/0009-0006-3455-8071
https://orcid.org/0000-0002-3730-533X
https://doi.org/10.4230/LIPIcs.ECRTS.2023.6
https://doi.org/10.4230/DARTS.9.1.2
https://doi.org/10.4230/DARTS.9.1.2
https://gitlab.cs.fau.de/fusionclock
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 FusionClock

1 Introduction

Providing Static Time & Energy Guarantees. Developing systems that meet resource
requirements (i.e., time and energy in this paper) with provably optimal resource usage is
a central challenge in computer science [9, 32]. While the real-time–systems community
has developed numerous analysis approaches to guarantee timing requirements with energy
awareness in embedded single-core systems [3, 53], the combined handling of both time and
energy constraints still goes beyond the current state of the art in view of modern system-
on-chip (SoC) hardware platforms. Specific application scenarios that need to meet both
timing and energy requirements include implantable medical devices, such as artificial cardiac
pacemakers or defibrillators. Guaranteeing timeliness demands the worst-case execution
time (WCET) [51] in order to build a schedule that eventually meets the given tasks’ deadlines.
Likewise, the tasks’ worst-case energy consumption (WCEC) [22, 47, 48, 49] is a fundamental
measure for enabling a guaranteed execution of jobs under given limited energy budgets.
Having an accurate model of the target hardware platform’s temporal and energetic behavior
is essential in order to give static resource-consumption guarantees.

Configuring the Time & Energy Tradeoff with Clock Trees. Modern integrated SoC
platforms [13] offer a huge variety of features and options to configure the tradeoff between
performance (i.e., execution speed) and energy demand, with the heart of this configuration
space being the system’s clock tree [8, 40]. The purpose of the clock tree is to distribute
available clock signals to all components on the SoC by utilizing different signal-forwarding
mechanisms such as multiplexers, scalers, or clock gates. Figure 1 shows an example of such
a clock tree, which will be detailed later. Since components provided with a clock source via
an active signal through the clock-distribution network eventually lead to an increase in the
whole system’s energy consumption (i.e., power over time), these clock gates are also referred
to as power gates. Besides gating power (i.e., on/off switching), the clock tree includes the
possibility to scale frequencies up/down with multipliers by using scalers or select one out of
multiple input signals with the use of multiplexers. In summary, modern clock trees of SoCs
provide substantial configuration spaces for the tradeoff between time and energy, which has
not yet been sufficiently addressed in the context of energy-constrained real-time systems.

Energy Demand of Devices. The clock tree not only spans the configuration options for the
CPU: Modern SoC platforms are characterized by their multitude of integrated components,
such as transceivers (e.g., WiFi, Bluetooth, LoRa), sensors (e.g., analog-to-digital converter,
ADC), controllers (e.g., USB, SPI, DMA), or storage devices (e.g., non-volatile memory).
From a generic point of view, all these components have the same behavior as the CPU with
regard to clock gating: Switching off devices by clock gating them (when their service is not
needed) significantly reduces the system’s power and, therefore, is beneficial for energy savings.
While numerous energy-aware real-time scheduling approaches account for the systems’ energy
demand [3, 53], they have shortcomings with (1) comprehensively modeling the resource
demand of devices and (2) handling their hardware-related constraints with respect to multiple
available clock sources: For example, the WiFi device on a SoC [13] typically requires a specific
clock-tree configuration to operate. During operation, its power demand is up to 1105 mW,
being significantly larger than the CPU’s demand in run mode (i.e., at 1 MHz: 20 mW,
at 160 MHz: 100 mW). In summary, to address optimal energy-consumption reduction in
real-time systems, knowledge of the whole system’s resource-consumption behavior, with all
connected consumers, is inevitable.

E. Dengler, P. Raffeck, S. Schuster, and P. Wägemann 6:3

Low-Power Phases & Sleep Modes. As with the mentioned devices, the CPU is a device
itself and does not necessarily have a utilization of 100 % in embedded, energy-constrained
settings. Lower utilizations, and thereby slack time, offer the possibility to enter sleep
modes that decrease the system’s power demand down to, for example, 0.15 mW for the
previously mentioned SoC [13]. From a technical perspective, entering a sleep mode means a
reconfiguration of the clock tree. An essential accompanying, unavoidable effect of clock-tree
reconfigurations is the penalty for the reconfiguration. That is, both clock gating and clock
scaling involve significant time and accompanying energy overheads, which, for example,
come from the duration to stabilize the frequency of a phase-locked loop (PLL) clock source.
To give an example, reconfiguring the clock to wake up from a deep sleep mode, enter run
mode, and being able to execute user-provided code takes 70.26 ms on the example SoC [13],
which needs to be accounted for (1) resource-optimal and (2) deadline-aware execution.
With regard to the given real-time constraints, break-even points decide whether a specific
clock-tree reconfiguration is beneficial: For example, entering and subsequently exiting a sleep
mode could have adverse effects on the system’s resource consumption. In this paper, we
exploit a comprehensive clock-tree model including reconfiguration penalties (i.e., transition
costs between clock configurations) to determine worst-case–optimal reconfigurations.

Application-Dependent Reconfiguration. Not all tasks in real-time systems make use
of further devices besides the CPU. When considering chains of sense-compute-actuate
tasks, the sense phase requires data from sensor devices, and the actuate phase could use
transmitters to share results. Neither is the sensor required by the actuation phase nor the
transmitter during sensing. For computation tasks, no further devices are needed. Having
active devices while executing the compute phase leads to subpar energy demands. From a
general perspective, task-agnostic clock-tree reconfigurations inevitably lead to subpar results.
Thus, making use of application dependencies is essential for resource-optimal solutions.

Paper’s Contributions. This paper introduces FusionClock, an approach that addresses
the challenge of meeting deadlines of real-time tasks on single-core SoC platforms while
determining an optimum for the energy demand with the use of WCET and WCEC knowledge.
FusionClock handles time-triggered schedules and generates code for online reconfiguration
of the system’s clock tree, tailored for the specific device usage. The name FusionClock
originates from our objective of resource-optimally fusing clock-tree reconfigurations with the
application’s device requirements. FusionClock is able to handle clock trees with multiple
input sources and clock/power gates. The paper makes five contributions:

1. Problem Formalization: We present a generic quadratic optimization formulation that
makes use of a resource-consumption model and is able to adhere to real-time constraints
while optimally fulfilling the objective of minimizing worst-case energy demands.

2. Resource-Consumption Model: We developed a hardware model for clock-tree recon-
figurations on a SoC platform, which is the basis to resource guarantees.

3. Application-Aware Approach: We propose an application-aware approach that exploits
knowledge of clock requirements and device-aware resource-consumption analyses.

4. Code Generation: Based on the quadratic problem’s solution for a given taskset and
time-triggered schedule, our code-generation approach yields a functionally equivalent
but resource-optimal schedule with code for reconfiguring the clock tree between jobs.

5. Evaluation: Relying on a hardware platform and employing accurate energy measure-
ments, we demonstrate the effectiveness and validity of our open-source prototype of
FusionClock.

ECRTS 2023

6:4 FusionClock

2 Background & System Model

FusionClock targets embedded energy-constrained real-time systems executed on single-
core SoC platforms. For the tasksets to be optimized, FusionClock assumes a strictly
periodic, cyclic task model. As FusionClock optimizes the clock-tree configurations of
pre-existing time-triggered schedules, we further assume the availability of a valid, non-
preemptive schedule for the taskset. As common in real-time systems, each individual task τi

can be described by the parameters of its period Ti, its WCET Ci, and its relative deadline
Di. After the hyperperiod H, which is the least common multiple of task periods, the
schedule (with its determined clock-tree reconfigurations) repeats. Specific to our approach,
we give WCET bounds dependent on the clock-tree configuration, replacing the single Ci

with the mapping Ci(conf). Additionally, the task description is extended by the set of
device dependencies (e.g., τ1 uses ADC device 2).

As an ahead-of-time mechanism, FusionClock has requirements on the hardware
architecture. We assume static analyzability in the temporal and energetic domain: The
hardware’s structure allows for the derivation of a static, sound model for the purpose of
WCET and WCEC analyses with acceptable analysis pessimism. Besides the feasibility of
capturing the microarchitectural behavior, such suitability for resource analysis includes
the possibility to describe the energy demand of particular program sections with a known
system state (i.e., clock-tree and device configuration) as (monotonic) function of its execution
time [48]. We further assume compositionality for energy and time [19, 37]: The validity of
safely combining the individual resource demands of continuous sections to a total demand.
The limited complexity of the hardware (RISC architecture, simple microarchitecture) found
in the targeted system class [13] facilitates modeling for static analyses.

Apart from the processor, SoC systems in the targeted domain also feature numerous
devices, such as sensors, actuators, or peripheral communication devices. Due to the nature
of SoCs with their integration of various components, all peripherals are generally seen as
devices. Those devices significantly influence the system’s overall power consumption. We
assume to have an accurate bound on the maximum power demand of those devices in
all of their different operation modes as well as the transitions between different modes.
Accurately determining such application-specific maximum power demands is possible, as
shown by Cherupalli et al. [7], which validates FusionClock’s related assumption. The
same consideration of being able to accurately model time and energy penalties holds for
clock-tree reconfigurations, as shown by Park et al. [36].

We assume a feature-rich clock tree that can be reconfigured at runtime by software,
allowing fine-grained control over the power consumption of any devices in the system. As
for peripheral devices, accurate upper bounds on the time and energy demand of clock-tree–
configuration switches are statically determinable. Lastly, every sleep mode of the clock
tree has a lower power consumption than all modes used for the execution of tasks. This
assumption prevents that unexpected idle times consume more power than the execution of
tasks, which is given for our target SoC [13].

The Clock Tree. The clock tree is the clock-distribution network within a system, routing
the signal from a clock source to all components in the system, potentially modifying the
source signal for specific devices. The complexity of this network heavily depends on the
chosen hardware platform. Modern SoC platforms feature a variety of clock sources based on
different technologies to serve diverse needs and provide a suitable signal source for different
application and device demands. The provided clock sources differ from each other with

E. Dengler, P. Raffeck, S. Schuster, and P. Wägemann 6:5

PLL

RC

OSC

PLL_DIV

FOSC_DIV

MU
X1 DIV MU

X2 CPU_CLK

MU
X3 GATE WIFI

BLUETOOTH

Figure 1 Example of a clock tree for modern SoC platforms [13]. The requirement for the clock-
tree configuration are both task- and hardware-related: (1) Tasks can require a specific device (e.g.,
WiFi) and (2) devices can require a specific clock source with specific multiplexer/divider settings.

regard to, for example, precision, energy efficiency, signal stability, and robustness against
environmental conditions [40]. In general, not every signal source may be suitable for every
device or at least not for every operation mode of a device, for example, because a device
operation requires a particularly high frequency that cannot be provided by every source.

Figure 1 shows an exemplary clock tree capable of clock-source selection and signal
modification. In the example, the tree has three different clock sources (PLL, RC, OSC) and
three different devices (CPU_CLK, WIFI, BLUETOOTH), whereas CPU_CLK denotes the source
clock for the CPU itself. A network of intermediate nodes in the clock tree allows for the
modification of the input signal to achieve the requested output signals. This network consists
of mainly three different types of nodes: First, there are clock gates (GATE), the simplest
form of modifying an input signal: It can either let the signal pass through the gate to the
output or block it off, which can be used to deactivate devices or even complete peripheral
busses (i.e., clock-tree subsystems). The second node type in a clock tree is a scaler (PLL_DIV,
FOSC_DIV, DIV). It modifies the input signal by multiplying or dividing it with a factor before
forwarding it to the remaining network. Finally, multiplexers (MUX1–MUX3) receive multiple
input signals and, depending on the configuration, select one of them as the output.

This richness of features and configuration possibilities creates high flexibility, enabling
trading off between performance and energy efficiency for all devices. It comes, however,
with penalties for each clock-tree reconfiguration. A penalty describes the time and energy
needed to perform the reconfiguration. On the hardware level, modifications to the clock-
tree configuration come with varying penalties ranging from miniscule (i.e., few cycles) to
significant overheads (i.e., hundreds of milliseconds) [13, 40]. A simple change of a (pre-)scaler,
for example, usually requires only a single write to the corresponding divider register. More
complex changes, on the other hand, can even require intermediate changes to a temporary
helper clock before switching back to the reconfigured original clock (e.g., when switching
between PLL clock sources in a microcontroller [33]). These reconfiguration penalties, with
regard to both power consumption and time, heavily influence the system’s behavior.

3 Problem Statement

In our target domain of embedded energy-constrained real-time systems, applications consist
of a set of tasks, the canonically smallest workload unit. Each of these tasks may have
different requirements regarding device usage and, thus, different demands on the clock-tree
configuration. The naive approach to satisfy device demands is to unselectively choose
one configuration that fits all tasks (all-always-on approach), but this comes with a higher
consumption than necessary for some tasks, for example, because unneeded peripheral devices
are enabled. Figure 2 illustrates this problem for a taskset comprising two tasks (task_τ1,
task_τ2), with each task requiring one or more devices in addition to the CPU. The upper
variant of the hyperperiod function displays the all-always-on variant mentioned above and

ECRTS 2023

6:6 FusionClock

Devices’ Max. Power Pmax

CPU (idle): 20mW
CPU (PLL@160): 100 mW

WiFi device : 1000 mW
SPI device : 2mW

sensor device : 10mW

task_τ1

...
wifi_ack () ...
spi_write () ...

task_τ2

...
read_sensor () ...

all-always-on approach

hyperperiod {
clock_tree_config (ALL_ON)
task_τ1 ()
task_τ2 ()
clock_tree_config (ALL_OFF)

}

task-selective approaches

hyperperiod {
clock_tree_config (?)
task_τ1 ()
clock_tree_config (?)
task_τ2 ()
clock_tree_config (?)

}

Po
we

r

Time

Po
we

r

Time

Po
we

r

Time

?
CTC1

CTC2

Figure 2 The decision when to apply clock-tree configurations (CTC), for example, to de-/activate
devices, significantly influences the system’s resource consumption. Different power consumptions
and reconfiguration penalties affect both the execution time and the energy demand. The energy
demands (i.e., integral over power) of reconfiguration penalties are illustrated as gray areas .

the higher-than-necessary power consumption caused by it. The lower variant is expected
to have a lower power consumption, as depicted. The effectiveness of selective clock-tree
configurations over the all-always-on approach depends on multiple factors, such as the
execution time in one clock-tree configuration and the associated reconfiguration penalties.
Thus, break-even points between resource demands determine optimal configurations. In
summary, an operating system or runtime environment trying to optimize the handling of
these different demands with regard to resource usage faces multiple problems:

Problem # 1: Purely dynamic, feedback-based energy minimization approaches pay for their
flexibility with a loss of predictability for the system behavior, which is unacceptable in
real-time systems executing under strict time and energy budgets.

Problem # 2: CPU-only, device-independent approaches miss the optimization potential of
clock-tree reconfigurations that target arbitrary devices on the SoC.

Problem # 3: Modern clock trees with various features are subject to reconfiguration costs
that have adversarial effects on reconfigurations and, thus, have to be selectively considered
in a configuration-specific approach.

Problem # 1: Resource-Consumption Guarantees. As FusionClock targets real-time
systems, optimizing solely for energy consumption does not suffice and threatens the correct
system behavior if deadlines cannot be met. The temporal behavior of devices and the tasks
using them depends, among other factors, on the active configuration of the clock tree. In the
case of the CPU, for example, a lower frequency allows for a more energy-efficient execution
while simultaneously prolonging the task execution. The fact that a task running at a lower
frequency jeopardizes not only its own deadline but potentially the deadlines of all following
tasks exacerbates the problem. In view of this complexity, only static guarantees enable a
safe execution at runtime.

Problem # 2: CPU-only Modeling & Energy-Aware Scheduling. The body of related
work for energy-aware real-time scheduling is substantial; we refer to the survey of Bambagini
et al. [3] and to the overview of device-aware scheduling techniques [52] for further reading.
Common to all these works is either the use of CPU-only models or the use of models
that do not cover the complexity of modern clock trees in SoC platforms, especially for
configuring devices. The energy consumption of peripheral devices such as those used for

E. Dengler, P. Raffeck, S. Schuster, and P. Wägemann 6:7

communication (e.g., WiFi or Bluetooth) often heavily outweighs the demand of the CPU.
Consequently, to have usable models for real-world scenarios, WCET and WCEC analyses
have to consider the whole system, including all devices [48]. Otherwise, they are not able to
give safe estimates of the total energy demand.

But even without modeling additional devices, the different configurations of embedded
SoC platforms, which are available for online reconfiguration, yield a broad range of energy
consumption: For example, the ESP32-C3 [13], a RISC-V microcontroller SoC, uses 100 mW
for the highest available CPU frequency of 160 MHz, while only 20 mW are consumed at a
CPU frequency of 1 MHz. For the available sleep modes, this demand drops to 1.3 mW for
light sleep and 0.15 mW for deep sleep.

Problem # 3: Clock-Tree–Reconfiguration Penalties. To achieve minimal energy con-
sumption, the specific requirements of all tasks in a system concerning device usage have
to be considered. In theory, reconfiguring the clock tree enables us to address selective
device demands of each task and to operate devices only in the state required by the current
task. Knowledge about these device dependencies alone is, however, not enough, as every
reconfiguration itself also influences the system behavior. Depending on the concrete parts of
the clock tree that need to be changed, the degree of this influence varies. As such, complex
changes come with time and energy penalties: Frequently switching clock-tree configurations
tailored to the needs of each specific task can even amount to a higher resource consumption
than operating the system at the same configuration for all tasks.

Our Approach. In order to deploy task-specific configurations, we reconfigure the clock
tree during the system’s runtime making substantial use of a-priori knowledge about the
tasks: device usage, temporal properties (period, release time, deadline), and bounds on
the WCET and WCEC. Modeling the clock tree in a graph, which includes accurate costs
for the transitions between configurations, allows us to assess the influence of potential
reconfigurations between tasks and consequently decide which reconfigurations are beneficial.
By expressing the WCET of tasks dependent on the active clock configuration and considering
transition penalties, we are able to determine the slack time in the schedule and use it as
optimization potential by shifting task executions and idle phases for a more energy-efficient
schedule. Combining all of the above enables us to generate an energy-optimal variant of the
system’s schedule by inserting reconfigurations and idle phases that optimize energy usage
while simultaneously guaranteeing the correct real-time behavior of all tasks.

4 The FusionClock Approach

In the following, we detail FusionClock, our approach to determining application- and
device-aware, guaranteed, worst-case–optimal clock-tree–reconfiguration schedules for embed-
ded systems. Fundamentally, FusionClock is based on the realization that within a given
time-triggered schedule, the search for a worst-case–optimal clock-tree configuration is equiv-
alent to a minimum-cost flow problem within a suitably structured clock-tree–reconfiguration
graph that incorporates the required application- and device-dependent knowledge as construc-
tion constraints and transition costs. This section is structured as follows: First, we describe
the structure of FusionClock’s central data structure, the clock-tree–reconfiguration graph.
FusionClock uses this graph for flow restrictions in a quadratic-programming problem
solvable by mathematic optimizers. We then show how an extension of this problem allows

ECRTS 2023

6:8 FusionClock

τ1

...
wifi_ack ()
...
spi_write ()
...

Devices

CPU
�

I2C

WIFI
�

GPIO

ADC

SPI
�

Configurations

CTC1
✓

CTC2
p

CTC3
✓

CTC4
p

CTC5
p

...

J1,1
@CTC1

22µJ

J1,1
@CTC3

11µJ

CTC1
→ CTC1

0µJ

CTC1
→ CTC4

3µJ

CTC1
→ CTC5

8µJ

CTC3
→ CTC1

12µJ

...

J2,1
@CTC1

22µJ

J2,1
@CTC4

11µJ

J2,1
@CTC5

11µJ

· · ·

· · ·

· · ·

Figure 3 Construction of a clock-tree–reconfiguration graph from application- and device-dependent
knowledge, here indicated for a job instance J1,1 of task τ1 along with the transitions to the job
instance J2,1 of the subsequent task τ2.

the optimizer to redistribute slack within the schedule to reduce a hyperperiod’s worst-case
energy demand to automatically generate an optimized executable from the solver’s output.
Finally, we provide a complete formal depiction of the problem.

Clock-Tree–Reconfiguration Graph. The clock-tree–reconfiguration graph provides the ba-
sis to determine a schedule’s worst-case–optimal sequence of clock-tree configurations (CTC),
which is the sequence that will minimize the schedule’s WCEC per hyperperiod by selecting
optimal reconfiguration points and configurations. At its core, a time-triggered schedule
provides a non-preemptive sequence of individual jobs Ji,k for the different tasks τi within
the taskset. In this work, we regard those tasks as the indivisible unit of processing. Here,
especially for embedded/cyber-physical systems, it is typical for the individual tasks to
interact with various devices within the system, both internal ones such as the CPU device
as well as other devices (i.e., sensors, transceivers). However, usage of individual components
here requires preparations: As outlined above, tasks can require a specific clock-source
configuration to work. At the same time, power gating or frequency scaling different com-
ponents is vital to minimize energy consumption, an energy-optimal execution of a taskset
progresses through a series of different clock-tree configurations. If a task consists of multiple
phases with very varied device usage patterns, it thus may be advisable to split those phases
into a series of individual subtasks whose CTCs can be optimized individually. Devising
a suitable splitting strategy, however, is out of scope of this work. As a first step towards
optimization, FusionClock collects the static device-usage information for the individual
tasks, which is highlighted with the � symbol in Figure 3. This is then combined with
the SoC-specific knowledge of the individual requirements of a particular device, such as
minimum bus frequencies or a specific clock source (e.g., WiFi can require a distinct, highly
stable clock [13]), and the corresponding feasible clock-tree configurations. As displayed in
Figure 3, these two information sources allow FusionClock to determine the set of feasible
clock-tree configurations (✓) for this particular job as the intersection of the different device
dependencies in an application-aware manner.

Even more, by performing a static WCET analysis and combining the result with the
SoC’s resource-consumption model, we further enrich the graph by attributing upper bounds
on the energy consumption of every job’s execution phase within the schedule. With this
knowledge, it is possible to determine the optimal configuration for every individual phase

E. Dengler, P. Raffeck, S. Schuster, and P. Wägemann 6:9

by comparing the different consumptions of the various viable configurations (see green
nodes with @ symbols in Figure 3). However, as each clock-tree reconfiguration comes with
transition penalties, those have to be considered when searching for an optimal configuration
sequence. For example, performing a rather energy- and runtime-intensive reconfiguration to
reach the optimal operation point for a rather short job can have adverse effects on the energy
demand. If the former job was executed in a compatible but slightly more energy-intensive
configuration, keeping this configuration can turn out cheaper than paying the reconfiguration
penalties. To correctly model those penalties, we add an additional set of transition nodes to
our flow graph (gray nodes with → labels): For every pair of job instances of subsequent
jobs (in their respective feasible clock-tree configurations), we add a transition node on
the edge to which we assign the particular transition costs obtained from a SoC-specific
resource-consumption model for the clock tree. That way, a minimal-flow analysis through
the graph is guaranteed to retrieve the optimal, penalty-aware reconfiguration sequence for
the application’s taskset. The right side of Figure 3 shows the initial section of an exemplary
clock-tree–reconfiguration graph, displaying the first two job instances of the tasks τ1 and τ2.

Linear Constraints. We first express this minimal-flow analysis as an integer linear pro-
gram (ILP). Later, we extend the ILP and formulate a quadratic program (QP) to account
for deadlines in multi-rate systems. In the ILP, we add a binary decision variable (n) for
every node in the graph that describes whether the particular node is part of the optimal
clock-tree–configuration switching sequence or not. Furthermore, we require that for every
set of configuration alternatives of a particular job instance in the graph, at least one has
to be taken (i.e., their decision variables have to sum up to one). Additionally, we enforce
flow-preservation constraints within the graph: We assign binary decision variables to all
transition nodes, and each configuration node’s decision variable is equal to those of the sum
of the transition nodes on its incoming and outgoing edges. Our constraints formulate a
single consecutive path through the flow graph. With respect to the flow constraints, the
energy-minimization objective of the sum of all binary decision variables multiplied by the
respective energy cost of its particular job or transition yields an energy-optimal assignment
to the decision variables, sufficient to reconstruct the optimal schedule. A full formalization,
along with the QP extension described subsequently, is listed at the end of this section.

Quadratic Constraints for Slack Redistribution. This ILP is not yet sufficient as it neglects
important aspects of temporal constraints. Not every energy-optimal configuration sequence
guarantees deadline adherence. Also, in the case of multi-rate systems, the ILP formulation
does not yet guarantee the correct handling of release times. Therefore, we refine the
formulation of FusionClock to incorporate those constraints for the final QP formulation.

As indicated, FusionClock iterates upon a pre-existing time-triggered schedule. When
considering an exemplary schedule, such as the one displayed in Figure 4, two observations
are essential: (1) In addition to the actual job instances and their compute time, the schedule
further contains slack time (tsi). However, as the execution of the schedule is periodic and
repeats after the hyperperiod H, the energy consumption of the complete hyperperiod has to
be considered and optimized for. (2) As long as neither releases nor deadlines are violated,
FusionClock can redistribute slack across this schedule by “compressing” and “stretching”
appropriate parts of the schedule within those limits, as illustrated by the springs in Figure 4.
Considering that sleep modes represent one of the most energy-efficient clock-tree states
but – especially in the case of deep sleep modes – come with high reconfiguration/wake-up
penalties, exploiting this slack redistribution is crucial. Therefore, we model and expose idle

ECRTS 2023

6:10 FusionClock

H

J1,1

r1,1 d1,1

J2,1

r2,1 d2,1

J3,1

r3,1 d3,1

J4,1

r4,1 d4,1

ts1 ts2 ts3 ts4 ts5

Figure 4 Time-triggered schedules with utilizations below 100 % contain slack time (tsi). As
long as no release or deadline requirements of the underlying tasks are violated, this slack can be
redistributed. This image displays a simplified view, as the ILP does not pack fixed-duration jobs
but the optimizer is allowed to select different clock-tree configurations for each job instance – each
of which can shrink or expand the instance’s variable (i.e., clock-frequency–dependent) WCET.

phases as first-class citizens in our optimization formulation: For every idle phase, we add an
additional set of alternatives (i.e., different sleep modes and idling variants), along with their
reconfiguration/wake-up penalties, to the clock-tree–reconfiguration graph. What sets these
phases apart, however, is that they are of variable length: Their combined duration

∑
tsi,

along with the selected job-instance variants’ WCETs
∑

Ci,j(conf), has to sum up to the
system’s hyperperiod. That way, the solver is allowed to redistribute the slack for energy
minimization. However, this extension comes with the cost of creating a QP based on the
initial ILP: When multiplying the variable-length idle times by their selection variables
to choose an appropriate sleep mode, we form a multiplication and, thereby, a quadratic
optimization problem.

Additionally, we enforce that the scheduled work preceding any job instance’s dispatch
time (i.e., the time when it is scheduled to start executing) sums up to or surpasses the job
instances’ release time – this ensures that the optimizer includes sufficient idle time (e.g.,
ts1 + Creconf(cs1, c1,1) + C1,1(c1,1) + Creconf(c1,1, cs2) + ts2 + Creconf(cs2, c2,1) ≥ r2,1). At
the same time, we enforce that when further adding the selected configuration’s WCET
to that timespan, we still finish before the job instance’s deadline: For example, ts1 +
Creconf(cs1, c1,1) + C1,1(c1,1) + Creconf(c1,1, cs2) + ts2 + Creconf(cs2, c2,1) + C2,1(c2,1) ≤ d2,1.
Thereby, FusionClock guarantees timeliness of the optimized schedule. For providing
guarantees, this formulation operates on worst-case values. In practice, job instances may
not exercise their full WCET and WCEC. This is, however, not a problem, as idling in the
same CTC or entering sleep modes earlier and thus sleeping longer only reduces the system’s
online energy consumption.

By solving the min-cost flow problem, FusionClock is thus able to determine the global,
worst-case–optimal clock-tree configuration with optimized dispatch timings. FusionClock’s
code generation then extracts this information, in particular the adjusted dispatch timings as
well as the CTC-selection variables, from the QP’s solution to generate a minimal, tailored
implementation of the optimal schedule for the taskset that includes the previously determined
clock-tree reconfigurations.

Formalization. Consider a schedule as an alternating sequence of idle phases and job
executions, both marked by common but unique indices. For the sake of readability, we omit
the mapping of these global job-execution indices to the corresponding task and task-specific
job (i.e., from Cȷ̂ to Ci,j), as this mapping is always reconstructable from the available
knowledge when constructing concrete formalizations. With this notion and the variables
described in Table 1, we are able to formulate the description given above:

E. Dengler, P. Raffeck, S. Schuster, and P. Wägemann 6:11

min

∑
ȷ̂∈Ĵ

fȷ̂−1∑
c=0

nȷ̂,c Eȷ̂(c)︸ ︷︷ ︸
energy costs of jobs

+
∑
i∈I

fi−1∑
c=0

ni,c tsi,c Pi,c︸ ︷︷ ︸
energy costs of idle phases

+
N−1∑
i=0

fi−1∑
c=0

f(i+1)−1∑
c′=0

n(i,c)→(i+1,c′) Ereconf (c, c′)︸ ︷︷ ︸
energy penalty for reconfiguration

wrt.

Linear constraints:

exactly one active configuration per job:

∀i ∈ {0, . . . , N − 1} :
fi−1∑
c=0

ni,c = 1

flow-preservation constraint for incoming edges:

∀i ∈ {0, . . . , N − 1} : ∀c ∈ {0, . . . , fi − 1} :
fi−1−1∑

c′=0
n(i−1,c′)→(i,c) = ni,c

flow-preservation constraint for outgoing edges:

∀i ∈ {0, . . . , N − 1} : ∀c ∈ {0, . . . , fi − 1} :
fi+1−1∑

c′=0
n(i,c)→(i+1,c′) = ni,c

Quadratic constraints:

idle-phase durations and configuration-specific job WCETs sum up to the hyperperiod:∑
i∈I

fi−1∑
c=0

ni,c tsi,c︸ ︷︷ ︸
idle durations

+
∑
ȷ̂∈Ĵ

fȷ̂−1∑
c=0

nȷ̂,c Cȷ̂(c)

︸ ︷︷ ︸
execution times

+
N−1∑
i=0

fi−1∑
c=0

f(i+1)−1∑
c′=1

n(i,c)→(i+1,c′) Creconf (c, c′)︸ ︷︷ ︸
time penalty for clock-tree reconfiguration

= H

preceeding work and idle time sums up to or surpasses release time:

∀ȷ̂ ∈ Ĵ :
∑

i∈I,i<ȷ̂

fi−1∑
c=0

ni,c tsi,c︸ ︷︷ ︸
idle durations

+
∑

ȷ̂′∈Ĵ ,ȷ̂′<ȷ̂

fȷ̂′ −1∑
c=0

nȷ̂′,c Cȷ̂′(c)

︸ ︷︷ ︸
execution times (note the <)

+
ȷ̂−1∑
i=0

fi−1∑
c=0

f(i+1)−1∑
c′=1

n(i,c)→(i+1,c′) Creconf ((c, c′)︸ ︷︷ ︸
time penalty for clock-tree reconfiguration

≥ rȷ̂

preceeding work and idle time plus job WCET adheres to deadline:

∀ȷ̂ ∈ Ĵ :
∑

i∈I,i<ȷ̂

fi−1∑
c=0

ni,c tsi,c︸ ︷︷ ︸
idle durations

+
∑

ȷ̂′∈Ĵ ,ȷ̂′≤ȷ̂

fȷ̂′ −1∑
c=0

nȷ̂′,c Cȷ̂′(c)

︸ ︷︷ ︸
execution times (note the ≤)

+
ȷ̂−1∑
i=0

fi−1∑
c=0

f(i+1)−1∑
c′=1

n(i,c)→(i+1,c′) Creconf (c, c′)︸ ︷︷ ︸
time penalty for clock-tree reconfiguration

≤ dȷ̂

ECRTS 2023

6:12 FusionClock

Table 1 Overview of the notation used for FusionClock’s ILP and QP formalization. Not
shown for the sake of readability is the mapping from ȷ̂ to the corresponding job j and task i, which
should be trivially available when constructing concrete problem formalizations.

variable meaning

H hyperperiod

N number of jobs and idle phases

Ĵ ordered set of global indices corresponding to jobs in start-time order; ∀ȷ̂ ∈ Ĵ : ȷ̂ < N

I ordered set of indices corresponding to idle phases (with variable length); ∀i ∈ I : i < N

fi number of possible clock-tree configurations for job/idle phase i

ni,c binary decision variable for configuration c of job/idle phase i

n(i,c)→(i′,c′) binary decision variable for reconfiguration from c to c′ between jobs/idle phases i and i′

Cȷ̂(c) WCET of the job corresponding to the global job index ȷ̂ in configuration c

Eȷ̂(c) WCEC of the job corresponding to the global job index ȷ̂ in configuration c

rȷ̂ absolute release time of the job corresponding to the global job index ȷ̂

dȷ̂ absolute deadline of the job corresponding to the global job index ȷ̂

tsi,c duration of idle phase i in configuration c

Pi,c power consumption for configuration c in idle phase i

Creconf(c, c′) worst-case time penalty for reconfiguration from c to c′

Ereconf(c, c′) worst-case energy penalty for reconfiguration from c to c′

5 Implementation of FusionClock

To show FusionClock’s feasibility and evaluate its performance, we created a prototypical
implementation of FusionClock on the ESP32-C3 SoC [13]. Figure 5 shows FusionClock’s
key components and data structures. After discussing important aspects of the hardware
and their implications, this section explains how FusionClock uses this information.

FusionClock’s Target Platform. The ESP32-C3 is a RISC-V single-core microprocessor,
running up to 160 MHz. It features many devices, such as WiFi, Bluetooth, SPI, UART, and
multiple low-power modes, along with frequency-scaling support for the CPU device. The SoC
is partitioned into nine power domains, de-/activated in four predefined power modes (i.e.,
active, modem sleep, light sleep, and deep sleep). This offers for a broad tradeoff between
energy consumption and performance, depending on the clock-tree configuration. As such, the
ESP32-C3 constitutes a suitable test bed for our clock-tree–reconfiguration approach. For our
evaluations, we designed a minimal custom PCB. This allows us to observe energy and timing
behavior as accurately as possible while avoiding interference factors such as noisy switching
regulators. By using the PCB, the hardware is sufficiently deterministic in its temporal and
energetic behavior to derive a reliable, clock-tree–aware resource-consumption model from
measurements. We detail this process in Section 6.1. This resource-consumption model is the
basis for the cost-annotated clock-distribution graph: It captures all timing and energy costs
for each clock-tree configuration as well as the reconfiguration penalties. Further, we derive
the SoC’s device-dependency graph from the relevant documentation [10, 12, 13] by manual
inspection. It captures the dependence of individual devices on certain properties of the
clock-tree configuration (e.g., minimal bus frequencies, power gates). This hardware-related
model is the basis for our software-related contributions.

FusionClock’s Workflow. FusionClock’s input comprises two parts: (1) information
about the clock tree, which splits up into the device-dependency graph and the cost-annotated
clock-distribution graph, as derived above, and (2) information about the application tasks,

E. Dengler, P. Raffeck, S. Schuster, and P. Wägemann 6:13

Device Awareness

Application
Awareness

Application Code
+ Timing Constraints
+ Device Requirements

WCET
Analysis

Time-Triggered Schedule

Clock-Tree–
Reconfiguration
Graph

Device-Dependency Graph Cost-Annotated
Clock-Distribution Graph

Quadratic
Problem

QP
Solver

Code
Generator

Optimized
Code

Task Sequence

CPU Cycles
per Task

Task & Transition Costs,
Transition Validity

Z Valid Configurations per Phase

Solution

Timing Constraints

Figure 5 Overview of the FusionClock approach with its central inputs, derived data structures,
processing steps, and final output result.

their timing constraints, and device requirements. The information on the tasks’ requirements
is combined (Z) with the device-dependency graph to determine the valid configurations for
each task. As a next step, we use our WCET analyzer (see Section 6.1) to obtain WCETs
for all individual tasks. Along with the phase order extracted from a time-triggered schedule,
this information then allows to construct the system’s clock-tree–reconfiguration graph.

As explained in Section 4, the min-cost flow problem of the clock-tree–reconfiguration
graph is translated into a formula understandable by a mathematical solver. After executing
the solver, FusionClock uses its output to extract the selected configurations for each task
and the time of all variable-length idle tasks. This allows FusionClock to generate code of
a specialized system instance by prepending a special prepare-hook for each task. It inserts
tailored reconfiguration code to transition the SoC to the new clock-tree configuration if the
QP’s decision variables indicate a reconfiguration. If this reconfiguration did not utilize its
full WCET as accounted for in the QP, the task awaits the dispatch time of the subsequent
phase to ensure compliance with the time-triggered schedule. Then, the task’s workload is
evaluated. In a similar fashion, for sleep phases, the system prepares the sleep timer and
enters the sleep mode or – in case of active idle – the system idles for the predicted sleep
time. This process ensures that the worst-case–optimal system configuration – as determined
by the QP’s solution – is effectively applied to the target system in a fully automatic manner.

6 Evaluation

This section first describes our evaluation setup (see Section 6.1). Then, we present the
evaluation results (see Section 6.2), which consist of three parts: (1) a scalability test for
the QP, followed by energy measurements on the SoC for (2) executable tasksets, and (3) a
break-even analysis for sleep modes with the help of a benchmark from TACLeBench [14].

6.1 Evaluation Setup
Timing Analysis. Static analyses are conducted using the open-source toolkit Platin [38].
We add a custom RISC-V 32-bit architecture for the ESP32-C3 SoC in addition to the
previously supported architectures PATMOS [41] and ARM. As the documentation [11, 12, 13]
does not provide the microarchitectural details required to create a static hardware model for
this chip, the model is based on measurements of individual instruction-cycle timings utilizing
a hardware configuration tailored towards deterministic execution. In this configuration, all

ECRTS 2023

6:14 FusionClock

0 10 20 30 40 50 60 70 800

20

40

60

80
134

83.5

14.7

46.2

2.5

132.6

90.3

5.1

9.4
51.6

242.9

72.5

46.7

57.2

10

340.7

34.2

55.3

27.1
3.3

0.2

5.7

8.6

5.8

1

9.8

4.5

1.6

0.4

20.6

43.4

68.8
464

0.2

1.2

4.1

15.6

14.6

8.7

252

12.2

5.4

6.3

10.1
4.3

2

5.32.2

0.2

0.6

16.2

4.6

8.6
4.6

1
44.5

0.1 0.4

24.6

7.4

162.5

194.8

14

58.4

2.9
6.6

29.6

53

48.2

90.2

0.6

16.3

0.5

33

19.6

0.1

0.1

16.4

48.2

6.2

38.9

132.3
73.3

6.4

1.5

104.3

1.4

138.1

0.7

20.4

3.6

42.4
15.9

3.7
0.4

25

0.2

5.1

11.8
6.1

2.5
21.6

7.5

26.4
17.1

1.8

2.7

0.7

10.2
8.8

23.5

45.218.8

0.1

3.3

2.4

5.9

60.8
20.8

1.2

0.7

0.2

35.8

1.4

35.8

9.7

7

79.5

26

24.9
33.6

60.3

7.4

62.9

2.1

13.3

180.5

8.1

452.1

35.2

0.9

6.5

28.3

3.3

47.7

85.9

3.1
34.3

4.7
11.4

0.3

4.1

56.9
4.9

15.6

57.2

6.3

26.6

4

20.7

1
1

98

34.8

9.7
0.8

91.9

49.5

0.1

3.6

4.5

105.5

0.2

29.7

2

10

7.7

6.717.1

40.8

0.6

44.6

17.9

44.1

54.5

29.9

114

0.4

3.7
5.1

34.410.4

14.2

2.1

1.7

5.8

1.5

25.1

7.9

88.4

73.2

13.3

2.8

42.5

112.2

410.3

4.2

0.8

11.5

64

7.4
0.3

0.5

41.7 54.5

1.2

9.4

9.7

1.7

3.7

5.7

4.1

87.8

0.4

0.9 1.5

1.4

46.1

20.2

9.7

8.9

48.4

1.9

1.1

6.4

5.9

1.4

6.6

0.8

12.1

0.4

13.8

66.1

23.6

1.3

12.5

0.8

29.9

5.9

12

20.2

87.7

43.7

439.1

38.9

6.8

Tasks

C
on

fig
ur

at
io

ns
pe

r
Ta

sk

0

100

200

300

400

T
im

e
(s

)

Figure 6 Heatmap showing the solver efficiency for a variable number of tasks on the x-axis and
a variable number of possible configurations on the y-axis. With increasing values, the time needed
to solve the QP also grows, with a largest value of 464 s, which is still considered acceptable.

application code resides within zero-wait–cycle accessible SRAM, bypassing the need to model
flash-access latency and caching behavior. The backing measurements further exercise both
pipelining- as well as alignment-related effects that originate from the RV32C (Compressed
Instructions) extension [39]. While we cannot guarantee soundness of this model in the
current prototype, we did not experience any underestimation in all subsequent evaluations.

Resource-Consumption Model. As the documentation of the energy consumption for
the SoC does not provide detailed information about the energy consumption, we used a
measurement-based approach to build an expressive energy-consumption model for Fusion-
Clock’s clock-tree configurations. Here, to derive upper bounds, we base our model on the
worst-observed power consumption of the individual clock-tree configurations c weighed by
execution time, or expressed formally: Ei,j(c) = Pmax,c · Ci,j(c). Relying on the assumption
that Pmax bounds the maximum configuration-specific power demand and that the WCET
bound (C) is safe, this linear approximation determines a valid upper bound of the WCEC.
While FusionClock supports expressing the WCEC as a general function (E), this model
emphasizes safety over accuracy. To approximate Pmax,c in a measurement-based manner,
we make use of the Joulescope JS220 energy-measurement tool [23], which allows for simulta-
neously measuring current/voltage, and consequently power demand. To make the model as
reliable as possible, the worst-observed energy consumption over multiple runs is taken as a
pessimistic reference value for the power consumption of the individual configurations under
evaluation. When obtaining WCETs, our model differentiates between two types of tasks:
CPU-centric workloads scaling with the underlying clock’s frequency, for which we perform
the static analyses with Platin as well as fixed-time workloads where a particular device
latency determines the (fixed) execution time. For the device-related latencies, we have to
rely on worst-observed timings. We found that modeling transition penalties between sleep
modes and run modes, with the linear approximation mentioned above (Pmax · WCET),
yielded comparably pessimistic results. As a result, we determine these penalties through
measurement-based analysis. In all cases, our model provides upper bounds over all observed
runs of our evaluation setup.

6.2 Evaluation Results
Solution Efficiency of the Quadratic Program. To solve QPs, a powerful mathematical
solver such as Gurobi [17] is required. For evaluation, we deploy Gurobi in version 10.0.0
with a set of synthetic test cases on a machine equipped with two AMD EPYC 7702 64-core

E. Dengler, P. Raffeck, S. Schuster, and P. Wägemann 6:15

processors with a total of 512 GiB of RAM. As test-case sizes, we use a varying number
of jobs up to 80 and a varying number of possible clock-tree configurations per job up to
80 possible configurations, allowing a maximum of 6400 different reconfigurations between
two subsequent jobs. We consider these sizes comparably large for the context of energy-
constrained real-time systems running on modern SoCs. Each job in the test cases has,
besides a synthetic WCET, a randomly generated release time and deadline provided to the
solver. To allow the presented dynamic redistribution of slack for each job, we bridge every
two jobs with an additional idle phase. The resulting evaluation times of Gurobi are presented
in Figure 6. As expected, the time needed to solve the test cases grows with the number
of configurations and jobs. The maximum time needed to solve the QP within the given
evaluation scenario is 464 s, which we consider practical with regard to the fact that static
analyses are conducted once during design time. Due to our approach of producing generic
QP formulations, we further benefit from continuous improvements (e.g., parallelization) of
mathematical solvers.

Break-Even–Point Evaluation. FusionClock strives to provide energy-optimal clock-
tree–reconfiguration sequences for the individual tasksets. However, to likewise provide
guarantees, FusionClock’s underlying resource-consumption model contains some degree
of pessimism. This effect is especially visible close to break-even points, that is, instances
where the optimal CTC for a certain phase changes due to varying task parameters such as
its WCET. Subsequently, we study this effect by the example of a variable-sized sleep phase,
as the ESP32-C3’s different sleep modes (i.e., active idle, light sleep, deep sleep) with their
varying reconfiguration penalties and energy consumptions show a representative evaluation
scenario. In this scenario, the system executes a single task, the binarysearch benchmark
of the TACLeBench benchmark suite [14], before awaiting the hyperperiod’s next execution.
We then vary the length of the hyperperiod H to determine the break-even points between
active idling, light sleep, and deep sleep. Figure 7 displays the maximum measurements over
5 runs for all modes, as well as the optimized estimation of the QP (dotted).

For the computation workload on this SoC, the highest CPU frequency is the most energy
efficient in terms of instructions per Joule, and, as a consequence, the solver chooses this
configuration for the binarysearch benchmark for every tested QP formulation. However,
the same is not true for the idle phases: Here, minimizing Joule per time is required, and
consequently, FusionClock correctly prefers the lowest CPU frequency in this case (active
idle). Still, regarding this metric, the SoC’s two sleep modes fare even better, but their
high, static reconfiguration penalties still make them unfavorable for short hyperperiods (i.e.,
H ≤ 8 ms). Here, FusionClock accurately predicts the break-even point from active idle
to light sleep (left side of Figure 7). For the second break-even point (around 3200 ms, right
hand figure) signaling the switch from light sleep to deep sleep , we observe a deviation
between the theoretical prediction based on our resource-consumption model Pmax (dotted)
and the observed, measured break-even point around values of H = 6000 ms. We trace
this gap back to our pessimistic hardware model of the ESP32-C3 during light sleep: The
maximum observed power consumption is 1.31 mW, while the consumption averages around
0.65 mW with a standard deviation of 0.11 mW, the maximum value manifesting in outliers.
To illustrate this point, we introduce two additional variations of our power model for light
sleep into Figure 7, where we instead base the model on the average value µ with an additional
safety margin derived from the standard deviation σ: P3sig = µ + 3σ and P1sig = µ + σ.
These two models move the solver estimation substantially closer to the observed break-even
point. Thus, this observation indicates one way of further improving FusionClock’s current

ECRTS 2023

6:16 FusionClock

6 8 10 12
0

100

200

300

active idle light sleep

Hyperperiod H (ms)

En
er

gy
(µ

J) light sleep

deep sleep

0 2,000 4,000 6,000 8,000 10,000
0

2,000

4,000

6,000

Hyperperiod H (ms)

magnification

Figure 7 Break-even–point measurements for active idle , light sleep , and deep sleep in
comparison to QP results with different energy models. Pmax (dotted) assumes the maximum
measured power consumption for each phase for the QP. The models P3sig (dashed) and P1sig

(dashdotted) assume a power consumption of µ + 3σ and µ + σ of the measured values for light
sleep. In the left part, measurements from 5 ms to 10 ms are in steps of 1 ms, for the right in steps
of 1000 ms, with additional measurement points for active idle to visualize the higher energy costs
compared to both sleep modes. QP results are shown in 1 ms steps (left) and in 100 ms steps (right).

prototype: A more accurate sleep-energy prediction model with less pessimism shifts the
reconfiguration sequence towards the observed measurements. In this evaluation, no case
of the QP’s predicted resource demand shows an underestimation compared to the actual
measured demand of the code with its reconfigurations. Thus, the main conclusion for
FusionClock from this evaluation is the ability to generate reconfiguration sequences
to optimize the energy consumption of the system under observation while accounting for
reconfiguration penalties between the respective modes.

Taskset Evaluation. We automatically generate test cases to evaluate whether our approach
actually (1) provides a reliable upper bound for the energy consumption and (2) minimizes the
energy in comparison to a device-unselective (i.e., all-always-on) application. The generation
happens with the following steps: First, we generate tasksets according to an energy-aware
generator [50] relying on the UUniFast algorithm [4]. Then, we used a simulation of RMA
scheduling [31] at design time to create a time-triggered schedule for these tasksets, splitting
tasks where necessary, which eventually creates a sequence of independent tasks. To simulate
the tasks’ device usage, we assume that device interaction consists of three phases: First
sensing the environment, then computing the resulting action, followed by actuating depending
on the computation outcome. Therefore, each task is put into one of two groups: 70 %
are fixed-time slots, as these devices are assumed to have a non-frequency–scalable timing
behavior. The remaining 30 % are considered compute-only tasks where the time depends
on the CPU frequency of the SoC. Thereby, we achieve a similar distribution between these
three phases, slightly favoring device interactions. As configuration options, we support here
5 clock-tree options in addition to 2 sleep modes, selectively reconfigurable for each task.
The hyperperiods range from H = 25 ms to H = 125 ms over the tasksets consisting of 9 to
18 tasks within a multi-rate system having harmonic periods, which we consider as realistic
for our target scenarios. The QP description groups all this information, for which the
Gurobi solver then determines an optimized reconfiguration schedule. Next, FusionClock’s
code generator builds the necessary reconfiguration and idle tasks. For the task’s temporal
behavior, a loop waits to reach each task’s determined WCET. As these evaluations on real
hardware require manual interaction with the energy-measurement device over the course
of several hours, we conduct this evaluation based on a practically manageable set of ten
tasksets, which we randomly selected from the generated tasksets. Figure 8 shows the
results of this evaluation by increasing utilizations: The left bars in blue (for the respective

E. Dengler, P. Raffeck, S. Schuster, and P. Wägemann 6:17

56.0 %
25 ms

61.6 %
125 ms

64.8 %
125 ms

67.2 %
125 ms

74.4 %
125 ms

80.0 %
125 ms

85.6 %
125 ms

86.0 %
50 ms

91.2 %
125 ms

96.8 %
125 ms

0×

0.5×

1×

blablabla
53

9
µ

J

2,
21

8
µ

J

2,
28

9
µ

J

2,
37

6
µ

J

2,
36

3
µ

J

2,
43

8
µ

J

2,
71

7
µ

J

1,
24

9
µ

J

2,
64

6
µ

J

2,
78

5
µ

J

54
9

µ
J

2,
58

5
µ

J

2,
68

8
µ

J

2,
80

7
µ

J

2,
72

9
µ

J

2,
79

9
µ

J

3,
17

3
µ

J

1,
37

0
µ

J

2,
99

9
µ

J

3,
17

5
µ

J

re
d

.
b

y
78

.3
%

re
d

.
b

y
82

.2
%

re
d

.
b

y
81

.6
%

re
d

.
b

y
80

.9
%

re
d

.
b

y
81

.0
%

re
d

.
b

y
80

.4
%

re
d

.
b

y
78

.2
%

re
d

.
b

y
74

.9
%

re
d

.
b

y
78

.7
%

re
d

.
b

y
77

.6
%

Task Utilization / Hyperperiod

E
ne

rg
y

C
on

su
m

pt
io

n
(n

or
m

al
iz

ed
)

Figure 8 Normalized comparison of an all-always-on approach to the QP solution to the measured
energy consumption. The tasksets are ordered by the utilization of the taskset before optimization.

utilization) show the measured, worst-observed energy consumption for each taskset over
50 runs for the utilizations. The middle (green) bars are the solution determined through
FusionClock’s QP solution, while the right bars show the task-unselective approach to clock
configuration, which is also determinable with the QP by restricting the configuration space
to the all-always-on option. In all experiments, the QP either selected active idling on the
lowest frequency or the light sleep, as the penalty for the deep-sleep mode (i.e., 70.26 ms) is
relatively high for these utilizations and hyperperiods. We observe close estimations between
the measured and the predicted values: The smallest relative overestimation is in the first
shown taskset with 1.8 % (10 µJ in total), while the largest relative difference is in the fourth
taskset 15 % (431 µJ in total). The reason for this difference is due to the fact that the tasks
consume less than their given budget by the Pmax energy model. Throughout all evaluated
benchmarks, the total measured energy demand is below FusionClock’s estimation given
by the solver with the help of our resource-consumption model. These values confirm the
validity of our modeling approach. Regarding the energy minimization in contrast to the
unselective approach, we observed significant improvements: Due to energy savings with the
most energy-efficient configuration over time for fixed-time tasks (20 mW to 100 mW) and the
energy savings for idle modes, the geometric mean over all observed improvements is 79.4 %.
As a main conclusion, we state that FusionClock achieves significant energy improvements,
while showing overestimations with acceptable accuracy of the resource model.

7 Related Work

While real-time systems with energy constraints are a well-explored topic, FusionClock
goes beyond the current state of the art with its use of static reasoning for guarantees,
its penalty-aware handling of multi-source clock trees, its exploitation of application-aware
device constraints, and its final code generation. Due to FusionClock’s multi-faceted
approach to resource-consumption optimization, our work has several scopes of related
work: (1) clock-tree (re)configuration, (2) energy-aware real-time scheduling, and (3) static
resource-consumption analysis, which are subsequently discussed in this order.

Clock-Tree Reconfiguration. The recent work on ScaleClock [40] for the RIOT operating
system [1] presents an approach for the online exploration of the clock tree. Instead of
building a static clock-tree model, ScaleClock employs reconfigurations of the clock tree
and thereby learns the model during the system’s runtime. In contrast to ScaleClock,
our FusionClock approach relies on a statically determined clock-tree model with the
associated reconfiguration penalties. Having a static model is mandatory in order to give
guarantees for timeliness and the execution within energy budgets, which is not possible with
ScaleClock. As a commonality, we share the same argumentation as ScaleClock: Selective

ECRTS 2023

6:18 FusionClock

clock reconfigurations play a key role in configuring the tradeoff between energy and time in
modern SoCs. From FusionClock’s perspective, ScaleClock is similar to Power Clocks [8]
with its management of multiple clocks in embedded systems. In contrast to both existing
clock-tree reconfiguration techniques, FusionClock has the major difference of giving static
runtime guarantees and finding a resource-optimal configuration. Our energy optimizations
are possible due to our underlying resource-consumption model of the target hardware.

Industry also tries to satisfy tool-supported configurations of clock trees: The integrated
development platform of CubeMX [45] from STMicroelectronics has an option to brute-force
clock-tree configurations until an option satisfying all device constraints is found. This clock-
tree option is fixed since no reconfigurations happen during runtime prior to dispatching
jobs. Therefore, CubeMX makes suboptimal use of resources. With FusionClock, we
exploit the notion of the clock tree along with the tasks’ WCET and WCEC under respective
configurations in order to yield resource-optimal, job-specific configurations.

Energy Awareness in Real-Time Systems. Energy-aware real-time scheduling is a well-
explored topic with a substantial body of related work, as surveyed by Bambagini et al. [3].
In this context, works closer related to FusionClock target the scheduling of non-DVS
components; we refer to the overview on these techniques from Yang et al. [53]. These
scheduling techniques partly share our notion of devices, which show an increase in power
consumption when active. For example, these techniques cover the topics of device-aware
procrastination [6] and preemption control [52]. However, these works have shortcomings
in light of modern SoC platforms featuring feature-rich clock trees, which we address with
FusionClock. In contrast to prior work, FusionClock has the expressiveness to cope
with multiple clock input sources for energy minimization under timing constraints. Further,
FusionClock is able to optimally select clock sources based on the fact that devices can
have distinct clock-source constraints (e.g., a specific clock source running at its highest
frequency). Additionally, due to our generic clock-tree abstraction, we support arbitrary
changes and their respective context-sensitive penalties of clock-tree reconfigurations. Finally,
the expressiveness of FusionClock’s abstraction seamlessly integrates the handling of
low-power/sleep modes. Consequently, FusionClock worst-case optimally answers the
question of whether to race or pace to idle [26].

Recent work on energy-constrained real-time systems addresses the energy hotspot detec-
tion EHDE [44] with static analysis techniques. Similar to FusionClock’s argumentation,
their work emphasizes the need to account for devices and their dynamic range in power
demand for energy-aware real-time scheduling. EHDE uses a notion of best-case execution
time and WCET to move the activation and deactivation in the control-flow graph to yield
energy reductions while maintaining a logically and temporally correct system. EHDE ’s
energy-optimization formulation, which includes the best case, helps to approximate the
benefits of the code transformation. In contrast to their work, FusionClock has a com-
prehensive model of the system’s clock tree along with the associated transition latencies
under worst-case assumptions. That way, FusionClock is able to jointly account for task
dependencies on hardware devices while selecting feasible and worst-case–optimal clock
sources along with their configuration (i.e., multiplexer, scalers). Thereby, FusionClock
generates systems that execute during runtime energy-optimal clock-tree reconfigurations
under real-time constraints based on the tasks’ WCEC and WCET.

WCET & WCEC Analysis. The resource-consumption analysis for the WCET is well-
explored with numerous presented tools [2, 15, 16, 18, 20, 21, 24, 27, 29, 30, 38]. Likewise,
several static WCEC-analysis approaches are presented in literature [22, 35, 47, 48, 49].

E. Dengler, P. Raffeck, S. Schuster, and P. Wägemann 6:19

However, none of these worst-case approaches addresses the static analysis of penalties when
reconfiguring the clock tree. The work closest related to FusionClock with regard to
WCET analysis with frequency awareness is FAST from Seth et al. [42]. FAST is able to
accurately model caching behavior, which we solve with our zero-wait–cycle accessible SRAM.
In contrast to FAST, FusionClock has a notion of multiple clock sources and multiple
devices driven by means of the SoC’s clock tree.

FusionClock’s implementation uses the tasks’ WCET combined with the maximum
power demand of the respective clock-tree configuration. That way, FusionClock is
supposed to yield overestimations but leads to pessimism. Numerous related works exist on
energy-cost models for the processors [5, 25, 28, 34, 35, 43, 46]. Employing more fine-grained,
instruction-level energy models reduces the pessimism with regard to the energy demand of
machine code. However, considering the relations of power consumers (i.e., nW to W) in
energy-constrained systems, processing cores only take a minor portion of the whole system.
Further reducing FusionClock’s pessimism in maximum-power determination is possible
with more sophisticated approaches as presented by Cherupalli et al. [7].

8 Conclusion

Clock trees are the heart of modern SoC platforms providing the heartbeat to any connected
component. We argue that building FusionClock’s clock-tree abstraction and employing
this abstraction for energy minimization in real-time systems by means of a mathematical
optimization problem advances the state of the art: While existing techniques for clock-tree
reconfigurations are able to reduce the energy demand, they are not capable of providing
both WCEC and WCET guarantees, being now possible with FusionClock. Thereby,
FusionClock yields the optimal energy demand with respect to worst-case assumptions.
Further, our abstraction integrates the scaling and gating of clocks for all devices, including
the CPU itself, in a uniform way. Having such an abstraction is powerful in light of our whole-
system resource-consumption optimization. One part of our future work is the reordering of
tasks with respect to their precedence constraints, such that, for example, tasks benefitting
from the same (or a similar) clock-tree configuration are executed subsequently. Further, the
handling of interrupts is considered future work, which will allow us to handle a broader range
of real-time applications. Our evaluation on a hardware platform along with measurements
emphasizes what the name FusionClock expresses: Fusing the clock-tree configurations
between jobs, which, in turn, can use power-consuming devices (e.g., transceivers, memory
controllers, sensors), leads to energy-optimal execution sequences, while maintaining deadlines
of tasks. The evaluations further outline that significant (i.e., around 80 %) energy savings are
possible compared to clock-tree–agnostic approaches. Besides these savings, FusionClock’s
analysis time to determine worst-case–optimal solutions in large clock-tree–configuration
spaces is considerably short (i.e., few minutes) for static-analysis approaches, which is due to
our approach of formulating quadratic problems for fast mathematical solvers. As a future
perspective, we envision that more approaches use clock-tree abstractions as the basis for
resource-consumption optimizations in embedded systems.

Source code of FusionClock: https://gitlab.cs.fau.de/fusionclock

ECRTS 2023

https://gitlab.cs.fau.de/fusionclock

6:20 FusionClock

References
1 Emmanuel Baccelli, Cenk Gündogan, Oliver Hahm, Peter Kietzmann, Martine Lenders, Hauke

Petersen, Kaspar Schleiser, Thomas C. Schmidt, and Matthias Wählisch. RIOT: an open
source operating system for low-end embedded devices in the iot. IEEE Internet of Things
Journal, 5(6):4428–4440, 2018. doi:10.1109/JIOT.2018.2815038.

2 Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. OTAWA: an
open toolbox for adaptive WCET analysis. In Proceedings of the 8th International Workshop
on Software Technolgies for Embedded and Ubiquitous Systems (SEUS ’10), pages 35–46, 2010.
doi:10.1007/978-3-642-16256-5_6.

3 Mario Bambagini, Mauro Marinoni, Hakan Aydin, and Giorgio C. Buttazzo. Energy-aware
scheduling for real-time systems: A survey. ACM Transactions on Embedded Computing
Systems (ACM TECS), 15(1):7:1–7:34, 2016. doi:10.1145/2808231.

4 Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30:129–154, 2005. doi:10.1007/s11241-005-0507-9.

5 Naehyuck Chang, Kwanho Kim, and Hyung Gyu Lee. Cycle-accurate energy consumption
measurement and analysis: Case study of ARM7TDMI. In Proceedings of the 2000 International
Symposium on Low Power Electronics and Design (ISLPED ’00), pages 185–190, 2000. doi:
10.1145/344166.344576.

6 Jian-Jia Chen and Tei-Wei Kuo. Procrastination determination for periodic real-time tasks in
leakage-aware dynamic voltage scaling systems. In Proceedings of the International Conference
on Computer-Aided Design (ICCAD ’07), pages 289–294, 2007. doi:10.1109/ICCAD.2007.
4397279.

7 Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John Sartori. Deter-
mining application-specific peak power and energy requirements for ultra-low-power pro-
cessors. ACM Transactions on Computer Systems (ACM TOCS), 35(3):9:1–9:33, 2017.
doi:10.1145/3148052.

8 Holly Chiang, Hudson Ayers, Daniel B. Giffin, Amit Levy, and Philip Alexander Levis. Power
clocks: Dynamic multi-clock management for embedded systems. In Proceedings of the 2021
International Conference on Embedded Wireless Systems and Networks (EWSN ’21), pages
139–150, 2021. URL: https://dl.acm.org/doi/10.5555/3451271.3451284.

9 Albert Cohen, Xipeng Shen, Josep Torrellas, James Tuck, Yuanyuan Zhou, Sarita Adve,
Ismail Akturk, Saurabh Bagchi, Rajeev Balasubramonian, Rajkishore Barik, Micah Beck, Ras
Bodik, Ali Butt, Luis Ceze, Haibo Chen, Yiran Chen, Trishul Chilimbi, Mihai Christodorescu,
John Criswell, Chen Ding, Yufei Ding, Sandhya Dwarkadas, Erik Elmroth, Phil Gibbons,
Xiaochen Guo, Rajesh Gupta, Gernot Heiser, Hank Hoffman, Jian Huang, Hillery Hunter, John
Kim, Sam King, James Larus, Chen Liu, Shan Lu, Brandon Lucia, Saeed Maleki, Somnath
Mazumdar, Iulian Neamtiu, Keshav Pingali, Paolo Rech, Michael Scott, Yan Solihin, Dawn
Song, Jakub Szefer, Dan Tsafrir, Bhuvan Urgaonkar, Marilyn Wolf, Yuan Xie, Jishen Zhao,
Lin Zhong, and Yuhao Zhu. Inter-disciplinary research challenges in computer systems for the
2020s. Technical report, National Science Foundation, USA, 2018.

10 Espressif Systems. ESP32-C3-DevKitM-1, 2022. v5.0.1. URL: https://docs.espressif.com/
projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.
html.

11 Espressif Systems. ESP32-C3-Mini-1 Datasheet, 2022. Version 1.3. URL:
https://www.espressif.com/sites/default/files/documentation/esp32-c3-mini-1_
datasheet_en.pdf.

12 Espressif Systems. ESP32-C3 Technical Reference Manual, 2022. Pre-release
v0.7. URL: https://www.espressif.com/sites/default/files/documentation/esp32-c3_
technical_reference_manual_en.pdf.

13 Espressif Systems. ESP32-C3 Series Datasheet Ultra-Low-Power SoC with RISC-V Single-
Core CPU, 2023. Version 1.4. URL: https://www.espressif.com/sites/default/files/
documentation/esp32-c3_datasheet_en.pdf.

https://doi.org/10.1109/JIOT.2018.2815038
https://doi.org/10.1007/978-3-642-16256-5_6
https://doi.org/10.1145/2808231
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1145/344166.344576
https://doi.org/10.1145/344166.344576
https://doi.org/10.1109/ICCAD.2007.4397279
https://doi.org/10.1109/ICCAD.2007.4397279
https://doi.org/10.1145/3148052
https://dl.acm.org/doi/10.5555/3451271.3451284
https://docs.espressif.com/projects/esp-idf/en/latest/ esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.html
https://docs.espressif.com/projects/esp-idf/en/latest/ esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.html
https://docs.espressif.com/projects/esp-idf/en/latest/ esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.html
https://www.espressif.com/sites/default/files/documentation/ esp32-c3-mini-1_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/ esp32-c3-mini-1_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/ esp32-c3_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/ esp32-c3_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/ esp32-c3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/ esp32-c3_datasheet_en.pdf

E. Dengler, P. Raffeck, S. Schuster, and P. Wägemann 6:21

14 Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Christine
Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann, and Simon Wegener.
TACLeBench: A benchmark collection to support worst-case execution time research. In
Proceedings of the 16th International Workshop on Worst-Case Execution Time Analysis
(WCET ’16), pages 1–10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/OASIcs.WCET.2016.2.

15 Heiko Falk and Paul Lokuciejewski. A compiler framework for the reduction of worst-case
execution times. Real-Time Systems, 46(2):251–300, 2010. doi:10.1007/s11241-010-9101-x.

16 Christian Ferdinand and Reinhold Heckmann. aiT: Worst-case execution time prediction
by static program analysis. Building the Information Society, 156:377–383, 2004. doi:
10.1007/978-1-4020-8157-6_29.

17 Gurobi Optimization, LLC. Gurobi optimizer reference manual. https://www.gurobi.com/.
18 Sebastian Hahn, Michael Jacobs, Nils Hölscher, Kuan-Hsun Chen, Jian-Jia Chen, and Jan

Reineke. LLVMTA: an llvm-based WCET analysis tool. In Proceedings of the 20th International
Workshop on Worst-Case Execution Time Analysis (WCET ’22), pages 2:1–2:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/OASIcs.WCET.2022.2.

19 Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. Towards compositionality in execution
time analysis: definition and challenges. ACM SIGBED Review, 12(1):28–36, 2015. doi:
10.1145/2752801.2752805.

20 Damien Hardy, Benjamin Rouxel, and Isabelle Puaut. The heptane static worst-case execution
time estimation tool. In Proceedings of the 17th International Workshop on Worst-Case
Execution Time Analysis (WCET ’17), pages 8:1–8:12. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/OASIcs.WCET.2017.8.

21 N. Holsti and S. Saarinen. Status of the Bound-T WCET tool. In Proceedings of the 2nd
International Workshop on Worst-Case Execution Time Analysis (WCET ’02), pages 36–41,
2002.

22 Ramkumar Jayaseelan, Tulika Mitra, and Xianfeng Li. Estimating the worst-case energy
consumption of embedded software. In Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS ’06), pages 81–90, 2006. doi:10.1109/RTAS.
2006.17.

23 Jetperch LLC. Joulescope JS220 User’s Guide Precision DC Energy Analyzer, 2022. Revision
1.3. URL: https://download.joulescope.com/products/JS220/JS220-K000/users_guide/.

24 Daniel Kästner, Markus Pister, Simon Wegener, and Christian Ferdinand. Timeweaver: A
tool for hybrid worst-case execution time analysis. In Proceedings of the 19th International
Workshop on Worst-Case Execution Time Analysis (WCET ’19), pages 1:1–1:11. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/OASIcs.WCET.2019.1.

25 Steve Kerrison and Kerstin Eder. Energy modeling of software for a hardware multithreaded
embedded microprocessor. ACM Transactions on Embedded Computing Systems (ACM TECS),
14(3):56:1–56:25, 2015. doi:10.1145/2700104.

26 David H. K. Kim, Connor Imes, and Henry Hoffmann. Racing and pacing to idle: Theoretical
and empirical analysis of energy optimization heuristics. In Proceedings of the 3rd International
Conference on Cyber-Physical Systems, Networks, and Applications (ICCPS ’15), pages 78–85,
2015. doi:10.1109/CPSNA.2015.23.

27 Raimund Kirner. The wcet analysis tool CalcWcet167. In Proceedings of the International
Symposium On Leveraging Applications of Formal Methods, Verification and Validation (ISoLA
’12), pages 158–172. Springer, 2012. doi:10.1007/978-3-642-34032-1_17.

28 Sheayun Lee, Andreas Ermedahl, Sang Lyul Min, and Naehyuck Chang. An accurate
instruction-level energy consumption model for embedded RISC processors. SIGPLAN Notices,
36(8):1–10, August 2001. doi:10.1145/384198.384201.

29 Xianfeng Li, Liang Yun, Tulika Mitra, and Abhik Roychoudhury. Chronos: A timing analyzer
for embedded software. Science of Computer Programming, 69(1):56–67, 2007. doi:10.1016/
j.scico.2007.01.014.

ECRTS 2023

https://doi.org/10.4230/OASIcs.WCET.2016.2
https://doi.org/10.4230/OASIcs.WCET.2016.2
https://doi.org/10.1007/s11241-010-9101-x
https://doi.org/10.1007/978-1-4020-8157-6_29
https://doi.org/10.1007/978-1-4020-8157-6_29
https://www.gurobi.com/
https://doi.org/10.4230/OASIcs.WCET.2022.2
https://doi.org/10.1145/2752801.2752805
https://doi.org/10.1145/2752801.2752805
https://doi.org/10.4230/OASIcs.WCET.2017.8
https://doi.org/10.1109/RTAS.2006.17
https://doi.org/10.1109/RTAS.2006.17
https://download.joulescope.com/products/JS220/JS220-K000/ users_guide/
https://doi.org/10.4230/OASIcs.WCET.2019.1
https://doi.org/10.1145/2700104
https://doi.org/10.1109/CPSNA.2015.23
https://doi.org/10.1007/978-3-642-34032-1_17
https://doi.org/10.1145/384198.384201
https://doi.org/10.1016/j.scico.2007.01.014
https://doi.org/10.1016/j.scico.2007.01.014

6:22 FusionClock

30 Björn Lisper. SWEET - a tool for WCET flow analysis. In Proceedings of the 6th International
Symposium On Leveraging Applications of Formal Methods, Verification and Validation (ISoLA
’14), pages 482–485. Springer, 2014. doi:10.1007/978-3-662-45231-8_38.

31 Chang L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM, 20(1):46–61, 1973. doi:10.1145/321738.321743.

32 Dominique Méry, Bernhard Schätz, and Alan Wassyng. The pacemaker challenge: Developing
certifiable medical devices (dagstuhl seminar 14062). Dagstuhl Reports, 4(2):17–38, 2014.
doi:10.4230/DagRep.4.2.17.

33 Microchip. PIC32 Family Reference Manual, Section 6. Oscillators, 2011. Revision G. URL:
https://ww1.microchip.com/downloads/en/DeviceDoc/61112G.pdf.

34 Spiridon Nikolaidis, Nikolaos Kavvadias, Periklis Neofotistos, K. Kosmatopoulos, Theodore
Laopoulos, and Labros Bisdounis. Instrumentation set-up for instruction level power modeling.
In Integrated Circuit Design, pages 71–80, 2002. doi:10.1007/3-540-45716-X_8.

35 James Pallister, Steve Kerrison, Jeremy Morse, and Kerstin Eder. Data dependent energy
modeling for worst case energy consumption analysis. In Proceedings of the 20th International
Workshop on Software and Compilers for Embedded Systems (SCOPES ’17), pages 51–59, 2017.
doi:10.1145/3078659.3078666.

36 Sangyoung Park, Jaehyun Park, Donghwa Shin, Yanzhi Wang, Qing Xie, Massoud Pedram, and
Naehyuck Chang. Accurate modeling of the delay and energy overhead of dynamic voltage and
frequency scaling in modern microprocessors. IEEE Transactions on Compututer-Aided Design
of Integrated Circuits and Systems, 32(5):695–708, 2013. doi:10.1109/TCAD.2012.2235126.

37 Peter Puschner, Raimund Kirner, and Robert G Pettit. Towards composable timing for
real-time programs. In Proceedings of the 1st International Workshop on Software Technologies
for Future Dependable Distributed Systems (STFSSD ’09), pages 1–5, 2009.

38 Peter P. Puschner, Daniel Prokesch, Benedikt Huber, Jens Knoop, Stefan Hepp, and Gernot
Gebhard. The T-CREST approach of compiler and wcet-analysis integration. 16th IEEE Inter-
national Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing,
ISORC 2013, pages 1–8, June 2013. doi:10.1109/ISORC.2013.6913220.

39 RISC-V Foundation. The RISC-V Instruction Set Manual, Volume I: User-Level ISA, December
2019. Document Version 20191213. URL: https://riscv.org/wp-content/uploads/2019/
12/riscv-spec-20191213.pdf.

40 Michel Rottleuthner, Thomas C. Schmidt, and Matthias Wählisch. Dynamic clock reconfigu-
ration for the constrained iot and its application to energy-efficient networking. In Proceedings
of the 2022 International Conference on Embedded Wireless Systems and Networks (EWSN
’22), pages 168–179, 2022. URL: https://dl.acm.org/doi/abs/10.5555/3578948.3578964.

41 Martin Schoeberl, Wolfgang Puffitsch, Stefan Hepp, Benedikt Huber, and Daniel Prokesch.
Patmos: a time-predictable microprocessor. Real-Time Systems, 54(2):389–423, 2018. doi:
10.1007/s11241-018-9300-4.

42 Kiran Seth, Aravindh Anantaraman, Frank Mueller, and Eric Rotenberg. FAST: Frequency-
aware static timing analysis. In Proceedings of the 24th IEEE Real-Time Systems Symposium
(RTSS ’03), pages 40–51, 2003. doi:10.1109/REAL.2003.1253252.

43 Yakun Sophia Shao and David M. Brooks. Energy characterization and instruction-level
energy model of intel’s xeon phi processor. In Proceedings of the International Symposium on
Low Power Electronics and Design (ISLPED ’13), pages 389–394, 2013. doi:10.1109/ISLPED.
2013.6629328.

44 Mohsen Shekarisaz, Lothar Thiele, and Mehdi Kargahi. Automatic energy-hotspot detection
and elimination in real-time deeply embedded systems. In Proceedings of the Real-Time
Systems Symposium (RTSS ’21), pages 97–109, 2021. doi:10.1109/RTSS52674.2021.00020.

45 STMicroelectronics. User manual STM32CubeMX for STM32 configuration and initialization
C code generation, 2023. Rev. 39. URL: https://www.st.com/resource/en/user_manual/
dm00104712.pdf.

https://doi.org/10.1007/978-3-662-45231-8_38
https://doi.org/10.1145/321738.321743
https://doi.org/10.4230/DagRep.4.2.17
https://ww1.microchip.com/downloads/en/DeviceDoc/ 61112G.pdf
https://doi.org/10.1007/3-540-45716-X_8
https://doi.org/10.1145/3078659.3078666
https://doi.org/10.1109/TCAD.2012.2235126
https://doi.org/10.1109/ISORC.2013.6913220
https://riscv.org/wp-content/uploads/2019/12/riscv-spec- 20191213.pdf
https://riscv.org/wp-content/uploads/2019/12/riscv-spec- 20191213.pdf
https://dl.acm.org/doi/abs/10.5555/3578948.3578964
https://doi.org/10.1007/s11241-018-9300-4
https://doi.org/10.1007/s11241-018-9300-4
https://doi.org/10.1109/REAL.2003.1253252
https://doi.org/10.1109/ISLPED.2013.6629328
https://doi.org/10.1109/ISLPED.2013.6629328
https://doi.org/10.1109/RTSS52674.2021.00020
https://www.st.com/resource/en/user_manual/dm00104712.pdf
https://www.st.com/resource/en/user_manual/dm00104712.pdf

E. Dengler, P. Raffeck, S. Schuster, and P. Wägemann 6:23

46 Vivek Tiwari and Mike Tien-Chien Lee. Power analysis of a 32-bit embedded microcontroller.
VLSI Design, 7(3):225–242, 1998.

47 David Trilla, Carles Hernández, Jaume Abella, and Francisco J. Cazorla. Worst-case energy
consumption: A new challenge for battery-powered critical devices. IEEE Transactions on
Sustainable Computing, 6(3):522–530, 2021. doi:10.1109/TSUSC.2019.2943142.

48 Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang Schröder-
Preikschat. Whole-system worst-case energy-consumption analysis for energy-constrained
real-time systems. In Proceedings of the 30th Euromicro Conference on Real-Time Systems
(ECRTS ’18), volume 106, pages 24:1–24:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPIcs.ECRTS.2018.24.

49 Peter Wägemann, Tobias Distler, Timo Hönig, Heiko Janker, Rüdiger Kapitza, and Wolfgang
Schröder-Preikschat. Worst-case energy consumption analysis for energy-constrained embedded
systems. In Proceedings of the 27th Euromicro Conference on Real-Time Systems (ECRTS
’15), pages 105–114, 2015. doi:10.1109/ECRTS.2015.17.

50 Peter Wägemann, Tobias Distler, Heiko Janker, Phillip Raffeck, Volkmar Sieh, and Wolfgang
Schröder-Preikschat. Operating energy-neutral real-time systems. ACM Transactions on
Embedded Computing Systems (ACM TECS), 17(1):11:1–11:25, 2017. doi:10.1145/3078631.

51 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mi-
tra, Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Sten-
ström. The worst-case execution-time problem - overview of methods and survey of tools.
ACM Transactions on Embedded Computing Systems (ACM TECS), 7(3):36:1–36:53, 2008.
doi:10.1145/1347375.1347389.

52 Chuan-Yue Yang, Jian-Jia Chen, and Tei-Wei Kuo. Preemption control for energy-efficient task
scheduling in systems with a DVS processor and non-dvs devices. In Proceedings of the 13th
International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA ’07), pages 293–300, 2007. doi:10.1109/RTCSA.2007.56.

53 Chuan-Yue Yang, Jian-Jia Chen, Tei-Wei Kuo, and Lothar Thiele. Energy reduction techniques
for systems with non-dvs components. In Proceedings of 12th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA ’09), pages 1–8, 2009. doi:
10.1109/ETFA.2009.5347153.

ECRTS 2023

https://doi.org/10.1109/TSUSC.2019.2943142
https://doi.org/10.4230/LIPIcs.ECRTS.2018.24
https://doi.org/10.1109/ECRTS.2015.17
https://doi.org/10.1145/3078631
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1109/RTCSA.2007.56
https://doi.org/10.1109/ETFA.2009.5347153
https://doi.org/10.1109/ETFA.2009.5347153

	1 Introduction
	2 Background & System Model
	3 Problem Statement
	4 The FusionClock Approach
	5 Implementation of FusionClock
	6 Evaluation
	6.1 Evaluation Setup
	6.2 Evaluation Results

	7 Related Work
	8 Conclusion

