
Bounding the Data-Delivery Latency of DDS
Messages in Real-Time Applications
Gerlando Sciangula #

TeCIP Institute, Scuola Superiore Sant’Anna, Pisa, Italy
Huawei Research Center, Pisa, Italy

Daniel Casini #

TeCIP Institute, Scuola Superiore Sant’Anna, Pisa, Italy
Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy

Alessandro Biondi #

TeCIP Institute, Scuola Superiore Sant’Anna, Pisa, Italy
Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy

Claudio Scordino #

Huawei Research Center, Pisa, Italy

Marco Di Natale #

TeCIP Institute, Scuola Superiore Sant’Anna, Pisa, Italy
Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy

Abstract
Many modern applications need to run on massively interconnected sets of heterogeneous nodes,
ranging from IoT devices to edge nodes up to the Cloud. In this scenario, communication is often
implemented using the publish-subscribe paradigm. The Data Distribution Service (DDS) is a
popular middleware specification adopting such a paradigm. The DDS is becoming a key enabler for
massively distributed real-time applications, with popular frameworks such as ROS 2 and AUTOSAR
Adaptive building on it. However, no formal modeling and analysis of the timing properties of DDS
has been provided to date. This paper fills this gap by providing an abstract model for DDS systems
that can be generalized to any implementation compliant with the specification. A concrete instance
of the generic DDS model is provided for the case of eProsima’s FastDDS, which is eventually used
to provide a real-time analysis that bounds the data-delivery latency of DDS messages. Finally, this
paper reports on an evaluation based on a representative automotive application from the WATERS
2019 challenge by Bosch.

2012 ACM Subject Classification Software and its engineering → Real-time schedulability

Keywords and phrases DDS, real-time systems, response-time analysis, end-to-end latency, CPA

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2023.9

Funding This work has been supported by EIT Urban Mobility, an initiative of the European
Institute of Innovation and Technology (EIT), a body of the European Union. The work has also
been partially supported by the project SERICS (PE00000014) under the MUR National Recovery
and Resilience Plan funded by the European Union – NextGenerationEU and the European Union’s
Horizon Europe Framework Programme project NANCY under the grant agreement No. 101096456.

1 Introduction

The Data Distribution Service (DDS) is a standard specification by the Object Management
Group (OMG) describing a transfer protocol based on a data-centric publish-subscribe pat-
tern (DCPS) [48]. With the advent of massively distributed applications, such as autonomous
driving [9, 26, 31, 34], smart cities, Industry 4.0 [61], and more, the DDS gained a renewed in-

© Gerlando Sciangula, Daniel Casini, Alessandro Biondi, Claudio Scordino, and Marco Di Natale;
licensed under Creative Commons License CC-BY 4.0

35th Euromicro Conference on Real-Time Systems (ECRTS 2023).
Editor: Alessandro V. Papadopoulos; Article No. 9; pp. 9:1–9:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gerlando.sciangula@huawei.com
mailto:daniel.casini@santannapisa.it
mailto:alessandro.biondi@santannapisa.it
mailto:claudio.scordino@huawei.com
mailto:marco.dinatale@santannapisa.it
https://doi.org/10.4230/LIPIcs.ECRTS.2023.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications

terest in allowing communication among a vastly heterogeneous set of computing devices [42],
such as those involved in the so-called IoT-to-Edge-to-Cloud compute continuum [5]. Fur-
thermore, other popular frameworks, such as ROS 2 [12, 17, 21] and Autoware [34], build
on top of the DDS to implement the publish-subscribe communication. In the automotive
field, the AUTOSAR consortium has recently integrated DDS in its Adaptive Platform
software standard [4]. Moreover, DDS support is being integrated in the next release of
AUTOSAR Classic Platform [56]. In many of these applications, it is important to provide
real-time guarantees on the delivery latency of messages passing through the DDS. However,
the DDS is implemented as a complex multi-threaded middleware with threads that must
be properly scheduled to achieve the desired real-time performance. These threads serve
many purposes, from message dispatching, listening and liveliness monitoring, to garbage
collection. Furthermore, some DDS threads implement custom, implementation-specific
message queuing policies that can severely affect the message response times.

In this complex scenario, designers of real-time edge applications are called to provide
proper values for several critical parameters, such as periods, application and DDS threads
priorities, queue sizes, and others. Without fine-grained modeling and analysis of the system,
designers can only rely on trial-and-error approaches, deploying system configurations and
empirically assessing their performance, which is heavily time-consuming and error-prone.

Contribution. This paper provides a detailed modeling of DDS-enabled real-time systems.
First, it provides a general model based on the DDS specification. Then, it shows how to
instantiate it for the case of the eProsima’s FastDDS [27], one of the most popular and
efficient [57, 69] DDS implementation, leveraging an extensive exploration of the source code,
documentation, and a set of experiments to validate the behavior inferred from the source
code. Building on the model, we devise a response-time analysis for messages in a DDS-based
distributed real-time system. The analysis can be used as an essential building block for
future tools for design-space exploration of the system parameters, which can significantly
help designers in configuring complex DDS-based systems. Finally, we evaluate our approach
using the WATERS 2019 Industrial Challenge by Bosch [30], which represents a complex
and real case of autonomous driving application, and we compare the analysis results with
the latency values observed by running a simple FastDDS-enabled use-case application on a
real platform.

2 Background

In this section, we review the DDS standard. Then, we highlight the peculiarities of FastDDS,
i.e., the DDS implementation considered in this work, and we review the Compositional
Performance Analysis (CPA) scheme, adopted in the paper.

D
o
m
ai
n

Participant

Pu
b

DW DW

QoS

GDS
Topic

Su
b QoS

DR Pu
b QoS

DW

Pa
rt
ic
ip
an
tSub

QoS

DR
DRTopic

Figure 1 Example of connections between DDS participants in a domain.

G. Sciangula, D. Casini, A. Biondi, C. Scordino, and M. Di Natale 9:3

2.1 The DDS Standard
The DDS standard specifies a data transfer protocol based on a Data-Centric Publisher-
Subscriber (DCPS) pattern [48]. The DCPS model leverages the concept of a Global
Data Space (GDS), accessible to all the interested applications. Applications that provide
information to the GDS declare their intent to become Publishers, whereas applications that
want to access portions of the data space are identified as Subscribers. The DDS provides
mechanisms for the exchange of data between these applications. Whenever a publisher
publishes new data into the GDS, the middleware broadcasts this data to all interested
subscribers. Moreover, the information flow is regulated by Quality of Service (QoS) policies
at various levels of the communication stack [45]. According to the DDS specification, the
transfer of any information happens in a logical area called Domain, which can be seen as
a set of abstract links that connect all the communicating distributed applications. In any
domain, there are several Participants and Topics. Topics are unambiguous identifiers that
associate a name, unique within the Domain, to a data type and a set of attached data-specific
QoS policies. Topics can be seen as channels for exchanging data. Participants are entities
that can send and receive information from any topic in one Domain. A participant can
include one or more publishers and/or subscribers. A publisher can send information over
multiple different topics through DataWriter (DW) objects, and, similarly, a subscriber can
receive data from different topics through DataReader (DR) objects. Each DW or DR object is
linked to a single topic. Figure 1 shows an example of connections between DDS participants
in a domain. The DDS leverages a lower-level protocol, the Real-Time Publish-Subscribe
Protocol [46]. RTPS provides both best-effort and reliable publish-subscribe communications
over unreliable transports, such as UDP, in both unicast and multicast settings. The OMG
has standardized RTPS as the interoperability protocol for all the DDS implementations.
Despite its name, RTPS does not define any real-time specific feature. The DDS operates
in three main phases: 1) Discovery phase, when the DDS participants find each other in
the network, 2) Matching phase, when the discovered participants determine if they should
engage in a publish-subscribe relationship, and 3) Data Distribution phase, when data is
disseminated from the publishers to the matching subscribers.

2.2 The FastDDS Implementation
FastDDS is a C++ implementation of the DDS with a complex multi-threaded architecture,
analyzed by means of code inspection. FastDDS threads are usually scheduled with the
SCHED_OTHER (i.e., CFS) standard scheduler of Linux.

Publisher application. A publisher application consists of: a publisher thread, an event
thread, and meta-traffic listener threads. The publisher thread is a user-level thread that
manages a single publisher object. It is responsible for preparing and publishing application
data on topics. The publishing of data can be 1) synchronous, when it is performed by the
publisher thread and 2) asynchronous, when data is sent through the network on behalf
of the publisher thread by a flow-controller thread, i.e., FastDDS internal middleware-level
thread. If the publishing mode is asynchronous, the publisher thread inserts the new message
into a queue of pending messages shared with the flow-controller thread. The queue contains
messages related to different topics. The queue can be ordered according to three policies,
i.e., FIFO, RR (round robin), HIGH_PRIORITY (fixed priority). The flow-controller thread is
responsible for extracting data from the queue and sending it over the network. A publisher

ECRTS 2023

9:4 Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications

thread can refer to multiple flow-controller threads if it publishes to multiple topics. The
middleware-level event thread processes periodic and time-triggered events (mainly related to
discovery/matching and QoS-checking services). The middleware-level meta-traffic listener
threads manage the reception of discovery information.

Subscriber application. A subscriber application consists of: i) a subscriber thread, an event
thread, a user-traffic listener thread, and meta-traffic listener threads. The subscriber thread is
a user-level thread managing a single subscriber object, which is responsible for reading and
interpreting data from topics. As for the publisher application, the subscriber application
includes the middleware-level event thread. The middleware-level user-traffic listener thread
manages the reception of user data (i.e., application data). The middleware-level meta-traffic
listener threads manage incoming meta-traffic information.

Communication threads. FastDDS allows multiple publisher threads to publish data over
the same topic. Similarly, multiple subscriber threads can subscribe to a specific topic. In
this way, many-to-many communications between participants are supported. In FastDDS,
the transport layer provides communication services between DDS entities, being in charge of
sending and receiving messages over a physical transport [27]. Note that a listener thread is
spawned for each reception channel, where the definition of channel depends on the adopted
transport layer (UDP, TCP, or shared memory transport port).

2.3 Compositional Performance Analysis
CPA [32] is a framework for analyzing the timing behavior of complex heterogeneous and
distributed real-time systems. CPA is built around two main concepts: workloads and com-
putational resources. Workloads consist of tasks with precedence constraints. Applications
are modeled as a direct acyclic graph (DAG) of communicating tasks. Groups of tasks
execute on a resource, which provides the supply time and determines the resource-specific
scheduling policy. In CPA, the source task of a chain is triggered according to an externally
provided event arrival curve η(∆), denoting an upper bound on the number of release events
in any interval [t, t + ∆). Non-source tasks are triggered by derived arrival curves. Derived
curves are obtained from arrival curves by accounting for the activation delay given by the
completion times of predecessor tasks. The typical approach consists in accounting for a
release jitter in non-source tasks that depends on predecessors’ response times. The basic
CPA analysis uses the sum of individual response-time bounds of each task to bound the
end-to-end latency of a processing chain, while extensions have been designed to improve the
precision in specific conditions [55].

3 Compositional DDS Model

Next, we model a DDS-based system in two steps. First, we provide a general and compos-
itional model based on the DDS specification only that can be instantiated on any DDS
implementation. Then, we show how to instantiate the model for the specific case of FastDDS.

We leverage a compositional approach to model the DDS middleware in an implementation-
independent manner by mapping DDS operations to compositional Logic Functional Blocks
(LFBs). Each block describes the basic DDS operations. LFBs are divided into two categories:
(i) principal blocks, which are directly involved in the data exchange from the publisher to
the subscriber, and (ii) auxiliary blocks providing support (middleware) features such as
discovery/matching, QoS-enforcement, or other implementation-specific services. Examples

G. Sciangula, D. Casini, A. Biondi, C. Scordino, and M. Di Natale 9:5

OFD
Network

Subscriber

IFD

Auxiliary services

Flow-Controller

Meta-traffic Listener & Event threads

Listener

Subscriber
thread

Publisher

Publisher
thread

Figure 2 Instantiation of FastDDS threads on DDS model.

of DDS auxiliary implementation-specific services are represented by FastDDS’s Timed-
Event handling and Eclipse CycloneDDS’s Garbage Collector and Liveliness monitoring [68].
Publisher, Subscriber, Outgoing Flows Dispatching (OFD), Network, and Incoming Flows
Dispatching (IFD) are principal LFBs. The Publisher and Subscriber blocks implement the
fundamental publishing and subscribing operations, respectively, performed by user-level
application-specific threads. The OFD block receives data from the Publisher block and
controls the process of publishing it over the Network block. Note that the DDS standard
does not define how data dispatching over the network should be implemented. The IFD block
manages the procedure of processing messages received by the Network block. Furthermore,
it is responsible to deliver messages to the Subscriber block. Finally, the Network block
maps the functionalities of a network protocol and it is in charge of transmitting data over a
communication link, from a source node to a destination node.

FastDDS instance of the model. Figure 2 shows the FastDDS implementation-specific
instance of the abstract compositional DDS model. Each FastDDS thread we identified is
mapped in its corresponding LFB. Meta-traffic listener and event threads have been mapped
to the auxiliary services block. The publisher and subscriber threads have been mapped
respectively to the Publisher block and Subscriber block. The flow-controller thread, discussed
in Section 2.2, has been instantiated upon the OFD block when asynchronous-send mode is
enabled. Similarly, the user-traffic listener (from now on, we refer to it simply as listener)
thread has been mapped to the IFD block. Finally, the functionalities of a transport protocol
and the network have been mapped onto the Network block.

4 FastDDS-based System Model and Problem Definition

The considered FastDDS-based system comprises a set C of cores, where each core ck ∈ C is
possibly distributed onto multiple nodes in a distributed system.

Thread model. Four classes are used to identify the system threads: publisher, flow-
controller, listener, and subscriber, contained in the sets Γp, Γf, Γl, and Γs, respectively.
Threads are scheduled using a partitioned fixed-priority scheduler (each thread is statically
allocated to a core). An arbitrary i-th thread belonging to each category is denoted as
τp

i ∈ Γp, τ f
i ∈ Γf, τ l

i ∈ Γl, or τ s
i ∈ Γs, respectively. The set Γall = {Γp ∪ Γf ∪ Γs ∪ Γl}

represents all the threads in the system. When the type of a thread is not relevant or clear
from the context, the thread is simply denoted with τi. The set of middleware-level threads
includes flow-controller and listener threads and is denoted with Γmw = Γf ∪ Γl. The set Γk

all
includes all threads of any type running on core ck ∈ C. Γk

mw ⊆ Γk
all is the subset of the

middleware threads on ck. Each thread τi ∈ Γall is associated with a unique fixed priority.
Finally, we use the notation hpk

oth(τi) ⊆ Γk
all \ Γk

mw and hpk
mw(τi) ⊆ Γk

mw to indicate the set
of non-middleware- and middleware-level threads, respectively, that run on core ck and have
priority higher than τi ∈ Γk

all.

ECRTS 2023

9:6 Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications

Topic and message model. To define the logical communication channels between publisher
and subscriber applications, we define a set of topics Θ. Each topic θj ∈ Θ has a unique
priority within the whole system, which is independent of the priorities of the corresponding
threads, discussed in the Thread model. The topic priority is then inherited by each instance
of any message mz(τp

i , θj) published by the publisher thread τp
i over the topic θj . We simply

use the symbol mz whenever it is not needed to identify the publisher thread and the topic.
An instance of a message mz is said to be pending in a middleware-level thread τi ∈ Γmw from
when it is released in the thread to when its processing completes in the middleware-level
thread. The set of messages associated with a topic θj is denoted with M(θj). Each instance
of the publisher thread τp

i can send up to wj
i messages to topic θj . We define Θ(τ s

j) ⊆ Θ as
the subset of the topics from which a subscriber thread τ s

j can receive messages. Nsub(mz)
denotes the number of subscribers interested in message mz.

Association among threads. A publisher thread τp
i can be associated to multiple flow-

controller threads τ f
i ∈ Γf if it publishes to multiple topics. A subscriber thread τ s

j is
associated to a unique listener thread τ l

j , which can handle messages from different topics. A
pair (publisher thread, topic) (τp

i , θj), and therefore a message mz(τp
i , θj), is associated with

a single flow-controller thread and a single listener thread. The association of a message to a
middleware thread is denoted by mz ∈ τ t

i , with t ∈ {f, l}.

Execution times and activations. Non-middleware-level threads τj ∈ Γall \ Γmw are char-
acterized by a worst-case execution time ej . This paper considers a discrete-time model,
i.e., all time parameters are integer multiples of a basic time unit (e.g., a processor cycle),
defined as ϵ ≜ 1. Each publisher thread τp

i is characterized by an externally-provided event
arrival curve ηp

i (∆). Subscriber thread instances are triggered in a data-driven fashion.
Therefore, each subscriber thread τ s

j is associated with a derived arrival curve ηs
j (∆), which

depends on the response times of the message triggering the computation. We show later
in Section 5.2 how to derive such curves. Differently, the worst-case execution time and
activation patterns of flow-controller and listener threads are determined by the arrival
patterns and message-processing delays of the messages. We denote with ηf

z,i(∆) and ηl
z,j(∆)

the derived arrival curve of each message in their flow-controller thread τ f
i and listener thread

τ l
j , respectively. Whenever it is not relevant whether τi is a flow-controller or a listener

thread, we simply denote the arrival curve of a message with ηz,i(∆). The parameters δf(mz)
and δl(mz) denote the worst-case time required to process a message mz in its flow-controller
and listener threads, respectively, without the interference of any other message and thread.
In the flow-controller, this time is required to execute a single system send call, while in
the listener involves the deserialization of a single message and delivery of the message to
the subscriber object. In both cases, the message size affects the parameter. The network
propagation delay of a message mz is denoted as δnet(mz). It can be either pragmatically
estimated or analytically bounded, depending on the underlying network [23, 35, 67].

Flow-controller scheduling policies. We define the available scheduling policies of flow-
controller threads as HP and F, denoting the HIGH_PRIORITY and FIFO policies as defined
by FastDDS, respectively. The analysis of the RR policy is left as future work. Within the
same flow-controller, messages that have the same priority (related to the same topic) are
processed in FIFO order. When using the HP policy, given an arbitrary message mz and a
flow-controller thread τi, the symbols hpi(mz), epi(mz), and lpi(mz) denote the set of all
the messages with higher, equal, and lower priority than mz in τi, respectively.

G. Sciangula, D. Casini, A. Biondi, C. Scordino, and M. Di Natale 9:7

Table 1 Table of main symbols.

Sym. Description Sym. Description
cj j-th physical core τ t

i i-th thread of type t ∈ {p, f, l, s}
Θ set of topics mz(τp

i , θj) z-th msg published by τp
i over θj

θj j-th topic wj
i max. num. msgs to θj for each τp

i instance
M(θj) msgs for a topic θj Θ(τ s

j) topics from which τ s
j receives msgs

Γt threads of type t Nsub(mz) num. of subscribers subscribed to mz

Γmw middleware threads hpk
mw(τi) mw-thrds with pr. higher than τi on ck

Γall all threads hpk
oth(τi) non-mw-thrds with pr. higher than τi on ck

Γk
t threads of type t on ck rbfi(∆) request-bound function of τi

ej WCET of τ t
j , t ∈ {p, s} sbfk(∆) supply-bound function of ck

ηt
i(∆) τ t

i arr. curve, t ∈ {p, s} ηt
z,i(∆) arrival curve of mz in τ t

i , t ∈ {f, l}

Static discovery. In this paper, we consider a static network of publishers and subscribers,
meaning that no new participant join at run-time. Under this assumption, the overhead due to
the discovery mechanism becomes negligible by leveraging the FastDDS Static Discovery [27].
This configuration implies that, after static discovery is over, the network of entities is fixed,
and no other discovery messages are exchanged among them. Thus, delay due to meta-traffic
listener and event threads becomes negligible (auxiliary services block in Fig. 2), since they
are responsible for processing discovery periodic events (e.g., sending of heartbeat messages
for remote node liveliness) and QoS-checking services.

Listener threads. Each listener thread handles one network socket through which the thread
receives data related to different topics, possibly sent by different publishers. Incoming
messages are processed in FIFO order.

Queues. When using the FIFO policy, each flow-controller (or listener) thread τ t
j ∈ Γmw,

with t ∈ {f, l}, manages one queue of pending messages that can contain at most MF
j

messages. Differently, using the HP policy, each priority-level i corresponds to a queue of size
MHP,i

j . Note that HP is only used for flow-controller threads. Buffers should be large enough
so that no messages are dropped at both the sender and receiver sides.

Supply-bound function. In this work, analysis and results rely on the existence of a supply-
bound function sbfk(∆) that denotes the minimum time of processor service provided by
a core ck ∈ C in any time window of length ∆, [16, 40, 60]. This abstraction is useful to
make the analysis extensible with reservation-based scheduling mechanisms [1], such as those
implemented by the SCHED_DEADLINE scheduling class of Linux [39] or by the QNX Adaptive
Partitioning Scheduler [22], and naturally generalizes to the case without reservation (if a
core is fully available, sbfk(∆) = ∆).

Table of symbols. Table 1 summarizes the main symbols introduced in this paper.

4.1 Problem Statement
The metric of interest for the analysis in this paper is:

▶ Definition 1 (Data Delivery Latency). The Data Delivery Latency (DDL) Lz experienced
by a message mz sent by a publisher thread to a matching subscriber thread is the longest
time span elapsed between the time instant in which mz is sent by the publisher and the time
instant when the corresponding instance of the subscriber thread is released.

ECRTS 2023

9:8 Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications

Note that, as described next in Section 4 (Execution times and activations), for each subscriber
thread, exactly one subscriber thread instance is triggered for each received message instance.
Moreover, the DDL only accounts for the time spent by a message in the middleware-level
threads, and does not include the time in which the target instance of the subscriber is
waiting for being scheduled. Our goal is to leverage the model to devise a real-time analysis
capable of bounding the worst-case data delivery latency of any DDS message.

4.2 Thread behavioral rules
Next, we formalize the behavior of the FastDDS middleware implementation through a set
of rules, considering the interactions between the modeled threads.
R1 – Pub-to-Flow: When a publisher thread needs to send data over a topic, it performs
a write operation and notifies the corresponding flow-controller thread.
R2 – Flow-to-Net: If the queue of pending messages is not empty, the flow-controller thread
extracts a message from the head of the queue, arranges the RTPS packet (serialization),
and performs a system network send operation for each interested subscriber. The number of
send operations corresponds to the number of message copies to be sent to each subscriber,
expressed by the parameter Nsub(mz). When the queue is empty, the flow-controller thread
blocks until its associated publisher thread notifies it with new data to send.
R3 – Net-to-List: A listener thread performs a blocking system network receive operation
on a socket. Whenever a message is received and written to a socket buffer by the system
network functionalities, the listener thread is woken up and becomes ready to process
incoming messages.
R4 – List-to-Sub: The listener thread takes a message from the socket buffer, following
a FIFO pattern. Then, it deserializes the message. The message is then delivered to the
subscriber thread, which is notified of the new message presence.
R5 – Non-preemptiveness: The send operation of a message is non-preemptive, meaning
that, if a message has been extracted from the queue, it and all of its copies to different
subscribers are sent over the network, even if a higher priority message has arrived in the
meantime.
R6 – HIGH_PRIORITY (HP) policy: Under this policy, each message is assigned to a priority
inherited from the corresponding topic. Messages are handled in the flow-controller thread
in priority order, from the highest to the lowest.
R7 – FIFO (F) policy: Under this policy, the flow-controller thread handles each message
in a first-in-first-out fashion.
R8 – Work-conservation: Flow-controller and listener threads never become idle if there
are messages to be served.

4.3 Model Validation
The model and the above behavioral rules have been derived with a deep inspection of
the FastDDS documentation and source code (GitHub repository [28]). To corroborate our
findings with empirical evidence, we performed several experiments to figure out interactions
between threads by focusing on shared data structures and condition variables. To this end,
an application constituted of three publishers and one subscriber exchanging data over three
topics was executed on two desktop machines running Ubuntu 20.04 and interconnected
through a point-to-point Ethernet link using UDP communication. Furthermore, we designed
ad-hoc experiments to corroborate the behavior of the two scheduling policies of the flow
controller. In each experiment, the subscriber is subscribed to three topics (θ1, θ2, θ3) on

G. Sciangula, D. Casini, A. Biondi, C. Scordino, and M. Di Natale 9:9

B)

C) A)

Sending and receiving sequence

m0 m0 m1 m0 m2 m1 m1 m2m2

Flow-Controller sending sequencePublishers writing sequence

m0 m0 m1 m0 m2 m1 m1 m2m2 m0m0 m1 m0 m2m1 m1m2 m2

m2 m3
12

extracted
from queue

manually
injected

sent over
network

extracted
and sent

FlowController
context

m2 m3
12

Priorities

2 1 2

Figure 3 Validation experiments for R5 (C), R6 (B), and R7 (A) rules.

which each publisher publishes three messages over one of the topics. Each message payload
contains the timestamp of the moment when it is sent on the network. Subscribers and
publishers run on different machines.

FIFO policy. First, the flow-controller was configured to work with the FIFO policy. To
corroborate rule R7, we checked that at the subscriber listener side, messages were received
from the oldest timestamp to the most recent one. Figure 3 (A) shows the result of this
experiment: the sequence of messages sent over the network by the flow controller are in
FIFO order as the order observed by the sender and the receiver corresponds1.

HIGH_PRIORITY policy. A similar experiment was performed to check the behavior of the
HIGH_PRIORITY policy (rule R6). In this experiment, each topic is assigned to a priority.
Topic θ2 is assigned to priority 1, which is the highest of this configuration. θ1 and θ3 are
both assigned to priority 2. Figure 3 (B) shows the results of this experiment. As expected,
messages related to topic θ2 (with the highest priority) were sent first on the network, while
the messages related to the topics with the same priority were handled in FIFO order.

Non-preemptiveness. We checked the non-preemptiveness (rule R5) of the sending opera-
tion, modifying the previous experiment. Referring to Figure 3 (B), when the last message
related to topic θ3 has already been extracted from the pending message queue, we manually
injected, by modifying the source code, a new higher-priority message (i.e., m3 related to
topic θ2) in the queue, as shown in Figure 3 (C). Even if the new message should be processed
first according to the priority order, the flow-controller thread waits until the current message
was sent, before processing the highest-priority one.

Making FastDDS more predictable. We introduced two features to improve FastDDS
predictability, considering a Linux-based system, and to show that it is possible to make
FastDDS fully compliant with our model. We leveraged these changes in the comparison
of analysis-driven and empirical latencies in Section 6.2. First, FastDDS does not provide
any mechanism to set scheduling properties for its internal threads, such as thread priorities
and usage of the Linux’s fixed-priority scheduler to schedule such threads. Therefore, we
modified FastDDS to introduce a new scheduling service able to initialize these parameters
at the system start time. Second, message queues (e.g., in the flow-controller) are unbounded

1 In principle, it would have been possible to observe out-of-order delivery due to data streams following
multiple paths through the network and the lack of flow control mechanisms in UDP protocol [70]. Our
experiment leveraged a point-to-point connection to mitigate the issue.

ECRTS 2023

9:10 Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications

Network

Figure 4 Source-Destination data path and arrival curve propagation.

by default, which may lead to unbounded growth of memory if the system is flooded with a
considerably large amount of messages (e.g., due to a distributed denial-of-service attack).
Hence, we modified the source code to comply with a limited size. Methods to derive a
suitable size for such queues will be derived in future work.

5 Data-Delivery Latency Analysis

Figure 4 leverages the FastDDS instance of the compositional model to summarize the
message path from the publisher to the subscriber. Once the publisher thread prepares new
data to transmit, such data is inserted in a queue of pending messages managed by the
flow controller thread, which sends messages through the network. When the subscriber
listener thread receives the message, it is processed and delivered to the user-level subscriber
thread. To bound the DDL of an arbitrary message mz we provide bounds for the worst-case
response-time experienced by each message in each middleware thread of interest, namely,
the flow-controller and listener threads. The worst-case response time of a message mz

in a middleware (either the flow-controller or the listener) thread τ t
i , with t ∈ {f, l}, is

the longest time span from the release of the message instance in the thread to when the
message instance processing completes. We denote with the symbols Rf

x(mz) and Rl
y(mz) a

response-time bound for message mz in the associated flow-controller thread τ f
x and listener

thread τ l
y, respectively. Whenever specifying the involved thread is not needed or clear from

the context, we simply write R(mz). Note that all the threads involved in the communication
can be allocated to arbitrary cores. The following analysis leverages the knowledge of arrival
curves of messages at the flow-controller and listener threads: we show later in Section 5.2
how to derive them. Following CPA [32] and by rules R1-R4, the DDL Lz of an arbitrary
message mz can be bounded as the sum of the individual worst-case delays experienced in
the network and flow-controller and listener threads, i.e.,

Lz = Rf
x(mz) + Rl

y(mz) + δnet(mz). (1)

For each thread τi ∈ Γall \ Γmw, the symbol rbfi(∆) denotes its request-bound function
(RBF). The RBF returns the maximum processor time needed by the thread instances of
τi in any interval of length ∆, i.e., rbfi(∆) = ηt

i(∆) · ei, with t ∈ {p, s} [15, 17]. The sum
of request-bound functions of an arbitrary set of threads Γ′ is referred to as RBF (Γ′, ∆) =∑

τ
j
∈Γ′ rbfj(∆).

5.1 Response-Time Analysis for a Fast-DDS message
Definitions. To bound the worst-case response time of a message mz while being processed
by middleware thread τ t

i , with t ∈ {f, l}, or simply τi if the type is not needed, we start
defining the sources of interference that can delay mz, and the corresponding bounds. We
start from the thread-level interference, which depends on higher-priority non-middleware
threads running on the same core.

G. Sciangula, D. Casini, A. Biondi, C. Scordino, and M. Di Natale 9:11

▶ Definition 2 (Thread-level Interference). The thread-level interference Ithread
i,z (∆) is an upper

bound on the delay suffered by an arbitrary instance of mz while pending in middleware thread
τi ∈ Γk

mw, in any time interval of length ∆, due to non-middleware threads τj ∈ Γk
all \ Γk

mw
allocated on the same core ck.

Other sources of interference are due to messages. This interference can be either due to:
(i) messages handled in other middleware threads with higher priority running on the same
core, or (ii) messages handled in the same middleware thread τi under analysis. We call (i)
inter-thread message interference, and (ii) intra-thread message interference.

▶ Definition 3 (Inter-Thread Message Interference). The inter-thread message interference
I inter

i,z (∆) is an upper bound on the delay suffered by an arbitrary instance of mz while being
pending in middleware thread τi ∈ Γk

mw, in any time interval of length ∆, due to the processing
of other messages by high-priority middleware-level threads τj ∈ hpk

mw(τi) on the same core
ck.

▶ Definition 4 (Intra-Thread Message Interference). The intra-thread message interference
I intra

i,z (∆) is an upper bound on the delay suffered by an arbitrary instance of mz, in any time
interval of length ∆, due to messages processed by the same middleware-level thread τi ∈ Γk

mw
where mz is pending.

Note that Definition 4 includes both interference due to instances of other messages
mr ̸= mz, and from other instances (previously released) of the same message under analysis.
We call the latter self-interference, and the corresponding instances self-interfering instances.

Policy-independent bounds. Now, we instantiate the previously defined interference bounds,
and we finally derive a generic response-time bound for a message in a middleware-level
thread, which can be used for both flow-controller and listener threads. We start presenting
bounds for the thread-level and inter-thread message interference, which are independent of
the scheduling policy adopted in the middleware-level thread. To this end, Lemma 5 bounds
the number of pending message instances in a middleware-level thread.

▶ Lemma 5. Let R(mz) be a response-time bound for mz in an arbitrary middleware-level
thread τi. In any interval of length ∆, there are at most ηz,i(∆+R(mz) − ϵ) pending instances
of mz in τi.

Proof. Consider an arbitrary interval [t̄, t̄ + ∆), with ∆ > 0. First, note that instances of
mz released at or after t̄ + ∆ are not pending in [t̄, t̄ + ∆). Note that ηz,i(∆ + R(mz) − ϵ)
counts all the instances released in (t̄ − R(mz), t̄ + ∆), which has length ∆ + R(mz) − ϵ.
By contradiction, assume there are more than ηz,i(∆ + R(mz) − ϵ) pending instances in τi.
Then it means there exists an instance of mz released at or before t̄ − R(mz) that is still
pending in [t̄, t̄ + ∆). This leads to a contradiction because R(mz) is a response-time bound
for mz. ◀

While Lemma 5 is presented as a mean to derive a response-time bound for mz, it requires,
in turn, a pre-existing response-time bound R(mz), hence introducing a circular dependency.
The same notation for pre-existing bounds is used also in the presentation of the following
results: the dependency can be solved by using standard real-time analysis techniques [32]
that provide an outer response-time analysis loop and initially set R(mz) = 0, deriving a
response-time estimate at every iteration, and updating R(mz) until a global fixed-point
is achieved. The procedure is guaranteed to converge since response-time estimates never
decrease [32]. Further details are provided next in Section 5.3.

Next, Lemma 6 bounds the thread-level interference.

ECRTS 2023

9:12 Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications

▶ Lemma 6. Let τi be a thread handling an instance of message mz (either as flow-controller
or listener thread) running on ck. In any interval of length ∆, the corresponding thread-level
interference is bounded by

Ithread
i,z (∆) ≜ RBF (hpk

oth(τi), ∆). (2)

Proof. By definition, the thread-level interference involves all non-middleware threads with
a higher priority than τi. These threads are contained into the set hpk

oth(τi). The lemma
follows by noting that RBF (hpk

oth(τi), ∆) sums all terms rbfh(∆) due to each τh ∈ hpk
oth(τi),

where each term rbfh(∆) bounds the individual demand due to τh , in any interval of length
∆ > 0. ◀

Next, we consider the interference due to messages. Before starting, we derive a bound
on the delay due to each message processed by a flow-controller or listener thread.

▶ Lemma 7. The delay due to a single instance of an interfering message mz in a middleware-
level thread τ t

i ∈ Γmw is bounded by

δt
i(mz) ≜

{
δf(mz) · Nsub(mz) if t = f,
δl(mz) if t = l.

(3)

Proof. Recall that the delay due to an instance of message mz is equal to δf(mz) for a
flow-controller thread and δl(mz) for a listener thread. By rule R2, for each instance of a
message mz sent by a publisher, the flow controller sends Nsub(mz) copies towards subscribers.
This leads to a delay of δf(mz) · Nsub(mz), proving the first branch of Equation (3). The
second branch follows by noting that, due to rule R4, for each message instance processed
by the listener only one message instance at a time is forwarded to the subscriber. ◀

With the previous result in place, Lemma 8 bounds the inter-thread message interference
experienced by an arbitrary message mz under analysis.

▶ Lemma 8. Consider a message mz in a middleware-level thread τ t
i ∈ Γmw

k . Let R
t

j(mr)
be a response-time bound for mr in an arbitrary middleware-level thread τ t

j ∈ hpk
mw(τ t

i). In
any window of length ∆ > 0, the inter-thread message interference of an instance of mz is
bounded by:

I inter
i,z (∆) ≜

∑
τ t

j
∈hpk

mw(τ t
i
)

∑
mr∈τ t

j

ηr,j(∆ + R
t

j(mr) − ϵ) · δt
j(mr), with t ∈ {f, l} (4)

Proof. By definition, I inter
i,z (∆) includes all the interference due to messages in other mid-

dleware level threads τ t
j ∈ hpk

mw(τ t
i) on the same core ck. The first summation sums over

all such threads, and the second over all messages handled by each thread. The lemma
follows by recalling that, by Lemmas 5 and 7, each of such messages contributes with at
most ηr,j(∆ + R

t

j(mr) − ϵ) instances, each one with a delay of at most δt
j(mr). ◀

Policy-dependent bounds. Next, we present the bounds on the intra-thread message
interference, which depends on the policy used in the middleware-level thread. Before
proceeding, we bound the number of self-interfering instances in Lemma 9.

▶ Lemma 9. Let R(mz) be a response-time bound for mz in an arbitrary middleware-level
thread. In any interval of length ∆, the number of self-interfering instances to an arbitrary
instance of a message mz in a middleware-level thread τi ∈ Γmw is bounded by

sii(mz, ∆) ≜ max(0, ηz,i(∆ + R(mz) − ϵ) − 1). (5)

G. Sciangula, D. Casini, A. Biondi, C. Scordino, and M. Di Natale 9:13

Proof. The lemma follows from Lemma 5 by noting that only pending instances of mz

can cause self-interference in the interval [t̄, t̄ + ∆), with ∆ > 0, excluding the message
instance under analysis, and noting that the number of self-interfering instances cannot be
negative. ◀

The precision of the self-interference bound can be further tightened at the cost of testing
a search space of multiple message release times in a busy window [17], thus complicating the
analysis and requiring additional running time. To keep the analysis simple, this potential
improvement is left as future work.

HIGH_PRIORITY policy. Under this policy, each instance of mz under analysis can be delayed
by: (i) low-priority messages causing delay due to non-preemptive message handling (rule
R5), (ii) equal-priority messages enqueued before and thus being prioritized by the FIFO tie-
break, and (iii) higher-priority messages. Let I lp

i,z(∆), Iep
i,z(∆), and Ihp

i,z(∆) be the interference
bounds for (i), (ii), and (iii), respectively, so that I intra

i,z (∆) ≜ I lp
i,z(∆) + Iep

i,z(∆) + Ihp
i,z(∆). We

begin by considering equal-priority messages in Lemma 10.

▶ Lemma 10. All the delays that may contribute to the intra-thread message interference of
an instance of mz that is pending in a middleware-level thread τ t

i ∈ Γmw, during any interval
of length ∆ and due to messages with same priority, are contained into the multiset2

Dep
i (∆) =

⊎
mr∈epi(mz)

{δt
i(mr)} ⊗ ηr,i(∆), with t ∈ {f, l} (6)

where

ηr,i(∆) ≜
{

sii(mz, ∆) if z = r,

ηr,i(∆ + R
t

i(mr) − ϵ) otherwise,
(7)

where δt
i(mr) is given by Lemma 7 and R

t

i(mr) is a response-time bound for mr in τ t
i .

Proof. First, note that delays due to intra-thread message interference to an instance of
message mz from messages with the same priority in a middleware-level thread τ t

i are due to
other messages mr ∈ epi(mz) in the queue of the same thread. By Lemma 7, each message
contributes with a delay of at most δt

i(mr). By Lemma 9, mz can contribute with up to
sii(mz, ∆) interfering message instances. The lemma follows by noting that other messages
can interfere only if they are pending in the same middleware-level thread, with up to
ηr,i(∆ + R

t

i(mr) − ϵ) due to Lemma 5. ◀

Hereafter, the notation Σ(x, M) denotes the sum of the x largest elements in a multiset
M . If M contains less than x elements, all elements in M are summed.

▶ Lemma 11. Let j be the priority of message mz. Consider an instance of mz that is
pending in a middleware-level thread τ t

i ∈ Γmw that uses the HIGH_PRIORITY policy and an
arbitrary time window of length ∆. It holds

Iep
i,z(∆) ≜ Σ(MHP,j

i − 1, Dep
i (∆)). (8)

2 The operator ⊎ denotes the union of multisets, e.g., {3, 3}⊎{6, 2} = {3, 3, 6, 2}, and the product operator
⊗ multiplies the number of instances of each element in the multiset, e.g., {1, 4} ⊗ 2 = {1, 1, 4, 4}.

ECRTS 2023

9:14 Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications

Proof. By definition, the j-th priority queue of τ t
i has size MHP,j

i . Therefore, at most MHP,j
i −1

message instances with same priority can interfere with the one under analysis. By Lemma 10,
the delays of message instances with same priority that may contribute to the intra-thread
interference of mz are contained into the multiset Dep

i (∆). Hence Σ(MHP,j
i − 1, Dep

i (∆))
bounds the intra-thread interference generated by messages with the same priority of mz. ◀

Next, we provide a bound to the intra-thread interference due to messages with lower
priority, which occurs because each message is handled in a non-preemptive manner [23, 43]
locally to each thread.

▶ Lemma 12. Consider an instance of a message mz in a middleware-level thread using the
HIGH_PRIORITY policy τ t

i ∈ Γmw and a time window of length ∆. It holds

I lp
i,z(∆) ≜ max

mr∈lpi(mz)
δt

i(mr), with t = f. (9)

Proof. Low-priority messages can contribute with at most one instance due to the non-
preemptive handling of messages (rule R5). The corresponding delay can be at most equal
to the longest delay δt

i(mr), yielding the bound I lp
i,z(∆). ◀

Differently from equal-priority messages (Lemma 11), the bound for higher-priority
messages cannot rely on message queue sizes. This is because the message under analysis is
placed in a different queue: thus, the bound can only leverage the message arrival curves on
the middleware-level thread under consideration. A bound on the intra-thread interference
due to higher-priority messages is reported in Lemma 13.

▶ Lemma 13. Consider an instance of a message mz in a middleware-level thread using
the HIGH_PRIORITY policy τ t

i ∈ Γmw and a time window of length ∆. Let R
t

i(mr) be a
response-time bound for a higher priority message mr in τ t

i , it holds

Ihp
i,z(∆) ≜

∑
mr∈hpi(mz)

ηr,i(∆ + R
t

i(mr) − ϵ) · δt
i(mr), with t = f. (10)

Proof. Higher-priority messages can interfere with all instances that are pending in an
arbitrary interval [t̄, t̄ + ∆). By Lemma 5, the number of such instances is bounded by
ηr,i(∆ + R

t

i(mr) − ϵ), each one delaying for up to δt
i(mr). ◀

With Lemmas 11, 12, and 13 in place, we have all the interference components to
instantiate a response-time bound under the HIGH_PRIORITY policy, which we present later
in Theorem 15.

FIFO policy. Under the FIFO policy, all messages of a middleware-level thread τ t
i are handled

in a single queue of size MF
i . Since the tie-break policy for messages with equal priority under

HIGH_PRIORITY is FIFO too, intra-thread message interference I intra
i,z (∆) can be bounded as

Iep
i,z(∆) in Lemma 11, but considering MF

i in place of MHP,j
i , and using set τ t

i in the union of
Lemma 10 instead of epi(mz).

Response-time bound. We provide the response-time bound by proceeding in two steps.
First, we bound the start time of an arbitrary message instance m′

z under analysis, i.e., the
time in which the middleware-level thread starts serving non-preemptively m′

z, locally to
the middleware-level thread under consideration. However, note that m′

z can still suffer
thread-level and inter-thread message interference due to higher-priority threads. Later,
we bound the response time by leveraging the start-time bound and the fact that once m′

z

started being served, it cannot experience intra-thread message interference.

G. Sciangula, D. Casini, A. Biondi, C. Scordino, and M. Di Natale 9:15

Theorem 14 bounds the start-time of an arbitrary message instance m′
z in a middleware-

level thread τi.

▶ Theorem 14. Consider an arbitrary instance m′
z of message mz running in a middleware-

level thread τi released at a time A. If S∗ is the least positive solution (if any) of the following
inequality

sbfk(S∗) ≥ ϵ + I intra
i,z (S∗) + Ithread

i,z (S∗) + I inter
i,z (S∗), (11)

then m′
z starts being processed in the middleware-level thread no later than time A + S∗.

Proof. By Lemmas 6 and 8, Ithread
i,z (S∗) and I inter

i,z (S∗) bound the thread-level and inter-
thread message interference, respectively. The intra-thread message interference is bounded
by I intra

i,z (S∗) due to Lemmas 11, 12 and 13, if the middleware-level thread adopts the
HIGH_PRIORITY policy, or Lemma 11 (slightly modified as suggested above) if the FIFO
policy is used. If S∗ satisfies Equation (11), then the service time sbfk(S∗) supplied by
core ck in any interval of length S∗ is enough to satisfy the computational demand of the
whole interference to m′

z in the same interval. Therefore, being the middleware-level thread
work-conserving (rule R8), m′

z starts being served in the middleware-level thread no later
than time A + S∗ and the theorem follows. ◀

Finally, Theorem 15 provides a response-time bound R∗.

▶ Theorem 15. Consider an arbitrary instance m′
z of message mz processed by a middleware-

level thread τ t
i released at a time A. If S∗ is defined as in Theorem 14 and R∗ is the least

positive solution (if any) of the following inequality

sbfk(R∗) ≥ ϵ + I intra
i,z (S∗) + Ithread

i,z (R∗) + I inter
i,z (R∗) + δt

i(mz), (12)

then m′
z completes no later than A + R∗.

Proof. By Theorem 14, m′
z starts being served no later than time A + S∗. After that, due to

rule R5, it starts being processed non-preemptively in the middleware-level thread and it does
not suffer intra-thread interference anymore. Hence I intra

i,z (S∗) bounds the overall intra-thread
interference suffered by m′

z in [A, A + R∗). Inter-thread and thread-level interference in
the same interval are bounded by I inter

i,z (R∗) and Ithread
i,z (R∗), respectively. If R∗ satisfies

Equation (12), then the service time sbfk(R∗) supplied by core ck in any interval of length
R∗ is enough to satisfy the computational demand of the whole interference suffered by m′

z,
plus the time δt

i(mz) to process m′
z itself. Hence, the theorem follows. ◀

Response-time bounds for the flow-controller and listener threads required to compute the
DDL (see Equation (1), terms Rf

i (mz) and Rl
j(mz)) can be computed with the results

presented in this section, considering either the HIGH_PRIORITY or FIFO policy for the flow
controller, and the FIFO policy for the listener.

5.2 Arrival-curve propagation
The DDL bound derived in the previous section is based on the knowledge of the arrival
curves of the various threads in the system. Using the standard arrival curve propagation
approach of CPA [32], they can be derived from the externally-provided arrival curves ηp

i (∆)
of publisher threads τp

i ∈ Γp, response-time bounds, and network propagation delay, if any,
in the path from the source to the destination.

ECRTS 2023

9:16 Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications

As discussed in Section 4, a message mz(τp
i , θj) is identified by its publisher τp

i and
topic θj . Furthermore, the per-message arrival curve depends on the number of messages wj

i

published by each instance of the publisher to θj . The arrival curve propagation process is
shown in Figure 4. The first step is to compute the arrival curve of a message mz in the
flow-controller thread τ f

x starting from the arrival curve of its publisher and the number of
message instances sent in each publisher instance to θj . This can be computed as:

ηf
z,x(∆) = ηp

i (∆ + R(τp
i) − ϵ) · wj

i , (13)

where R(τp
i) is a response-time bound for the publisher thread, which can be derived with

standard methods for response-time analysis under preemptive fixed-priority scheduling [38].
As shown in Figure 4, the message then passes through the network, with a delay δnet(mz),
and it is received by the listener thread τ l

y. The arrival curve of the message within the
listener thread is hence computed as:

ηl
z,y(∆) = ηf

z,x(∆ + R
f
x(mz) + δnet(mz) − ϵ). (14)

Finally, the arrival curve of the subscriber thread is obtained with an OR-activation
semantics [33, 32] by summing all the activations due to all messages mz ∈ M(θj), from the
topics θj ∈ Θ(τ s

q) to which the thread τ s
q subscribes to, i.e.,

ηs
q(∆) =

∑
θj∈Θ(τs

q)

∑
mz∈M(θj)

ηl
z,y(∆ + R

l
y(mz) − ϵ). (15)

5.3 Analysis summary and its applicability
Analysis summary. Algorithm 1 summarizes the analysis proposed in this paper for the
purpose of computing the DDL according to Equation (1). The pseudo-code relies on
global variables to store response-time bounds and their candidates (line 2). Then, function
compute_RT_bounds() needs to be called to populate the global variables Rf

x(mz) and Rl
y(mz)

with the response-time bounds of each message mz in the corresponding flow-controller and
listener threads, respectively.

The calculation leverages functions ResponseTimeBound_FlowController() (line 17) and
ResponseTimeBound_Listener() (line 27) that properly instantiate I intra

i,z (∆) as discussed in
Section 5.1, while I inter

i,z (∆) and Ithread
i,z (∆) are defined as in Lemmas 6 and 8 in both the cases.

As discussed in Section 5.1, the computation of the response-time bounds Rf
x(mz), Rl

y(mz)
(functions ResponseTimeBound_FlowController() and ResponseTimeBound_Listener())
cyclically depends on the existence of pre-existing response-time bounds R

f
x(mz), R

l
y(mz).

The dependency is broken by initializing the bounds to zero (line 6) and performing an
outer loop (lines 7-15) until a global fixed-point is reached (i.e., Rf

x(mz) ̸= R
f
x(mz) and

Rl
y(mz) ̸= R

l
y(mz) for each message mz) and performing arrival curve propagation (see

Section 5.2) inside the loop. Convergence is guaranteed by the fact that response-time
estimates (variables R

l
y(mz) and R

f
x(mz)) never decreases. Response-time bounds for

publisher and subscriber threads also need to be computed (according to standard fixed-
priority scheduling, line 13) inside the loop, updating global response time variables (as those
initialized in line 6) to be used in the arrival curve propagation process (e.g., Equation (13),
not detailed in the pseudo-code for brevity). When compute_RT_bounds() completes, the
global variables are configured to the correct response-time bound values, and the function
DDL(mz, δnet(mz)), at line 33 of the Algorithm 1, can be used to compute the DDL of a
given message mz according to Equation (1) by providing the network delay δnet(mz) as an
input parameter.

G. Sciangula, D. Casini, A. Biondi, C. Scordino, and M. Di Natale 9:17

Algorithm 1 Pseudo-code of the DDL analysis.

1: global variables ∀ θj ∈ Θ, mz ∈M(θj), define ▷ for each message in the system
2: Rf

x(mz), Rl
y(mz), R

f
x(mz), R

l
y(mz) to store response-time bounds and the corresponding candidates

3:
4: function compute_RT_bounds()
5: ∀ θj ∈ Θ, mz ∈M(θj) : ▷ for each message in the system:
6: Rf

x(mz)← 0, Rl
y(mz)← 0, R

f
x(mz)← 0, R

l
y(mz)← 0

7: do
8: ∀ θj ∈ Θ, mz ∈M(θj) : ▷ for each message in the system
9: R

f
x(mz)← Rf

x(mz), R
l
y(mz)← Rl

y(mz)
10: FC_SCHED_POL ← scheduling policy of the flow-controller thread handling mz

11: Rf
x(mz)← ResponseTimeBound_FlowController(mz, FC_SCHED_POL)

12: Rl
y(mz)← ResponseTimeBound_Listener(mz)

13: compute response time bounds for application threads
14: perform arrival curve propagation ▷ see Section 5.2
15: while no more response-time bounds updates ∀ mz

16:
17: function ResponseTimeBound_FlowController(mz , FC_SCHED_POL)
18: switch FC_SCHED_POL do
19: case HIGH_PRIORITY:
20: Set I intra

x,z (∆)← Iep
x,z(∆) + I lp

x,z(∆) + Ihp
x,z(∆)

21: ▷ where Iep
x,z(∆), I lp

x,z(∆), Ihp
x,z(∆) are bounded as in Lemmas 11, 12, and 13

22: case FIFO:
23: Set I intra

x,z (∆) = Iep
x,z(∆) ▷ using Lemma 11

24: ▷ with MF
x in place of MHP,j

x , and with τ f
x in the union of Lemma 11 in place of epx(mz)

25: Compute S∗ using Theorem 14, compute R∗ using Theorem 15
26:
27: function ResponseTimeBound_Listener(mz)
28: Set I intra

y,z (∆) = Iep
y,z(∆) ▷ using Lemma 11

29: ▷ with MF
y in place of MHP,j

y , and with τ l
y in the union of Lemma 11 in place of epy(mz)

30: Compute S∗ using Theorem 14, compute R∗ using Theorem 15
31: return R∗

32:
33: function DDL(mz , δnet(mz)) ▷ to be called after compute_RT_bounds()
34: return Rf

x(mz) + δnet(mz) + Rl
y(mz)

Applicability. The analysis strategy we proposed makes our method applicable to several
practically useful scenarios.

Linux – SCHED_FIFO. A natural fit for our method is to analyze the timing behavior of
FastDDS-based applications running on the SCHED_FIFO scheduling class of Linux, which
provides a fixed-priority scheduler fulfilling the assumptions of our model. In this case,
each core provides the full supply to the scheduled applications, since no reservation-based
mechanism is provided. Hence, sbfk(∆) = ∆, ∀k.

Linux – SCHED_DEADLINE and QNX APS. Thanks to the supply-bound function ab-
straction, our analysis is suitable also for being applied to systems using the SCHED_DEADLINE
scheduler of Linux, a reservation-based scheduler. Under SCHED_DEADLINE, each thread can
be individually isolated from a temporal perspective by associating it with a budget and period
pair [1, 11]. The corresponding definition for sbfk(∆) is available in the literature [10, 15, 40].
Thanks to the temporal isolation, Ithread

i,z (∆) = 0 and I inter
i,z (∆) = 0. Furthermore, our

analysis also generalizes to the QNX APS reservation-based scheduler [6, 22], by considering
only threads allocated to the same APS partition of the thread under analysis when deriving
Ithread

i,z (∆) and I inter
i,z (∆).

ECRTS 2023

9:18 Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications

Processing chains and ROS. Thanks to the compositionality of our approach, our analysis
can be used to study the end-to-end response-time of data-driven distributed applications [7,
29, 64, 65]. Furthermore, our approach makes few assumptions on how application-level
threads are scheduled, making it easily extensible to work with methods to study the
response-time of processing chains using ROS 2 [13, 17], which leverages the DDS as a
lower-layer middleware and hence it is a practical use case for the DDS. However, none of
the analyses for ROS 2 currently available in the literature provides a method to bound the
DDS-related delay. For example, the analysis in [17] for ROS 2 models the delay due to
the DDS as a single parameter and suggests estimating it empirically. The analysis of this
paper (Equation (1)) presents the first analytical solution to provide a theoretically-sound
bound on the single-parameter DDS-related delay of [17], which can therefore be used as a
complement of previous work on ROS 2 processing chains.

6 Evaluation

First, we evaluated our analysis on a case study based on the WATERS 2019 Challenge by
Bosch [30], which consists of a representative autonomous driving application. Then, we
report on a comparison between the analysis results and actual measurements on a real
platform running FastDDS and a relatively simple application.

6.1 WATERS 2019 Challenge case study
The model for the Challenge provides parameters such as periods, worst-case execution
times, and data exchanged among threads (i.e., shared labels) for nine threads. While the
challenge model was not designed to work with the DDS, the target application is a good fit
to work with a pub/sub paradigm. Figure 5 illustrates how the Challenge application was
adapted to work with the DDS. Shared labels were modeled as topics (represented by ellipses)
having the same payload size as labels, with the following meaning: when a task writes
on a label is publishing messages on that label, i.e., topic, and a task reading on a label is
receiving messages from that topic. Threads performing only reads on labels were considered
as subscribers with data-driven activation based on the subscription to the corresponding
topics (e.g., see the DASM task). For threads that are both reading and writing labels (LOC,
EKF, and PLAN), two sub-threads were identified, representing the subscriber and a publisher
(denoted in the figure with the prefixes “S_” and “P_” respectively). In this way, the original
periods of the Challenge were preserved for the publishers. Given the original WCET ei of
the challenge model, individual WCETs of the corresponding publisher and subscriber thread
were derived as epub

i = ei · α and esub
i = ei · (1 − α), with α ∈ [0, 1]. The other threads were

left unaltered. The parameter α is introduced to split the WATERS Challenge’s threads into
publisher-subscriber pairs and can be used to regulate how much computation time to assign
to publish and subscribe parts of each thread.

Message delays in the flow-controller and listener. To run the analysis, it is necessary to
know the worst-case delays δf(mz) and δl(mz) to process a message in the flow-controller
and listener thread, respectively. To estimate such parameters, we developed a FastDDS
application consisting of a publisher, its flow-controller, a subscriber, and its listener. The
two application-level threads communicate through a single topic, using UDP through the
loopback interface. The application was executed on an 8-core Dell Optiplex 7070 machine
running Ubuntu 20.04. The flow-controller and listener threads were mapped to two different
cores with the highest priority. Each message was processed 50000 times by each middleware

G. Sciangula, D. Casini, A. Biondi, C. Scordino, and M. Di Natale 9:19

PL
A
N

LO
C

LI
D
A
R

P_Lidar

S_loc

cloud occ_grid

P_loc

C
A
N

P_CAN D
ET P_Det

bbox

P_planEK
F S_EKF

P_EKF
pose matrix

SF
M P_SFM

dpth_est

LNDET

P_LnDet

ln_bnd

steerspeed
DASM

S_DASM

GPU

GPU

0 1 2 3

4

5 6 7

8

vhcl_stat_planvhcl_stat_EKFvhcl_stat_loc

S_plan

Figure 5 WATERS 2019 Challenge adapted to use a pub/sub paradigm.

1 3 5 24 500 750 1500
Msg payload (kB)

0

500

1000

M
sg

 d
el

ay
 (

us
) A) Message delay flowcontroller

1 3 5 24 500 750 1500
Msg payload (kB)

0

1000

2000
B) Message delay listener

max min avg std deviation

Figure 6 Estimation of the message delay.

thread. Middleware threads were configured to collect data about the execution time of each
processed message. Figure 6 illustrates the results. For each payload size (x-axis) used in the
WATERS 2019 Challenge, the graph shows the minimum, maximum, average, and standard
deviation of message delays (y-axis). Both graphs show the same trend. For payload sizes
≤ 24kB, the execution time trend is fairly constant and does not exceed 125µs and 200µs
for flow-controller and listener messages, respectively. As payload size exceeds loopback
MTU (64kB), the fragmentation and reassembly of UDP packets was found to cause relevant
overheads, affecting the processing time of the messages.

Analysis results. Next, we discuss the results of the analysis of this case study, which
was implemented using the pyCPA framework [25]. The priorities of publishers were set
according to rate-monotonic. In this case study, at most one thread publishes on each
topic. Therefore, we assign to each topic the same priority of the corresponding publisher
(which is then inherited by each message sent through the topic). Whenever a publisher
publishes on multiple topics, the topic (i.e. message) associated with a smaller payload size
is assigned a higher priority. Subscribers S_loc, S_EKF, S_plan inherited the priority of
the corresponding publishers, while S_DASM priority was set to the highest priority in the
system because of providing the application’s output. We set δnet(m) = 0 since we studied
threads running on the same computing node. We evaluated the analysis on a vast range
of configurations, where multiple design-level parameters were varied: (i) the task-to-core
assignment, (ii) the priorities of application-level and middleware-level threads, (iii) the
number of flow-controllers and the topics-to-flow-controller assignments, (iv) the message
priorities in the flow-controller threads.

Among them, we selected four relevant system configurations (with α = 0.95) and we
discuss their trade-offs:
(A) A configuration in which each publisher has its own flow-controller, and all the threads

are exclusively assigned to a core, and no thread-level interference can occur;
(B) A configuration with eight flow-controllers, where flow-controllers and listeners are in

the same core of their publishers and subscribers, respectively;

ECRTS 2023

9:20 Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications

(C) A configuration with two flow-controllers, in which one flow-controller manages messages
with lower payload ({1, 3, 5, 24} kB), while the other handles messages with higher
payload ({500, 750, 1500} kB).

(D) A configuration with one flow-controller handling all messages, allocated on a dedicated
core.

In (C) and (D), listeners are allocated to the same core of corresponding subscribers. For
each configuration, Figure 7 shows the DDL (y-axis) for each message (x-axis).

Configuration A. Figure 7 (A) shows the results of the configuration, where threads
execute exclusively on a core. Thus, a message can only suffer interference due to messages
within the same flow-controller thread, which occurs for publishers sending multiple different
messages. We considered two scenarios for the HP and F policies of the flow-controller. In this
configuration, both sending policies found not to have any significant effects on the DDL. For
the vchl_stat_plan message, the F policy generates a slightly higher DDL than the HP, due
to the fact that, under HP, this message has the highest priority within the flow-controller.

Configuration B. In this configuration, we evaluated the effects of the relative priority
between a publisher and its flow-controller thread. To this end, we considered four different
cases in Figure 7 (B): (i) the HP policy of the flow-controller (settings 1-HP and 2-HP),
(ii) the FIFO policy of the flow-controller (1-F and 2-F), (iii) flow-controllers with higher
priorities than publishers (1-HP and 1-F), (iv) flow-controllers with lower priorities than
publishers (2-HP and 2-F). When flow-controllers have a high priority, results show the same
behavior and same values of Figure 7 (A). When we consider lower-priority flow-controllers
in the cases 2-HP and 2-F, the DDL increases for each message that can suffer from the
publisher execution interference. The longest DDLs (16.5ms for 2-HP and 17ms for 2-F) are
observed for the occ_grid message, with a 3x latency increment w.r.t. (A).

Configurations C and D. Figures 7 (C) and 7 (D) show the results of the configurations
with two and one flow-controller, respectively. Scenarios 1-HP-L>S and 1-F-L>S consider
the HP and FIFO policies of the flow-controllers when listeners have higher priorities than
their subscribers. Scenarios 2-HP-L<S and 2-F-L<S consider listeners with lower priorities
than their subscribers. Considering 1-HP-L>S and 2-HP-L<S, the configuration in inset
(D) leads low-priority messages (e.g., ln_bnd, pose, dpth_est) to suffer from a significant
interference from the processing of high-priority messages compared to configuration in inset
(C). Moreover, due to the non-preemptiveness of the sending operation, for each message, the
DDL of the configuration (D) always accounts the time needed to process the highest-payload
message (cloud message, with size 1500kB). Differently, in configuration (C), lower-payload
messages just suffer at most from of non-preemptiveness processing delay due to messages
with size 24kB. This is an advantage due to having two flow-controllers that manage different
data flows. In both configurations, lower-priority listeners cause larger DDL for all messages
due to subscriber-related interference.

6.2 Comparing analysis bounds with measured DDLs
Next, we compare the results of our analysis with empirical measurements collected from
a real FastDDS application executed on the previously mentioned Optiplex 7070 platform,
running Ubuntu 20.04. The considered application consists of a publisher τp

1 , with its flow-
controller τ f

2, and a subscriber τ s
4, with its listener τ l

3, exchanging data over three different
topics (θ1, θ2, θ3). Messages (named m(θ1), m(θ2), m(θ3)) have the same payload size
(1kB). Message delays are set according to the measurements reported in Figure 6 for 1kB

payloads. Threads τp
1 and τ f

2 are allocated to the same core c1 and assigned to the two

G. Sciangula, D. Casini, A. Biondi, C. Scordino, and M. Di Natale 9:21

0

1

2

3

4

D
D

L
(m

s)
A) No-thread-interference configuration

HP
F

0

5

10

15

B) 8FC-configuration
1-HP
1-F
2-HP
2-F

bbox
cloud

dpth_est
ln_bnd

matrix
occ_grid pose

speed steer

vhcl_stat_ekf

vhcl_stat_loc

vhcl_stat_plan
0

2

4

D
D

L
(m

s)

C) 2FC-configuration

1-HP-L>S 1-F-L>S 2-HP-L<S 2-F-L<S

bbox
cloud

dpth_est
ln_bnd

matrix
occ_grid pose

speed steer

vhcl_stat_ekf

vhcl_stat_loc

vhcl_stat_plan
0

2

4

6

8
D) 1FC-configuration

Figure 7 Experimental results under four representative configurations of the case study.

m(θ1) m(θ2) m(θ3)
0

2,000
4,000

D
D

L
(u

s)

Configuration 1) FIFO policy

m(θ1) m(θ2) m(θ3)
0

2,000
4,000

Configuration 2) HP policy

(I) Empirical Latencies (II) Analysis Results

Figure 8 Results from FastDDS app and analysis related to Configurations 1) and 2).

highest priorities, with τ f
2 having higher priority than τp

1 . τ s
4 and τ l

3 are mapped, respectively,
to cores c3 and c2, and set with the highest priority in their respective core. τp

1 is configured
as a periodic thread with period 2ms. Therefore, it is characterized by an arrival curve
ηp

1(∆) = ⌈ ∆
T ⌉. On the Optiplex platform, middleware threads of the FastDDS application are

configured to measure the DDL for each message over 50000 samples. We tested two different
configurations: Conf. 1), in which messages in the flow-controller are scheduled under FIFO
policy; Conf. 2) in which the flow-controller schedules messages under the HIGH_PRIORITY
policy and topics are assigned to a unique priority such that lower topic subscript identifiers
indicate higher priority values. Figure 8 shows the DDL (y-axis) for each message (x-axis)
obtained through measurements and by the analysis for both configurations.

Conf. 1). Under FIFO policy, each flow-controller message can interfere with others. Our
analysis accordingly computes the same DDL bound (5446us) for all of them. Comparing
the DDL bound with the measured values on the Optiplex platform we can observe that
values do not exceed the DDL bound found by the analysis, corroborating its validity.

Conf. 2). Under HP policy, both the analysis and the measurements on the Optiplex
platform show DDL values that depend upon the message priority. Moreover, we can observe
that for the lowest priority message (i.e., m(θ3)), the DDL bound of the analysis equals the
DDL bound found in the Conf. 1). Also in this case, empirical DDL values do not exceed
the DDL bounds found with the analysis.

In Table 2, we reported the relative distance, in percentage, between the DDL bound
provided by the analysis and the measured value, showing that the DDL bounds found are
tight for the considered application.

ECRTS 2023

9:22 Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications

Table 2 Table of percentage relative distances: measurements vs. analysis bound.

Message Configuration (1) FIFO Configuration (2) HIGH_PRIORITY
m(θ1) 6.3 % 14.5 %
m(θ2) 11.1 % 10.7 %
m(θ3) 6.9 % 7.7 %

7 Related Work

The literature regarding the real-time aspects of DDS is quite limited. To the best of our
knowledge, this is the first attempt to model the DDS from a real-time perspective and
provide real-time analysis for DDS-based communications.

Most of the previous research on DDS focused on empirical performance measurement.
For instance, Bellavista et al. [8] compared the DDS implementation OpenSlice with Connext-
DDS by Real-Time Innovations [54]. Krinkin et al. [36] proposed a framework to assess
the effectiveness of various DDS implementations in terms of message transport latency
and throughput. Other works attempted to suggest potential improvements for DDS imple-
mentations. For example, Choi et al. [19] studied a real-time DDS setup over specialized
packet-switching ASICs to enable Software Defined Networking (SDN). Peeck et al. [50]
presented a UDP-based protocol for effective error correction with integrity guarantees that
considers the DDS as the middleware for data-centric embedded systems. Agarwal et al. [2]
proposed the integration of a DDS implementation with a TSN protocol for real-time data
transfers. Stevanato et al. [62] proposed a reference architecture for implementing virtualized
DDS communications in a hypervisor-based multi-domain system. Finally, Scordino et
al. [56] implemented in hardware some DDS functionalities. Other works considered other
middlewares, e.g., OpenMP [58, 63], ROS 2 [3, 17, 20, 64, 66], the ROS-based framework
Apex.OS [51], and RT-Appia [53]. However, none of the works addressing the analysis of
ROS 2 provides analytical methods to bound the data-delivery latency of the DDS. Empirical
evaluations of ROS 2 over different DDS implementations have been carried out by Maruyama
et al. [41] and Kronauer et al. [37], providing guidelines on designing ROS 2 applications to
minimize latencies.

8 Conclusion and Future Work

In this paper, we derived a compositional model for studying the timing of the DDS standard
and we instantiated it for FastDDS. We inspected the FastDDS documentation and source
code to build an accurate model capable of capturing the FastDDS-specific timing-related
effects, and we corroborated our findings by running validation experiments on an actual
FastDDS system. Building on the model, we derived an analysis to bound the data-delivery
latency of messages. We evaluated our analysis based on the WATERS 2019 Industrial
Challenge showing how thanks to our analysis, it becomes easily possible to compare a vast
range of configurations without the need to deploy them on a real system.

Furthermore, we compared analysis results with actual measurements on a real plat-
form running FastDDS and a relatively simple application, showing the tightness of our
analysis for the specific use case. The proposed analysis will enable system designers to
configure DDS-based systems, guiding choices such as thread-to-core allocation, priorities,
and reservation budgets in a timing-constraints-driven perspective. It will set the foundation
to account for DDS-related delays in analysis-driven orchestration algorithms, which will

G. Sciangula, D. Casini, A. Biondi, C. Scordino, and M. Di Natale 9:23

be the subject of future work. Other directions for future research include combining this
analysis with other analysis techniques [47] to improve the analysis precision, the holistic
consideration of scheduling effects due to the DDS with OS overheads [24], I/O-related
contention delays [59, 71], and network delays [14, 18, 44, 52] with special emphasis on
Time-Sensitive Networking [49].

References
1 L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time systems. In

Proceedings 19th IEEE Real-Time Systems Symposium (Cat. No.98CB36279), 1998.
2 Tanushree Agarwal, Payam Niknejad, Mohammadreza Barzegaran, and Luigi Vanfretti. Multi-

level time-sensitive networking (TSN) Using the Data Distribution Services (DDS) for syn-
chronized three-phase measurement data transfer. IEEE Access, PP:1–1, September 2019.

3 Abdullah Al Arafat, Sudharsan Vaidhun, Kurt M Wilson, Jinghao Sun, and Zhishan Guo.
Response time analysis for dynamic priority scheduling in ROS2. In Proceedings of the 59th
ACM/IEEE Design Automation Conference, pages 301–306, 2022.

4 AUTOSAR. Specification of Communication Management, 2020. URL: https://www.autosar.
org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_CommunicationManagement.pdf.

5 Daniel Balouek-Thomert, Ali Reza Zamani Eduard Gibert Renart, and Manish Parashar
Anthony Simonet. Towards a computing continuum: Enabling edge-to-cloud integration for
data-driven workflows. The International Journal of High Performance Computing Applications,
33(6):1159–1174, 2019.

6 Matthias Becker, Dakshina Dasari, and Daniel Casini. On the QNX IPC: Assessing predictab-
ility for local and distributed real-time systems. In 2023 IEEE 29th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2023.

7 Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas Nolte. End-
to-end timing analysis of cause-effect chains in automotive embedded systems. Journal of
Systems Architecture, 80:104–113, 2017.

8 P. Bellavista, A. Corradi, L. Foschini, and A. Pernafini. Data distribution service (DDS): A
performance comparison of OpenSplice and RTI implementations. In 2013 IEEE Symposium
on Computers and Communications (ISCC), pages 000377–000383, Los Alamitos, CA, USA,
July 2013. IEEE Computer Society.

9 Luca Belluardo, Andrea Stevanato, Daniel Casini, Giorgiomaria Cicero, Alessandro Biondi,
and Giorgio Buttazzo. A multi-domain software architecture for safe and secure autonomous
driving. In 2021 IEEE 27th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 73–82, 2021.

10 Alessandro Biondi, Giorgio C. Buttazzo, and Marko Bertogna. Schedulability analysis of
hierarchical real-time systems under shared resources. IEEE Transactions on Computers,
65(5):1593–1605, 2016.

11 Alessandro Biondi, Alessandra Melani, and Marko Bertogna. Hard constant bandwidth server:
Comprehensive formulation and critical scenarios. In Proceedings of the 9th IEEE International
Symposium on Industrial Embedded Systems (SIES 2014), pages 29–37, 2014.

12 Tobias Blass, Arne Hamann, Ralph Lange, Dirk Ziegenbein, and Björn B. Brandenburg.
Automatic latency management for ROS 2: Benefits, challenges, and open problems. In
Proceedings of the 27th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2021.

13 Tobias Blaß, Daniel Casini, Sergey Bozhko, and Björn B. Brandenburg. A ROS 2 response-time
analysis exploiting starvation freedom and execution-time variance. In 2021 IEEE Real-Time
Systems Symposium (RTSS), pages 41–53, 2021.

14 C. Blumschein, I. Behnke, L. Thamsen, and O. Kao. Differentiating Network Flows for
priority-aware scheduling of incoming packets in real-time IoT systems. In 2022 IEEE 25th

ECRTS 2023

https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_CommunicationManagement.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_CommunicationManagement.pdf

9:24 Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications

International Symposium On Real-Time Distributed Computing (ISORC), pages 1–8, Los
Alamitos, CA, USA, May 2022. IEEE Computer Society.

15 Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications. Springer Publishing Company, Incorporated, 3rd edition, 2011.

16 Daniel Casini, Luca Abeni, Alessandro Biondi, Tommaso Cucinotta, and Giorgio Buttazzo.
Constant bandwidth servers with constrained deadlines. In Proceedings of the 25th International
Conference on Real-Time Networks and Systems, pages 68–77, 2017.

17 Daniel Casini, Tobias Blaß, Ingo Lütkebohle, and Björn B Brandenburg. Response-time
analysis of ROS 2 processing chains under reservation-based scheduling. In 31st Euromicro
Conference on Real-Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

18 Pierre-Julien Chaine, Marc Boyer, Claire Pagetti, and Franck Wartel. Egress-TT Configurations
for TSN Networks. In Proceedings of the 30th International Conference on Real-Time Networks
and Systems, RTNS 2022, 2022.

19 Hyon-Young Choi, Andrew L. King, and Insup Lee. Making DDS really real-time with
OpenFlow. In 2016 International Conference on Embedded Software (EMSOFT), 2016.

20 Hyunjong Choi, Yecheng Xiang, and Hyoseung Kim. PiCAS: New design of priority-driven
chain-aware scheduling for ROS2. In 2021 IEEE 27th Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 251–263. IEEE, 2021.

21 Rut Diane Cuebas, Seonghyeon Park, Youngeun Cho, Daechul Park, and Chang-Gun Lee.
Extension of functionally and temporally correct simulation of cyber-systems of automotive
systems based on ROS system. Korean Information Science Society Academic Papers, pages
1174–1176, 2019.

22 Dakshina Dasari, Matthias Becker, Daniel Casini, and Tobias Blaß. End-to-end analysis of
event chains under the QNX adaptive partitioning scheduler. In 2022 IEEE 28th Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 214–227, 2022.

23 Robert I Davis, Alan Burns, Reinder J Bril, and Johan J Lukkien. Controller area network
(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time Systems, 2007.

24 Daniel Bristot de Oliveira, Daniel Casini, Rômulo Silva de Oliveira, and Tommaso Cucinotta.
Demystifying the real-time Linux scheduling latency. In 32nd Euromicro Conference on
Real-Time Systems (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

25 Jonas Diemer, Philip Axer, and Rolf Ernst. Compositional Performance Analysis in Python
with pyCPA. In In Proceedings of WATERS’12, 2012.

26 Zheng Dong, Weisong Shi, Guangmo Tong, and Kecheng Yang. Collaborative autonomous driv-
ing: Vision and challenges. In 2020 International Conference on Connected and Autonomous
Driving (MetroCAD), pages 17–26. IEEE, 2020.

27 eProsima. Fast-DDS, 2022. https://fast-dds.docs.eprosima.com/en/latest/.
28 eProsima. Fast-DDS Github repository, 2022. https://github.com/eProsima/Fast-DDS.
29 Mario Günzel, Kuan-Hsun Chen, Niklas Ueter, Georg von der Brüggen, Marco Dürr, and

Jian-Jia Chen. Timing analysis of asynchronized distributed cause-effect chains. In 2021 IEEE
27th Real-Time and Embedded Technology and Applications Symposium (RTAS), 2021.

30 A. Hamann, D. Dasari, F. Wurst, I. Sañudo, N. Capodieci, P. Burgio, and M Bertogna. Waters
industrial challenge 2019.

31 Arne Hamann, Selma Saidi, David Ginthoer, Christian Wietfeld, and Dirk Ziegenbein. Building
end-to-end IoT applications with QoS guarantees. In 2020 57th ACM/IEEE Design Automation
Conference (DAC), pages 1–6, 2020.

32 R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System level performance
analysis – The SymTA/S approach. IEEE Proceedings – Computers and Digital Techniques,
March 2005.

33 Marek Jersak. Compositional Performance Analysis for Complex Embedded Applications. PhD
thesis, Technical University of Braunschweig, June 2004.

https://fast-dds.docs.eprosima.com/en/latest/
https://github.com/eProsima/Fast-DDS

G. Sciangula, D. Casini, A. Biondi, C. Scordino, and M. Di Natale 9:25

34 Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato Hirabayashi, Yuki
Kitsukawa, Abraham Monrroy, Tomohito Ando, Yusuke Fujii, and Takuya Azumi. Autoware
on board: Enabling autonomous vehicles with embedded systems. In 2018 ACM/IEEE 9th
International Conference on Cyber-Physical Systems (ICCPS), pages 287–296, 2018.

35 Bonjun Kim and Kiejin Park. Probabilistic delay model of dynamic message frame in flexray
protocol. IEEE Transactions on Consumer Electronics, 55(1):77–82, 2009.

36 Kirill Krinkin, Antoni Filatov, Artyom Filatov, Oleg Kurishev, and Alexander Lyanguzov.
Data distribution services performance evaluation framework. In 2018 22nd Conference of
Open Innovations Association (FRUCT), pages 94–100, 2018.

37 Tobias Kronauer, Joshwa Pohlmann, Maximilian Matthé, Till Smejkal, and Gerhard P.
Fettweis. Latency analysis of ROS2 multi-node systems. 2021 IEEE International Conference
on Multisensor Fusion and Integration for Intelligent Systems (MFI), pages 1–7, 2021.

38 J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact charac-
terization and average case behavior. In [1989] Proceedings. Real-Time Systems Symposium,
pages 166–171, 1989.

39 Juri Lelli, Claudio Scordino, Luca Abeni, and Dario Faggioli. Deadline scheduling in the linux
kernel. Softw. Pract. Exper., 46(6):821–839, June 2016.

40 G. Lipari and E. Bini. Resource partitioning among real-time applications. In 15th Euromicro
Conference on Real-Time Systems, 2003. Proceedings., pages 151–158, 2003.

41 Yuya Maruyama, Shinpei Kato, and Takuya Azumi. Exploring the performance of ROS2. In
EMSOFT ’16, New York, NY, USA, 2016. Association for Computing Machinery.

42 Philipp Mundhenk, Arne Hamann, Andreas Heyl, and Dirk Ziegenbein. Reliable distributed
systems. In 2022 Design, Automation Test in Europe Conference Exhibition (DATE), 2022.

43 Mitra Nasri and Bjorn B Brandenburg. An exact and sustainable analysis of non-preemptive
scheduling. In 2017 IEEE Real-Time Systems Symposium (RTSS), pages 12–23. IEEE, 2017.

44 Ramon Serna Oliver and Gerhard Fohler. Probabilistic estimation of end-to-end path latency
in wireless sensor networks. In 2009 IEEE 6th International Conference on Mobile Adhoc and
Sensor Systems, pages 423–431. IEEE, 2009.

45 OMG. Supported QoS, April 2015. https://www.omg.org/spec/DDS/1.4/PDF.
46 OMG. The real-time publish-subscribe protocol dds interoperability wire protocol specification

(v2.5), March 2021. https://www.omg.org/spec/DDSI-RTPS/2.5/PDF.
47 J.C. Palencia and M. Gonzalez Harbour. Schedulability analysis for tasks with static and

dynamic offsets. In Proceedings 19th IEEE Real-Time Systems Symposium, pages 26–37, 1998.
48 G. Pardo-Castellote. OMG data distribution service: architectural overview. In IEEE Military

Communications Conference, 2003. MILCOM 2003., volume 1, pages 242–247 Vol.1, 2003.
49 Gaetano Patti, Lucia Lo Bello, and Luca Leonardi. Deadline-Aware Online scheduling of TSN

flows for automotive applications. IEEE Transactions on Industrial Informatics, 2022.
50 Jonas Peeck, Mischa Möstl, Tasuku Ishigooka, and Rolf Ernst. A middleware protocol for

time-critical wireless communication of large data samples. In 2021 IEEE Real-Time Systems
Symposium (RTSS), pages 1–13, 2021.

51 Michael Pöhnl, Alban Tamisier, and Tobias Blass. A Middleware Journey from Microcontrollers
to Microprocessors. In 2022 Design, Automation and Test in Europe Conference and Exhibition
(DATE), pages 282–286, 2022.

52 Hootan Rashtian and Sathish Gopalakrishnan. Balancing message criticality and timeliness in
IoT networks. IEEE Access, 7:145738–145745, 2019.

53 Joao Rodrigues, Hugo Miranda, João Ventura, and Luıs Rodrigues. The design of RT-Appia. In
Proceedings Sixth International Workshop on Object-Oriented Real-Time Dependable Systems,
pages 261–268. IEEE, 2001.

54 RTI. Connext-DDS, 2013. https://www.rti.com/products/dds-standard.
55 Johannes Schlatow and Rolf Ernst. Response-time analysis for task chains with complex

precedence and blocking relations. ACM Trans. Embed. Comput. Syst., September 2017.

ECRTS 2023

https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDSI-RTPS/2.5/PDF
https://www.rti.com/products/dds-standard

9:26 Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications

56 Claudio Scordino, Angela Gonzalez Mariño, and Francesc Fons. Hardware Acceleration of
Data Distribution Service (DDS) for Automotive Communication and Computing. IEEE
Access, 10:109626–109651, 2022.

57 Katherine Scott, Chris Lalancette, and Audrow Nash. 2021 ROS Middleware Evaluation
Report, 2021. https://github.com/osrf/TSC-RMW-Reports/tree/main/humble.

58 Maria A Serrano, Alessandra Melani, Roberto Vargas, Andrea Marongiu, Marko Bertogna, and
Eduardo Quinones. Timing characterization of OpenMP4 tasking model. In 2015 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES), pages
157–166. IEEE, 2015.

59 Alejandro Serrano-Cases, Juan M Reina, Jaume Abella, Enrico Mezzetti, and Francisco J
Cazorla. Leveraging hardware QoS to control contention in the Xilinx Zynq UltraScale+
MPSoC. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

60 Insik Shin and Insup Lee. Periodic resource model for compositional real-time guarantees. In
RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003, pages 2–13, 2003.

61 Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael Gidlund. Industrial
Internet of Things: Challenges, opportunities, and directions. IEEE transactions on industrial
informatics, 14(11):4724–4734, 2018.

62 A. Stevanato, A. Biondi, A. Biasci, and B. Morelli. Virtualized DDS Communication for
Multi-Domain systems: Architecture and performance evaluation of design alternatives. In
Proceedings of the 29th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), San Antonio, USA, May 9-12, 2023, 2023.

63 Jinghao Sun, Nan Guan, Zhishan Guo, Yekai Xue, Jing He, and Guozhen Tan. Calculating
worst-case response time bounds for OpenMP programs with loop structures. In 2021 IEEE
Real-Time Systems Symposium (RTSS), pages 123–135. IEEE, 2021.

64 Yue Tang, Zhiwei Feng, Nan Guan, Xu Jiang, Mingsong Lv, Qingxu Deng, and Wang Yi.
Response time analysis and priority assignment of processing chains on ROS2 executors. In
2020 IEEE Real-Time Systems Symposium (RTSS), pages 231–243, 2020.

65 Yue Tang, Xu Jiang, Nan Guan, Dong Ji, Xiantong Luo, and Wang Yi. Comparing commu-
nication paradigms in cause-effect chains. IEEE Transactions on Computers, 2022.

66 H. Teper, M. Günzel, N. Ueter, G. von der Brüggen, and J. Chen. End-to-end timing analysis
in ROS2. In 2022 IEEE Real-Time Systems Symposium (RTSS), 2022.

67 Ludovic Thomas, Ahlem Mifdaoui, and Jean-Yves Le Boudec. Worst-case delay bounds in
time-sensitive networks with packet replication and elimination. IEEE/ACM Transactions on
Networking, pages 1–15, 2022.

68 Vortex. Cyclone-DDS, September 2021. https://projects.eclipse.org/projects/iot.
cyclonedds.

69 Tianze Wu, Baofu Wu, Sa Wang, Liangkai Liu, Shaoshan Liu, Yungang Bao, and Weisong Shi.
Oops! It’s Too Late. Your Autonomous Driving System Needs a Faster Middleware. IEEE
Robotics and Automation Letters, 6(4):7301–7308, 2021.

70 Xiaoming Zhou and Piet Van Mieghem. Reordering of IP packets in Internet. In Chadi
Barakat and Ian Pratt, editors, Passive and Active Network Measurement, pages 237–246,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

71 Matteo Zini, Giorgiomaria Cicero, Daniel Casini, and Alessandro Biondi. Profiling and
controlling I/O-related memory contention in COTS heterogeneous platforms. Software:
Practice and Experience, 52(5):1095–1113, 2022.

https://github.com/osrf/TSC-RMW-Reports/tree/main/humble
https://projects.eclipse.org/projects/iot.cyclonedds
https://projects.eclipse.org/projects/iot.cyclonedds

	1 Introduction
	2 Background
	2.1 The DDS Standard
	2.2 The FastDDS Implementation
	2.3 Compositional Performance Analysis

	3 Compositional DDS Model
	4 FastDDS-based System Model and Problem Definition
	4.1 Problem Statement
	4.2 Thread behavioral rules
	4.3 Model Validation

	5 Data-Delivery Latency Analysis
	5.1 Response-Time Analysis for a Fast-DDS message
	5.2 Arrival-curve propagation
	5.3 Analysis summary and its applicability

	6 Evaluation
	6.1 WATERS 2019 Challenge case study
	6.2 Comparing analysis bounds with measured DDLs

	7 Related Work
	8 Conclusion and Future Work

