
super-Charging Object-Oriented Programming
Through Precise Typing of Open Recursion
Andong Fan #

The Hong Kong University of Science and Technology (HKUST), Hong Kong, China

Lionel Parreaux #

The Hong Kong University of Science and Technology (HKUST), Hong Kong, China

Abstract
We present a new variation of object-oriented programming built around three simple and orthogonal
constructs: classes for storing object state, interfaces for expressing object types, and mixins for
reusing and overriding implementations. We show that the latter can be made uniquely expressive
by leveraging a novel feature that we call precisely-typed open recursion. This features uses “this”
and “super” annotations to express the requirements of any given partial method implementation
on the types of respectively the current object and the inherited definitions. Crucially, the fact
that mixins do not introduce types nor subtyping relationships means they can be composed even
when the overriding and overridden methods have incomparable types. Together with advanced type
inference and structural typing support provided by the MLscript programming language, we show
that this enables an elegant and powerful solution to the Expression Problem.

2012 ACM Subject Classification Software and its engineering → Object oriented languages

Keywords and phrases Object-Oriented Programming, the Expression Problem, Open Recursion

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.11

Related Version Extended Version: https://lptk.github.io/superoop-paper

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.22
Software (Open-source implementation): https://github.com/hkust-taco/superoop

archived at swh:1:dir:7446abcf043f3546fae3ebce3efd85c07c70afa3
Software (Online demonstration): https://hkust-taco.github.io/superoop

Acknowledgements We thank the anonymous reviewers, Yaozhu Sun, and Marco Servetto for their
helpful comments, as well as Cunyuan Gao for his help with the implementation. This work follows
up on concepts previously presented by the first author as a research abstract [10].

1 Introduction

Every object-oriented programming (OOP) developer regularly uses the super keyword to
access overridden definitions from inherited classes. Yet, this keyword has received relatively
little attention in previous OOP literature and has been conspicuously absent from most
previous research, with few exceptions [17]. This may be due to the assumption that super-
calls can be resolved statically and are thus a mere syntactic convenience that is easily
desugared into traditional core OOP features [2]. In this paper, we propose to challenge
this assumption: noting that super is in fact late-bound in mixin-composition systems,1 we
describe an OOP approach which assigns precise types to super-calls to reflect the “open”
nature of this late binding. Consider the following prototypical Point example class:

class Point(x: Int , y: Int)

1 super is bound at the time the mixin method where it appears is composed into a class, which can
happen as late as runtime in many mixin-composition languages.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Andong Fan and Lionel Parreaux;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 11; pp. 11:1–11:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:afanab@cse.ust.hk
https://orcid.org/0000-0003-2124-9625
mailto:parreaux@cse.ust.hk
https://orcid.org/0000-0002-8805-0728
https://doi.org/10.4230/LIPIcs.ECOOP.2023.11
https://lptk.github.io/superoop-paper
https://doi.org/10.4230/DARTS.9.2.22
https://doi.org/10.4230/DARTS.9.2.22
https://github.com/hkust-taco/superoop
https://archive.softwareheritage.org/swh:1:dir:7446abcf043f3546fae3ebce3efd85c07c70afa3;origin=https://github.com/hkust-taco/superoop;visit=swh:1:snp:366e65a964cce1700214df84946ab6ebd0c7405b;anchor=swh:1:rev:00290c3434561b60f6bb6f3caf7afa79fda53fcc
https://hkust-taco.github.io/superoop
https://doi.org/10.4230/DARTS.9.2.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 super-Charging Object-Oriented Programming

This class simply defines two coordinates x and y as immutable fields.
Suppose we want to define a comparison function that works on points. We place this

definition in a mixin declaration, for reasons that shall soon become clear:
mixin ComparePoint {

fun compare(lhs: Point , rhs: Point): Bool =

lhs.x == rhs.x and lhs.y == rhs.y }

Now suppose we want to compare colored points, but we would like colored comparison
to be generally specified, so that it can be directly reused with other things than points.
This can be done using the following combination of interface and mixin (Base is a type
parameter):

interface Colored { color: String }

mixin CompareColored[Base] {

super: { compare: (Base , Base) → Bool }

fun compare(lhs: Base & Colored , rhs: Base & Colored): Bool =

super.compare(lhs , rhs) && lhs.color.equals(rhs.color) }

We define an interface specifying that a Colored object should contain a color method or field
of type String. We also define the CompareColored mixin, which implements a comparison
method based on an assumed existing comparison method, inherited from an unknown
parent implementation and referred to through super. The Base type parameter denotes
the type compared by that unknown parent implementation; it is needed in order to leave
the mixin open-ended, i.e., to allow mixing it with arbitrary parent implementations. Notice
that the type of compare in CompareColored is different from the one specified in the super

annotation, and is in particular not a subtype of it: the version defined in CompareColored

takes parameters of more precise type Base & Colored, where & is an intersection type
constructor, meaning that each parameter should be both a Base and a Colored. This
difference is a crucial ingredient in our precisely-typed open recursion approach.

We now define ColoredPoint and place its comparison implementation in a module:2

class ColoredPoint(x: Int , y: Int , color: String)

extends Point(x, y) implements Colored

module CompareColoredPoint extends ComparePoint , CompareColored[Point]

CompareColoredPoint did not need to define its own comparison method – that method was
composed automatically by inheriting from the ComparePoint and CompareColored mixins,
the latter using the correct Point base type argument. Note that mixins on the right override
those on the left. The signature of CompareColoredPoint’s compare method, which allows
passing in colored points, is:

CompareColoredPoint.compare: (Point & Colored , Point & Colored) → Bool

which is not a subtype of ComparePoint’s compare method. This is fine because mixins in
our approach do not introduce types, and there is thus no subtyping relationship between
CompareColoredPoint and ComparePoint, which is reminiscent of Cook et al. famous asser-
tion that inheritance is not subtyping [7].

2 A module declares a class with a singleton instance, similar to Scala’s object.

A. Fan and L. Parreaux 11:3

Now imagine we want to deal with “nested” objects, which are objects that may optionally
have a parent.3 We can similarly define a comparison mixin for nested objects as follows:

interface Nested[A] { parent: Option[A] }

mixin CompareNested[Base , Final] {

super: { compare: (Base , Base) → Bool }

this: { compare: (Final , Final) → Bool }

fun compare(lhs: Base & Nested[Final], rhs: Base & Nested[Final]): Bool =

super.compare(lhs , rhs) &&

if lhs.parent is Some(p)

then rhs.parent is Some(q) and this.compare(p, q)

else rhs.parent is None

}

In this variant, we additionally use a this refinement, which specifies the eventual types
of the methods the current object should support, after all inheritance and overriding is
performed. The reason we use this and not super in the recursive this.compare(p, q) call
is that we should take into account that p and q themselves may be nested points!

Finally, it is possible to compare points that are both nested and colored by directly
composing the corresponding implementations:

class MyPoint(x: Int , y: Int , color: String , parent: Option[MyPoint])

extends Point implements Colored , Nested[MyPoint]

module CompareMyPoint extends ComparePoint , CompareColored[Point],

CompareNested[Point & Colored , MyPoint]

Or alternatively, in a different order:
module CompareMyPoint extends ComparePoint , CompareNested[Point , MyPoint],

CompareColored[Point & Nested[MyPoint]]

Mixin composition order is meaningful because it determines overriding order; moreover, in
our approach, the types of methods may change through overriding – here, notice how we
pass different type arguments to CompareColored and CompareNested in each version.

To support this idea of precisely-typed mixin composition, we present the SuperOOP sys-
tem, a simple yet uniquely expressive core description of OOP built around three orthogonal
concepts: classes for storing object state, interfaces for expressing object types, and mixins for
reusing and overriding implementations.4 Notably, we only support inheriting from interfaces
and mixins, not from classes.5 We show that these simple, orthogonal concepts are sufficient
to explain the usual features of object-oriented programming languages, including those with
complicated multiple-inheritance disciplines, like Scala’s trait composition approach.

We also describe how the ideas of SuperOOP can be integrated into MLscript, a nascent
ML-inspired programming language with structural types and advanced type inference, based
on the recently proposed MLstruct type system [26]. Using this approach, all the types can

3 Option[A] is defined as the usual algebraic data type, with cases Some[A](value: A) and None.
4 Such separation of concerns was already proposed by previous authors, such as Bettini et al. [2] and

Damiani et al. [8], but the systems they developed did not support overriding and open recursion, which
is the raison d’être of our approach.

5 We see in Section 4.1 that the Point class inheritance example seen above can be desugared into our
core λsuper calculus through interface inheritance and without requiring class inheritance.

ECOOP 2023

11:4 super-Charging Object-Oriented Programming

be inferred automatically as long as they do not involve first-class polymorphism (which
requires explicit annotations). For instance, in MLscript, the CompareColored mixin shown
above could also be written as the more lightweight:

mixin CompareColored {

fun compare(lhs , rhs) =

super.compare(lhs , rhs) && lhs.color.equals(rhs.color) }

for which our compiler infers the following mixin signature:
mixin CompareColored: ∀ 'A1 'A2 'B . {

super: { compare: ('A1, 'A2) → Bool }

compare: ('A1 & {color: {equals: 'B → Bool}}, 'A2 & {color: 'B}) → Bool}

Our specific contributions are summarized as follows:
We explain the general ideas of SuperOOP in the context of the structurally-typed
MLscript programming language, and how it allows solving interesting problems simply
and elegantly, including the Expression Problem and derivatives (Section 2). SuperOOP
mixins improve on the state of the art by allowing precise typing of open recursion, which
to the best of our knowledge was never proposed before.
We formalize the core concepts of SuperOOP, including its precisely-typed mixin inherit-
ance mechanism, in a declarative type system called λsuper. We use big-step semantics
to closely reflect a real implementation and prove the soundness of λsuper through the
preservation and coverage properties (Section 3).
We discuss the expressiveness and limitations of the presented design of SuperOOP as
well as its implementation. We present several important approaches from previous
literature on the topic of inheritance and the Expression Problem, and explain how these
approaches compare to SuperOOP in detail (Section 4).
We provide an implementation of MLscript/SuperOOP which demonstrates how type
inference can be used to type check concise mixin and class definitions. Both the open-
source version and the archived artifact with documentation are available. A demo of
this implementation is included in the supplementary material of this paper.6

2 Motivation

In this section, we introduce a motivating example in MLscript “super-charged” by our OOP
approach in more detail.

The Expression Problem and Extensible Variants

In modular programming, the Expression Problem (EP) describes the dilemma posed by
the modular extension for both data types and their operations in object-oriented and
functional programming. There are many ways of tackling this problem, but one of the most
straightforward is to rely on some notion of extensible variants, as done by Garrigue [16]
with OCaml’s polymorphic variants. The general idea of extensible variants is that they are
similar to algebraic data types (a.k.a. variants) except that one is able to specify which data
type cases are allowed in a given type, and moreover one is able to add new data type cases
after the fact.

6 The demo is also available at: https://hkust-taco.github.io/superoop/.

https://hkust-taco.github.io/superoop/

A. Fan and L. Parreaux 11:5

MLscript supports a simple form of extensible variants implemented through subtyping and
structural types. In this section, we see how the combination of this feature and SuperOOP’s
precise typing of open recursion can achieve what we believe is one of the simplest and
cleanest solutions to the expression problem so far.

A Quick Look at MLscript

We first take a quick look at MLscript’s basic language features that enable a form of
extensible variants and serve as key ingredients in our solution to the Expression Problem.

Basic data type classes. Consider the following MLscript class definitions which encode a
very minimal expression language that we will later extend in several directions.

class Lit(value: Int)

class Add[T](lhs: T, rhs: T)

The Lit class represents integer literals and the Add class represents addition. Note that the
types of Add’s value parameter are polymorphic, meaning that they can be chosen arbitrarily.
We will see that the ability to leave the types of subexpressions open is crucial to the
extensibility of our approach.

Union types. Based on these class definitions, we can construct types such as:
type LitOrAddLit = Lit | Add[Lit]

where ‘|’ is called a union type constructor. LitOrAddLit represents the type of an expression
that is either an integer literal or an addition between two integer literals.

Equirecursive types. More interestingly, we can define the type of arbitrary expressions in
our little language as:

type SimpleExpr = Lit | Add[SimpleExpr]

Notice that this type is equirecursive, meaning that SimpleExpr is equivalent to its unrolling
Lit | Add[SimpleExpr]. This is quite convenient in the context of structural typing, and it
allows us to have subtyping relationships (denoted as ‘T1 <: T2’, meaning that T1 is a subtype
of T2) such as LitOrAddLit <: SimpleExpr. An equivalent way of specifying SimpleExpr

without having to introduce a type declaration is through MLscript’s ‘as’ binder (similar to
‘as’ in languages like OCaml), as in ‘Lit | Add['a] as 'a’ (where ‘as’ has least precedence).

Evaluation. To use values in our small expression language, we define an eval recursive
function:

fun eval(e) = if e is

Lit(n) then n

Add(lhs , rhs) then eval(lhs) + eval(rhs)

This function uses MLscript’s syntax for pattern matching, which extends the traditional
if-then-else syntactic form with multi-way-if-style functionality and destructuring through
an ‘is’ keyword [25]. The type of this function is inferred by MLscript to be:

eval: (Lit | Add['a] as 'a) → Int

ECOOP 2023

11:6 super-Charging Object-Oriented Programming

Default cases and constructor difference. It is quite instructive to consider what happens
when default cases are used in MLscript, as in:

fun eval2(e) =

if e is

Lit(n) then n

Add(lhs , rhs) then eval2(lhs) + eval2(rhs)

else e

In this case, the type inferred is
eval2: (Lit | Add['a] | 'b\Lit\Add as 'a) → (Int | 'b)

Above, ‘\’ is a constructor difference type operator,7 which is used to remove concrete class
type constructors from a given type (here 'b). This type operator applies incrementally, as
its left-hand side becomes concretely known upon type instantiation. For instance, after
instantiating the type variable 'b to, say, Add[Int] | Bool in the type above, 'b\Lit\Add

becomes (Add[Int] | Bool)\Lit\Add, which is equivalent to just Bool. Since all negative
occurrences of 'b (here there is only one) are subject to this constructor difference, passing
values for 'b which are of the Lit or Add forms is effectively prevented, which ensures type
safety8 [26]. On the other hand, any other type constructor is allowed, for example, we could
call eval2(true), with inferred result type Int | Bool.

Open Recursion in MLscript with SuperOOP Mixins

Now let us consider putting our original evaluation function inside of a mixin, in order to
enable future extensions. To make the recursion of evaluation open, we now recurse through
method calls of the form ‘this.eval’ (here ‘this’ is the class instance to be late-bound)
instead of a direct eval recursive function call:

mixin EvalBase {

fun eval(e) = if e is

Lit(n) then n

Add(lhs , rhs) then this.eval(lhs) + this.eval(rhs) }

The type signature inferred for that mixin definition is the following:
mixin EvalBase: ∀ 'A. {

this: { eval: ('A) → Int }

eval: (Lit | Add['A]) → Int

}

Above, 'A is a mixin-level type variable,9 meaning that it must be instantiated to a specific
type each time the mixin is inherited as part of a class. Since mixins do not introduce types
on their own, EvalBase cannot be used as a type. Using EvalBase as a type would be a

7 Constructor difference is not a primitive construct of MLscript’s underlying type system, MLstruct
[26]. Type A \ B is encoded in that type system as A & ~#B, where & is the type intersection operator,
~ is the type negation operator, and #B represents the nominal identity of class B, i.e., its raw type
constructor without any fields or type parameters attached.

8 Perhaps counter-intuitively, we do not need to restrict the positive occurrences of 'b, as they are
always effectively unrestricted due to covariance. Consider a function of type ('b\Lit\Add) → 'b.
Substituting Mul | Lit | Add for 'b results in ((Mul | Lit | Add)\Lit\Add) → (Mul | Lit |
Add), which is equivalent to Mul → (Mul | Lit | Add). This is a supertype of Mul → Mul, which
we could have obtained from substituting Mul for 'b in the first place, so this type would have been
reachable even after a “properly restricted” substitution of 'b. In other words, it does not make much
sense to restrict the positive occurrence of 'b and there is no practical need for it.

9 We use uppercase names for mixin-level type variables and lowercase names for function-level ones.

A. Fan and L. Parreaux 11:7

problem because there would be no definite type to replace 'A with in the signature of its
eval method – so we would not know how to type expressions such as x.eval when x has
type EvalBase. Note that 'A can even be instantiated to several incomparable types within a
single class, if EvalBase is inherited several times.

What is interesting here is that MLscript infers a this type refinement (also called self
type), which specifies what the type of this should be for the mixin to be well-typed. Here,
this represents the final object obtained from the future mixin composition. Crucially, notice
that the type of eval is no longer recursive – indeed, it no longer contains a recursive ‘as’
binder. This is because we have opened the recursion, and the type that is inferred for eval

precisely specifies what this partial definition accomplishes: it examines the top level of an
expression and when that expression is an Add, it calls eval open-recursively through this

with the corresponding subexpressions, expecting integer results from that recursive call.
Opening recursion in this way allows us to adapt the interpretation of this partially-

specified recursive function, as we shall see shortly.

Closing back. We can immediately tie the knot and obtain an equivalent implementation
to the original recursive function eval by defining a class that only inherits from EvalBase:

class SimpleLang extends EvalBase

whose inferred type signature is:
class SimpleLang: {

eval: (Lit | Add['a] as 'a) → Int

}

Something important happened here: by creating the class SimpleLang from the previous
mixin, we effectively tie the recursive knot for the corresponding method. That is, to type
check SimpleLang, MLscript constrains the “open” polymorphic type variable 'A associated
with eval in EvalBase and instantiates it to the correct type to make the overall mixin
composition type check. More specifically, remember that eval as defined in EvalBase

was given type (Lit | Add['A]) → Int assuming that this had type { eval: ('A) →
Int }. Here, we know that the type of this is SimpleLang and that SimpleLang’s eval

implementation is the one inherited from EvalBase. So when constraining types to make the
subtyping relation SimpleLang <: { eval: ('A) → Int } hold, this leads to constraining
(Lit | Add['A]) → Int <: ('A) → Int, which in turn leads to the constraint 'A <: (Lit

| Add['A]). So MLscript instantiates the type variable 'A to the principal solution, i.e the
recursive type (Lit | Add['a]) as 'a, which satisfies this recursive constraint.

Extending the operations. Now consider extending our code for a new expression pretty-
printing method:

mixin PrettyBase {

fun print(e) = if e is

Lit(n) then toString(n)

Add(lhs , rhs) then this.print(lhs) ++ "+" ++ this.print(rhs) }

Mixin PrettyBase defines a print method for Lit and Add. Its inferred type is analogous to
that of EvalBase. This demonstrates that we can extend the operations performed on our
simple language, which is one of the extensibility directions considered by the Expression
Problem.

ECOOP 2023

11:8 super-Charging Object-Oriented Programming

Extending the data types. Next, consider another direction of code extension – defining a
new expression constructor. We here define a negation expression type Neg:

class Neg[T](expr: T)

Now, the obvious question is how to extend arbitrary existing operations to this new data
type constructor in a way that is as general and modular as possible.

super-charging OOP with Polymorphic Mixins

As noticed by Garrigue [16], it is often useful to define components that extend yet unknown
base implementations, so that the same components can be applied to different base imple-
mentations, and so that in general we can merge independently-defined languages together.
This is possible to do in MLscript by defining mixins that make use of this and super, as in
the following example:

mixin EvalNeg {

fun eval(e) =

if e is Neg(d) then 0 - this.eval(d)

else super.eval(e)

}

which can be written more concisely using the following syntax sugar:
mixin EvalNeg { fun eval(override Neg(d)) = 0 - this.eval(d) }

We can include this partial Neg-handling recursion step as part of any previously-defined
base implementation, such as our previous EvalBase. We get the following inferred type for
EvalNeg, which precisely describes this property:

mixin EvalNeg: ∀ 'A 'B 'R . {

this: { eval: 'A → Int }

super: { eval: 'B → 'R }

eval: (Neg['A] | 'B\Neg) → (Int | 'R)

}

We can see that the type signature of our mixin now includes a super refinement in addition
to the this refinement. This is the key to enabling polymorphic extension: when composing
such a mixin later on, MLscript will match up this super requirement with whatever
implementation is provided by the previous mixin implementations in the chain of mixin
composition. Recursive knots will only be tied when the mixin is composed as part of a class.

The PrettyNeg extension for pretty-printing is defined analogously.

Tying the knot again. Finally, we can compose everything together as part of a new class:
class Lang extends EvalBase , EvalNeg , PrettyBase , PrettyNeg

And here is the type signature inferred for this definition:
class Lang: {

eval: (Lit | Add['a] | Neg['a] as 'a) → Int

print: (Lit | Add['a] | Neg['a] as 'a) → Str

}

Again, what happens here is important to consider. We are now tying the knot with respect
to both this and super in all the mixins making up the mixin inheritance stack. More
specifically, we start by making sure that the member types provided by the first mixin
EvalBase satisfy the super requirement of the second mixin EvalNeg, then we compute new
member types based on EvalNeg’s contributions, before checking that the resulting type

A. Fan and L. Parreaux 11:9

satisfies the super requirement of the next mixin in line, PrettyBase, etc. This results in
the inferred recursive types above, which precisely characterize what shapes of data that
Lang’s eval and print methods can handle.

Polymorphic extensibility. To demonstrate that our EvalNeg component is truly generic
over the existing implementation it is to be merged upon, we can define yet another mixin
that adds a new Mul language feature:

class Mul[T](lhs: T, rhs: T)

mixin EvalMul { fun eval(override Mul(l, r)) = this.eval(l) * this.eval(r) }

And then we compose all of these mixins together in two possible orders (the order determines
which of Neg and Mul will be matched first):

class LangNegMul extends EvalBase , EvalNeg , EvalMul

class LangMulNeg extends EvalBase , EvalMul , EvalNeg

In both cases, the inferred signature is equivalent:
class LangNegMul: { eval: (Lit | Add['a] | Neg['a] | Mul['a] as 'a) → Int }

Pattern-Matching All the Way

To conclude this motivating example, we exemplify a capability of our system that most
solutions to the expression problem lack, with the notable exception of polymorphic variants
(see Section 4.3): the ability of pattern matching deeply inside subexpressions, which enables
the definition of optimization passes.

For instance, below we define an EvalNegNeg optimization which shortcuts the evaluation
of double negations, directly evaluating the doubly-negated expression instead:

mixin EvalNegNeg { fun eval(override Neg(Neg(d))) = this.eval(d) }

of inferred type:
mixin EvalNegNeg: ∀ 'A 'B 'C 'D . {

super: {eval: (Neg['A] | 'B) → 'C}

this: {eval: 'D → 'C}

fun eval: (Neg[Neg['D] | 'A\Neg] | 'B\Neg) → 'C

}

This type deserves some explanation. The parameter type of eval is ‘Neg[Neg['D] | 'A \

Neg] | 'B\Neg’, which describes the fact that:
eval accepts either an instance of Neg or, failing that, a 'B that is not a Neg;
If the argument is a Neg, then its type argument must itself be either a Neg or an 'A that
is not a Neg;
If that nested type argument is a Neg, then its type argument must be 'D. Since this
type argument is passed to this.eval, we get the this refinement {eval: 'D → 'C}.
In case either the eval argument is not a Neg (so the argument is a 'B) or the eval

argument is a Neg['A] where 'A is not a Neg, evaluation falls back to a super call, which
is translated into the super refinement {eval: (Neg['A] | 'B) → 'C}.

This mixin can be merged onto any mixin stack to obtain the desired effect; for example:10

class Lang extends EvalBase , EvalNeg , EvalMul , EvalNegNeg

10 In this case, it is important to mix in EvalNegNeg after EvalNeg in the inheritance stack, so that
the optimization semantics override the base semantics, and not the other way around. This is a
fundamental property of optimization passes: their composition order matters.

ECOOP 2023

11:10 super-Charging Object-Oriented Programming

3 A Core Language for SuperOOP

In this section, we present an explicitly-typed core language that captures the core object-
oriented concepts of SuperOOP, leaving type inference aside. We first informally present the
key innovation of SuperOOP’s object-oriented type system and then define λsuper, a minimal
declarative and explicitly-polymorphic calculus.

3.1 SuperOOP Core Concepts
The core concepts of SuperOOP can be summarized as follows.

Interfaces, mixins, and classes. Interfaces, mixins, and classes are three orthogonal building
blocks that model OOP in our system. Interfaces define a set of method signatures. For
an object conforming to an interface, it should support all the methods specified in that
interface. Contrary to classes and mixins, which in our core language have no types, we
associate each interface with its own type. Mixins provide implementations for methods.
Classes, finally, implement interfaces by a set of parameters, which represent the state of
the object, and a linear composition of mixins.

Interface inheritance. As in most OOP languages, existing interfaces can be extended
with additional methods through interface inheritance. A child interface may inherit from
several parent interfaces (i.e., we support multiple inheritance of interfaces). Moreover, a
child interface may override parent method signatures with refined signatures, as determined
by the subtyping relation. As an example, consider the following interface composition:

interface I1 { a: S }; interface I2 { a: T }; interface I3 extends I1, I2

Method a’s signature in the composed interface I3 is the intersection of the inherited
signatures, i.e. S & T. Intersection types enable precise multiple interface inheritance, since
they are used as greatest lower bounds of the inherited type signatures, which also makes
the composed interface a subtype of all inherited interfaces.

Mixin composition. SuperOOP mixins are compositional and reusable building blocks
to construct classes. They provide partial method implementations that, when composed
together, are checked to satisfy the interface that the class is meant to conform to. A mixin
composition is simply a list of mixins. Each mixin in a mixin composition overrides not
only method implementations but also method types inherited from previous mixins. So the
type of a method may change along the mixin composition, but the type system ensures
that the typing assumptions made by each implementation (in the form of this and super

refinements) are satisfied. This also explains why mixins are not considered types (unlike,
e.g., Scala traits): the fact that a mixin is present in the inheritance clause of a class does
not imply that the resulting object will offer methods with types comparable to the ones
provided by the mixin.

Precisely-Typed Open Recursion. A crucial feature of OOP, open recursion is the ability
for a method to invoke itself or another method via a late-bound this instance, which may
lead to evaluating overriding implementations. In most OOP languages with inheritance,
the type of this is the current class’s type. In these languages, method invocations on this

are safe because overriding implementations from subclasses can only refine the types of
overridden methods. By contrast, in SuperOOP, methods are overridden regardless of types,

A. Fan and L. Parreaux 11:11

Names, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and terms
Class name C

Mixin name M, N

Interface name I, J

Field name m, p

Type S, T, U, V ::= X, Y | I[T] | S → T | ∀X. T | S & T | Object
Term e ::= x, y | this | super | λx : T. e | ΛX. e

| e1 e2 | e T | e.m | new C[T](e)

Interfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classes

Structural type R ::= { m : T }

Implementation I ::= { m : T = e }
Top-level definition D ::=

Interface I[X] ◁ J [T] R

Mixin | M [X]RT I

Class | C[X](m : T) ◁ I[T], M [T]

Program P ::= D ; e

Figure 1 Syntax of λsuper.

and the actual type of this is only decided when the mixin composition is finalized as part
of a class definition. Therefore, a precise type specification for this is necessary for open
recursive calls in mixin methods. Importantly, this type refinement can be polymorphic at
the mixin level, being instantiated at mixin composition time (i.e., upon being used as part
of a class definition). Such polymorphism allows for later extensions to the shapes of data
types that a method may be made to work on, as described in Section 2.

3.2 Formal Syntax
We now introduce the λsuper calculus, a formalization of SuperOOP. The design of this
calculus is inspired by Featherweight Generic Java [19] and Pathless Scala [20]. Throughout
our formalization, we use the notation Ei

i∈n..m to denote the repetition of syntax form Ei

with index i from n to m. We use E as a shorthand when i is not necessary for disambiguation.
Moreover, we use [T/X] to denote the conventional capture-avoiding substitution of a list of
type parameters X (which can possibly be empty) to T . In definitions of metafunctions, we
use ∅ as a default vacuous result.

The syntax of λsuper is presented in Figure 1. Meta-variables S, T, U, V range over types,
which include type variables, interfaces with a list of type arguments, arrow types, universally
quantified types, intersection types, and the top type Object. For terms e, there are term
variables x and y. this and super are akin to term variables with special treatment. We
have standard explicitly-typed lambda abstractions and term applications, as well as type
abstraction and type application terms. Method invocation and access to object fields share
a single syntax: we consider access to object fields as method invocation. Objects are created
with a new keyword with term and type arguments supplied.

ECOOP 2023

11:12 super-Charging Object-Oriented Programming

S <: T

S-Refl

T <: T

S-Top

T <: Object

S-Interface
S ∈ parents(I[T])

I[T] <: S

S-Inv
S <: T T <: S

I[S] <: I[T]

S-Andl

S1 & S2 <: S1

S-Andr

S1 & S2 <: S2

S-And
S <: T1 S <: T2

S <: T1 & T2

S-Trans
S <: U U <: T

S <: T

S-Arrow
S2 <: S1 T1 <: T2

S1 → T1 <: S2 → T2

S-Forall
S <: T

∀X. S <: ∀X. T

Figure 2 Declarative subtyping.

The top-level definitions of λsuper are interfaces, mixins, and classes. Every interface
I[X] has a type parameter list [X], a structural refinement R, and inherits multiple parent
interfaces J [T]. A structural refinement R contains a list of method signatures m : T that
specify methods’ names and types. Mixins, parametrized by type parameters, provide
method implementations I. Crucially, each mixin has a structural refinement R attached
to super and a type T for this for precise typing of open recursion. Finally, a class has a
class-level type parameter list, immutable object fields, an interface it implements, and a
mixin composition M [T] that provides method implementations. A program consists in a
list of top-level definitions and a term that accesses them. For all top-level definitions, we
require the standard well-formedness conditions that all names are uniquely defined and no
class transitively inherits itself. In later rules, we assume terms’ access to the underlying
top-level definitions.

3.3 Static Semantics
We present the static semantics of λsuper which includes a declarative subtyping, term typing,
and well-formedness check of top-level definitions.

Declarative subtyping. Figure 2 shows the declarative subtyping of λsuper. Most rules
are unsurprising. Rule S-Interface describes that an interface is a subtype of its parent
interfaces. Auxiliary function parents(I[T]) (defined in the extended version) returns the list
of parent interfaces. For simplicity, we consider that interfaces are invariant in their type
parameters (rule S-Inv). A universally quantified type is a subtype of another universally
quantified type only when they are quantifying the same type variable.

Term typing. Figure 3 lists the typing rule of terms. Γ ⊢ e : T is the term typing relation.
A typing context Γ maps term variables to types, super to a structural refinement, and
this to a type. The typing rules for term variables (T-Var), lambda and type abstractions
(T-Abs and T-TAbs), term and type applications (T-App and T-TApp), as well as the
subsumption rule (T-Sub), are standard. Note that since super is not bound to a type (but
to a structural refinement) in typing contexts, super itself will never be assigned a type,
which matches the usual semantics of super that it should only receive method call messages
but not be passed around. The typing of method invocations is separated into two cases. If
the receiver is a term (other than super) that has a type, we look up the method signature

A. Fan and L. Parreaux 11:13

Typing context Γ ::= ϵ | Γ, x : T | Γ, super : R | Γ, this : T

Γ ⊢ e : T

T-Var
Γ(x) = T

Γ ⊢ x : T

T-This
Γ(this) = T

Γ ⊢ this : T

T-Abs
Γ, x : S ⊢ e : T

Γ ⊢ λx : S. e : S → T

T-TAbs
Γ ⊢ e : T

Γ ⊢ ΛX. e : ∀X. T

T-App
Γ ⊢ e1 : S → T Γ ⊢ e2 : S

Γ ⊢ e1 e2 : T

T-TApp
Γ ⊢ e : ∀X. S

Γ ⊢ e T : [T/X]S

T-Access
Γ ⊢ e : T mtype(m, T) = S

Γ ⊢ e.m : S

T-Super
Γ(super) = R

mrefn(m, R) = S

Γ ⊢ super.m : S

T-New
vparams(C[T]) = mi : Ui

i∈1..n

Γ ⊢ ei : Ui
i∈1..n ctype(C[T]) = V

Γ ⊢ new C[T](ei
i∈1..n) : V

T-Sub
Γ ⊢ e : S

S <: T

Γ ⊢ e : T

Given that interface I is defined as I[X] ◁ J [U] R:

mtype(m, I[T]) =

{
[T/X]S if (m : S) ∈ R
S if m /∈ R and mtype(m, &[T/X]J [U]) = S

mtype(m, S & T) =


U & V if mtype(m, S) = U and mtype(m, T) = V

U if mtype(m, S) = U and mtype(m, T) = ∅
V if mtype(m, S) = ∅ and mtype(m, T) = V

mtype(m, T) = ∅ otherwise

Figure 3 Term typing.

in the receiver’s type. Function mtype(m, T) computes method m’s signature from type T .
Otherwise, if the receiver is super, we directly read the method type from its associated
structural refinement using function mrefn(m, R) (defined in the extended version). To type
class instantiation (T-New), we check that all constructor arguments match the types of the
class fields returned by function vparams(C[T]), and the object has interface type ctype(C[T])
of the class (vparams and ctype are defined in the extended version).

The design of mtype basically follows that of Pathless Scala [20]. When a method signature
is present in an interface, we directly return it. Otherwise, we search parent interfaces by
calling mtype with the intersection of all parent interfaces (denoted as &J [U]). Note that
nullary intersection is Object. To compute a method signature from an intersection type, we
recursively consider both sides of the intersection. When both types define the method, we
take the intersection of corresponding results.

Well-formedness of top-level definitions. Figure 4 shows the well-formedness check of
mixins, classes, and interfaces. We put name lookup results of those structures as premises
in the rules. The first premises of rules in Figure 4 are the case.

ECOOP 2023

11:14 super-Charging Object-Oriented Programming

M ok

MixinCheck
M [X]RT { m : S = e }

∀(m : S = e) ∈ M . this : T, super : R ⊢ e : S

M ok

I ok

InterfaceCheck
I[X] ◁ J [T] { m : S } J ok

∀(m : S) ∈ I . mtype(m, &J [T]) = ∅ or
{

mtype(m, &J [T]) = U

S <: U

I ok

C ok

ClassCheck
C[X](p : T) ◁ I[U], Mi[U ′]

i∈n..1

I ok Mi ok Mi ⇒ C ∀m ∈ mnames(I[U]) .

 mtype(m, I[U]) = S

search(m, 0, C) = V

V <: S

C ok

Mi ⇒ C

InheritCheck
C[X](p : U ′) ◁ I[U], Mi[V]

i∈n..1
Mi[Y]RT I

I[U] <: [V/Y]T ∀(m : S) ∈ R .

{
search(m, (i + 1), C) = S′

S′ <: [V/Y]S
Mi ⇒ C

Figure 4 Well-formedness check of top-level definitions and mixin inheritance check.

Well-formed mixins. To check a mixin (M ok), we check that every method implementation
can be typed at its signature with precise types of this and super in the context.11

Well-formed interfaces. An interface is well-formed (I ok) when its parent interfaces
are all well-formed. A method signature should either be newly introduced (in this case,
mtype(m, &J [T]) = ∅), or have a subtype of the intersection of all m’s signatures in parents
(i.e., mtype(m, &J [T]) = U).

Well-formed classes. Class well-formedness check (C ok) considers the following aspects:
1. The implemented interface and each mixin in the mixin composition are well-formed.
2. Open-recursive calls via this in the mixin composition are safe: the class type is a subtype

of each mixin’s this type annotation.
3. The mixin composition is correct: each mixin’s structural refinement on super is satisfied.
4. The interface is satisfied: the class has all methods (and fields, as we uniformly treat

fields and methods) required, and their signatures conform to the interface.

11 Note that we bind this to a type while super to a structural refinement in each mixin. For super, the
parent mixin in the composition hierarchy does not define an object type. It is therefore enough to give
super a structural method refinement to tell what types the overridden methods should have. On the
other hand, this is late-bound to the receiver object that has a type, can be passed around, and receive
method invocation messages. Hence this is annotated with a type, and the annotated type should be a
supertype of the later defined class’s type.

A. Fan and L. Parreaux 11:15

Given that class C is defined as C[X](mj : Tj) ◁ I[S′], Mi[S]
i∈n..1

,
and mixin Mi is defined as Mi[Y]RV I:

search(mj , 0, C) =

{
Tj if mj : Tj ∈ mj : Tj

U if mj /∈ mj : Tj and search(mj , 1, C) = U

search(m, i, C) =

{
[S/Y]U if 0 < i ≤ n and (m : U = e) ∈ I
U if 0 < i ≤ n and m /∈ I and search(m, (i + 1), C) = U

search(m, i, C) = ∅ otherwise

Figure 5 Method implementation type search function.

For 1., I ok checks the interface, and M ok checks each mixin. Relation Mi ⇒ C implements
mixin inheritance check which deals with 2. and 3.. It checks if the inheritance of the i-th
mixin in class C’s mixin composition is correct. Note that the index i here ranges in n..1 (as
Mi[S]

i∈n..1
), which means syntactically, the rightmost mixin in the mixin composition is the

first one. Rule InheritCheck guarantees that, first, this type of the i-th mixin should be
a supertype of the interface that the class conforms to, which satisfies 2.. Second, for each
method m’s signature in the structural refinement of super, the parent mixin composition
provides a compatible implementation. Specifically, the type of m’s implementation provided
by mixins ranging in n..(i + 1) (computed by search(m, (i + 1), C), defined in Figure 5 and
explained later) should be a subtype of the i-th mixin’s super refinement on m, which satisfies
3.. To satisfy 4., for each method name m defined in the interface (computed by mnames,
defined in the extended version), its implementation type provided by the class fields or
mixin composition (computed by search(m, 0, C)) should be compatible with the signature
specified by the interface (computed by mtype).

Method implementation type search. Figure 5 defines function search(m, i, C) to search
implementation type of m provided by fields or mixins ranging in n..i. When i = 0, it
searches class fields for the method name m. If m is not implemented by fields, the search
continues with the first mixin (i = 1). For the i-th mixin, the search directly returns the
method signature if m is implemented in this mixin. Otherwise, it continues with the parent
mixin (indexed (i + 1)). The search returns ∅ if i exceeds the length of class C’s mixin
composition (i > n), which means m is not implemented in the class, and the search fails.

3.4 Dynamic Semantics
Figure 6 lists the syntax of values, results, and runtime contexts, and lists the evaluation
rules that produce values (the rules that produce runtime errors are omitted and can be
found in the extended version). The big-step evaluation judgment Ξ ⊢ e ⇓ r denotes that
term e evaluates to result r under runtime context Ξ. The result of evaluation may be a
normal value or an error. Values are either closures or objects. A runtime context Ξ binds
values to term variables and a configured object to this. A configured object {i ⋆ C[T](v)} is
a pair of an object and a natural number i called the search index. This index directs the
search for method implementation in the object fields and mixin composition at runtime.
The evaluation rules for variables and term applications are standard. For type applications,
while we use type substitution in the semantics, this will be no-op at runtime, as all generic
types are erasable – only class tags are used at runtime, which are concrete types that need

ECOOP 2023

11:16 super-Charging Object-Oriented Programming

Value v, w ::= ⟨λx : T. e, Ξ⟩ | ⟨ΛX. e, Ξ⟩ | C[T](v)

Runtime context Ξ ::= ϵ | Ξ, x 7→ v | Ξ, this 7→ {i ⋆ C[T](v)}
Result r ::= val v | err

Ξ ⊢ e ⇓ r

E-Var
Ξ(x) = v

Ξ ⊢ x ⇓ val v

E-This
Ξ(this) = {i ⋆ C[T](v)}
Ξ ⊢ this ⇓ val C[T](v)

E-App
Ξ ⊢ e1 ⇓ val ⟨λx : T. e, Ξ′⟩

Ξ ⊢ e2 ⇓ val v Ξ′, x 7→ v ⊢ e ⇓ val v′

Ξ ⊢ e1 e2 ⇓ val v′

E-TApp
Ξ ⊢ e ⇓ val ⟨ΛX. e′, Ξ′⟩

[T/X]Ξ′ ⊢ [T/X]e′ ⇓ val v

Ξ ⊢ e T ⇓ val v

E-Abs

Ξ ⊢ λx : T. e ⇓ val ⟨λx : T. e, Ξ⟩

E-TAbs

Ξ ⊢ ΛX. e ⇓ val ⟨ΛX. e, Ξ⟩

E-New
vparams(C[T]) = mi

Ξ ⊢ ei ⇓ val vi

Ξ ⊢ new C[T](ei) ⇓ val C[T](vi)

E-Access
Ξ ⊢ e ⇓ val C[S](v)

(this 7→ {0 ⋆ C[S](v)}) ⊢ super.m ⇓ val v′

Ξ ⊢ e.m ⇓ val v′

E-ArgMiss
Ξ(this) = {0 ⋆ C[S](v)} m /∈ vparams(C[S])

(this 7→ {1 ⋆ C[S](v)}) ⊢ super.m ⇓ val v′

Ξ ⊢ super.m ⇓ val v′

E-ArgHit
Ξ(this) = {0 ⋆ C[S](vi)}
vparams(C[S]) = mi : Ui

Ξ ⊢ super.mi ⇓ val vi

E-SuperMiss
Ξ(this) = {i ⋆ C[S](v)} i > 0

m /∈ methods(i, C[S](v)) (this 7→ {(i + 1) ⋆ C[S](v)}) ⊢ super.m ⇓ val v′

Ξ ⊢ super.m ⇓ val v′

E-SuperHit
Ξ(this) = {i ⋆ C[S](v)} i > 0

(m : U = e) ∈ methods(i, C[S](v)) (this 7→ {(i + 1) ⋆ C[S](v)}) ⊢ e ⇓ val v′

Ξ ⊢ super.m ⇓ val v′

Figure 6 Big-step operational semantics producing values.

no substitution. Note that evaluation of this is to simply read the configured object from the
context and return a plain object (i.e., with no search index). Class instantiations produce
objects. Lambda and type abstractions are evaluated to closures. Note that λsuper would not
need a value restriction [32] even if we added imperative effects to it, because it does not
evaluate under polymorphic abstractions. This is different from the real MLscript language,
which does need a value restriction as it uses ML-style polymorphism.

Method invocation and access to fields. Proper modeling of method invocation and access
to fields are of our particular interest. The following procedure explains the overall idea:
1. When the receiver is a term (modulo super), we first evaluate the term to an object and

search through the object’s fields for the method implementation (E-Access).
2. If the invoking method is not provided by any object field, we traverse the mixin

composition of the class (E-ArgMiss).

A. Fan and L. Parreaux 11:17

v : T

VT-Abs1
Γ ⊨ Ξ Ξ(this) = {i ⋆ C[U](v)}

R ⊨ {i ⋆ C[U](v)}
Γ, x : S, super : R ⊢ e : T

⟨λx : S. e, Ξ⟩ : S → T

VT-TAbs1
Γ ⊨ Ξ Ξ(this) = {i ⋆ C[S](v)}

R ⊨ {i ⋆ C[S](v)}
Γ, super : R ⊢ e : T

⟨ΛX. e, Ξ⟩ : ∀X. T

VT-Sub
v : S

S <: T

v : T

R ⊨ {i ⋆ C[S](v)}
C[X](n : T ′) ◁ I[...], M [...] ∀ (m : T) ∈ R .

{
search(m, i, C) = U

[S/X]U <: T

R ⊨ {i ⋆ C[S](v)}

Figure 7 Value typing of closures.

3. If the invoking method is provided as an object field, we return the value bound to the
field (E-ArgHit).

4. If the invoking method is not implemented by the i-th mixin, we search the next mixin in
the composition hierarchy (E-SuperMiss). Helper function methods(i, C[S](v)) (defined
in the extended version) returns all method implementations of the i-th mixin.

5. If the invoking method is implemented by the i-th mixin, we evaluate the method body
with this bound to the configured object where the search index points to the parent
mixin (E-SuperHit).

3.5 Metatheory
We now develop the metatheory of λsuper. We follow Ernst et al.’s approach to prove type
soundness of our big-step style semantics.

Value typing. Our metatheory focuses on strong soundness, that is, we need to type values
to ensure that the evaluation result keeps the type. Value typing rules of closures are listed in
Figure 7. Rule VT-Abs1 types lambda abstraction body under a typing context Γ with the
term variable bound to the input type and super refined by a structural refinement R. Here
we perform two consistency checks. First, the typing context should be consistent with the
runtime context (Γ ⊨ Ξ, rules are listed in the extended version), i.e., each term variable is
bound to a value that matches the variable’s type in the typing context. Second, to guarantee
that calls to super implementations are always safe, the structural refinement R giving precise
types to calls on super in the closure body should be consistent with the configured object in
the closure’s context. Relation R ⊨ {i ⋆ C[S](v)} implements the second consistency check,
which examines each method signature’s compatibility with the method implementation type
provided by the configured object. The remaining rules (in the extended version) that type
objects and closures with no binding to this in the context are non-surprising.

Soundness. We finally show the soundness results of our formal calculus. The complete
proofs can be found in the extended version. For a program P, we denote its top-level
definitions as DP and the associated term as eP . The preservation lemma is stated below:

▶ Lemma 1 (Preservation). If DP ok and ϵ ⊢ eP : T and ϵ ⊢ eP ⇓ r then r = val v and
v : T .

We define the finite evaluation relation [9] here to augment our big-step semantics with fuel.

ECOOP 2023

11:18 super-Charging Object-Oriented Programming

▶ Definition 2 (Finite evaluation). Define an evaluation relation Ξ ⊢ e ⇓k r+ (where
r+ ::= r | kill, and k is the step-counting index, i.e. fuel) with evaluation rules copied from
Ξ ⊢ e ⇓ r. For each rule, ⇓ in the conclusion is replaced by ⇓k, and ⇓ in premises is replaced
by ⇓k−1. Also, propagate timeout result of subderivations (the corresponding rules are listed
in the extended version). Finally, add the following axiom:

E-Timeout
Ξ ⊢ e ⇓0 kill

The soundness theorem of our calculus follows from the preservation lemma that rules out
errors when evaluation terminates and the coverage lemma that ensures our evaluation rules
with finite fuel always produce a result.

▶ Lemma 3 (Coverage). For all n, Ξ, and e, there exists an r+ such that Ξ ⊢ e ⇓n r+.

▶ Definition 4 (Expression divergence). e diverges ≜ For all n, ϵ ⊢ e ⇓n kill.

▶ Theorem 5 (Soundness). If DP ok and ϵ ⊢ eP : T then (1) ϵ ⊢ eP ⇓ val v and v : T , or
(2) eP diverges.

4 Discussion and Related Work

We now discuss the expressiveness, limitations, and implementation of SuperOOP as presented
in this paper, and we compare our approach to related work.

4.1 Expressiveness and Limitations
Thanks to the clear separation of concerns between the orthogonal concepts of interfaces,
mixins, and classes, and thanks to the flexibility of mixins, SuperOOP not only captures
standard OOP features but can also be used to explain existing advanced OOP models.

Desugaring traditional classes. A classic OOP class is desugared into three SuperOOP core
language components: (a) a core-language class for its fields; (b) a core-language mixin for its
implementations; and (c) a core-language interface for its method signatures. Although our
core language does not directly support class inheritance, this feature can easily be desugared
into SuperOOP. For example, recall ColoredPoint from Section 1, which inherited from
class Point. This class hierarchy can be desugared to SuperOOP as:

interface IPoint { x: Int; y: Int }

class Point(x: Int , y: Int) implements IPoint

interface IColoredPoint extends IPoint , Colored

class ColoredPoint(x: Int , y: Int , color: Color) implements IColoredPoint

Multiple inheritance and linearization. Languages that support multiple inheritance usually
have a linearization mechanism that determines the order of inherited parent classes, traits,
or mixins. The underlying assumption is that each parent can only be inherited at most once,
so if a parent transitively occurs more than once in an inheritance clause, the linearization
mechanism removes all but its first occurrence. Consequently, linearization affects the
semantics of method resolution and super-calls. For example, Scala uses linearization for
its multiple trait inheritance system [22]. The linearization of a Scala class definition of the
form class C extends B0, B1, ..., Bn starts with B0’s linearization and appends to it the

A. Fan and L. Parreaux 11:19

linearization of B1 save for those traits that are already in the constructed linearization of B0,
etc. Several languages such as Python adopt the influential C3 linearization algorithm [1].
Although SuperOOP does not natively support multiple class inheritance, we can still apply
any linearization algorithms used by existing languages and desugar the result using core
SuperOOP classes, interfaces, and mixins. On the other hand, in SuperOOP, one can inherit
a given mixin an arbitrary number of times at different positions in the mixin inheritance
stack. The resolution of method invocations simply follows the order of inherited mixins,
which do not necessarily need to be linearized. So SuperOOP’s approach is more general.

We show an example encoding of Scala multiple trait inheritance in SuperOOP in the
extended version of this paper.

Mixin parameters. Mixin parameters are a powerful extension to the core SuperOOP
language presented in this paper. They for instance allow one to define flexible and efficient
streaming processing abstractions that are composed through mixins, as in the following:

module MyPipeline extends

Map(x => x + 1),

Filter(x => x % 2 == 0),

Map(x => x * 2)

We use two instances of Map in the mixin composition above, showing that using this

refinements to encode mixin parameters would not be sufficient, as each of these two Map

instances needs to be given a different argument. Mixin parameters are implemented in
MLscript/SuperOOP, but we omitted this extension from λsuper for simplicity.

Member access control. We have not yet modeled in the core language nor implemented
any notions of encapsulation and visibility, such as the private and protected modifiers.
We expect that modeling these features should be straightforward, as their design is mostly
orthogonal to the features of SuperOOP.

4.2 Implementation of SuperOOP in MLscript
We now briefly describe our implementation and possible alternative implementation strategies.

Compilation to JavaScript. MLscript currently compiles to JavaScript, which supports
classes as first-class entities. This means it is possible to define mixins directly, by using
functions. For instance, the EvalNeg and EvalMul mixins and the LangNegMul class mentioned
in Section 2 are essentially compiled into the following JavaScript code:

function mkEvalNeg(base) {

return class EvalNeg extends base {

eval(e) {

if (e instanceof Neg) return 0 - this.eval(e.expr)

else return super.eval(e) } }

}

function mkEvalMul(base) {

return class EvalMul extends base {

eval(e) {

if (e instanceof Mul) return this.eval(e.lhs) * this.eval(e.rhs)

else return super.eval(e) } }

}

class LangNegMul extends mkEvalMul(mkEvalNeg(EvalBase))

ECOOP 2023

11:20 super-Charging Object-Oriented Programming

One side effect of this straightforward implementation is that mixins in MLscript can be
inherited an arbitrary number of times and that no inheritance linearization is needed.
MLscript classes, on the other hand, follow the usual single-inheritance hierarchy discipline,
which is useful for type checking pattern matching and inferring simple types for it.

Compilation to other targets. We are also considering adding alternative compilation
backends to MLscript, such as backend compilers targeting WebAssembly and the Java
Virtual Machine. In that context, we can still follow the general JavaScript-based semantics
described above, but we will make sure to evaluate the mixin functions at compilation
time, to guarantee optimal performance and simple compilation. Super calls would then
be resolved statically, allowing for efficient target code. Therefore, our approach to mixin
composition should offer better performance than alternative solutions to the expression
problem which rely on closure compositions and thus require virtual dispatch, like the
approach of Garrigue [16]. However, we reserve a rigorous performance evaluation for future
work.

Separate compilation. An aspect of the Expression Problem as originally stated is that it
should be possible to compile each extension separately before putting them all together.
We can essentially achieve this even in the static compiler scenario by separately compiling
method implementations and composing classes whose methods simply forward to these
pre-compiled implementations. This is more or less the approach used by Scala for traits,
which was shown to be practical in real-world scenarios.

Case studies. In the extended version of this paper, we provide case studies of MLscript/Su-
perOOP that include a modular evaluator of extended lambda calculus, as described by
Garrigue [16], and a simple “regions” DSL developed by Sun et al. [31]. These case studies
showcase the flexibility of SuperOOP polymorphic mixins, the ability to handle mutually-
recursive functions across different mixins, interpret complex data types, and optimize
domain-specific languages via built-in nested pattern matching. Additionally, thanks to
MLscript’s powerful principal type inference [26], those case studies type check without the
help of a single type annotation.

4.3 Solutions to the Expression Problem
There is a sea of work in extensible programming that address the Expression Problem, based
on techniques such as polymorphic variants [15] in OCaml, recursive modules [21] in ML,
and new programming paradigms [4, 23] like Compositional Programming [34]. We survey a
few of them by showing their solutions to the Expression Problem and discuss various design
tradeoffs with respect to the approach of SuperOOP.

Polymorphic Variants. The polymorphic variant (PV) solution [16] probably comes closest
to our approach. Open recursion there is implemented by way of an explicit parameter for
recursive calls, and by manually tying the recursive knots. For example, one defines an
open-recursive base implementation of evaluation on two expression data types as follows:

let eval_base eval_rec = function

| ‘Lit(n) → n

| ‘Add(e1, e2) → eval_rec e1 + eval_rec e2

(* val eval_base :

('a → int) → [< ‘Add of 'a * 'a | ‘Lit of int] → int *)

A. Fan and L. Parreaux 11:21

PVs differ from traditional variants or algebraic data types (ADTs) in that PVs allow
the use of arbitrary constructors without a corresponding data type definition; they can
be thought of as ADTs that are “not fully specified” and thus allow further extension. In
the example above, two constructors ‘Lit and ‘Add are introduced. Function eval_base

takes a first parameter eval_rec for open-recursive calls and the expression to evaluate as a
second parameter. Parameter eval_rec accepts expressions with type 'a, and the expression
is required to have type [< ‘Add of 'a * 'a | ‘Lit of int], which allows either an ‘Add

expression containing nested subexpressions of type 'a, or a ‘Lit instance with an integer
payload. Extending this base evaluator with new operations is done by composing it inside
new functions. To extend the supported expression forms, one defines another evaluation
implementation that works, e.g., on negations:

let eval_ext eval_rec = function

‘Neg(e) → 0 - eval_rec e

(* val eval_ext : ('a → int) → [< ‘Neg of 'a] → int *)

Finally, one needs to tie both implementations together:
type 'a expr_base = [‘Lit of int | ‘Add of 'a * 'a]

type 'a expr_ext = [‘Neg of 'a]

let rec eval = function

| #expr_base as x → eval_base eval x

| #expr_ext as x → eval_ext eval x

(* val eval :

([< ‘Add of 'a * 'a | ‘Lit of int | ‘Neg of 'a] as 'a) → int *)

Function eval dispatches the evaluation of the base and extended data types to the two
evaluation sub-implementations, and it ties the recursive knots by passing itself as the
entry point of the recursion. Note that eval has an inferred recursive type that accepts an
expression recursively constructed by the three variants. Compared with our solution, from a
programming style perspective, one programs with polymorphic variants in a functional way,
while SuperOOP adopts a more object-oriented style. More importantly, polymorphic variants
suffer from several practical drawbacks, including loss of polymorphism and approximated
typing of pattern matching [5]. Those drawbacks can be fixed by embracing “proper” implicit
subtyping as in MLscript [26]. In particular, we argue that union types are simpler than row
polymorphism, which imperfectly emulates subtyping through unification [26].

OCaml’s Object System. In OCaml class definitions, one can annotate “self” with a type
signature and define “super” explicitly in a way that superficially looks similar to SuperOOP.
One may be tempted to try and encode precise typing of open recursion in OCaml, to enable
extensible programming with classes. However, this does not work due to OCaml’s use of
unification and its lack of subtyping: the self and super types are unified with the object
type being defined, and thus all three must exactly coincide. By contrast, SuperOOP mixins
allows different self and super types and allows overriding methods with different types,
which is crucial for our technique. We discuss this in more detail in the extended version.

Featherweight Generic Go. Go is a popular programming language developed by Google.
Featherweight Go (FG) and its generic version Featherweight Generic Go (FGG) proposed by
Griesemer et al. [18] are formal developments of Go with the goal of helping “get polymorphism
right”. FGG provides a solution to the Expression Problem based on generics and covariant
matching of method receiver type refinements, as in:

func (e Plus(type a Evaler)) Eval() int {

return e.left.Eval() + e.right.Eval()

}

ECOOP 2023

11:22 super-Charging Object-Oriented Programming

Method Eval is generic in type variable ‘a’ which is upper-bounded by interface Evaler.
Once dissociated from the quantification of a, the receiver type of the method is Plus(a), the
type of a Plus instance with subexpressions of type ‘a’. To extend the supported operations
in the encoded language, one may define a similar pretty-printing method. Finally, one
combines the interfaces for different interpretations together in a final expression type:

type Expr interface {

Evaler

Stringer

}

Type Expr composes two operations together, so it implements both of Evaler and Stringer

(an interface for stringification). One can build and use such expressions as follows:
var e Expr = Plus(Expr){Lit{1}, Lit {2}}

var result Int = e.Eval()

var pretty string = e.String ()

While this allows FGG to solve the Expression Problem, the features that enable this solution
are not part of the Go team’s current design for generics [18]. Moreover, the inspection
of data structures only happens at the outermost level. If one wants to deeply transform
an expression instance, that is, to inspect its inner structure and, for example, perform
optimizations on it, one would have to make an additional method to delegate the inspection
semantics itself. This approach, called delegated method patterns in Sun et al.’s work [31], is
non-modular in FGG as it requires adding a new method for each inner structure inspection
and to implement this method for each constructor of the data type, even those constructors
that should otherwise fall into a default case of the encoded pattern matching.

Object Algebras. Object Algebras are a well-known object-oriented approach to solve the
Expression Problem [23]. The key to this solution is an abstract factory called object
algebra interface, which contains data type constructor signatures, leaving their interpretation
unspecified. An object algebra interface for expressions could be, in Scala syntax:

trait ExpAlg[Exp] {

def Lit: Int => Exp

def Add: (Exp , Exp) => Exp

}

Trait ExpAlg specifies two data type constructors, and it is parameterized by type parameter
Exp that indicates the interpretation of expression data types. We can implement evaluation
on expressions by implementing the object algebra interface:

trait IEval { def eval: Int }

trait Eval extends ExpAlg[IEval] {

def Lit = n => new IEval { def eval = n }

def Add = (e1,e2) => new IEval { def eval = e1.eval + e2.eval }

}

Trait Eval is an object algebra which implements ExpAlg with the type parameter instantiated
to IEval. Trait IEval indicates that expressions can be evaluated to integers. To extend
the language with new operations, we may simply define a new interpretation type and a
corresponding object algebra interface implementation. On the other hand, for new data
type extensions, we inherit the object algebra interface and the old implementation:

A. Fan and L. Parreaux 11:23

trait NegAlg[Exp] extends ExpAlg[Exp] {

def Neg: Exp => Exp

}

trait EvalNeg extends NegAlg[IEval] with Eval {

def Neg = (e) => new IEval { def eval = 0 - e.eval }

}

We can now define an expression instance and instantiate the language:
trait exp[Exp](f: NegAlg[Exp]) {

f.Add(f.Lit(1), f.Neg(f.Lit(-1)))

}

object eval extends EvalNeg

println(exp(eval).eval)

In trait exp, the data type constructors are accessed through the input object algebra f.
With different implementations of the object algebra interface passed in, the expression will
be interpreted in different ways. However, as noticed by Zhang et al. [34], one needs to create
an expression instance for each data type interpretation, and there is no built-in approach to
composing interpretations in different object algebras. Moreover, as data type constructors
are specified through type signatures in object algebra interfaces, there is no way to have an
inspectable representation of language instances without a complete definition of abstract
syntax, blocking useful extensions such as modular transformations and optimizations.

Compositional Programming. Compositional programming [34] (implemented in the CP
language) is a novel programming paradigm that features modularity. It supports a merge
operator as the introduction term for intersection types. At the type level, the intersec-
tion type operator composes interfaces. At the term level, the merge operator composes
first-class traits that contain data and operations. Similarly to Object Algebras, in Composi-
tional Programming, a compositional interface specifies data type signatures, leaving their
interpretation unspecified, and concrete interpretations are defined in first-class traits:

type ExpSig <Exp > = {

Lit : Int → Exp;

Add : Exp → Exp → Exp;

};

type Eval = { eval : Int };

evalNum = trait implements ExpSig <Eval > => {

(Lit n).eval = n;

(Add e1 e2).eval = e1.eval + e2.eval;

};

Trait evalNum implements the compositional interface ExpSig <Eval > which specifies that
Lit and Add support an evaluation method. Similarly, one can implement a pretty-printing
operation by adding another concrete interpretation. To extend the expression language with
new data types, one extends the compositional interface and implements new operations in
derived traits. Finally, everything is tied together with the merge operator as shown below:

type NegSig <Exp > extends ExpSig <Exp > = {

Neg : Exp → Exp → Exp;

};

evalNeg = trait implements NegSig <Eval > inherits evalNum => {

(Neg e).eval = 0 - e.eval;

};

ECOOP 2023

11:24 super-Charging Object-Oriented Programming

exp Exp = trait [self : NegSig <Exp >] => {

test = new Neg (new Add (new Lit 1) (new Lit 2));

};

// Assume pretty -printing of expression is analogously defined

e = new evalNeg ,, printNeg ,, exp @(Eval & Print);

Trait exp contains an example expression. The self type annotation in square brackets
enables the trait body to access the three data type constructors. With the merge operator,
trait instance e is composed of traits that contain different expression interpretations and the
test trait. Note that trait Exp is passed with an intersection type argument Eval & Print,
meaning the expression language supports both evaluation and pretty-printing.

In recent follow-up work on Compositional Programming by Sun et al. [31], different
aspects of domain-specific language embedding are investigated, including the two-direction
extensibility of language constructs and their interpretations, transformations and optimiza-
tions on language instances, etc. Since Compositional Programming does not natively support
nested pattern matching (unlike our approach), deep inspection of data is only possible via
the delegated method pattern (discussed above in the paragraph on Go), which is “not as
convenient”, as the authors put it. We also argue that this does not work well for defining
optimizations in a modular way. Indeed, optimizations are fundamentally order-sensitive,
and encoding them in terms of CP’s unordered patterns requires non-local transformations
of the involved pattern matching structures. For instance, one cannot independently define
optimizations for evaluating Neg(Neg(e)) as e and Neg(Lit(n)) as Lit(0 - n), whereas
doing so in MLscript/SuperOOP is straightforward.

Approaches lacking type safety. It is much easier to solve the Expression Problem if one no
longer cares about catching composition errors at compilation time. Zenger and Odersky [33]
propose to use exception-throwing default cases in base implementations and to override
these cases in further extensions, which relies on the programmer remembering to override
all default cases and to pass only supported expression forms to the various methods in the
program. Similar to SuperOOP, in a method that defines the interpretation of extended
data types and overrides the base interpretation, they delegate the interpretation of base
data types to the overridden method using super. While just as flexible as SuperOOP,
this approach is fundamentally unsafe and error-prone. Going further, at the other end of
the spectrum, approaches such as monkey-patching and Julia-style multiple dispatch allow
completely dynamic updates of base implementations, which trivially supports extension but
is anti-modular, as reasoning about the well-foundedness of method calls on given argument
types requires global knowledge of all extension points in the program and libraries.

4.4 Modeling Inheritance and Reuse
In this subsection, we discuss previous work related to modeling inheritance and code reuse.

In their seminal Inheritance Is Not Subtyping paper, Cook et al. [7] introduced the
crucial idea that inheritance could be unrestrained if it was decoupled from the subtyping
relationship. However, they do not provide a specific source language in which to realize
their ideas and only describe an imagined typed encoding of it, without an obvious way of
connecting that encoding back to a hypothetical source language.

Bracha and Cook [3] describe both a Smalltalk-style approach and a CLOS-style multiple
inheritance approach for modeling single inheritance and super. The paper uses a notion of
implementation “deltas” ∆, which are not first-class and only used for explanation. In our
approach, this notion of deltas exists as a first-class entity which we call mixins. Bracha and

A. Fan and L. Parreaux 11:25

Cook describe mixins as a form of abstraction (over an unknown base class), and linearization
as application (wiring in all the base classes), by analogy with the classical lambda calculus
concepts. In our approach, abstraction is similarly done through super and application is
done through extends, but we do not require linearization and allow mixins to be inherited
an arbitrary number of times. While Bracha and Cook leverage the notion that subtyping is
not inheritance and allow the types of methods to change, they do not support the idea of
precise this and super annotations and thus cannot precisely type open recursion.

The concept of “mixin” described by Flatt et al. [13, 14, 12] is related to ours, but
conceptually different. While they do model super, their mixins necessarily conform to
interfaces and are thus constrained to specific method signatures, preventing SuperOOP-style
modular programming. The authors discuss the possibility of solving the EP with modules
and their mixins in later work [11], but without proposing a static typing model.

Schärli et al. [29] study and discuss many perceived problems with mixin composition.
They suggest that traits are a better unit of abstraction. We agree that traits are useful
for architecting OOP code in the large, but argue that mixins are independently useful:
abstract (i.e., open-ended) base classes are specifically what unlocks the expressiveness of
mixin inheritance and our new solution to the Expression Problem. We believe that mixins
should be conceptualized as pure whitebox implementation bundles (the implementation itself
being the API) by contrast with interfaces, which hide implementation detail, and traits,
which enable a form of well-behaved (associative and commutative) multiple inheritance, and
that all three could have a place in an OO programmer’s toolkit.

The idea of separating reusable components from types was previously embraced by
Bettini et al. [2], who argue that the role of units of reuse and the role of types are competing,
as also observed by Cook et al. [7] and Snyder [30]. The semantics of Bettini et al.’s trait
systems are similar to Schärli et al.’s but provide additional flexibility, in that traits are
composed with explicit operations on methods such as renaming and exclusion to resolve
conflict. A similar idea is used by Damiani et al. [8] in their design of a language enabling
both trait reuse and deltas of classes, in the context of Software Product Line Engineering.

Type classes as in languages like Haskell [27] and Scala [24] also provide data abstraction
and powerful parametrization and extensibility [6]. SuperOOP’s super is a way of nesting
interpretations the same way one can design dependent type class instances. Any class
hierarchy encoded solely with super refinements in SuperOOP translates straightforwardly
to classic type classes. However, type classes per se are not enough for modular code reuse
with recursive data structures, as that requires open recursion. Explicit encodings of open
recursion can be implemented in Haskell and Scala, but these would live outside of the type
class definitions and are orthogonal to type classes. By contrast, SuperOOP directly provides
precisely-typed open recursion via this refinements in mixins.

5 Conclusion and Future Work

We presented a new approach to OOP which cleanly separates the concerns of state, imple-
mentations, and interfaces into the orthogonal constructs of classes, mixins, and interfaces.
We showed that a refined typing of mixins allows for a new and powerful solution to the
expression problem. Finally, we presented an implementation in MLscript, leveraging its
flexible type inference capabilities to enable annotation-free modular programming. The
main item of future work we would like to look into is the deep composition of mixin families,
reminiscent of Delta-Oriented Programming [28, 8] but with precisely-typed open recursion.

ECOOP 2023

11:26 super-Charging Object-Oriented Programming

References
1 Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Playford, and P. Tucker

Withington. A monotonic superclass linearization for dylan. In Proceedings of the 11th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA ’96, pages 69–82, New York, NY, USA, 1996. Association for Computing Machinery.
doi:10.1145/236337.236343.

2 Lorenzo Bettini, Ferruccio Damiani, Ina Schaefer, and Fabio Strocco. Traitrecordj: A program-
ming language with traits and records. Science of Computer Programming, 78(5):521–541,
2013. Special section: Principles and Practice of Programming in Java 2009/2010 & Special
section: Self-Organizing Coordination. doi:10.1016/j.scico.2011.06.007.

3 Gilad Bracha and William Cook. Mixin-based inheritance. In Proceedings of the European
Conference on Object-Oriented Programming on Object-Oriented Programming Systems, Lan-
guages, and Applications, OOPSLA/ECOOP ’90, pages 303–311, New York, NY, USA, 1990.
Association for Computing Machinery. doi:10.1145/97945.97982.

4 Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. J. Funct. Program., 19(5):509–543,
September 2009. doi:10.1017/S0956796809007205.

5 Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyen. Set-theoretic types for poly-
morphic variants. In Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming, ICFP 2016, pages 378–391, Nara, Japan, September 2016. Association
for Computing Machinery. doi:10.1145/2951913.2951928.

6 William R. Cook. On understanding data abstraction, revisited. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’09, pages 557–572, New York, NY, USA, 2009. Association for Computing Machinery.
doi:10.1145/1640089.1640133.

7 William R. Cook, Walter Hill, and Peter S. Canning. Inheritance is not subtyping. In
Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’90, pages 125–135, New York, NY, USA, 1989. Association for Computing
Machinery. doi:10.1145/96709.96721.

8 Ferruccio Damiani, Reiner Hähnle, Eduard Kamburjan, and Michael Lienhardt. A unified
and formal programming model for deltas and traits. In Marieke Huisman and Julia Rubin,
editors, Fundamental Approaches to Software Engineering, pages 424–441, Berlin, Heidelberg,
2017. Springer Berlin Heidelberg.

9 Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class calculus. In Conference
Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’06, pages 270–282, New York, NY, USA, 2006. Association for Computing
Machinery. doi:10.1145/1111037.1111062.

10 Andong Fan. Simple extensible programming through precisely-typed open recursion. In
Companion Proceedings of the 2022 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for Humanity, SPLASH Companion
2022, pages 54–56, New York, NY, USA, 2022. Association for Computing Machinery. doi:
10.1145/3563768.3563951.

11 Robert Bruce Findler and Matthew Flatt. Modular object-oriented programming with units and
mixins. In Proceedings of the Third ACM SIGPLAN International Conference on Functional
Programming, ICFP ’98, pages 94–104, New York, NY, USA, 1998. Association for Computing
Machinery. doi:10.1145/289423.289432.

12 Matthew Flatt, Robert Bruce Findler, and Matthias Felleisen. Scheme with classes, mixins,
and traits. In Naoki Kobayashi, editor, Programming Languages and Systems, pages 270–289,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

13 Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. In
Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’98, pages 171–183, New York, NY, USA, 1998. Association for Computing
Machinery. doi:10.1145/268946.268961.

https://doi.org/10.1145/236337.236343
https://doi.org/10.1016/j.scico.2011.06.007
https://doi.org/10.1145/97945.97982
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1145/1640089.1640133
https://doi.org/10.1145/96709.96721
https://doi.org/10.1145/1111037.1111062
https://doi.org/10.1145/3563768.3563951
https://doi.org/10.1145/3563768.3563951
https://doi.org/10.1145/289423.289432
https://doi.org/10.1145/268946.268961

A. Fan and L. Parreaux 11:27

14 Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A Programmer’s Reduc-
tion Semantics for Classes and Mixins, pages 241–269. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1999. doi:10.1007/3-540-48737-9_7.

15 Jacques Garrigue. Programming with polymorphic variants. In In ACM Workshop on ML, 1998.
URL: https://caml.inria.fr/pub/papers/garrigue-polymorphic_variants-ml98.pdf.

16 Jacques Garrigue. Code reuse through polymorphic variants. In In Workshop on Foundations of
Software Engineering, 2000. URL: https://www.math.nagoya-u.ac.jp/~garrigue/papers/
variant-reuse.pdf.

17 David S. Goldberg, Robert Bruce Findler, and Matthew Flatt. Super and inner: Together
at last! In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA ’04, pages 116–129, New York,
NY, USA, 2004. Association for Computing Machinery. doi:10.1145/1028976.1028987.

18 Robert Griesemer, Raymond Hu, Wen Kokke, Julien Lange, Ian Lance Taylor, Bernardo
Toninho, Philip Wadler, and Nobuko Yoshida. Featherweight go. Proc. ACM Program. Lang.,
4(OOPSLA), November 2020. doi:10.1145/3428217.

19 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java: A minimal
core calculus for java and gj. ACM Trans. Program. Lang. Syst., 23(3):396–450, May 2001.
doi:10.1145/503502.503505.

20 Guillaume Martres. Pathless scala: A calculus for the rest of scala. In Proceedings of the 12th
ACM SIGPLAN International Symposium on Scala, SCALA 2021, pages 12–21, New York,
NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3486610.3486894.

21 Keiko Nakata and Jacques Garrigue. Recursive modules for programming. In Proceedings of
the Eleventh ACM SIGPLAN International Conference on Functional Programming, ICFP
’06, pages 74–86, New York, NY, USA, 2006. Association for Computing Machinery. doi:
10.1145/1159803.1159813.

22 Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane
Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. An overview
of the scala programming language, 2004.

23 Bruno C. d. S. Oliveira and William R. Cook. Extensibility for the masses: Practical
extensibility with object algebras. In Proceedings of the 26th European Conference on Object-
Oriented Programming, ECOOP’12, pages 2–27, Berlin, Heidelberg, 2012. Springer-Verlag.
doi:10.1007/978-3-642-31057-7_2.

24 Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and
implicits. In Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, pages 341–360, New York, NY, USA, 2010.
Association for Computing Machinery. doi:10.1145/1869459.1869489.

25 Lionel Parreaux. The ultimate conditional syntax. ML Family Workshop,
2022. URL: https://icfp22.sigplan.org/details/mlfamilyworkshop-2022-papers/6/
The-Ultimate-Conditional-Syntax.

26 Lionel Parreaux and Chun Yin Chau. MLstruct: Principal type inference in a boolean
algebra of structural types. Proc. ACM Program. Lang., 6(OOPSLA2), October 2022. doi:
10.1145/3563304.

27 Simon Peyton Jones. Haskell 98 language and libraries: the revised report. Journal of
Functional Programming, 13, January 2003.

28 Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tanzarella. Delta-
oriented programming of software product lines. In Jan Bosch and Jaejoon Lee, editors,
Software Product Lines: Going Beyond, pages 77–91, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

29 Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black. Traits: Compos-
able units of behaviour. In Luca Cardelli, editor, ECOOP 2003 – Object-Oriented Programming,
pages 248–274, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

ECOOP 2023

https://doi.org/10.1007/3-540-48737-9_7
https://caml.inria.fr/pub/papers/garrigue-polymorphic_variants-ml98.pdf
https://www.math.nagoya-u.ac.jp/~garrigue/papers/variant-reuse.pdf
https://www.math.nagoya-u.ac.jp/~garrigue/papers/variant-reuse.pdf
https://doi.org/10.1145/1028976.1028987
https://doi.org/10.1145/3428217
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/3486610.3486894
https://doi.org/10.1145/1159803.1159813
https://doi.org/10.1145/1159803.1159813
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1145/1869459.1869489
https://icfp22.sigplan.org/details/mlfamilyworkshop-2022-papers/6/The-Ultimate-Conditional-Syntax
https://icfp22.sigplan.org/details/mlfamilyworkshop-2022-papers/6/The-Ultimate-Conditional-Syntax
https://doi.org/10.1145/3563304
https://doi.org/10.1145/3563304

11:28 super-Charging Object-Oriented Programming

30 Alan Snyder. Encapsulation and inheritance in object-oriented programming languages. In
Conference Proceedings on Object-Oriented Programming Systems, Languages and Applications,
OOPSLA ’86, pages 38–45, New York, NY, USA, 1986. Association for Computing Machinery.
doi:10.1145/28697.28702.

31 Yaozhu Sun, Utkarsh Dhandhania, and Bruno C. d. S. Oliveira. Compositional embeddings
of domain-specific languages. Proc. ACM Program. Lang., 6(OOPSLA2), October 2022.
doi:10.1145/3563294.

32 Andrew K. Wright. Simple imperative polymorphism. LISP and Symbolic Computation,
8(4):343–355, December 1995. doi:10.1007/BF01018828.

33 Matthias Zenger and Martin Odersky. Extensible algebraic datatypes with defaults. In
Proceedings of the Sixth ACM SIGPLAN International Conference on Functional Programming,
ICFP ’01, pages 241–252, New York, NY, USA, 2001. Association for Computing Machinery.
doi:10.1145/507635.507665.

34 Weixin Zhang, Yaozhu Sun, and Bruno C. D. S. Oliveira. Compositional programming. ACM
Trans. Program. Lang. Syst., 43(3), September 2021. doi:10.1145/3460228.

https://doi.org/10.1145/28697.28702
https://doi.org/10.1145/3563294
https://doi.org/10.1007/BF01018828
https://doi.org/10.1145/507635.507665
https://doi.org/10.1145/3460228

	1 Introduction
	2 Motivation
	3 A Core Language for SuperOOP
	3.1 SuperOOP Core Concepts
	3.2 Formal Syntax
	3.3 Static Semantics
	3.4 Dynamic Semantics
	3.5 Metatheory

	4 Discussion and Related Work
	4.1 Expressiveness and Limitations
	4.2 Implementation of SuperOOP in MLscript
	4.3 Solutions to the Expression Problem
	4.4 Modeling Inheritance and Reuse

	5 Conclusion and Future Work

