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Abstract
Local-first software manages and processes private data locally while still enabling collaboration
between multiple parties connected via partially unreliable networks. Such software typically involves
interactions with users and the execution environment (the outside world). The unpredictability of
such interactions paired with their decentralized nature make reasoning about the correctness of
local-first software a challenging endeavor. Yet, existing solutions to develop local-first software do
not provide support for automated safety guarantees and instead expect developers to reason about
concurrent interactions in an environment with unreliable network conditions.

We propose LoRe, a programming model and compiler that automatically verifies developer-
supplied safety properties for local-first applications. LoRe combines the declarative data flow
of reactive programming with static analysis and verification techniques to precisely determine
concurrent interactions that violate safety invariants and to selectively employ strong consistency
through coordination where required. We propose a formalized proof principle and demonstrate how
to automate the process in a prototype implementation that outputs verified executable code. Our
evaluation shows that LoRe simplifies the development of safe local-first software when compared to
state-of-the-art approaches and that verification times are acceptable.
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12:2 LoRe: A Programming Model for Verifiably Safe Local-First Software

1 Introduction

Applications that enable multiple parties connected via partially unreliable networks to
collaboratively process data prevail today. An illustrative example is a distributed calendar
application with services to add or modify appointments, where a user may maintain multiple
calendars on different devices, may share calendars with other users, back them up in a cloud;
calendars must be accessible to users in a variety of scenarios, including offline periods, e.g.,
while traveling – yet, planning appointments may require coordination between multiple
parties. The calendar application is representative for other collaborative data-driven software
such as group collaboration tools, digital (cross-organizational) supply chains, multiplayer
online gaming, and more.

The dominating software architecture for such applications is centralized: data is collected,
managed, and processed centrally in data centers, while devices on the edge of the commu-
nication infrastructure serve primarily as interfaces to users and the outside world. This
architecture simplifies the software running on edge devices since concerns like consistent data
changes to ensure safety properties are managed centrally. However, this comes with issues
including loss of control over data ownership and privacy, insufficient offline availability, poor
latency, inefficient use of communication infrastructure, and waste of (powerful) computing
resources on the edge.

To address these issues, local-first principles for software development have been for-
mulated [17], calling for moving data management and processing to edge devices instead
of confining the data to clouds. But for programming approaches that implement these
principles to be viable alternatives to the centralized approach, they must support auto-
matically verifiable safety guarantees to counter for the simplifying assumptions afforded
by a centralized approach. Unfortunately, existing approaches to programming local-first
applications such as Yjs [31] or Automerge1 do not provide such guarantees. They use
conflict-free replicated data types (CRDTs) [34] to store the parts of their state that is shared
across devices and rely on callbacks for modeling and managing state that changes in both
time and space. The unpredictability of the interactions triggered by the outside world,
concurrently at different devices, paired with the absence of a central authority and the
prevailing implicit dependencies in current callback-centred programming models, makes
such reasoning without automated support a challenging, error-prone endeavour.

To close this gap, we propose a programming model for local-first applications that
features explicit safety properties and automatically enforces them. The model has three core
building blocks: reactives, invariants, and interactions. Reactives express values that change
in time, but also in space by being replicated over multiple devices. Invariants are formula in
first-order logic specifying safety properties that must hold at all times when the application
interacts with the outside world, or values of reactives are observable. Interactions interface
to the outside world and encapsulate changes to all reactives affected by interactions with
it (state directly changed by the interactions, device-local values derived from the changed
state, and shared state at remote devices). We use automatic verification with invariants
as verification obligations to identify interactions that need coordination across devices, for
which the compiler generates the coordination protocol; all other interactions become visible
in causal order. This way, the compiler makes an application-specific availability-safety
trade-off.

1 https://automerge.org/

https://automerge.org/
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In summary, we make the following contributions2:
1. A programming model for local-first applications with verified safety properties (Section 2),

called LoRe. While individual elements of the model, e.g., CRDTs or reactives, are not
novel, they are repurposed, combined, and extended in a unique way to systematically
address specific needs of local-first applications with regard to ensuring safety properties.

2. A formal definition of the model including a formal notion of invariant preservation and
confluence for interactions, and a modular verification that invariants are never violated.
In particular, our model enables invariants that reason about the sequential behaviour of
the program. In case of potential invariant violation due to concurrent execution, LoRe
automatically adds the necessary coordination logic (see the extended version of this
work2).

3. A verifying compiler3 that translates LoRe programs to Viper [28] for automated veri-
fication and to Scala for the application logic including synthesized synchronization to
guarantee the specified safety invariants (Section 3).

4. An evaluation of LoRe in two case studies (Section 4). Our evaluation validates two claims
we make about the programming model proposed, (a) It facilitates the development of
safe local-first software, and (b) it enables an efficient and modular verification of safety
properties. It further shows that the additional safety properties offered by our model do
not come with prohibitive costs in terms of verification effort and time.

2 LoRe in a Nutshell

We introduce the concepts of LoRe along the example of a distributed calendar for tracking
work meetings and vacation days. LoRe is an external DSL that compiles to Scala (for
execution) and Viper IR [28] (for verification); its syntax is inspired by both. A LoRe
program defines a distributed application that runs on multiple physical or virtual devices.4
Listing 1 shows a simplified implementation of the calendar example application in LoRe. As
any LoRe program, it consists of replicated state (Source reactives in Lines 2-3), local values
derived from them (Derived reactives in Lines 5-6), interactions (Lines 8-15), and invariants
(Lines 20-23).

2.1 Reactives
Reactives are the composition units in a LoRe program. We distinguish two types of them:
source and derived reactives, declared by the keywords Source and Derived, respectively.
Source reactives are values that are directly changed through interactions. Their state is
modeled as conflict-free replicated data types (CRDTs) [34, 32] and is replicated between the
different devices collaborating on the application. Derived reactives represent local values
that are automatically computed by the system from the values of other reactives (source or
derived). Changes to source reactives automatically (a) trigger updates of derived reactives
and (b) cause devices to asynchronously send update messages to the other devices, which
then merge the changes into their local state. Together, local propagations and asynchronous

2 This is a short version of this work. The extended version is available at: https://doi.org/10.48550/
arXiv.2304.07133.

3 The source code of our prototype implementation is available at https://github.com/stg-tud/LoRe.
4 We assume that every device is running the same application code (i.e., the same binary), and different

types of devices (such as client and server) are modeled by limiting them to execute a subset of the
defined interactions.
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Listing 1 The distributed calendar application.
1 type Calendar = AWSet[ Appointment ]
2 val work: Source [ Calendar ] = Source (AWSet ())
3 val vacation : Source [ Calendar ] = Source (AWSet ())
4
5 val all_appointments : Derived [Set[ Appointment ]] = Derived { work.

toSet.union( vacation .toSet) }
6 val remaining_vacation : Derived [Int] = Derived { 30 - sumDays ( vacation .

toSet) }
7
8 val add_appointment : Unit = Interaction [ Calendar ][ Appointment ]
9 . requires { cal => a => get_start (a) < get_end (a) }

10 . requires { cal => a => !(a in cal.toSet)}
11 . executes { cal => a => cal.add(a) }
12 . ensures { cal => a => a in cal.toSet }
13 val add_vacation : Unit = add_appointment . modifies ( vacation )
14 . requires { cal => a => remaining_vacation - a.days >= 0}
15 val add_work : Unit = add_appointment . modifies (work)
16
17 UI. display ( all_appointments , remaining_vacation )
18 UI. vacationDialog . onConfirm {a => add_vacation .apply(a)}
19
20 invariant forall a: Appointment ::
21 a in all_appointments ==> get_start (a) < get_end (a)
22
23 invariant remaining_vacation >= 0

cross-device update messages ensure that users always have a consistent view of the overall
application state. All reactives are statically declared in the program source code. LoRe then
statically extracts knowledge about the data flow for modular verification and to minimize
the proof goals (cf. Sec 3.1). We discuss the technical implications of static reactives in
Section 6.

Listing 1 shows two source reactives, work and vacation (Line 2 and 3), each modeling a
calendar as a set of appointments. The work calendar tracks work meetings, while the vacation
calendar contains registered vacation days. When defining a source reactive, programmers
have to choose a CRDT for the reactive’s internal state. LoRe offers a selection of pre-
defined CRDTs including various standard data types such as sets, counters, registers and
lists. Further data types can be supported by providing a Viper specification for that data
type. In this case, an add-wins-set (a set CRDT where additions have precedence over
concurrent deletions) is selected for both source reactives. Appointments from both calendars
are tracked in the all_appointments derived reactive (Line 5), while the remaining_vacation

reactive (Line 6) tracks the number of remaining vacation days.

2.2 Interactions

Changes to the state of the system, e.g., adding appointments to a calendar, happen through
explicit interactions. Each interaction has two sets of type parameters: the types of source
reactives that it modifies and the types of parameters that are provided when the interaction
is applied. For example, the add_appointment interaction in Line 8 modifies a reactive of type
Calendar and takes a parameter of type Appointment. The semantics of an interaction I are
defined in four parts: (1) requires (Line 9) defines the preconditions that must hold for I

to be executed, (2) executes (Line 11) defines the changes to source reactives, (3) ensures

(Line 12) defines the postconditions that must hold at the end of I’s execution, (4) modifies
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→ remaining_vacation: -2

→ remaining_vacation: -2

D1

add_appointment(vacation, a1)
→ remaining_vacation: 10

add_appointment(vacation, a2)
→ remaining_vacation: 18

D2

D1

Figure 1 Concurrent execution of interactions may cause invariant violations. In this example,
device D1 adds a vacation of 20 days to the calendar, while D2 concurrently adds a vacation of
12 days. Given a total amount of 30 available vacation days, this leads to a negative amount of
remaining vacation once the devices synchronize.

(Line 13) defines the source reactives that I changes. The parameters of requires, executes,
and ensures are functions that take the modified reactives and the interaction parameters as
input (cal is of type Calendar and a is of type Appointment). The splitting of the definition of
interactions in four parts allows for modularization and reuse. For instance, add_appointment is
only a partial specification of an interaction, missing the modifies specification. Both add_work

(Line 15) and add_vacation (Line 13) specify complete interactions by adding modifies to
add_appointment; they are independent interactions that differ only in their modifies set.

Interactions encapsulate reactions to input from the outside world (e.g., the callback in
Line 18 that is triggered by the UI and applies the arguments to add_vacation). Applying
an interaction checks the preconditions, and – if they are fulfilled – computes and applies
the changes to the source reactives, and propagates them to derived reactives – all in a
“transactional” way in the sense that all changes to affected reactives become observable
at-once (“atomically”). Only source reactives are replicated between devices, while derived
reactives are computed by each device individually. LoRe gurantees that executing interactions
does not invalidate neither postconditions nor invariants.

2.3 Invariants and Conflicts
LoRe expects the developer to use invariants, introduced with the keyword invariant, to
specify application properties that should always hold. Invariants are first-order logic
assertions given to a verifier based on the Viper verification infrastructure [28]. Invariants
can help uncover programming bugs and reveal where the eventually-consistent replication
based on CRDTs could lead to safety problems.

For illustration, consider the invariants for the calendar application in Lines 20 and 23.
The invariant in Line 20 requires that all appointments must start before they end. Notice,
how the invariant can be defined without knowing the amount of calendars and the actual
structure of the data-flow graph by simply referring to the all_appointments reactive. This
invariant represents a form of input validation, and is directly ensured by add_appointment

interactions because the precondition on the arguments requires the added appointment to
start before it ends (Line 9). In absence of this precondition, the LoRe compiler would reject
the program and report a safety error due to a possible invariant violation. The invariant
in Line 23 requires that employees do not take more vacation days than available to them.
Again, this is locally enforced by the precondition of the add_vacation interaction, which
ensures that new entries do not exceed the remaining vacation days. But there is nothing
stopping two devices from concurrently adding vacation entries, which in sum violates the
invariant. Figure 1 illustrates such a situation: A user plans a vacation of 20 days on
the mobile phone (device D1) and later schedules a 12-day vacation on a desktop (device
D2), at a time when D1 was offline. Thus, both interactions happened concurrently and
after merging the states the calendar contains a total of 32 days of vacation, violating the
remaining_vacation invariant.

ECOOP 2023
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Figure 2 Overview of LoRe’s automated compilation and verification procedure.

This example illustrates a conflict between (concurrent) execution of interactions – in
this case, two executions of the add_vacation Interaction must be coordinated (synchronized)
in order to avoid invariant violations. The LoRe compiler reports conflicting interactions to
the developer and automatically synthesizes the required coordination code for the execution
of such interactions (see Section 3.3). In a local-first setting, it is of paramount importance
to minimize the required coordination to allow offline availability. Reporting of conflicts due
to invariants helps developers to explore different situations and make informed decisions
about the safety guarantees of their program. When they find that their program requires
too much synchronization, they can lower the guarantees by adapting their invariants.

3 Implementation

Figure 2 depicts the architecture of LoRe’s verifying compiler. The input to the compiler is
a program with its specifications expressed by the invariants, e.g., the program in Listing 1.
The output consists of the conflicting interactions and a safe executable program. We use
the Viper program verifier to reason about invariant violations and possible conflicts between
interactions. We employ an analysis of the data-flow graph to minimize proof obligations to
those invariant pairs that may actually conflict.

The rest of this section describes the pipeline from Figure 2 in detail – from left to right,
top to bottom.

3.1 Graph Analysis
Checking all pairs of interactions for confluence would result in an exponential amount of proof
obligations. To avoid this, we employ a graph analysis to quickly detect pairs of interactions
that cannot conflict, because they change completely separate parts of the data-flow graph.
For illustration, consider the add_work interaction. It modifies the work reactive, and –
transitively – all_appointments. Hence, the reachable reactives are {work, all_appointments}
and only the first but not the second invariant in Listing 1 overlaps. Thus, neither the
remaining_vacation reactive, nor the invariant on this reactive will be part of the proof
obligation for the add_work interaction.

3.2 Automated Verification
We use Viper to classify each interaction into one of the following three categories: 1) Non-
preserving interactions can violate invariants during execution and are reported as bugs to
the developer. 2) Invariant-preserving interactions preserve an invariant when executed on
a single device but can violate an invariant in the presence of concurrent interactions by
other devices. 3) Invariant-confluent [4] interactions can be executed concurrently without
ever violating an invariant. Whenever two interactions in the second category must not
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be executed concurrently to each other, they are conflicting and have to be coordinated to
ensure invariant-safety. Using the proofs, we can precisely determine the sets of conflicting
interactions and automatically synthesize coordination procedures which ensure safety at
runtime while limiting the synchronization points to the necessary cases.

3.3 Synchronization at Runtime
Our compiler generates an executable application by converting the data-flow graph to a
distributed REScala program [26, 27]. REScala supports all reactive features we require and
integrates well with our CRDT-based replication, but has no mechanism for synchronization.
LoRe’s formal synchronization semantics (see the extended version of this work2) could be
implemented using any existing form of coordination, such as a central server, a distributed
ledger, a consensus algorithm, or a distributed locking protocol. Which choice is suitable,
depends on the target application, network size, and the reliability of the chosen transport
layer. We use a simple distributed locking protocol for our implementation: Each interaction
has an associated lock (represented as a simple token). Whenever a device wants to execute
an interaction, it acquires the tokens of all conflicting interactions. If multiple devices
request the same token concurrently, the token is given to the device with the lowest ID that
requested it. This ensures deadlock freedom; fairness is left for future work. After performing
the interaction, the resulting state changes are synchronized with the other devices and
the tokens are made available again. Timeouts ensure that whenever a device crashes or
becomes unavailable for a longer period of time, its currently owned tokens are released and
any unfinished interactions by the device are aborted.

4 Evaluation

Our evaluation aims to validate two claims about LoRe’s programming model:
C1: It facilitates the development of safe local-first software.
C2: It enables an efficient and modular verification of safety properties.

We base our validation on two case studies. First, we implemented the standard TPC-C
benchmark [36] as a local-first application in LoRe. This case study enables comparing
LoRe’s model with traditional database-centered development of data processing software
and showcasing the benefits of LoRe’s verifiable safety guarantees on standard consistency
conditions. Second, we implemented the running calendar example (Section 2) using Yjs [31].
This case study allows comparing LoRe with an existing framework for local-first applications
that we consider a representative of the state-of-the-art.

4.1 Does LoRe facilitate the development of safe local-first software?
4.1.1 Local-first TPC-C
TPC-C models an order fulfillment system with multiple warehouses in different districts,
consisting of five database transactions alongside twelve consistency conditions. We imple-
mented TPC-C in LoRe by mapping database tables to source reactives and derived database
values to derived reactives. Each database transaction was modelled as a LoRe interaction.

While modelling the application using reactives might require some adaption from
developers not familiar with data-flow programming, we found that using derived reactives
led to a more concise and less error-prone design when compared to storing derived values
in separate tables. For example, instead of storing the year to date (YTD) value of each
TPC-C district in a separate table and updating it each time the payment history changes,

ECOOP 2023



12:8 LoRe: A Programming Model for Verifiably Safe Local-First Software

Listing 2 Defining source and derived
variables in Yjs.

1 const ydoc = new Y.Doc ()
2 let work = ydoc. getMap (’work ’);
3 let vacation = ydoc. getMap (’

vacation ’);
4 let all_appointments ;
5 let remaining_vacation = 30;
6
7 work. observe ( ymapEvent => {
8 all_appointments = getMap (work ,

vacation );
9 })

10
11 vacation . observe ( ymapEvent => {
12 let days_total = getTotalVacDays

( vacation );
13 remaining_vacation = 30 -

daysTotal ;
14 all_appointments = getMap (work ,

vacation );
15 })

Listing 3 Adding appointments in Yjs.

1 function addAppointment (calendar ,
appointment ) {

2 if( appointment .start <
appointment .end){

3 calendar .set( appointment .id ,
appointment );

4 }
5 }
6
7 function addVacation ( appointment )
8 {
9 let days =

10 appointment . getDays ();
11 if( remainingVacation < days){
12 console .log("Sorry , no

vacation left!");
13 }
14 else{
15 addAppointment (vacation ,

appointment )
16 }
17 }

we can model the district YTD as a derived reactive. Following this approach automatically
guarantees 9 out of 12 consistency conditions of TPC-C that express consistency requirements
between multiple related tables. We were able to phrase the remaining 3 conditions as
invariants by directly translating the natural language formulations into logical specifications.
To prove them, we additionally needed to specify pre- and postconditions of interactions
corresponding to transactions. Other than that, LoRe relieves the TPC-C developer from any
considerations of transaction interleavings that could potentially violate the conditions as
well as from implementing the synchronization logic, both tedious and error-prone processes.

4.1.2 Yjs-based Calendar

We now compare the LoRe implementation of the distributed calendar to an implementation
using the state of the art local-first framework Yjs [31]. Like other solutions for local-first
software, Yjs uses a library of CRDTs (usually maps, sets, sequences / arrays, and counters)
composed into nested trees – called a documents – used to model domain objects.

Source and Derived Variables. For illustration, consider Listing 2, showing how one could
implement the domain model of the calendar application. Lines 2 and 3 initialize two CRDTs
for the work and vacation calendar. Yjs has no abstraction for derived values and only
provides callbacks for reacting to value changes, e.g., Lines 7-15 declare callback methods
that update the derived variables in case the Yjs document changes.

Safety Guarantees. Using callbacks to model and manage complex state that changes
both in time and in space has issues. It requires that developers programmatically update
the derived values once the sources get updated, via local interactions or on receiving updates
from other devices, with no guarantees that they do so consistently. It yields a complex
control-flow and requires intricate knowledge of the execution semantics to ensure atomicity
of updates, let alone to enforce application-level safety properties. Frameworks like Yjs do
not offer support for application invariants and thus force developers to integrate custom
safety measures at each possible source of safety violations.
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Table 1 Seconds to verify combinations of interactions and invariants of the two example
applications. Each entry represents the mean verification time over 5 runs with the deviation shown
in parentheses.

Distributed Calendar

Interaction Invariant

1 2

Add vacation 3.32 (± 0.05) 2.97 (± 0.03)
Remove vacation 3.28 (± 0.06) 3.00 (± 0.02)
Change vacation 3.32 (± 0.05) 3.04 (± 0.03)
Add work 3.31 (± 0.04) –
Remove work 3.30 (± 0.06) –
Change work 3.34 (± 0.06) –

TPC-C

Interaction Consistency Condition

3 5 7

New Order 45.4 (± 63.69) 7.63 (± 0.11) 14.49 (± 7.31)
Delivery 5.78 (± 0.03) 5.74 (± 0.07) 5.76 (± 0.09)

In summary, while the replication capabilities of systems like Yjs are valuable for local-first
applications, these systems still require the developer to do state management manually.
The prevailing use of callbacks and implicit dependencies makes reasoning about the code
challenging for both developers and automatic analyses. In contrast, LoRe allows declarative
definitions of derived values, with positive effects on reasoning [33, 10]. Moreover, LoRe
integrates application invariants as explicit language constructs, which allows for a modular
specification and verification and relieves developers from having to consider every involved
interaction whenever the specification changes.

4.2 Does LoRe enable efficient and modular verification of safety
properties?

To empirically evaluate the performance of LoRe’s verifier, we quantify how long it takes
to verify different combinations of interactions and invariants of our two case studies. The
results are shown in Table 1. The calendar example has two additional types of interactions,
which we have not shown in Section 2: removing and changing calendar entries. This leads
to a total of 6 interactions (3 per calendar reactive). For TPC-C we only had to verify
consistency conditions 3, 5, and 7 because the others were already ensured by the respective
derived reactives. The benchmarks were performed on a desktop PC with an AMD Ryzen 7
5700G CPU and 32 GB RAM using Viper’s silicon verification backend (release v.23.01) [37].

Results. In summary, every interaction/invariant combination in our case studies could
be verified in less than a minute. Verification times differed depending mainly on the
complexity and length of the interactions and invariants under consideration. Differences
become apparent especially when looking at the results for TPC-C. Proofs involving the
New Order interaction, which is the most “write-heavy” interaction of TPC-C that changes
many source reactives at once, generally took longer to verify than others. For New Order,
we also observe a much higher deviation of up to 64 seconds which we assume to be caused

ECOOP 2023
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by internal Z3 heuristics5. When interpreting the results, it is important to note that each
interaction/invariant combination has to be verified only once and independently of other
combinations. Large-scale applications can be verified step-by-step by splitting them into
smaller pieces. Furthermore, we limit the need for verification to potential conflicts that we
derive from the reactive data-flow graph. Programmers can add new functionality to the
application (i.e., specify interactions) and only have to reason about the properties of that
new functionality (i.e., specify its invariants) and the system ensures global safety – at only
the cost of the amount of overlap with existing functionality. This allows for an incremental
development style, where only certain parts of programs have to be (re-)verified, when they
have been changed or added.

5 Related Work

Our work relates to three areas: distributed datatypes, formal reasoning, and language-based
approaches. Sections below relate work from each area to respective aspects of our approach.

5.1 Consistency Through Distributed Data Types
Conflict-Free Replicated Datatypes (CRDTs)[34, 32] are a building block for constructing
systems and applications that guarantee eventual consistency. CRDTs are used in distributed
database systems such as Riak [18] and AntidoteDB [1]. These databases make it possible
to construct applications that behave under mixed consistency, but unlike our approach,
they leave reasoning about application guarantees to the programmer. Several works [12, 30]
propose frameworks for formally verifying the correctness of CRTDs, while others [16, 20]
focus on synthesizing correct-by construction CRDTs from specifications.

De Porre et al. [9, 8] suggest strong eventually consistent replicated objects (SECROs)
relying on a replication protocol that tries to find a valid total order of all operations. Similar
to LoRe, SECROs [9, 8] and Hamsaz [14] extend upon the eventually consistent replication of
CRDTs by automatically choosing the right consistency level based on application invariants.
Both approaches tie consistency and safety properties to specific datatypes/objects. This
is not sufficient to guarantee end-to-end correctness of an entire local-first application -
consistency bugs can still manifest in derived information (e.g., in the user interface).

5.2 Automated Reasoning about Consistency Levels
Our formalization is in part inspired by the work of Balegas et al. [6, 7] on Indigo. The work
introduces a database middleware consisting of transactions and invariants to determine the
ideal consistency level – called explicit consistency. They build on the notion of invariant-
confluence for transactions that cannot harm an invariant which was first introduced by
Bailis et al. [4]. While they work on a database level, we show how to integrate this reasoning
approach into a programming language. An important difference between our invariant-
confluence and the one by Balegas et al. [6] is that our approach also verifies local preservation
of invariants, whereas their reasoning principle assumes invariants to always hold in a local
context. In a more recent work called IPA, Balegas et al. [5] propose a static analysis
technique that aims at automatically repairing transaction/invariant conflicts without adding
synchronization between devices. We consider this latter work complementary to ours.

5 These could likely be improved by annotating quantifiers in invariants and pre-/postconditions with
hand-crafted trigger expressions [28].
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Whittaker and Hellerstein [38] also build on the idea of invariant-confluence and extend it
to the concept of segmented invariant-confluence. Under segmented invariant-confluence,
programs are separated into segments that can operate without coordination and coordination
only happens in between the segments. The idea is similar to our definition of conflicting
interactions, however, their procedure cannot suggest a suitable program segmentation, but
requires developers to supply them.

The SIEVE framework [22] builds on the previous work on Red/Blue-Consistency [23] and
uses invariants and program annotations to infer where a Java program can safely operate
under CRDT-based replication (blue) and where strong consistency is necessary (red). They
do so by relying on a combination of static and dynamic analysis techniques. Compared
to SIEVE, our formal reasoning does not require any form of dynamic analysis. Blazes [2]
is another analysis framework that uses programmer supplied specifications to determine
where synchronization is necessary to ensure eventual consistency. Contrary to Blazes, LoRe
ensures that programs are “by design” at least eventually consistent, while also allowing the
expression and analysis of programs that need stronger consistency. Q9 [15] is a bounded
symbolic execution system, which identifies invariant violations caused by weak consistency
guarantees. Similar to our work, Q9 can determine where exactly stronger consistency
guarantees are needed to maintain certain application invariants. However, its verification
technique is bound by the number of possible concurrent operations. LoRe can provide
guarantees for an unlimited amount of devices with an unlimited amount of concurrent
operations.

5.3 Language Abstractions for Data Consistency
We categorize language-based approaches based on how they achieve consistency and on the
level of programmer involvement.

Manual Choice of Consistency Levels. Li et al. [23] propose RedBlue Consistency where
programmers manually label their operations to be either blue (eventually consistent) or
red (strongly consistent). In MixT [25], programmers annotate classes with different con-
sistency levels and the system uses an information-flow type system to ensure that the
requested guarantees are maintained. However, this still requires expert knowledge about
each consistency level, and wrong choices can violate the intended program semantics. Other
approaches [29, 19] expect programmers to choose between consistency and availability, again
leaving the reasoning duty about consistency levels to the programmer. Compared to LoRe,
languages in this category place higher burden on programmers: They decide which operation
needs which consistency level, a non-trivial and error-prone selection.

Automatically Deriving Consistency from Application Invariants. CAROL [21] uses
CRDTs to replicate data and features a refinement typing discipline for expressing safety
properties similar to our invariants. Carol makes use of pre-defined datatypes with consistency
guards used by the type system to check for invariant violations. The compatibility of datatype
operations and consistency guards is verified ahead of time using an algorithm for the Z3
SMT solver. This approach hides much of the complexity from the programmer, but the
abstraction breaks once functionality that is not covered by a pre-defined datatype is needed.
Unlike Carol, LoRe does not rely on predefined consistency guards, but allows the expression
of safety properties as arbitrary logical formulae. Additionally, CAROL only checks the
concurrent interactions of a program for invariant violations, whereas LoRe verifies the
overall application including non-distributed parts. Sivaramakrishnan et al. [35] propose
QUELEA, a declarative language for programming on top of eventually consistent datastores.
It features a contract-language to express application-level invariants and automatically
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generates coordination strategies in cases where invariants could be violated by concurrent
operations. QUELEA’s contract-language requires programmers to express the desired
properties using low-level visibility relations, which can be challenging to get right for non-
experts. LoRe avoids this intermediate reasoning and automatically derives the right level of
consistency for satisfying high-level safety invariants to enable end-to-end correctness.

Automating Consistency by Prescribing the Programming Model. Languages in this
category seek to automate consistency decisions by prescribing a certain programming model
such that certain consistency problems are impossible to occur. In Lasp [24], programmers
model the data flow of their applications using combinator functions on CRDTs. Programs
written in Lasp always provide eventual consistency but contrary to LoRe, Lasp does not
allow arbitrary compositions of distributed datatypes. Bloom [3] provides programmers with
ways to write programs that are logically monotonic and therefore offer automatic eventual
consistency. Both Lasp and Bloom, however, are not meant to formulate programs that need
stronger consistency guarantees. LoRe is similar to Lasp and Bloom in the sense that we
also prescribe a specific – reactive – programming style. However, our programming model is
less restrictive and allows arbitrary compositions of distributed datatypes. This is enabled
by leveraging the composability properties of reactive data-flow graphs. Secondly, LoRe
provides a principled way to express hybrid consistency applications with guarantees stronger
than eventual consistency. Drechsler et al. [11] and Mogk et al. [26, 27] also use a reactive
programming model similar to ours to automate consistency in presence of multi-threading
respectively of a distributed execution setting. However, they do not support a hybrid
consistency model. Drechsler et al. [11] enable strong consistency (serializability) only, while
Mogk et al. [26, 27] support only eventual consistency.

6 Conclusion and Future Work

In this paper, we proposed LoRe, a language for local-first software with verified safety
guarantees. LoRe combines the declarative data flow of reactive programming with static
analysis and verification techniques to precisely determine concurrent interactions that could
violate programmer-specified safety properties. We presented a formal definition of the
programming model and a modular verification that detects concurrent executions that may
violate application invariants. In case of invariant violation due to concurrent execution,
LoRe automatically enforces the necessary amount of coordination. LoRe’s verifying compiler
translates LoRe programs to Viper [28] for automated verification and to Scala for the
application logic including synthesized synchronization to guarantee the specified safety
invariants. An evaluation of LoRe’s programming model in two case studies confirms that it
facilitates the development of safe local-first applications and enables efficient and modular
automated reasoning about an application’s safety properties. Our evaluation shows that
verification times are acceptable and that the verification effort required from developers is
reasonable.

In the future, it would be desirable to integrate existing libraries of verified CRDTs [12]
or even solutions that allow ad-hoc verification of CRDT-like datatypes [30, 20]. This would
enable us to support a wider range of data types or even allow programmers to use custom
distributed datatypes, which can be verified to be eventually consistent. Furthermore, our
current data-flow analysis is limited to static data-flow graphs. While static reasoning about
dynamic graphs is impossible in the general case, most applications make systematic use of
dynamic dependencies, and we believe it would be feasible to support common cases.
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