
Programming with Purity Reflection: Peaceful
Coexistence of Effects, Laziness, and Parallelism
Magnus Madsen #

Department of Computer Science, Aarhus University, Denmark

Jaco van de Pol #

Department of Computer Science, Aarhus University, Denmark

Abstract
We present purity reflection, a programming language feature that enables higher-order functions to
inspect the purity of their function arguments and to vary their behavior based on this information.
The upshot is that operations on data structures can selectively use lazy and/or parallel evaluation
while ensuring that side effects are never lost or re-ordered. The technique builds on a recent
Hindley-Milner style type and effect system based on Boolean unification which supports both effect
polymorphism and complete type inference. We illustrate that avoiding the so-called ’poisoning
problem’ is crucial to support purity reflection.

We propose several new data structures that use purity reflection to switch between eager and
lazy, sequential and parallel evaluation. We propose a DelayList, which is maximally lazy but
switches to eager evaluation for impure operations. We also propose a DelayMap which is maximally
lazy in its values, but also exploits eager and parallel evaluation.

We implement purity reflection as an extension of the Flix programming language. We present a
new effect-aware form of monomorphization that eliminates purity reflection at compile-time. And
finally, we evaluate the cost of this new monomorphization on compilation time and on code size,
and determine that it is minimal.

2012 ACM Subject Classification Theory of computation → Program semantics

Keywords and phrases type and effect systems, purity reflection, lazy evaluation, parallel evaluation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.18

1 Introduction

Programming languages are increasingly multi-paradigm. Kotlin and Scala embrace object-
oriented, functional, and imperative programming. JavaScript has a functional core and
its ecosystem is increasingly adopting a functional style. Rust, a decidedly imperative
language, has a functional flavor with support for algebraic data types, pattern matching, and
higher-order functions. C# and Java have adopted lambda expressions and added streams.

Nevertheless, the marriage of paradigms is not always a happy one: laziness and parallelism
expose a deep rift between functional and imperative programming. The delayed or parallel
evaluation of an impure function may cause its side effects to be lost, to occur out-of-order, or
to interfere with each other, leading to potentially disastrous consequences. For these reasons,
imperative programming languages tend to use eager and sequential semantics everywhere,
thus foregoing the potential benefits of lazy and/or parallel evaluation.

Most mainstream languages, such as Java, Kotlin, and Scala, offer access to a limited
form of laziness and parallelism with streams. Yet anarchy reigns: the use of side effects in
streams can have unpredictable consequences and nothing prohibits stream operations from
having side effects, except for stern warnings in the documentation. Stream pipelines are
often described as declarative, but in the presence of side effects, they are anything but that.

We propose to overcome these challenges with a new programming language construct
that enables higher-order functions to inspect the purity of their function arguments and to
vary their behavior based on this information. For example, List.map can vary its behavior

© Magnus Madsen and Jaco van de Pol;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 18; pp. 18:1–18:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:magnusm@cs.au.dk
https://orcid.org/0000-0002-7510-8724
mailto:jaco@cs.au.dk
https://orcid.org/0000-0003-4305-0625
https://doi.org/10.4230/LIPIcs.ECOOP.2023.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

as follows: when given a pure function it lazily maps the function over the list, whereas when
given an impure function it eagerly maps the function over the list. Thus, List.map ensures
that side effects are never lost or re-ordered while simultaneously allowing lazy evaluation for
pure functions. We say that the List.map function is purity reflective. Similarly, Set.count can
vary its behavior as follows: when given a pure function it performs the counting in parallel
over the set, whereas when given an impure function it performs the counting sequentially
following the order of the elements in the set. Thus, Set.count ensures that side effects do not
lead to thread-safety hazards (like deadlocks, race conditions), while still admitting parallel
evaluation when given a pure function. Purity reflection empowers programmers, and in
particular library authors, to write new data structures that selectively use lazy and/or
parallel evaluation under the hood, while semantically appearing to their clients as-if always
under eager, sequential evaluation.

We argue that purity reflection, as a simple form of effect reflection [22], hits a “sweet
spot” for practical programming. The distinction between pure and impure functions
is straightforward and understandable by ordinary programmers, while at the same time
providing sufficient information to be useful. We want to stress that purity reflection increases
the value of effect systems. In particular, most use cases of type and effect systems focus
on soundness, i.e. the ability to rule out certain erroneous programs. This is of course very
desirable, but it does not really add any new expressive power to a programming language.
With purity reflection (and effect reflection in general), we empower programmers to write
new programs that they could not express before. Thus, “fighting the types and effects” now
comes with an additional reward. Purity reflection is enabled by a recent technique to infer
fine-grained, polymorphic effects automatically [27].

In this paper, we implement purity reflection, from end-to-end, in a production compiler.
We use the implementation to retrofit existing and implement new data structures. A key
implementation technique is the use of an effect-aware form of monomorphization. In theory,
this technique could lead to an exponential blow-up in compilation time and code size, but
we experimentally show that this is not the case.

In summary, the contributions of this paper are:

(Purity Reflection) We introduce purity reflection, a new programming language feature
that enables higher-order functions to inspect the purity of their function arguments and
to vary their behavior based on this information. We argue that purity reflection is a
“sweet spot” in the design space of effect reflection.

(Data Structures) We propose several new data structures that use purity reflection to
switch between lazy and eager, sequential and parallel evaluation, including the DelayList
and DelayMap data structures.

(Compilation) We discuss two compilation strategies supporting purity reflection: one
based on extending the runtime to track purity information in closures and the other
based on a new form of effect-aware monomorphization. We implement the latter.

(Implementation) We extend the Flix programming language with purity reflection.
We believe Flix is the first large-scale programming language development to support any
form of effect reflection.

(Evaluation) We experimentally evaluate the impact of effect-aware monomorphization
on compilation time and code size. The results show that the overhead is minimal.

M. Madsen and J. van de Pol 18:3

2 Motivation

We motivate our idea with an example. We will use the Flix programming language, but our
technique is equally applicable to other ML-style programming languages.

2.1 A Word & Line Count Program
Imagine that we want to write a program that determines if a text contains a specific word.
We might start with the program fragment:

use List .{ flatMap , memberOf };
use String . splitOn ;
let lines = haystack |> splitOn ("\n");
let words = lines |> flatMap (l -> splitOn (" ", l));
memberOf (needle , words)

The program works as follows: Given two strings: haystack and needle, the program splits
haystack into a list of lines, then it flatMaps over each line splitting it into a list of words,
and finally it computes if words contains the string needle.

The program works as expected and is written in a natural style: We have two local
variables: lines and words that hold understandable intermediate results. Unfortunately, the
program is not very efficient. We construct several intermediate lists and these entire lists
are not even needed if the search word needle occurs early in the text.

If evaluation of splitOn and flatMap were lazy, then the program would run fast and
not require the construction of these large intermediate lists. Instead, splitOn and flatMap
would build and operate on lazy lists, whose elements would be constructed on-demand when
needed by memberOf. But, since Flix is strict, this is not the case at the moment.

Let us imagine that we later decide to extend the program to also count the number of
lines and words in the text, reminiscent of the wc command from UNIX. Thus, we change
the program to:

let lineCount = ref 0;
let wordCount = ref 0;
let lines = haystack |> splitOn ("\n");
let words = lines |> flatMap (l -> {

lineCount := deref lineCount + 1;
let ws = splitOn (" ", l);
wordCount := deref wordCount + length (ws);
ws

});
println ("Lines: ${deref lineCount }");
println ("Words: ${deref wordCount }");
println ("Found: ${ memberOf (needle , words)}")

The extended program is more sophisticated. Running it might print: Lines: 21, Words:
261, Found: true. The new program uses a natural style of functional and imperative
programming that is common in Java, Kotlin, and Scala. The core of the program remains
functional, but the counting is performed in an imperative manner. The program could be
written in a purely functional style, but this would require careful threading of state: We
would have to operate on triples of the current words on a line and the two counters.

Importantly, this program must be evaluated eagerly. If we were to lazily evaluate splitOn
and flatMap then the two counters would not be updated before they are printed, and the
program would print the wrong result (e.g. Lines: 0, Words: 0, true).

ECOOP 2023

18:4 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

The two programs expose a rift between functional and imperative programming. In the
functional paradigm we would like certain operations to be lazy to improve performance,
whereas in the imperative paradigm it is vital that effectful operations are evaluated eagerly.

We believe that the fundamental tension is between two different views on the essence of
operations such as filter, map, and flatMap. In the imperative view, these operations eagerly
transform one data structure into another data structure. If the transformation has any side
effects, these occur immediately and in a deterministic order (e.g. the order of a list, the
natural order of a tree, etc.). In the declarative view, these operations describe how a data
structure should be transformed, but the transformation is not applied until needed. In this
view, effectful transformations are evil; either banned outright (like in Haskell) or strongly
discouraged with stern warnings (like in Java, Scala).

So what can be done? In this paper, we propose a technique, i.e. purity reflection, where
we can have our cake and eat it too. Purity reflection allows both programs – exactly as
written – to compute their expected results while the first is evaluated lazily and the second
is evaluated eagerly. This allows us to write programs the way we want while ensuring that
side effects are never lost and always occur in the expected order.

We can use purity reflection to switch between eager and lazy evaluation, but our technique
is equally applicable to switching between sequential and parallel evaluation. For example, if
we know that the predicate function passed to Set.count is pure, then it is safe to evaluate
the function in parallel over disjoint subsets of the set.

2.2 Streams: An Unsound Solution
Before we proceed, we want to highlight the challenges posed by trying to combine side
effects, laziness, and parallelism in a single programming language. Mainstream programming
languages, such as Java and Scala, support a small collection of data structures that are lazy
and/or parallel. Most prevalent is the support for streams, a lazy (and sometimes parallel)
data structure that represents a sequence of elements.

2.2.1 Java
The java.util.Stream package offers a collection of utilities for working with “sequences of
elements supporting sequential and parallel aggregate operations”. The documentation for
the package states that1:

“side effects in behavioral parameters to stream operations are, in general, discouraged,
as they can often lead to unwitting violations of the statelessness requirement, as well
as other thread-safety hazards.”

A bit later, the documentation goes on to state:

“[...] The ordering of side effects may be surprising. [...] The eliding of side effects
may also be surprising. [...]”

In total, the documentation for Stream warns about side effects almost twenty times!

1 https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/
package-summary.html

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/package-summary.html

M. Madsen and J. van de Pol 18:5

2.2.2 Scala
The scala.collection.parallel package offers a collection of parallel data structures. The
documentation for the package states that2:

“[...] These concurrent and “out-of-order” semantics of parallel collections lead to the
[...] implications:

Side effecting operations can lead to non-determinism
Non-associative operations lead to non-determinism

Given the concurrent execution semantics of the parallel collections framework, opera-
tions performed on a collection which cause side effects should generally be avoided,
in order to maintain determinism.”

The documentation for ParIterable goes on to state3:

“[...] Since implementations of bulk operations may not be sequential, this means
that side effects may not be predictable and may produce data-races, deadlocks or
invalidation of state if care is not taken. [...]

As these examples illustrate, the combination of effectful operations with lazy and/or
parallel evaluation is fraught with danger. A mindful programmer is left weary. Perhaps as a
consequence, a study by Khatchadourian et al. finds that “stream parallelization is rarely
used”, despite the fact that “streams tend not to have side effects” [17].

This paper provides a path out of the quagmire.

2.3 Proposed Solution
We propose a solution based on the following simple idea:

Data structure operations (such as map, filter, ...) may use lazy or parallel evaluation
when they are given pure function arguments, but revert to eager, sequential evaluation
when given impure function arguments to ensure that side effects are not lost and
that the order of effects is preserved.

We illustrate this idea with two examples:
@LazyWhenPure
def map(f: a -> b & ef , l:List[a])

= reifyEff (f) {
case Pure(g) => mapL(g, l)
case _ => mapE(f, l)

}

@ParallelWhenPure
def cnt(f: a -> Bool & ef , s:Set[a])

= reifyEff (f) {
case Pure(g) => parCnt (g, s)
case _ => fold (...)

}

The program construct reifyEff(exp) allows us to reflect on the purity of the closure exp.
In the program fragment on the left, which implements the map function on a list, we use
reifyEff to inspect the purity of the function argument f. If it is pure, we use mapL to lazily
apply the function f over the list (i.e. no evaluation happens yet). If, on the other hand, f is
impure we use mapE to immediately apply f eagerly over the elements of the list.

2 https://docs.scala-lang.org/overviews/parallel-collections/overview.html
3 https://www.scala-lang.org/api/2.12.2/scala/collection/parallel/ParIterable.html

ECOOP 2023

https://docs.scala-lang.org/overviews/parallel-collections/overview.html
https://www.scala-lang.org/api/2.12.2/scala/collection/parallel/ParIterable.html

18:6 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

Note that in the pure case, reifyEff rebinds f as g (i.e. it is the same function), but now g
is typed as a pure function. This rebinding avoids the need for flow-sensitive typing.

In the program fragment on the right, we use reifyEff to determine whether to count the
elements that satisfy a given predicate f sequentially or in parallel over a set. If f is pure
then we perform the counting in parallel, otherwise, we perform it sequentially using an
ordinary fold.

The annotations @LazyWhenPure and @ParallelWhenPure have no semantic meaning, but
serve as documentation for the programmer.

The reifyEff construct is enabled by a recent Hindley-Milner style type and effect system
that supports effect polymorphism, type inference, and computes purity information for every
sub-expression in a program [27]. Building on this type and effect system, we can implement
purity reflection as a compile-time programming construct that is eliminated by a new form
of effect-aware monomorphization. For example, we will monomorph two versions of the map
function: one for pure functions and one for impure functions.

We now discuss some properties of the proposed solution:
(Modular) The technique supports abstraction: A library author can implement data
structure operations that make selective use of lazy or parallel evaluation without leaking
those details to the client. A library user can reason about his or her code as-if under
eager and sequential semantics.
(Gradual) It is easy to start using the technique: A data structure can be made gradually
lazy or parallel without affecting the semantics of its clients†.
(Programmable) The technique is based on a new programming language construct. Thus,
maximum power is placed in the hands of library authors (and programmers in general)
who may have better knowledge of when to exploit laziness or parallelism.
(Zero Cost‡) The new programming construct can be eliminated entirely at compile-time.
Thus programs using the technique suffer no runtime overhead.
(Sound††) The technique is based on a sound type and effect system: It ensures that if
an expression is pure then it cannot have a side effect. The typing of lazy expressions
ensures that side effects cannot be hidden and later revealed.

† Of course, programmers and library authors should be aware that (i) switching from
eager to lazy evaluation can potentially lead to space leaks, and (ii) switching from sequential
to parallel evaluation may slow down the program. However, we believe both situations can
be managed. For (i), lazy evaluation should only be used for stream-like data structures where
space leaks are less likely to occur, and for (ii), parallel evaluation should use light-weight
threads and only be enabled for sufficiently large data structures.

‡ We use an effect-aware form of monomorphization that specializes (i.e. copies) higher-
order functions based on the purity of their function argument(s). This ensures that there
is no runtime overhead, but it could potentially lead to increased compilation time and
increased code size. In Section 7 we experimentally evaluate this cost.

†† The technique does not magically guarantee correctness. For example, a programmer
could mistakenly implement List.map to always return the empty list when given a pure
function argument. This does not violate the soundness of the type and effect system itself,
but it does violate the commonly understood specification of what List.map should do.

M. Madsen and J. van de Pol 18:7

c ∈ Cst = () | true | false | · · ·
v ∈ Val = c | λx. e

e ∈ Exp = x | v | e e

| let x = e in e

| if e then e else e

| lazy e | force e

| print e

x, y ∈ Var = a set of variables

(a) Expressions of λB.

τ ∈ Type = α | ι | τ
φ→ τ | lazy τ

φ ∈ Formula = T | F | β | ¬φ | φ ∧ φ | φ ∨ φ

σ ∈ Scheme = τ | ∀α. σ | ∀β. σ

ι ∈ BaseType = Unit | Bool | Int | · · ·
α ∈ TypeVar = a set of type variables
β ∈ BoolVar = a set of Boolean variables

(b) Types of λB.

Figure 1 Syntax and Types of λB.

3 Purity Reflection

We begin with a brief introduction to the λB calculus and its Hindley-Milner-style type and
effect system [12, 30, 7]. The system is from [27] but extended with the standard lazy and
force constructs [31]. The λB calculus is the foundation for the Flix programming language
implementation (which we build on top of). The λB calculus is proven sound in [27]. In
Section 3.4, we propose a simple extension that requires just one new expression and one
new type rule.

3.1 A Minimal Calculus
Syntax

The syntax of λB includes the standard lambda calculus constructs: variables, constants,
lambda abstractions, and function application. As is standard in Hindley-Milner style type
systems, the let-expression let x = e1 in e2 supports polymorphic generalization of e1

4. The
if-then-else expression is standard and included to illustrate how the type and effect system
merges information from different control-flow paths. The print expression is included to have
a side effect in the calculus. We add lazy e and force e to suspend and resume computations.
We assume that force e uses memoization. Figure 1a shows the syntax of λB.

Semantics

We assume a standard call-by-value semantics, i.e., function arguments are reduced to values
before they are substituted into the body of a lambda abstraction. The same applies to
let-bindings. The only exceptions are if-then-else, which uses short circuiting semantics,
and lazy expressions, which are treated as closures that are computed only once when forced,
and then memoized.

4 In Flix, which has mutable references, let-generalization is subject to the value restriction [8].

ECOOP 2023

18:8 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

Γ ⊢ e : τ1 & φ1 τ1 ≡ τ2 φ1 ≡ φ2

Γ ⊢ e : τ2 & φ2
(T-Eq)

typeOf(c) = σ σ ⊑ ι

Γ ⊢ c : ι & T
(T-Cst)

(x, σ) ∈ Γ σ ⊑ τ

Γ ⊢ x : τ & T
(T-Var)

Γ ⊢ e : String & φ

Γ ⊢ print e : Unit & F
(T-Prt)

Γ, x : τ1 ⊢ e : τ2 & φ

Γ ⊢ λx. e : τ1
φ→ τ2 & T

(T-Abs)

Γ ⊢ e1 : τ1
φ→ τ2 & φ1 Γ ⊢ e2 : τ1 & φ2

Γ ⊢ e1 e2 : τ2 & φ1 ∧ φ2 ∧ φ
(T-App)

Γ ⊢ e : τ & T

Γ ⊢ lazy e : lazy τ & T
(T-Lazy)

Γ ⊢ e : lazy τ & φ

Γ ⊢ force e : τ & φ
(T-Force)

Γ ⊢ e1 : τ1 & φ1

Γ, x : gen(Γ, τ1) ⊢ e2 : τ2 & φ2

Γ ⊢ let x = e1 in e2 : τ2 & φ1 ∧ φ2
(T-Let)

Γ ⊢ e1 : Bool & φ1

Γ ⊢ e2 : τ & φ2 Γ ⊢ e3 : τ & φ3

Γ ⊢ if e1 then e2 else e3 : τ & φ1 ∧ φ2 ∧ φ3
(T-Ite)

gen(Γ, τ) = ∀α1, · · · , ∀αn.∀β1, · · · , ∀βn.τ where {α1, · · · , αn, β1, · · · , βn} = ftv(τ) \ ftv(Γ)

Figure 2 Type Rules for λB with judgments of the form Γ ⊢ e : τ & φ.

3.2 Type and Effect System
Types

The types of λB are separated into monotypes (τ) and type schemes (σ). The monotypes
include type variables α, a set of base types ι, and function types τ1

φ→ τ2 that represents
functions from values of type τ1 to values of type τ2 with latent effect φ. We use the type
lazy τ to denote suspended computations. The type schemes of λB include monotypes τ and
quantified types ∀α.σ and ∀β.σ, where α is a type variable and β is a Boolean effect variable.
Figure 1b shows the types and type schemes of λB.

In λB the language of effects is a single Boolean formula φ, i.e. there is only a single
“effect”: impurity. If the Boolean formula is equivalent to true (T) then the expression it
describes must be pure. If the Boolean formula is equivalent to false (F) then the expression
may have a side effect. A Boolean formula with variables in it captures the conditions under
which the expression is pure. The system is over-approximating: An expression typed as pure
cannot have a side effect whereas an expression typed as impure may have a side effect [27].

Type Judgements

Figure 2 shows the type rules of λB. We define a context Γ as a partial function of bindings
x : σ from variables to type schemes. We also define ftv(σ) to be the type variables that occur
free in σ, and ftv(Γ) as the union of all free type variables in its range. A type judgement is
of the form Γ ⊢ e : τ & φ, which states that under type environment Γ, the expression e has
type τ and effect φ, where φ is a Boolean formula that captures when the expression is pure.

We now briefly discuss the most important type rules. Except for (T-Eq), the rules are
syntax-directed. The (T-Cst) rule states that a constant expression is pure. The (T-Ite)
rule states in an if e1 then e2 else e3 the overall effect is φ1 ∧ φ2 ∧ φ3 where φi is the effect of
expression ei. The (T-Abs) and (T-App) rules type lambda abstractions and applications.
An abstraction takes the effect φ of an expression e and moves it onto the arrow type whereas
an application releases the latent effect of the arrow type. The (T-Var) and (T-Let)
rules are the standard Hindley-Milner type rules. We add the (T-Lazy) and (T-Force)
rules. Note that only pure expressions can be suspended. Thus effects cannot be delayed.
The (T-Eq) rule states that we can use type equivalence. In λB two types are considered
equivalent modulo Boolean equivalence.

M. Madsen and J. van de Pol 18:9

For example, the following two functions types are equivalent:

Int x∨¬x−→ Int ≡B Int T→ Int

By a suitable extension of Algorithm W with Boolean unification, the type and effect
system supports complete type inference. We refer to [27] for the full details.

3.3 Effect Polymorphism
The λB calculus supports effect polymorphism, i.e. the effect of a higher-order function may
depend on the effects of its function arguments. For example, the List.map function can be
given the type:

List.map : ∀α1, α2, β. (α1
β→ α2) T→ List[α1] β→ List[α2]

which can be read as: the effect of List.map is the same as the effect of its function argument,
i.e. List.map is pure if its function argument is.

Forward function composition » can be given the type:

» : ∀α1, α2, α3, β1, β2. (α1
β1→ α2) T→ (α2

β2→ α3) T→ (α1
β1∧β2→ α3)

which can be read as: the composition of f and g is pure if both are pure. Note that the
purity of » is constructed from the purity of both f and g.

3.4 Purity Reflection with ReifyEff
We extend the λB calculus with a single new expression:

reifyEff(e1){case Pure(f) ⇒ e2, case _ ⇒ e3}

The idea is that if e1 evaluates to a pure function v then it is bound to f and the whole
reifyEff expression reduces to e2[f 7→ v]. Otherwise, the expression reduces to e3. Of course,
one cannot in general determine whether a function is pure. Thus, we rely on the type and
effect system to tell us whether a function value is pure. In other words, in the extended λB
calculus (and Flix in general), only well-typed terms have an operational semantics [35]. In
Section 5 we discuss two compilation strategies for how to implement the reifyEff construct.

The type rule for the reifyEff expression is straightforward and shown in Figure 3. The
type rule requires that the expression e1 has a function type τ1

φ→ τ2 where φ is the latent
effect of the function. We type check e2 in an extended environment, where we introduce a
new binder f for the function which is typed as pure (i.e., with effect T). We do not introduce
a new binder for the case where the function is impure. This asymmetry is for two reasons:

The type and effect system is over-approximating: If an expression is pure then it cannot
have a side effect, but the opposite is not true: an impure expression is not guaranteed to
produce a side effect.

Γ ⊢ e1 : τ1
φ→ τ2 & φ1

Γ, f : τ1
T→ τ2 ⊢ e2 : τ3 & φ2 Γ ⊢ e3 : τ3 & φ3

Γ ⊢ reifyEff(e1){case Pure(f) ⇒ e2, case _ ⇒ e3} : τ3 & φ1 ∧ φ2 ∧ φ3

(T-Reify-Eff)

Figure 3 Type rule for the reifyEff construct.

ECOOP 2023

18:10 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

If we had introduced a new binder for f and given it the effect impure (i.e., effect F)
then any use of f inside e3 would cause the whole expression to be impure. But this
would prevent purity reflection. We would not be able to use reifyEff inside List.map while
keeping it effect-polymorphic.

3.4.1 Correctness
The correctness of the approach depends on the soundness of the type and effect system
and completeness of type inference [27]. There, it is proved that the type system enjoys the
progress- and preservation-property. Also, Algorithm W extended with Boolean unification
will always compute the most general type and effect. Finally, it is proved that a pure
expression can at no time perform an effectful step. So it is not possible to hide effects.
Moreover, the lazy construct in Flix can only be applied to pure expressions, so it impossible
to delay effects.

Of course, nothing in the type and effect system ensures that an implementation satisfies
its specification. For example, a programmer could accidentally reverse a list before mapping
an effectful function over it. In that case, the effects will happen in the wrong order. Ensuring
functional correctness, i.e., that a function respects its specification of return values and
emitted effects, is generally beyond the scope of Hindley-Milner style type systems.

3.5 Fine-Grained Purity and the Poisoning Problem
We stress that the type rules are compositional and fine-grained: the purity of an expression
is constructed from the purity of its sub-expressions. This is in contrast to the situation in
row-polymorphic type and effect systems [39, 20], where the effects of the sub-expressions
are required to be the same. Such systems suffer from the so-called poisoning problem [40],
where the effect of a sub-expression is over-approximated to fit its context.

We illustrate this issue with an example:

airplanes |>
List.map(plane -> plane.pilot) |>
List.map(pilot -> pilot.name) |>
List. foreach (println)

Here a row polymorphic system infers that sub-expression List.foreach(println) has the
Print effect. This in turn pollutes every sub-expression with the Print effect. Consequently,
the row polymorphic system cannot be used to infer that the first two List.map operations are
pure (and could be applied lazily with our technique). However, the Boolean effect system
can infer that each of the List.map operations is given pure arguments, even through the
polymorphic usage of the pipeline function |>. This example demonstrates that for purity
reflection to work, one needs a compositional and fine-grained type and effect system.

3.6 Purity Reflection: A Sweet Spot
We believe that purity reflection hits a “sweet spot”. First, it is simple to explain to
programmers: they only have to understand the distinction between pure and impure
functions. Second, it requires us to maintain minimal information to implement, either at
runtime or compile-time, as discussed in Section 5. Third, as we argue below, a richer effect
system may be difficult to exploit in practice. In particular, it is difficult to determine when
two effects may interfere. For example:

M. Madsen and J. van de Pol 18:11

(Aliasing) Given two effects Read(p1) and Write(p2) where p1 and p2 are pointers to
mutable memory, can we safely evaluate them lazily or in parallel? The answer depends
on whether p1 and p2 are aliased, i.e., can point to the same memory location. If they
are, then any re-ordering or parallel execution may change the meaning of the program.
Unfortunately, we cannot statically know if p1 and p2 are aliases without additional heavy
machinery: either alias analysis or a sub-structural type system. To solve this, one needs
more information, such as fine-grained regions [15, 37, 10].
(External Aliasing) Given two effects ReadFile(f1) and WriteFile(f2) where f1 and
f2 are file paths, can we safely evaluate them lazily or in parallel? As before, the answer
depends on whether f1 and f2 refer to the same file. We cannot statically determine if
f1 and f2 may denote the same filename without some notion of control- and data flow
analysis. Worse, even, if f1 and f2 are guaranteed to be distinct strings, the two file
paths may still refer to the same file due to symbolic links in the underlying file system.
(Implicit Dependencies) Given two effects WriteFile and CurrentTime, can we
safely evaluate them lazily or in parallel? Maybe, but not if the programmer is trying to
measure the time it takes for the WriteFile operation to complete.

These examples do not imply that the task is impossible. If we had a specification of each
effect, i.e., if we had much more information from the programmer, we could probably apply
lazy and/or parallel evaluation more aggressively. Instead, our system makes the simple and
sound assumption that effects should never be omitted nor re-ordered.

4 Four New Data Structures

We now illustrate how reifyEff can be used to extend two existing and implement two new
data structures that make selective use of lazy and/or parallel evaluation.

4.1 From List to LazyList to DelayList
4.1.1 From List to LazyList
In Flix, the familiar definition of List is:

enum List[a] {
case Nil ,
case Cons(a, List[a])

}

A list is either the empty list Nil or a cons cell Cons(x, xs) with an element x and a tail xs.
We can implement list operations such as filter, map, and flatMap in the standard way.

The definition of List does not permit lazy evaluation. We can fix that by redefining List
to have a lazy tail:

enum List[a] {
case Nil ,
case Cons(a, Lazy[List[a]])

}

Flix has two expressions to support lazy evaluation: lazy e and force e. The former suspends
the evaluation of an expression e returning a thunk of type Lazy[t] where t is the type of the
expression. The latter evaluates a thunk and memoizes the result. Recall that only pure
expressions can be suspended. With the updated definition of List, we can express eager and
lazy versions of every list operation.

ECOOP 2023

18:12 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

For example, here is the lazy definition of map5:

def mapL(f: a -> b, l: List[a]): List[a] =
match l {

case Nil => Nil
case Cons(x, xs) =>

// The tail is *not* yet evaluated .
Cons(f(x), lazy mapL(f, force xs))

}

The mapL function takes a pure function f from values of type a to type b and a list l of
elements of type a. If the list is empty, it returns the empty list. Otherwise, there is a Cons(x,
xs) cell where the tail xs is lazy. In this case, we evaluate f on the head x and construct a lazy
computation that maps f over the rest of the list xs. Thus, no evaluation of the tail happens
until it is needed. Note that the use of lazy and force requires the suspended computation
to be pure. Consequently, f must be pure, as reflected in the function signature.

We can also implement an eager and effect-polymorphic version of map6:

def mapE(f: a -> b & ef , l: List[a]): List[a] & ef =
match l {

case Nil => Nil
case Cons(x, xs) =>

let hd = f(x); // Eagerly evaluate f(x)
let tl = mapE(f, force xs); // Force the rest of the list
Cons(hd , lazy tl) // Tail is lazy , but fully evaluated

}

The mapE function takes a function f from values of type a to type b with latent effect ef
and a list l of elements of type a. It pattern-matches on l. If the list is empty it returns the
empty list. Otherwise, there is a Cons(x, xs) cell where the tail xs is lazy. We evaluate f

on the head x; then we perform a recursive call on the tail xs (forcing the list). Note that
moving the tail-computation to a let-binding makes it eager. Finally, we return a cons-cell
with the new head and tail, where the tail is made lazy (but nevertheless has been fully
evaluated). Unlike, mapL, the mapE function permits side effects, because it materializes
those effects immediately.

We now have mapL and mapE which have lazy and eager semantics, respectively. We can
use these two functions to define a purity reflective map function that varies its behavior
depending on the purity of its function argument:

def map(f: a -> b & ef , l: List[a]): List[b] & ef =
reifyEff (f) {

case Pure(g) => mapL(g, l) // Use lazy evaluation .
case _ => mapE(f, l) // Use eager evaluation .

}

The implementation is straightforward: The map function matches on the purity of f . If f is
pure, then we bind it to g (which is typed as pure) and call mapL passing g. Otherwise, f

may be impure, and we call mapE.

5 The syntax a -> b denotes a pure function from a to b.
6 The syntax a -> b & ef denotes an effect polymorphic function from values of type a to type b with

latent effect ef.

M. Madsen and J. van de Pol 18:13

Example I

The Flix program fragment7:

List.range (1, 1 _000_000_000) |> // Lazy
List.map(x -> { println ("a"); x + 1}) |> // Eager
List.map(x -> { println ("b"); x * 2}) // Eager

Prints one billion a’s followed by one billion b’s. This takes a while, but ultimately the
program terminates. The a’s are printed before the b’s preserving the order of effects.

Example II

The following Flix program fragment Prints Some(4) and terminates immediately. The two
map operations are pure, consequently they are applied lazily and only evaluated for the
first element of the list.

List.range (1, 1 _000_000_000) |> // Lazy
List.map(x -> x + 1) |> // Lazy
List.map(x -> x * 2) |> // Lazy
List.head |> println // Eager in head.

Example III

The Flix program fragment:

let count = ref 0;
List.range (1, 1 _000_000_000) |> // Lazy
List.map(x -> x + 1) |> // Lazy
List.take (1 _000) |> // Lazy
List.map(x -> { // Eager

count := deref count + 1; x * 2
});
println (deref count)

Prints 1000 and terminates rather quickly. The first map operation is applied lazily, and the
subsequent take operation is also applied lazily. The final map operation is applied eagerly,
but only to the first 1000 elements.

4.1.2 From LazyList to DelayList
While the previous lazy list data structure permits both eager and lazy evaluation, its
representation is inefficient. In particular, the lazy list definition has two issues: (i) each use
of Lazy introduces a layer of indirection. This indirection requires extra memory, slows down
access, and puts additional pressure on the garbage collector, and (ii) each force operation
is guarded by a lock to ensure that the thunk is evaluated at most once. This can cause
lock contention and is antithetical to the idea that immutable data structures can be shared
freely and efficiently in a concurrent program. To overcome these issues, we actually use the
following definition:

7 The List.range(b, e) function returns a (suspended) list of integers from b until e.

ECOOP 2023

18:14 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

enum DelayList [a] {
case ENil
case ECons(a, DelayList [a])
case LCons(a, Lazy[DelayList [a])]

}

The idea is that a fully evaluated list is represented with the ENil and ECons constructors
whereas a list with a lazy tail is represented with the LCons constructor. We implement all
operations to be maximally lazy. Evaluation occurs for two reasons: (i) when required by a
terminal operation (e.g., count and foldLeft), or (ii) when a non-terminal operation is given
an impure function argument (e.g., filter and map).

We have implemented the DelayList data structure. The following pure operations are
always lazy: append, drop, flatten, from, intercalate, intersperse, range, repeat, replace, take,
and zip. The operations shown in Fig. 4a are lazy when given pure function arguments and
otherwise eager.

We can use the DelayList data structure to realize the word count example from Section 2.

4.2 From Set to Parallel Set
We have refactored the Flix Standard Library implementation of the Set data structure to
use parallel evaluation for all of its aggregation operations (shown in Fig. 4b). Each of these
functions use reifyEff to inspect the purity of their function argument, and then they dispatch
to either a sequential or a parallel function that operates on the underlying Red-Black tree.
For example, here is the implementation of Set.count:

@ParallelWhenPure
pub def count(f: a -> Bool & ef , s: Set[a]): Int32 & ef =

reifyEff (f) {
case Pure(g) if useParallelEvaluation (s) =>

RedBlackTree . parCount (g, s)
case _ =>

foldLeft ((b, x) -> if (f(x)) b + 1 else b, 0, s)
}

Here we use purity reflection on f to determine whether it is safe to perform the count in
parallel or if we must perform it sequentially (going from left to right). Moreover, we use
the function useParallelEvaluation to estimate whether it is worth to perform the count in

@LazyWhenPure

def dropWhile(...)
def filter(...)
def filterMap(...)
def flatMap(...)
def map(...)
def mapWithIndex(...)
def span(...)
def takeWhile(...)
def zipWith(...)

(a) DelayList: lazy when pure.

@ParallelWhenPure

def count(...)
def maximumBy(...)
def minimumBy(...)
def productWith(...)
def sumWith(...)

(b) Set: parallel when pure.

@ParallelWhenPure

def count(...)
def map(...)
def mapWithKey(...)
def maximumKeyBy(...)
def maximumValueBy(...)
def minimumKeyBy(...)
def minimumValueBy(...)
def productWith(...)
def sumWith(...)

(c) Map: parallel when pure.

Figure 4 Selective Lazy or Parallel datastructures, depending on purity of function arguments.

M. Madsen and J. van de Pol 18:15

parallel. In particular, the useParallelEvaluation function relies on some heuristics, including
the height of the Red-Black tree, to determine whether we should use parallel evaluation,
given that we could.

The implementation of RedBlackTree.parCount is straightforward:

@Parallel
def parCount (f: (k, v) -> Bool , t: RedBlackTree [k, v]): Int32 =

match t {
case Leaf => 0
case DoubleBlackLeaf => 0
case Node(_, l, k, v, r) => // left , key , value , right

par (cl <- parCount (f, l);
cm <- if (f(k, v)) 1 else 0;
cr <- parCount (f, r))

yield cl + cm + cr
}

Here we use the built-in Flix construct par to evaluate three expressions in parallel. Thus,
the count is performed in parallel on the left subtree, on the key and value, and on the right
subtree.

We might worry that spawning too many threads may impose an overhead much larger
than the time saved by using parallel evaluation. With OS-level threads, which are expensive,
this is likely to be the case. A standard solution to this problem is the use of thread pools
and/or a fork-join framework. However, with the imminent arrival of light-weight threads in
Java (Project Loom), we hope that such administration will no longer be necessary since
VirtualThreads are very cheap.

4.3 From Map to Parallel Map
We have also refactored the Flix Standard Library implementation of the Map data structure
(mapping keys to values), to use parallel evaluation for all the aggregation and transformation
operations when given pure function arguments (shown in Fig. 4c). The map and mapWithKey
functions are the most interesting since they allow parallel rebuilding of the map when applying
a pure function to all of its values. As before, these functions use reifyEff to dispatch to the
appropriate operation inside RedBlackTree.

For example, here is a simplified version RedBlackTree.parMapWithKey:

@Parallel
pub def parMapWithKey (f: (k, v1) -> v2 , t: RedBlackTree [k, v1]):

RedBlackTree [k, v2] =
match t {

case Leaf => Leaf
case DoubleBlackLeaf => DoubleBlackLeaf
case Node(c, l, k, v, r) =>

par (l1 <- parMapWithKey (f, l);
v1 <- f(k, v);
r1 <- parMapWithKey (f, r))

yield Node(c, l1 , k, v1 , r1)
}

4.4 From Map and ParallelMap to DelayMap
We now turn to perhaps the most interesting new data structure: DelayMap, a data structure
that uses both selective lazy and parallel evaluation. A DelayMap[k, v] is a map from strict
keys (of type k) to lazy values (of type v). Pure transformations on the values of a DelayMap

ECOOP 2023

18:16 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

are lazy (e.g., DelayMap.map). Pure terminal operations use parallelism (e.g., Delay.count).
The operations in Fig. 5a use lazy evaluation when given pure function arguments. The
unionWith operation is especially interesting, as it enables the lazy merge of two maps (if the
combine operation is pure). The operations in Fig. 5b use parallel evaluation when given
pure function arguments. Consider the program fragment:

m1 |> DelayMap .map(x -> x + 1) // Lazy.
DelayMap .map(x -> x * 2) // Lazy.
DelayMap .count(x -> { println (x); x > 5}) // Parallel + sequential

Assume we start with a map m1 from strings to integers. The first and second map
operation transform the values and are applied lazily because they are pure. The last count
operation is impure, hence must be applied eagerly. However, before doing so, we force the
entire map in parallel (i.e., applying x -> x + 1 and x -> x * 2 to every value) and only then
the counting is performed, sequentially from left to right. This example shows that we apply
pure operations lazily, but once we have performed an impure operation, we force the entire
data structure in parallel, and then switch back to sequential evaluation.

4.4.1 Example I
We can use a DelayMap to write code that is both natural and efficient. Assume that we
have two maps m1 and m2 of type DelayMap[String, Int32]. Each map records the number of
occurrences of a specific word drawn from some documents d1 and d2. We can merge the
two maps and then compute the total number of occurrences of the word “foo”:

let m1 = ...
let m2 = ...
let m3 = DelayMap . unionWith ((x, y) -> x + y, m1 , m2);
DelayMap . getWithDefault ("foo", 0, m3) |> println

Here the unionWith function merges two maps using the supplied merge function to resolve
conflicts when a key occurs in both maps. The merge operation is pure and hence unionWith
is evaluated lazily. This means that we only have to merge and perform the addition for the
key “foo” (and any other key we may look up).

@LazyWhenPure

def adjust(...)
def adjustWithKey(...)
def insertWith(...)
def insertWithKey(...)
def map(...)
def mapWithKey(...)
def unionWith(...)
def unionWithKey(...)
def update(...)
def updateWithKey(...)

(a) DelayMap: lazy when pure.

@ParallelWhenPure

def count(...)

def maximumKeyBy(...)

def maximumKeyBy(...)

def maximumValueBy(...)

def minimumKeyBy(...)

def minimumValueBy(...)

def sumWith(...)

def productWith(...)

(b) DelayMap: parallel when pure.

Figure 5 Selective Lazy and Parallel datastructure, depending on purity of function arguments.

M. Madsen and J. van de Pol 18:17

Table 1 Overview of Data Structures. (LWP = Lazy When Pure, PWP = Parallel When Pure).

Data Structure Lines Tests Functions @LazyWhenPure @ParallelWhenPure LWP + PWP

Set 610 384 51 - 5 -
Map 924 591 80 - 9 -

DelayList 1,158 498 54 9 - -
DelayMap 786 298 58 10 9 2

4.4.2 Example II
We can merge the two DelayMaps, while using a mutable list to compute all the words that
occur in both maps:

let m1 = ...
let m2 = ...
let duplicates = MutList .empty ();
let merge = (key , x, y) -> {

MutList .add !(key , duplicates);
x + y

};
let m3 = DelayMap . unionWithKey (merge , m1 , m2)

The merge operation is impure and hence unionWith is evaluated eagerly. This ensures that
the mutable list duplicates is updated correctly.

4.5 Summary
We have demonstrated the usefulness of reifyEff by using it in four data structures:

We refactored the Flix Standard Library implementation of the Set and Map data
structures to use selective parallel evaluation.
We have introduced two new data structures: DelayList which uses selective lazy evaluation
and DelayMap which uses selective lazy and parallel evaluation.

Table 1 shows an overview of the data structures that we have implemented. The Data
Structure column gives the name of the data structure. The Lines column gives the number
of Flix source code lines (excluding tests). The Tests column gives the number of manually
written unit tests. The Functions column gives the number of functions implemented on the
data structure. Most functions are first-order and “terminal”. For example, Set.memberOf
is first-order and terminal, i.e., it does not transform the Set but rather returns a value.
The @LazyWhenPure gives the number of functions that use purity reflection to enable lazy
evaluation. The @ParallelWhenPure gives the number of functions that use purity reflection to
enable parallel evaluation. The LWP + PWP gives the number of functions that use purity
reflection to enable both lazy and parallel evaluation. For example, the line for DelayMap
shows that the data structure is implemented in 786 lines of Flix code with 298 unit tests. The
data structure offers 58 functions of which 10 use purity reflection to enable lazy evaluation,
7 use purity reflection to enable parallel evaluation, and 2 use purity reflection to enable
both. Except for DelayList, these three data structures build on a Red-Black Tree, whose
line counts are not included.

ECOOP 2023

18:18 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

5 Compilation Strategies

We now discuss two ways to implement purity reflection: one based on runtime dispatch and
the other on a novel form of effect-aware monomorphization. Both approaches rely on the
type and effect system since we cannot readily determine if an expression will be pure at
runtime. In other words, our extension of Flix only assigns meaning to well-typed programs.

5.1 Runtime Dispatch
Given a well-typed program, we can annotate each closure with a Boolean (or Boolean
formula) to track if it is pure or impure. For a first-order function (i.e., a function without
function arguments), its purity is readily determined by the typing judgment. For a higher-
order function, its purity may depend on its function arguments. In this case, we label the
closure with a Boolean formula that refers to the purity of the closure arguments. Given
such an annotated closure, the reifyEff construct can be implemented by simply inspecting
these annotations (and potentially evaluating a Boolean formula). For example, if we have
the program fragment:

let f = x -> x + 1;
let g = x -> println (x);
let h = u -> v -> x -> u(v(x));

Then the closure of f stores a Boolean formula which is the constant true, the closure of g

stores a Boolean formula which is the constant false, and the closure of h stores a Boolean
formula which is the conjunction of the two bits of the higher-order arguments u and v. Thus,
at runtime, the purity of h can be computed once u and v are known.

The cost of the runtime dispatch strategy is that we must store a Boolean formula with
each closure. For first-order functions, this is just the constant true or false. For higher-order
functions, it is a formula with several variables corresponding to its higher-order functions.
Thus, in general, these formulas will be small since most functions are first-order and since
higher-order functions tend to have only a few function arguments. Hence, the increase in
code size should be modest. At runtime, the reifyEff construct has to evaluate small Boolean
formulas which should be fast.

5.2 Effect-Aware Monomorphization
As an alternative to runtime dispatch, we propose an effect-aware form of monomorphization.

Monomorphization is a compile-time transformation that replaces polymorphic functions
with copies that are specialized to the concrete types of their arguments. For example, if
List.map is used with both integer and string lists, then monomorphization generates two copies
of List.map: one specialized to integers and one specialized to strings. Monomorphization
avoids boxing at the cost of larger executables. In practice, code size can be significantly
reduced with the proper use of inlining and dead code elimination. A potential downside of
monomorphization is that it may prevent separate compilation.

Before our work, the Flix compiler performed specialization of type variables and erased
effect variables. In this work, we have extended the Flix compiler to specialize effect variables.
In other words, the Flix compiler is now able to generate two versions of List.map[Int]: one
specialized for pure functions and one specialized for impure functions. The upshot is that
reifyEff can be eliminated – entirely at compile-time – because its argument is statically
known to be pure or impure. Thus, the use of reifyEff incurs zero runtime overhead.

M. Madsen and J. van de Pol 18:19

A technical detail is that during monomorphization a type or effect variable can potentially
be left un-instantiated. For example, in the expression Nil == Nil each Nil can be given any
type α. For effect variables, we can use two strategies to deal with such situations:

(Opportunistic) We opportunistically treat all un-instantiated effect variables as pure.
This is sound because the type system is closed under substitution (i.e., if a variable is
free we may substitute it by T).
(Conservative) We reject programs that contain un-instantiated effect variables during
monomorphization. The programmer can always resolve the situation with a type (or
effect) annotation.

In our extension of Flix, we choose the conservative option because it is consistent with how
ordinary un-instantiated type variables are treated. As an example, the following (contrived)
program has an un-instantiated effect variable:

let f = g -> reifyEff (g) {
case Pure(w) => g
case _ => g

};
f(f)

Here the type of f is: ∀α1, α2, β. (α1
β→ α2) T→ (α1

β→ α2). When f is applied to itself it
returns a function of the same type which has an un-instantiated effect variable even after
monomorphization. In Section 7, we investigate how common un-instantiated effect variables
are in real programs. We have not observed un-instantiated effect variables in existing code.

5.3 Discussion
We believe that both the runtime dispatch and the effect-aware monomorphization approaches
are viable. We decided to implement purity reflection via monomorphization since:

Flix already uses monomorphization to eliminate parametric polymorphism.
Monomorphization enables more aggressive optimizations performed by the Flix inliner.
Monomorphization ensures that the technique imposes zero runtime overhead.

Finally, as our experiments in Section 7 demonstrate, the increase in compilation time and
code size is small.

6 Implementation

We have implemented purity reflection as an extension of the Flix programming language.

6.1 The Flix Programming Language
Flix is a functional-first, imperative, and logic programming language that supports algebraic
data types, pattern matching, higher-order functions, parametric polymorphism, type classes,
higher-kinded types, polymorphic effects, extensible records, first-class Datalog constraints,
channel and process-based concurrency, and tail call elimination [24, 25, 26, 27, 28].

The Flix compiler project, including the standard library and tests, consists of 230,000
lines of Flix and Scala code. Adding reifyEff and effect-aware monomorphization required
less than 2,000 lines of code. The extended Flix Standard Library required approximately
4,000 lines of code with unit tests (see Section 4).

Flix, with our extension, is open source, ready for use, and freely available at:

https://flix.dev/ and https://github.com/flix/flix/

ECOOP 2023

https://flix.dev/
https://github.com/flix/flix/

18:20 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

6.2 Integration with Type Classes
Flix supports type classes and higher-kinded types. The Flix compiler implements type
classes using monomorphization, i.e., there is no dynamic dispatch or dictionary passing.
This also has the advantage that purity reflection works with type classes without any
modifications. For example, if a polymorphic function requires a Foldable instance because
of a call to Foldable.count then during monomorphization the call to Foldable.count will be
replaced by a call to the appropriate instance function. Thus, the benefits of selective lazy
and/or parallel evaluation are available even for polymorphic functions that use type classes.

7 Evaluation

We now turn to the question of the viability of an implementation strategy based on
effect-aware monomorphization. In particular, we consider the following research questions:

RQ1: What is the impact of effect-aware monomorphization on compilation time?
RQ2: What is the impact of effect-aware monomorphization on code size?
RQ3: How common are un-instantiated effect variables in practice?

7.1 RQ1 and RQ2: Impact on compilation time and code size
Monomorphization specializes (i.e., copies) functions for each of their concrete type arguments.
For example, the List.map function has the polymorphic type:

∀a, ∀b, ∀e . (a e→ b) → List[a] e→ List[b]

Under standard monomorphization, the List.map function is copied for every instantiation of
the type variables a and b. If, for example, List.map is called with the two functions that
have types: Int32 → Bool and String → Int32, we would get two copies of List.map.

With effect-aware monomorphization, a function is copied for every instantiation of its
type variables and its effect variables. In other words, List.map will be copied for every
instantiation of a, b, and e. Every effect variable is either pure or impure which means that
we can get two copies of a function per effect variable (in addition to its other type variables).
In the worst case, this can lead to an exponential blow-up in the number of copies.

We can construct a worst-case example with three effect variables:

def hof(f: a -> b & ef1 , g: a -> b & ef2 , h: a -> b & ef3): Unit = ...

def p(): Unit & Pure = ... // a pure function
def i(): Unit & Impure = ... // an impure function

def main (): Unit & Impure =
hof(p, p, p);
hof(i, p, p);
// ... omitted for brevity ...
hof(i, i, i)

The higher order function hof takes three function arguments f , g, and h. Each function
argument has an effect variable, which can be instantiated to pure or impure. Inside main,
we call hof with all possible combinations of pure and impure function arguments. There are
23 = 8 combinations of these. This means that during effect-aware monomorphization we
will construct 8 copies of hof, which duplicates its entire function body. If hof is large this
can lead to a blow-up in compilation time and code size.

M. Madsen and J. van de Pol 18:21

Table 2 Impact of Effect-Aware Monomorphization on Compilation Time and Code Size.
†: The “DeliveryDate” and “Stratifier” programs depend on the Flix Datalog engine, which is a part of
the Flix Standard Library and implemented in Flix itself. Hence, these programs are not actually 35-116
lines of code, but more accurately thought of as 35-116 lines of code plus the 3, 055 lines of code used to
implement the Datalog engine in Flix.

Std. Monomorphization Effect-Aware Monomorphization

Program Lines Time Bytes Classes Time Bytes Classes

Standard Library 33,689 4.6s 4,954 8 – – –

BoolTable 206 4.6s 766,638 759 4.6s (+0%) 766,546 (+0%) 759 (+0%)
DeliveryDate † 35 5.1s 2,913,210 2,762 5.1s (+0%) 3,019,959 (+4%) 2,888 (+5%)
fcwg 2,796 5.0s 1,700,982 1,911 5.0s (+0%) 1,699,107 (+0%) 1,911 (+0%)
flixball 1,767 4.8s 875,858 1,012 4.8s (+0%) 877,762 (+0%) 1,012 (+0%)
IfNoSub 1,870 5.2s 1,967,390 1,849 5.2s (+0%) 2,046,480 (+4%) 1,921 (+4%)
JSON 348 4.9s 486,521 573 4.9s (+0%) 487,025 (+0%) 573 (+0%)
Regex 1,891 4.5s 223,429 316 4.5s (+0%) 222,479 (+0%) 316 (+0%)
Stratifier † 116 4.9s 3,063,802 2,925 4.9s (+0%) 3,191,718 (+4%) 3,070 (+5%)

TestDelayList 3,060 5.1s 4,050,485 5,304 5.1s (+0%) 4,174,417 (+3%) 5,431 (+2%)
TestDelayMap 2,039 5.1s 4,111,046 5,090 5.1s (+0%) 4,750,187 (+16%) 5,631 (+11%)
TestMap 2,780 5.4s 5,230,078 5,782 5.4s (+0%) 5,572,129 (+7%) 6,107 (+6%)
TestSet 1,640 4.9s 2,598,250 2,759 4.9s (+0%) 2,757,388 (+6%) 2,930 (+6%)

Analysis
Given a polymorphic function f with n type parameters (quantified type variables) and m

effect parameters (quantified Boolean variables), effect-aware monomorphization will create
at most tn × 2m copies of f where t is the number of types that occur in the program after
type checking but before monomorphization. In practice, type-based monomorphization does
not lead to an exponential blow-up, but what about effect-aware monomorphization?

Table 2 shows the impact of effect-aware monomorphization on compilation time and code
size for several Flix programs. We briefly discuss each program: The Flix “Standard Library”
is included for completeness. When the library is compiled alone, without any entry point, a
mere 8 Java classes are generated. These 8 classes are hard-coded and are always emitted.
One class represents the Unit value. Other classes represent various exceptions. “BoolTable”
is a Flix program to generate a table of smallest formulas for all Boolean functions of 4
arguments. “DeliveryDate” is a Flix program that uses first-class Datalog constraints with
lattice semantics to compute the earliest delivery date for a “component” that consists of
subcomponents, each with its delivery date and assembly time. “fcwg” is a Flix program
generator that generates wrapper code for Java classes. “flixball” is a basic multi-player,
2-dimensional shooter game, run in the console. Bots compete in a last-player standing
arena, taking simultaneous turns to rotate, move, or fire their weapon. “IfNoSub” is an
implementation of Algorithm W for Flix written in Flix. It captures the relational nullable
type system from [28]. “JSON” is, as the name implies, a JSON library for Flix. “Regex” is,
as the name implies, a Regex library for Flix (based on Java’s regex package). “Stratifier” is
a Flix program that uses first-class Datalog constraints with lattice semantics to implement
a version of Ullman’s algorithm to compute the stratification of a Datalog program. “TestX”
is the collection of unit tests for the data structure X.

ECOOP 2023

18:22 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

We now explain each column of the table: The Program column gives the name of the Flix
program. The Lines column shows the number of lines of code in the program (excluding the
Flix Standard Library), The Time column shows the total compilation time in seconds (without
effect-aware monomorphization). The Bytes column shows the number of bytes generated by
the compiler (without effect-aware monomorphization). The Classes column shows the number
of classes generated by the Flix compiler (without effect-aware monomorphization). The last
three columns then repeat but now with effect-aware monomorphization. The numbers in
parentheses show the percentage increase (resp. decrease) in the specific measurement.

For example, the “IfNoSub” program consists of 1, 870 lines of code (in addition to the
30,000 lines of code from the Flix Standard Library). Under type-based monomorphization,
the Flix compiler generates 1, 849 Java classes, totaling 1, 967, 390 bytes in 5, 2s. With
effect-aware monomorphization, the compiler generates 1, 921 Java classes totaling 2, 046, 480
bytes in the same amount of time. This represents a 4% increase in code and classes.

As a second example, the “TestDelayMap” program consists of 2, 039 lines of code, which
contain all the unit tests for the DelayMap data structure. Every purity reflective function is
tested with both a pure and impure function argument. Under type-based monomorphization,
the Flix compiler generates 5, 090 Java classes totaling 4, 111, 046 bytes in 5, 1s. With effect-
aware monomorphization, the compiler generates 5, 631 Java classes totaling 4, 750, 187 bytes
within the same time. This represents an 16% increase in code and an 11% increase in classes.

As Table 2 shows, the cost of effect-aware monomorphization is low. For real programs,
there is no increase in compile time and the increase in code size is between 0% to 5%.
We offer a few explanations why real programs show only a modest increase:

Most functions are first-order (i.e., they do not take function arguments). A first-order
function cannot be copied by effect-aware monomorphization, hence it cannot lead to
increased compilation time or code size. To give two examples: In the Set module 17/45
functions are higher-order whereas in the String module 24/94 functions are higher-order.
The majority of function calls are to first-order functions. For example, List.sum is
probably more widely used than e.g., List.zipWith3. In other words, there are fewer
higher-order functions than first-order functions, and they are on the balance also less
likely to be used.
When a higher-order function is used, it is not necessarily used with both pure and impure
function arguments. For example, in many of the programs, higher-order functions are
always used with a pure or an impure function argument, but more rarely with both.

In sum, we conclude that effect-aware monomorphization is a viable implementation strategy.

7.2 RQ3: How common are un-instantiated effect variables in practice?
As discussed in Section 5.2, an effect variable is potentially left un-instantiated during
monomorphization. We showed a carefully crafted example – which relied on self-application
– that would lead to an un-instantiated effect variable. We discussed two sound solutions:
(i) an optimistic strategy that treats every un-instantiated variable as true (i.e., as pure),
and (ii) a conservative strategy that rejects programs with un-instantiated (effect) variables.
Flix uses the conservative strategy.

An important empirical question is then how common such situations are. In more than
100,000 lines of Flix code, we have never encountered a single un-instantiated effect. In
fact, we have only been able to trigger the rejection with our carefully crafted example. We
conclude that un-instantiated effect variables are not of practical concern. Intuitively, most
expressions are either pure or impure. A few expressions are effect-polymorphic, but they
are almost always called with pure or impure function arguments. Consequently, during
monomorphization, we always end up with expressions that are either pure or impure.

M. Madsen and J. van de Pol 18:23

8 Related Work

We consider related work along three axes: type and effect systems, reflection, and streams.

8.1 Type and Effect Systems
The Flix type and effect system is based on Hindley-Milner [12, 30, 7] extended with Boolean
unification [29, 27]. The Flix system is effect-polymorphic, a notion that goes back to
Lucassen et al. [23].

Algebraic effects is a hot research topic [33, 14, 19, 1, 21, 3, 4]. An algebraic effect system
allows the programmer to define a collection of effects that can be invoked and interpreted
by effect handlers installed on the stack (similar to exceptions). A type and effect system for
an algebraic effect system ensures that all effects are ultimately handled. Most prototype
programming languages that support algebraic effects and complete type inference are based
on row polymorphism. Purity reflection seems orthogonal to algebraic effects; we are not
interested in a collection of effects nor in how to interpret them. We are interested in enabling
higher-order functions to selectively use lazy or parallel evaluation when passed pure function
arguments. As interesting future work, we can imagine a type and effect system that tries to
combine algebraic effects with purity reflection while retaining complete type inference.

A line of research has used uniqueness and ownership type systems to prevent data races
and deadlocks and to enable parallelism [2, 6, 9]. Boyapati et al. present a type system
that prevents data races and deadlocks. In the system, programmers partition locks into
equivalence classes and define a partial order on them. The type checker then verifies that
the locks are acquired in descending order [2]. Craik and Kelly present a type, effect, and
ownership system that uses read-and-write effect sets to reason about data dependence. This
information is then exploited to enable data or task parallelism [6]. Gordon et al. present a
type and effect system that restricts updates to mutable memory shared by multiple threads.
The system relies on a combination of immutable and uniqueness types, which ensure the
absence of data races [9].

8.2 Type Case and Effect Reflection
Tarditi et al. propose type case, a meta-programming construct that enables polymorphic
functions to reflect on their concrete type arguments [11, 36]. In the TIL Standard ML
compiler, type casing is used to implement several polymorphic functions more efficiently.
For example, an array indexing (“subscript”) operation can be implemented more efficiently
if the compiler knows the concrete type of the underlying array. One might think of our
work as an effect case which is used to enable selective lazy or parallel evaluation.

Long et al. propose a calculus and type system with reflection for effects representing
region accesses [22]. Their effects are first-class expressions that can be inspected by pattern
matching. The features of their system are orthogonal to our system: they have a hybrid
approach, based on static and dynamic types; their calculus provides over-approximating
(may) and under-approximating (must) types, and is based on sub-typing/effecting and
refinement types. Instead, we support type and effect polymorphism with inference based on
Boolean unification. We also provide an implementation in a programming language.

8.3 Streams
Broadly speaking, the relation between our work and work on streams is that most stream
implementations aim to provide lazy and/or parallel evaluation capabilities in programming
languages that are eager and impure, at the risk of unsoundness. Purity reflection allows
library authors to soundly determine when it is safe to use lazy and/or parallel evaluation.

ECOOP 2023

18:24 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

Wadler et al. introduce the notion of “odd” and “even” lazy lists [38]. Wadler et al.’s
observation is that in the standard definition of a lazy list, the first element of the list is eager
whereas the rest of the list is lazy. In other words, the lazy list is not entirely lazy which can
lead to unexpected behavior. We agree with this observation and in our real implementation
of DelayList every element is lazy.

Jones et al. present an extension of Haskell, where the programmer can define a collection
of rewrite rules that are applied to the program by the Haskell compiler [13]. Using rewrite
rules, a programmer (typically a library author) can express program optimizations as a
collection of transformations. The mechanism is extended and applied to stream fusion in [5].
The rewrite mechanism could provide an alternative implementation of purity reflection.
Similar to our solution using monomorphization, rewrite rules are applied at compile time
and induce no run-time overhead. However, we see two advantages in our solution based on
purity reflection: First, rewrite rules only apply if there is a syntactic pattern match, while
our technique also applies across various let-bindings or even function calls, since it is based
on a type and effect system that propagates information. Second, a programmer could easily
add unsound rewrite rules, while our type system provides some guarantees; in particular,
impure functions cannot be postponed.

Prokopec et al. show that the overhead of functional combinators (e.g., filter, map) on the
JVM can be overcome with a sufficiently aggressive JIT compiler [34]. Kiselyov et al. present
a technique to overcome the overhead of stream operations through staging [18]. Møller
and Veileborg propose to use static analysis to eliminate the overhead of stream pipelines in
Java [32]. In summary, the bulk of this work has focused on how to make streams execute
faster. In contrast, our work concerns when it is safe to do so. We use monomorphization to
implement purity reflection. After monomorphization, we have a mono-typed program where
each use of a non-terminal operation (e.g., filter and map) has been replaced by its eager or
lazy version. We can pass the monomorphed AST to any technique that performs stream
fusion without the risk of unsoundness.

Khatchadourian et al. present a study on the use and misuse of streams in Java [17].
Interestingly two of their findings are: “Finding 1: Stream parallelization is not widely used”
and “Finding 3: Streams tend not to have side effects.” The former finding could suggest that
even though parallel streams are readily available, developers are either unaware or reluctant
to use them. With purity reflection, the choice of whether to use parallelism rests not just
with the programmer but also with the library author. This suggests that purity reflection
can help programmers by exploiting parallelism when they did not consider it themselves.

Khatchadourian et al. also present an automatic technique to refactor code to use streams
more efficiently [16]. The technique is based on heavy-weight program analysis. Flix, with
purity reflection, offers an alternative approach where reasoning about and reflecting on
purity is built directly into the language.

9 Conclusion

We have proposed purity reflection, a new programming language feature that enables higher-
order functions to vary their behavior depending on the purity of their function arguments.
Purity reflection enables selective use of lazy and/or parallel evaluation, while ensuring that
side effects are never lost or re-ordered. We have implemented purity reflection in the Flix
programming language. We have retrofitted and extended the Flix Standard Library with
new data structures that automatically use lazy or parallel evaluation when it is safe to do
so. Effect-aware monomorphization provides a mechanism to implement purity reflection as

M. Madsen and J. van de Pol 18:25

a construct that is entirely eliminated at compile-time. Therefore, the technique imposes no
run-time overhead. Experimental results show that the cost of effect-aware monomorphization
in compilation time and code size is minimal.

References
1 Andrej Bauer and Matija Pretnar. Programming with Algebraic Effects and Handlers. Journal

of Logical and Algebraic Methods in Programming, 84(1), 2015. doi:10.1016/j.jlamp.2014.
02.001.

2 Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership Types for Safe
Programming: Preventing Data Races and Deadlocks. In International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2002.
doi:10.1145/582419.582440.

3 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Effect Handlers
for the Masses. Proc. of the ACM on Programming Languages, 2(OOPSLA), 2018. doi:
10.1145/3276481.

4 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Effects as Ca-
pabilities: Effect Handlers and Lightweight Effect Polymorphism. Proc. of the ACM on
Programming Languages, 4(OOPSLA), 2020. doi:10.1145/3428194.

5 Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream Fusion: From Lists to Streams
to Nothing at All. International Conference of Functional Programming (ICFP), 42(9), 2007.
doi:10.1145/1291220.1291199.

6 Andrew Craik and Wayne Kelly. Using Ownership to Reason about Inherent Parallelism in
Object-Oriented Programs. In International Conference on Compiler Construction (CC), 2010.
doi:10.1007/978-3-642-11970-5_9.

7 Luis Damas. Type Assignment in Programming Languages. PhD thesis, The University of
Edinburgh, 1984.

8 Jacques Garrigue. Relaxing the value restriction. In International Symposium on Functional
and Logic Programming, 2004. doi:10.1007/978-3-540-24754-8_15.

9 Colin S Gordon, Matthew J Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy.
Uniqueness and Reference Immutability for Safe Parallelism. In International Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2012.
doi:10.1145/2398857.2384619.

10 Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney.
Region-based Memory Management in Cyclone. In Programming Language Design and
Implementation (PLDI), 2002. doi:10.1145/512529.512563.

11 Robert Harper and Greg Morrisett. Compiling Polymorphism using Intensional Type Analysis.
In Principles of Programming Languages (POPL), 1995. doi:10.1145/199448.199475.

12 Roger Hindley. The Principal Type-scheme of an Object in Combinatory Logic. Transactions
of the American Mathematical Society (AMS), 1969.

13 Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the Rules: Rewriting as
a Practical Optimisation Technique in GHC. In Haskell Workshop, 2001.

14 Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in Action. International Conference
on Functional Programming (ICFP), 48(9), 2013. doi:10.1145/2544174.2500590.

15 Ohad Kammar and Gordon D. Plotkin. Algebraic Foundations for Effect-dependent Opti-
misations. In Principles of Programming Languages (POPL), 2012. doi:10.1145/2103656.
2103698.

16 Raffi Khatchadourian, Yiming Tang, and Mehdi Bagherzadeh. Safe Automated Refactoring
for Intelligent Parallelization of Java 8 Streams. Science of Computer Programming, 2020.
doi:10.1016/j.scico.2020.102476.

ECOOP 2023

https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/582419.582440
https://doi.org/10.1145/3276481
https://doi.org/10.1145/3276481
https://doi.org/10.1145/3428194
https://doi.org/10.1145/1291220.1291199
https://doi.org/10.1007/978-3-642-11970-5_9
https://doi.org/10.1007/978-3-540-24754-8_15
https://doi.org/10.1145/2398857.2384619
https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/199448.199475
https://doi.org/10.1145/2544174.2500590
https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1016/j.scico.2020.102476

18:26 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

17 Raffi Khatchadourian, Yiming Tang, Mehdi Bagherzadeh, and Baishakhi Ray. An Empirical
Study on the Use and Misuse of Java 8 Streams. In Fundamental Approaches to Software
Engineering (FASE), 2020. doi:10.1007/978-3-030-45234-6_5.

18 Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. Stream Fusion,
to Completeness. In Principles of Programming Languages (POPL), 2017. doi:10.1145/
3009837.3009880.

19 Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible Effects: An Alternative to Monad
Transformers. Haskell Workshop, 2013. doi:10.1145/2578854.2503791.

20 Daan Leijen. Extensible Records with Scoped Labels. Trends in Functional Programming
(TFP), 2005.

21 Daan Leijen. Type Directed Compilation of Row-typed Algebraic Effects. In Principles of
Programming Languages (POPL), 2017. doi:10.1145/3009837.3009872.

22 Yuheng Long, Yu David Liu, and Hridesh Rajan. First-class Effect Reflection for Effect-
Guided Programming. In International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2016. doi:10.1145/3022671.2984037.

23 John M Lucassen and David K Gifford. Polymorphic Effect Systems. In Principles of
Programming Languages (POPL), 1988.

24 Magnus Madsen. The Principles of the Flix Programming Language. In International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software
(Onward!), 2022. doi:10.1145/3563835.3567661.

25 Magnus Madsen and Ondřej Lhoták. Fixpoints for the Masses: Programming with First-class
Datalog Constraints. Proc. of the ACM on Programming Languages, 4(OOPSLA), 2020.
doi:10.1145/3428193.

26 Magnus Madsen, Jonathan Lindegaard Starup, and Ondřej Lhoták. Flix: A Meta Programming
Language for Datalog. In Proc. International Workshop on the Resurgence of Datalog in
Academia and Industry (Datalog-2.0 2022), 2022.

27 Magnus Madsen and Jaco van de Pol. Polymorphic Types and Effects with Boolean Unification.
Proc. of the ACM on Programming Languages, 4(OOPSLA), 2020. doi:10.1145/3428222.

28 Magnus Madsen and Jaco van de Pol. Relational Nullable Types with Boolean Unification.
Proc. of the ACM on Programming Languages, 5(OOPSLA), 2021. doi:10.1145/3485487.

29 Urusula Martin and Tobias Nipkow. Boolean Unification - The Story So Far. Journal of
Symbolic Computation, 1989.

30 Robin Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and
System Sciences, 1978.

31 Yaron Minsky, Anil Madhavapeddy, and Jason Hickey. Real World OCaml: Functional
Programming for the Masses. O’Reilly Media, 2013.

32 Anders Møller and Oskar Haarklou Veileborg. Eliminating Abstraction Overhead of Java
Stream Pipelines using Ahead-of-Time Program Optimization. Proc. of the ACM on Program-
ming Languages, 4(OOPSLA), 2020. doi:10.1145/3428236.

33 Matija Pretnar and Gordon D Plotkin. Handling Algebraic Effects. Logical Methods in
Computer Science, 2013. doi:10.2168/LMCS-9(4:23)2013.

34 Aleksandar Prokopec, David Leopoldseder, Gilles Duboscq, and Thomas Würthinger. Making
Collection Operations Optimal with Aggressive JIT Compilation. In Proc. International
Symposium on Scala, 2017. doi:10.1145/3136000.3136002.

35 John C Reynolds. The meaning of types from intrinsic to extrinsic semantics. BRICS Report
Series, 7(32), 2000.

36 David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper, and Peter Lee.
TIL: A Type-directed Optimizing Compiler for ML. In Programming Language Design and
Implementation (PLDI), 1996. doi:10.1145/249069.231414.

37 Mads Tofte and Jean-Pierre Talpin. Region-based Memory Management. Information and
Computation, 1997. doi:10.1006/inco.1996.2613.

https://doi.org/10.1007/978-3-030-45234-6_5
https://doi.org/10.1145/3009837.3009880
https://doi.org/10.1145/3009837.3009880
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3022671.2984037
https://doi.org/10.1145/3563835.3567661
https://doi.org/10.1145/3428193
https://doi.org/10.1145/3428222
https://doi.org/10.1145/3485487
https://doi.org/10.1145/3428236
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1145/3136000.3136002
https://doi.org/10.1145/249069.231414
https://doi.org/10.1006/inco.1996.2613

M. Madsen and J. van de Pol 18:27

38 Philip Wadler, Walid Taha, and David MacQueen. How to Add Laziness to a Strict Language
Without Even Being Odd. In SML’98, The SML workshop, 1998.

39 Mitchell Wand. Complete Type Inference for Simple Objects. In Logic in Computer Science,
1987.

40 Keith Wansbrough and Simon L. Peyton Jones. Once Upon a Polymorphic Type. In Principles
of Programming Languages (POPL), 1999. doi:10.1145/292540.292545.

ECOOP 2023

https://doi.org/10.1145/292540.292545

	1 Introduction
	2 Motivation
	2.1 A Word & Line Count Program
	2.2 Streams: An Unsound Solution
	2.2.1 Java
	2.2.2 Scala

	2.3 Proposed Solution

	3 Purity Reflection
	3.1 A Minimal Calculus
	3.2 Type and Effect System
	3.3 Effect Polymorphism
	3.4 Purity Reflection with ReifyEff
	3.4.1 Correctness

	3.5 Fine-Grained Purity and the Poisoning Problem
	3.6 Purity Reflection: A Sweet Spot

	4 Four New Data Structures
	4.1 From List to LazyList to DelayList
	4.1.1 From List to LazyList
	4.1.2 From LazyList to DelayList

	4.2 From Set to Parallel Set
	4.3 From Map to Parallel Map
	4.4 From Map and ParallelMap to DelayMap
	4.4.1 Example I
	4.4.2 Example II

	4.5 Summary

	5 Compilation Strategies
	5.1 Runtime Dispatch
	5.2 Effect-Aware Monomorphization
	5.3 Discussion

	6 Implementation
	6.1 The Flix Programming Language
	6.2 Integration with Type Classes

	7 Evaluation
	7.1 RQ1 and RQ2: Impact on compilation time and code size
	7.2 RQ3: How common are un-instantiated effect variables in practice?

	8 Related Work
	8.1 Type and Effect Systems
	8.2 Type Case and Effect Reflection
	8.3 Streams

	9 Conclusion

