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Abstract
Browsers are the main way in which most users experience the internet, which makes them a prime
target for malicious entities. The best defense for the common user is to keep their browser always
up-to-date, installing updates as soon as they are available. Unfortunately, updating a browser is
disruptive as it results in loss of user state. Even though modern browsers reopen all pages (tabs)
after an update to minimize inconvenience, this approach still loses all local user state in each page
(e.g., contents of unsubmitted forms, including associated JavaScript validation state) and assumes
that pages can be refreshed and result in the same contents. We believe this is an important barrier
that keeps users from updating their browsers as frequently as possible.

In this paper, we present the design, implementation, and evaluation of Sinatra, which supports
instantaneous browser updates that do not result in any data loss through a novel Multi-Version
eXecution (MVX) approach for JavaScript programs, combined with a sophisticated proxy. Sinatra
works in pure JavaScript, does not require any browser support, thus works on closed-source browsers,
and requires trivial changes to each target page, that can be automated. First, Sinatra captures
all the non-determinism available to a JavaScript program (e.g., event handlers executed, expired
timers, invocations of Math.random). Our evaluation shows that Sinatra requires 6MB to store
such events, and the memory grows at a modest rate of 253KB/s as the user keeps interacting with
each page. When an update becomes available, Sinatra transfer the state by re-executing the same
set of non-deterministic events on the new browser. During this time, which can be as long as 1.5
seconds, Sinatra uses MVX to allow the user to keep interacting with the old browser. Finally,
Sinatra changes the roles in less than 10ms, and the user starts interacting with the new browser,
effectively performing a browser update with zero downtime and no loss of state.
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1 Introduction

Browsers are the main way in which most users experience the internet. Browsers are
responsible for the safety of user sensitive data, in the form of cookies, saved passwords,
and credit card information, and other personal information used to auto-complete forms.
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Browsers are also responsible for ensuring the integrity of the websites that the user visits,
checking certificates and negotiating encrypted HTTPS channels. Given all this, browsers
are prime targets for malicious entities. For the common user, the best way to protect their
browsers (and the personal data they keep) is to keep the browsers as up-to-date as possible.

Unfortunately, users are slow to update their browser to a new version. In terms of
percentage of users, data for Google Chrome [53] and Mozilla Firefox [41] show that a new
browser version takes about 2 weeks to overtake the previous version, and about 4 weeks to
reach its peak. Given the fast pace of browser releases (6 weeks for Google Chrome and 4
weeks for Mozilla Firefox), the amount of users running outdated versions is significant at
any given time.

Browser developers are aware of the problems caused by running outdated versions, and
provide features to entice users to update, from reminding the user that a new update is
available to minimizing the inconvenience by reopening all pages (tabs) after the update.
Even though popular, the latter feature has three main flaws. First, it disrupts the user
interaction by closing the browser, downloading the new version, and then opening it. Second,
it assumes that pages can simply be refreshed after the update. Such an assumption fails if a
login session expires, which causes the page to refresh to the login portal; or if the contents of
the page change with each refresh, as is the case with modern social media. Third, refreshing
a page loses all user state accumulated on that page since it was loaded. Such state includes,
among others, data in HTML forms and JavaScript state.

The result is simple: Browser updates are disruptive for the average user. Dynamic
Software Updating (DSU) techniques can be used for eliminating such disruption, updating
a program in-process. Unfortunately, state-of-the-art DSU tools cannot handle programs as
complex as modern commercial internet browsers (Section 2.1). Also, simply dumping the
old browser memory state to disk and reloading it in the new browser does not work, as the
new browser may change the internal state representation.

In this paper, we present the design and implementation of Sinatra– Stateful
Instantaneous browser updates – a novel MVX technique implemented in pure JavaScript.
Sinatra requires little changes to the target JavaScript application (Section 3), which can
be performed automatically for all the pages accessed through an HTTP proxy (Section 3.1).

To perform an update (Section 3.2), Sinatra captures all sources of non-determinism
accessed by the browser. Then, when an update becomes available, Sinatra launches
the updated browser as a separate process, and feeds it the same non-determinism, thus
synchronizing the JavaScript state between both browsers. During this time, Sinatra allows
the user to keep interacting with the old browser by performing MVX until the updated
browser’s state is up-to-date. Once the update was successful, Sinatra terminates the old
browser and the user can start interacting with the new browser.

Note that simply transferring the JavaScript between browsers is not sufficient for two
reasons. First, the user cannot interact with either browser while transferring the state.
Second, failed updates may still result in loss of user data. Multi-Version eXecution (MVX)
solves both problems by allowing the user to interact with the old browser while the new
browser is receiving the state, and by allowing Sinatra to cancel a failed update simply by
closing the new browser. Unfortunately, state-of-the-art MVX tools cannot handle modern
commercial internet browsers (Section 2.2), and performing MVX at the JavaScript is not as
straightforward due to the event-driven programming paradigm (Section 2.3).

Sinatra captures all sources of non-determinism available to a JavaScript program,
including execution of event handlers (Sections 3.3), and non-deterministic functions such
as Math.random (Section 3.4). We implemented Sinatra in pure JavaScript using an extra
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coordinator process to enable communication between browsers (Section 4.1) that serializes
JavaScript non-determinism as JSON (Section 4.2). Our implementation also handles all
other sources of state in a JavaScript application (Sections 4.2 and 4.3).

This paper also presents an extensive evaluation of Sinatra using 4 JavaScript applica-
tions and realistic workloads (Section 6.1) and 2 real-world modern websites (Section 6.8).
Our results show that Sinatra runs with very little performance overhead, adding at most
1.896ms to the execution of event handlers (Section 6.2), which is not noticeable by the user.
For realistic user interactions, Sinatra requires less than 6MB of memory to store the events
until a future update happens (Section 6.3). Furthermore, the amount of memory grows
constantly with the length of active user interactions, with a maximum rate of 253KB/s
(Section 6.4), which shows that Sinatra scales well with typical user interactions with
modern websites. For websites that make use of frequent XML HTTP Requests (XHR) in the
background, Sinatra requires a modest 36MB of storage for a 14h run (Section 6.6). Fur-
thermore, Sinatra supports realistic workloads on modern websites as complex as Twitter,
with complex JavaScript that requires over 4500 events to load (Section 6.8).

When performing an update, Sinatra requires at most 1.5 seconds to transfer the state
between browsers (Section 6.5.1). We note that the user can continue to interact with the
browser during this time. To switch to the updated browser, Sinatra imposes a pause in
user interaction of less than 10ms (Section 6.5.2), which is perceived as instantaneous. At its
core, Sinatra is an MVX system that delivers events from one browser to another in 19ms
or less (Section 6.7).

In short, this paper has the following contributions:
1. The design, and implementation of Sinatra, a system for performing MVX on JavaScript

applications.
2. A technique to use Sinatra to perform instantaneous updates to modern commercial

closed-source internet browsers, without any loss of state.
3. An extensive evaluation of Sinatra using 4 realistic JavaScript stateful applications and

2 popular websites (Google and Twitter); including widely used JavaScript frameworks
Angular [21], JsAction [23], and React [38].

Sinatra’s source [1] and research artifact [50] are freely available.

2 Background

Performing Dynamic Software Updating (DSU) on a running browser presents many unique
challenges. First, state-of-the-art DSU tools require source code changes and do not support
programs as complicated as modern internet browsers (Section 2.1). Sinatra circumvents
that problem by using Multi-Version eXecution (MVX) to perform DSU [44]. Unfortunately,
state-of-the-art MVX tools also do not support programs as complicated as modern internet
browsers (Section 2.2). Sinatra moves the level of MVX from low-level system calls to
high-level JavaScript events. However, performing MVX in the traditional sense is not
possible in JavaScript, due to its event-driven paradigm (Section 2.3).

2.1 Dynamic Software Updating (DSU)
Dynamic Software Updating (DSU) allows to install an update on a running program without
terminating it, and without losing any program state (e.g., data in memory, open connections,
open files). DSU has three fundamental problems to solve: (1) when to stop the running
program, (2) how to transform the program state to a representation that is compatible with

ECOOP 2023
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the new version but equivalent to the old state, and (3) how to restart the program in the
new version. Solving these problems requires modifying the source code of the updatable
program [47, 24, 44] adding safe-update points to solve problem 1, state transformation
functions to solve problem 2, and control-flow migration to solve problem 3. This is not
possible for popular modern internet browsers (e.g., Google Chrome, Microsoft Edge, Apple
Safari), as they are closed-source.

Modern DSU approaches focus on in-process updates – the new version of the program
replaces the old version in the same process – which trivially keep outside resources available
between updates (e.g., open network connections and files), but limits existing DSU tools to
programs that execute in a single process. This is not the case of modern internet browsers
(e.g., Google Chrome uses one process per open tab to improve performance and provide
strong isolation between open pages). Finally, modern internet browsers are examples self-
modifying code given their Just-In-Time (JIT) JavaScript compiler, which is a well known
limitation of state-of-the-art DSU tools [24, 44]. Therefore, existing DSU tools cannot update
modern browsers.

2.2 Multi-Version eXecution (MVX)

The main goal of MVX is to ensure that many program versions execute over the same inputs
and generate the same outputs. MVX can be used to perform DSU by launching the updated
program as a separate process, transferring the state between processes (e.g., by forking
the original process), and resuming execution on the updated process after terminating the
outdated process [44].

Unlike DSU, state-of-the-art MVX techniques do not require access to the source code of
the target program. Instead, MVX interposes system-calls through ptrace [35] or binary-code
instrumentation [27, 43]. This way, MVX tools can ensure that all processes read the same
data, by capturing relevant system-calls (e.g., read) and ensuring that they return the same
sequence of bytes.

Unfortunately, existing MVX tools cannot be applied to modern internet browsers. Doing
so results in immediate termination due to benign divergences – equivalent behavior expressed
by different sequences of system calls. For instance, consider how a JIT compiler decides
which code to compile/optimize using performance counters based on CPU time. Interacting
with such counters does not result in system-calls, and causes JIT compilers to optimize
different code, which then results in different system calls. It is possible to tolerate such
benign divergences [46], but doing so requires developer support and significant engineering
effort, which is not practical.

MVX also suffers from some of the same issues as DSU: no support for multi-process
applications, and no support for self-modifying code.

2.3 JavaScript Messages, Event-Loop, and Non-Determinism

JavaScript [16] is an event-driven programming language animated by an event loop, as
depicted in Figure 1, which processes messages from an event queue. The event loop takes
one message from the event queue and executes its handler to completion. If the queue is
empty, the event-loop simply waits for the next event. A handler is a JavaScript closure
associated with each message. Given that the event loop is single-threaded, there is a single
call stack and one program counter (not depicted) to keep the state of processing the current
event.
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Stack Event Loop Message Queue
function callback() { f1(); }

function f1() { f2(); }

function f2() {
    var ready = false;
    setTimeout(
          function() { ready = true; },
      0);
    while(!ready); // deadlock
}

callback
Frame

f1 Frame

Message

Handler

MessageMessage

Handler
button.onClick()

f2 Frame

123
next next

Handler Handler

next...

Figure 1 JavaScript’s event loop processing 3 messages. Processing Message 1 causes Message 3
to be added to the queue. Message 2 was added when a button was clicked while processing
Message 1. Due to JavaScript’s event-driven model, this example will never process Message 3,
causing a deadlock.

On a browser, events can come from two sources: (1) user interaction with DOM elements
(e.g., onclick on a button element), and (2) browser-generated events, such as expiring
timers (e.g., setTimeout or setInterval) or receiving replies to pending XML HTTP
requests. Each event generates a message that keeps track of the event details: the event
handler (a closure to be executed for that event), the event target (e.g., the DOM element
that generated the message), and other properties. Events handlers in JavaScript are not
executed immediately when the event is triggered. Instead, each event is added to the end
of the event queue as it is triggered. For instance, in Figure 1, a button was clicked while
running function callback, which results in adding Message 2 to the event queue.

Events are processed by a single-threaded event-loop that runs each event handler to
completion before processing any other event, which has two important consequences. First,
the order and types of events processed are a major part of the non-determinism used to
execute a JavaScript program. Apart from asynchronous non-determinism, described below,
rerunning the same events in the same order results in the same execution of the same
JavaScript program [39, 10, 5, 25, 57]. Second, it is not possible for an event handler to
issue an event and wait for its completion. This causes the code in Figure 1 to deadlock when
waiting for the flag ready to become true [6] because the handler that sets the flag never
executes. The handler is associated with a timeout (of zero), which adds a message to the
end of the queue. The event loop never finishes executing the current handler, so it never
processes any more messages on the queue.

Besides the synchronous non-determinism created by events, described above, a JavaScript
program can also call functions that are non-deterministic, which we call asynchronous non-
determinism. The main non-deterministic functions are Math.random, which generates
random numbers between 0 and 1; and methods of the Date object (e.g., Date.getTime),
which access the current time and date. Notably, it is not possible to seed the pseudo random
number generator behind Math.random.

Given JavaScript’s limitations, it is not possible to perform traditional MVX on
the asynchronous non-determinism. For instance, when generating a random number,
typical MVX approaches ensure each version waits for a message with the same random
number (perhaps from a central coordinator process). In JavaScript’s case, this would create
the same deadlock as shown above. Section 3.4 describes how Sinatra overcomes this
limitation.

3 Sinatra Design

Sinatra supports updating internet browsers through a combination of MVX and DSU [44],
both at the JavaScript level. Sinatra requires trivial modifications to web pages, which
are shown in Figure 2 – Lines 3–4 need to be added. The required changes ensure that
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01: <html>
02: <head>
03: + <script src="mvx/sinatra.js" type="text/javascript"></script>

04: + <script src="mvx/sinatra_init.js" type="text/javascript" defer></script>
05: </head>
06: <body>
07: <button id="button" onclick="console.log(’DOM0 inline’)"></button>
08: <input id="input_textbox" type="text" />
09:
10: <script>
11: let button = document.getElementById("button");
12: button.onmouseover = function(event) { console.log("DOM0"); }
13:
14: let textbox = document.getElementById(’input_textbox’);
15: let closure = function(ev) { console.log(’DOM2’); });
16: textbox.addEventListener(’change’, closure);
17: </script>
18: </body>
19: </html>

Figure 2 Sample HTML code. Sinatra requires adding Lines 3–6.

Browser

Updated Browser

During updates

Coordinator Log

Proxy

Internet

(eventType,
elementID,
eventObject)

(eventType,
elementID,
eventObject)

(eventType,
elementID,
eventObject)

Figure 3 Sinatra architecture.

Coordinator

Leader

Follower
1

2 2* 3

1Version 1

Send
events

Send
events

Version 0

X

Figure 4 Sinatra update phases. Most of the
time is spent in Phase 1. Phase 2 transfers state
to an updated browser. Phase 2* is optional, and
allows to validate if the update was successful.
Phase 3 exposes the updated browser to the user.

Sinatra intercepts event handlers immediately (Line 3) and executes its initialization after
the page is loaded but before any other JavaScript code executes (due to the defer attribute
in Line 4). We note that these are simple modifications that can be performed automatically
by a sophisticated proxy [12], as we describe in Section 3.1.

After applying the required changes, Sinatra leverages the first-class nature of functions
in JavaScript, and replaces a number of important functions to intercept all sources of non-
determinism: [HTMLElement,HTMDocument].prototype.addEventListener, Math.random,
setTimeout, setInterval, and others; which we describe in Sections 3.3 through 3.5.

3.1 Sinatra Architecture

Sinatra uses three components at all times, shown in Figure 3: (1) the browser, (2) the
coordinator, and (3) a proxy. When a browser update is available, Sinatra requires the
new version of the browser to be installed at the same time as the old (current) version. The
updated browser becomes, temporarily, Sinatra’s fourth component. We note that modern
browsers can have multiple versions installed side-by-side by performing manual installation
into different folders.
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Users interact with the browser, which captures JavaScript events and sends them to the
coordinator. The coordinator either saves those events in a log, when there is no update
taking place, or sends them to the updated browser, thus performing MVX. Users only
start interacting with the updated browser after the update is complete, as we describe in
Section 3.2.

The proxy serves three main purposes. First, the proxy ensures that the updated browser
accesses exactly the same resources as the original browser did. Accessing different resources
means that each browser processes different JavaScript events and leads to benign divergences,
as described in Section 2.2. Second, the proxy ensures that outgoing connections remain
open while Sinatra changes the roles of the browsers. This is important to ensure that
responses to XML HTTP requests are not lost, which can result in errors in the JavaScript
application. Third, as Sinatra requires minimal changes to the target page, the proxy
performs those changes automatically for all the pages accessed by the browser. The proxy
must also be able to intercept HTTPS traffic.

There is an off-the-shelf proxy that meets all the requirements: mitmproxy[12] can
intercept HTTPS traffic (through an extra root certificate), is highly configurable with
custom Python code, and can redirect traffic from one connection to another. We validated
the feasibility of using mitmproxy for Sinatra’s purposes through a series of small throw-
away prototypes, and we report that mitmproxy can indeed be used with Sinatra. However,
for the sake of implementation and experimentation simplicity, our current implementation
does not use a proxy, as we perform all the changes manually on static HTML pages that do
not issue XML HTTP requests.

3.2 DSU with Sinatra
Sinatra performs updates over 3 different phases, as shown in Figure 4.

Phase 1 executes for the vast majority of the time, when no update is taking place. This
is the single-version phase, which runs a single browser version in isolation. In this phase,
Sinatra intercepts all JavaScript events and sends them to a Coordinator process, which
simply keeps them in memory until the events are needed by later phases. Of course, the
coordinator needs to have enough memory to store all the events generated on the browser
due to user interaction. Sections 6.3 and 6.4 show that Sinatra’s memory requirements are
modest, well within the capabilities of modern computers. In instances where a webpage
executes network requests in the background, the observed memory requirements remain
modest even with a long-running session. A webpage left open will also record any network
activity that takes place, such as updates to a live Twitter feed. We describe such an
experiment on Section 6.6, which requires 36MB of event storage for a 14h run.

Phase 2 is when updates start, during which the user launches the new browser version.
For each page, Sinatra sends all the events from the coordinator and to the new version.
Note that Sinatra transfers the state in the background, which allows users to continue to
interact with the old browser. Events generated by user interaction during Phase 2 are simply
added to the end of the list of events that the new browser needs to process. Section 6.5.1
shows that Sinatra takes, at most, 1.5 seconds in Phase 2.

Phase 2* is optional, and starts when the new browser has processed all the events in
the coordinator’s log. During Phase 2*, Sinatra performs MVX between the old browser
and the new browser. Phase 2* allows to validate whether an update was successful, by
comparing each page on the leader with its version on the follower (e.g., matching their DOM
tree). If the pages do not match, Phase 2* allows to stop an update that results in loss of
data without any disruption, simply by terminating the follower and reverting to Phase 1.

ECOOP 2023
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1: let originalHandler = element.onclick;
2: if (originalHandler) {
3: closure = function (ev) { id = element.sinatra_id;
4: sendToCoordinator("onclick", id, ev);
5: originalHandler.call(element, ev); }
6: registerHandler(element, "onclick", originalHandler);
7: element.onclick = closure; }

Figure 5 Interception of a DOM0 event in the leader. Functions sendToCoordinator and
registerHandler shown in Figure 8 and discussed in Section 3.5.

Validating the pages can be done manually (asking the user if all pages look the same
to the user) or automatically (fuzzy matching the DOM contents, or using computer vision
algorithms to find differences in screenshots of the rendered pages [25, 67]). Our prototype
supports Phase 2* for benchmarking convenience, allowing us to measure the time to transfer
logs and to swap roles with great accuracy.

Phase 3 effectively finishes the update by switching the browser exposed to the user.
Sinatra demotes the old browser version, which becomes the follower, and promotes the
new browser version, which becomes the leader. At this point, Sinatra can terminate the
old browser and start a new Phase 1, as the browser was successfully updated with zero
downtime and without losing any state. Phase 3 causes the only user-noticeable pause, which
we measured in Section 6.5.2 as less than 10ms. For evaluation convenience, our prototype
keeps executing the old browser as the follower until the user terminates the old browser.

3.3 Intercepting Events
Sinatra establishes the foundation for MVX and browser updates by intercepting events
and sending them from the leader to the follower (through the coordinator). This section
explains how Sinatra captures browser events in pure JavaScript by intercepting handlers
along with their parameters on the leader.

Sinatra intercepts events by replacing the original event handler with a special handler.
This way, when a message causes the event loop to execute a handler, Sinatra’s code
executes instead, which allows Sinatra to intercept the event that triggered the handler
together with the actual handler that is executing. Messages are generated by either DOM0
or DOM2 event listeners:

DOM0 events. DOM0 events can be registered in-line on the HTML page (e.g., Line 7
on Figure 2), and through JavaScript properties on the DOM elements (e.g., Line 12 on
Figure 2).

Intercepting DOM0 events is straightforward, as these handlers can be listed/modified
directly from DOM elements, simply by reading/writing the respective property, respectively
(e.g., Lines 1 and 7 on Figure 5). However, there are two challenges with intercepting DOM0
events. First, DOM0 handlers are only present after the HTML page loads and executes all
in-line scripts. Sinatra’s initialization code runs precisely at the right time, just after the
HTML page loads but before any handler can be triggered, as shown in Line 3 of Figure 2.
At this time, a simple DOM traversal can intercept all inline DOM0 event handlers. Second,
the page can change DOM0 events without Sinatra noticing. Sinatra uses a mutation
listener [60] to register a closure that runs when properties of elements change.

Figure 5 shows how Sinatra uses to intercepts DOM0 events. For each DOM0 handler
(Lines 1), Sinatra captures the original handler (Line 2) and replaces it with its own closure
(Line 8) that captures the current DOM element – element – and the event – ev, sends them
to the coordinator (Line 5), and runs the handler originally registered by the JavaScript
application (Line 6). Note that Sinatra only installs DOM0 events when needed (Line 3).
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1: const originalAddEventListener = HTMLElement.prototype.addEventListener;
2: HTMLElement.prototype.addEventListener = function(evType, evListener, u) {
3: ownerId = this.sinatra_id;
4: registerHandler(this, evType, evListener);
5: let closure = function (ev) { id = ev.target.sinatra_id;
6: sendToCoordinator(evType, ownerId, id, ev);
7: evListener.call(this, ev, u); }
8: originalAddEventListener.call(this, evType, closure, u); }

Figure 6 Interception of DOM2 events on the leader. Functions sendToCoordinator and
registerHandler shown in Figure 8 and discussed in Section 3.5.

DOM2 events. DOM2 events register handlers by calling method addEventListener
on the target element (e.g., Lines 14–16 on Figure 2). Registering a DOM2 handler re-
quires two arguments: (1) type of event (e.g., change for when the target text input
box changes), and (2) the event handler itself, specified as a JavaScript closure. Unfor-
tunately, it is not possible to list handlers installed via DOM2. Furthermore, DOM2
describes a complicated logic about how events “bubble” and call all registered event handlers
by following the DOM tree and combining DOM0 and DOM2 events. We discuss how
bubbling affects Sinatra in Section 4.2. Sinatra intercepts DOM2 events by replacing
[HTMLElement,HTMLDocument].prototype.addEventListener with its own closure, shown
in Figure 6. Note that it is not possible for the underlying JavaScript program to install a
DOM2 handler before Sinatra installs its own because Sinatra installs the handler before
any other code runs, shown in Line 3 of Figure 2 (scripts without defer are downloaded
and executed immediately). From this point onwards, when the JavaScript application calls
addEventListener, Sinatra’s code executes instead (Lines 3–8). To intercept DOM2 events,
Sinatra installs its own closure using the original addEventListener function (Line 8).
Then, events that trigger the handler execute Sinatra’s closure which starts by sending
the event to the coordinator (Line 4) before calling the original handler that the JavaScript
application registered (Line 5).

Dynamically created elements. Dynamically created elements can also have event listeners,
even before being added to the DOM tree. DOM2 listeners are automatically instrumented,
as they use the prototype HTMLElement which Sinatra already instruments. Sinatra
intercepts DOM0 events through a Mutation Observer [60] for new nodes added to the DOM
tree, which Sinatra instruments as described above in this section.

Timers. Timers register a closure to execute after a specified time interval through functions
setTimeout – a one-off event – and setInterval – a repeating event, as shown in Lines 3–5
of Figure 7. Of course, such timers are yet another source of synchronous non-determinism
that Sinatra must handle. Sinatra uses an approach similar explained above in Section 3.3
and replaces functions setTimeout and setInterval with Sinatra’s own (Line 9). Then,
when the underlying application registers a timer, Sinatra transparently intercepts those
calls to register its own timer (Lines 13). When the timer expires, Sinatra intercepts the
timer event and sends it to the coordinator before executing it (Line 12).

XML HTTP Requests (XHR). XML HTTP Requests (XHR) require an XMLHttpRequest
object, which defines a number of properties with different roles: (1) hold the data obtained
from the remote server (e.g., status, responseText), or (2) hold closures to be invoked
with the XHR changes state (e.g., onload, onreadystatechange). Sinatra intercepts the
function that creates such objects (i.e., new XMLHttpRequest) to return a proxy XHR object

ECOOP 2023
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01: // Sample program
02: buttons = [] // A list of buttons
03: setInterval(30, function() { // Expensive computation
04: r = Math.random(); button[r].enabled = true; });
05: setInterval(300, function() { buttons[...].enabled = false; });
06:
07: // Interception
08: let uniqueID = 0;
09: let realSetInterval = setInterval;
10: setInterval = function(origHandler, delay) {
11: let myID = uniqueID++;
12: registerInterval(delay, myID, origHandler);
13: let closure = function() { intervalToCoordinator(myID); origHandler(); };
14: return realSetInterval(closure, delay); }

Figure 7 Sample JavaScript program that uses timeouts (Lines 1–5) and Math.random (Line
4); and how Sinatra intercepts timer events (Lines 8–14). Function registerInterval and
intervalToCoordinator are explained Figure 8 and on Section 3.5.

that contains a real XHR object internally. Then, Sinatra defines the same properties as
the real XHR object,through Object.defineProperty, and uses them to intercept how the
JavaScript manipulates the proxy XHR object [14].

As with the DOM events described above, the leader issues XHR requests and sends the
returned values to the follower. The follower does not issue any XHR request, it simply gets
the data from the leader. When the leader executes a closure associated with XHR state
change, it sends information to the follower to trigger the execution of the same closure with
the same data. Note that leader and follower issue the same XHR requests by the same order,
so Sinatra identifies each XHR request uniquely by the order in which they are issued.

3.4 Intercepting Asynchronous Non-Determinism
As described in Section 2.3, JavaScript programs can call functions that are non-deterministic.
The most important such function is Math.random, which is used extensively by many
JavaScript applications. Unfortunately, using the same approach described in Section 3.3
does not work due to the asynchronous nature of the call to such non-deterministic functions.

For instance, consider the example shown in Figure 7. In this example, there is a list
of buttons (Line 2), all disabled. Every 30 seconds, the program performs an expensive
computation (Line 3) and enables one button at random (Line 4). Every 5 minutes (300
seconds), the program disables all buttons again (Line 5).

Now consider the following implementation: Sinatra captures the 30 second event, sends
it to the coordinator, then captures the execution of Math.random, and also sends it to the
coordinator. This approach works if all the events are known in-advance (i.e., Phase 2 of
Figure 4 and existing record-replay approaches). However, this approach does not work
for MVX (i.e., Phases 2* and 3 of Figure 4). In this case, it is possible that the follower
receives the timer event and reaches the call to Math.random before the leader, as the time
required to perform the expensive computation may not match in both versions, and the
follower may complete it before the leader. At this point, the follower does not know which
number to return to match the leader. Making matters even worse, the follower cannot
simply wait for the leader, because doing so in JavaScript’s event-loop model results in a
deadlock, as explained in Section 2.3.

Functions that result in asynchronous non-determinism thus need special consideration.
One way to deal with Math.random is to use the same seed for the underlying Pseudo-Random
Number Generator (PRNG). Unfortunately, it is not possible to seed JavaScript’s PRNG.
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An alternative is to replace calls to Math.random with a custom PRNG that can be seeded,
on all variants, which may result in a lower quality source of randomness. Instead, Sinatra
starts by generating a sequence of N random numbers when the page loads (i.e., in the
script tag on Line 3 of Figure 2). Then, each call to Math.random consumes one number
from the sequence. The leader replenishes the sequence by sending a fresh random number to
the coordinator for each number consumed. This approach allows a fast follower to consume
up to N random numbers asynchronously at its own pace, ensures all random numbers match
between leader and follower, and provides a fresh supply of browser-grade randomness. This
approach also simplifies detecting divergences between leader and follower, as we can check
in the sequence of random numbers how far/behind one variant is. We found that a cautious
value of N = 100 works well in practice.

Methods in the Date object also require special treatment. The leader starts by consulting
the current date/time, saves it in a variable, and sends it to the follower. Then, when the
JavaScript program attempts to consult the date, both leader and follower return the saved
date, and increment it (e.g., by 100). As such, both versions agree on all dates generated. To
ensure fresh and realistic dates/times, every so often, just before sending another message to
the follower, the leader refreshes its saved date with the system’s and adds date information
to the message being sent.

3.5 Multi-Version Execution in JavaScript
So far, this document describes how to capture all the sources of non-determinism used by
a JavaScript program on the leader browser. But this is only one half of the problem. To
transfer the state between browsers, and to keep them synchronized after that, Sinatra
needs to ensure that the follower browser sees exactly the same non-determinism (i.e., the
same events in the same order on the same DOM elements).

Matching elements. Sinatra assigns IDs (monotonically increasing numbers) to each
DOM element by adding a new property sinatra_id, traversing the initial DOM tree after
the page is loaded, and then for each dynamically added element (described in Section 3.3).
Given that Sinatra traverses the same DOM tree in a deterministic way, and executes
createElement in the same order in both browsers, the same element always receives the
same ID in both browsers.

Sinatra keeps a global structure with all the handlers registered, as shown in Figure 8
(Line 2). When registering events, Sinatra keeps a map for each element ID (Lines 6–9). The
map associates event types (e.g., onclick) to the respective handler and the target element
in which the event was registered (Line 9). We note that each browser keeps references to its
own handler and element.

The leader sends events to the coordinator via function sendToCoordinator, which
serializes the event as discussed in Section 4.2. The follower receives deserialized events from
the coordinator via function receiveFromCoordinator, which consults the global structure
to get the target element (Line 19) and the handler (Line 20) registered for the current event
being triggered. Then, the follower calls the handler directly, setting the receiver as the
target element (Line 21).

Ensuring the same causal ordering. Given JavaScript’s event-driven model, is possible to
violate causal ordering in the follower where events are delivered targeting elements that do
not exist (yet). For instance, consider a page with one button (1) that, when pressed, creates
another button dynamically (2). Consider also an execution in which the user presses buttons
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01: // Globals in both leader and follower
02: let globalHandlerTable = {};
03: let intervalHandlerTable = {};
04:
05: // Executed by both leader and follower
06: function registerHandler(el, eventType, handler) {
07: let id = el.getAttribute("sinatra_id");
08: if (!globalHandlerTable[id]) globalHandlerTable[id] = {};
09: globalHandlerTable[id][eventType] = {"handler": handler, "target": el}; }
10: function registerInterval(delay, id, handler) {
11: intervalHandlerTable[id] = { "delay": delay, "handler": handler }; }
12:
13: // Leader calls:
14: function sendToCoordinator(eventType, elementID, eventObject) { ... }
15: function intervalToCoordinator(id) { ... }
16:
17: // Follower calls:
18: function receiveFromCoordinator(eventType, elementID, eventObject) {
19: let targetElement = globalHandlerTable[elementID][eventType]["target"];
20: let handler = globalHandlerTable[elementID][eventType]["handler"];
21: handler.call(targetElement, eventObject); }
22: function intervalFromCoordinator(id) { intervalHandlerTable[id]["handler"](); }

Figure 8 Matching events and timers to handlers and elements in both leader and follower
browsers.

(1) and (2). On the follower, it is possible that both button presses are added to the message
queue (depicted in Figure 1). Creating the hypothetical button (2) generates another event,
which is then added to the message queue after the event for pressing that same button (2).
This execution violates causal ordering and results in pressing an non-existing button.

To keep causal order consistent between variants, Sinatra uses the latest sinatra_id
as a logical clock sent with each event from the leader to the follower. Adding new DOM
elements results in generating a new sinatra_id. When receiving an event, the follower
checks the event’s sinatra_id against the follower’s latest sinatra_id. If the values do not
match, the follower simply postpones processing the event by adding it to the end of the
queue with timeout(0), as explained in Figure 1. Sinatra does the same for all events,
including XHR requests.

Matching timers. The follower never registers timers and XML HTTP Requests with the
browser. Instead, the follower executes the closures registered with each handler in the order
that the leader issues them through the coordinator. However, this creates a problem: How
can the follower distinguish between many different closures? For instance, consider the
example shown in Figure 7. This example installs two closures associated with different
timeouts, one in Line 3 and another in Line 5. When one of these expires and the leader
executes it, how can the follower know which to execute?

Sinatra uses a unique ID to differentiate each closure registered with a timer (Lines 8
and 11 in Figure 7). Given that Sinatra ensures that the follower executes the same event
handlers by the same order as the leader, the IDs always match between variants. Both
variants then keep a table from IDs to closures and delays (Line 3 and Lines 10–11 in
Figure 8). When sending an event about an expired timer, the leader sends the ID of the
closure associated with the timer (Line 12 in Figure 7). The follower then uses the ID to
address its table, get the correct closure, and execute it (Line 22 in Figure 8).
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Promotion/demotion. When the roles of the browsers switch (Phase 3 in Figure 4), Sinatra
uses the information kept on the global structure (Line 2 on Figure 8) to install all event
handlers on the respective DOM elements on the promoted browser, and removes them on
the demoted browser. Sinatra also cancels all the timers on the demoted browser, and
installs them on the promoted browser (with the original timeout value). Because Sinatra
does not track how much time passed since each timer was installed, this approach may cause
timers to expire after longer than needed (2× in the worst case). However, this is correct as
timers in JavaScript guarantee only a minimum amount of time to wait before triggering
the associated closure. Pending XHR at the time of promotion cause the leader to postpone
the swap until the pending requests are completed. During this time, all new requests are
deferred until the follower is fully promoted and eligible to initiate the requests. This leads
to user observable pauses until the pending XHR requests are resolved, which Section 6.6
measures as 86ms on a realistic workload.

Read-only Follower. In the context of MVX we now have two browsers, as shown in
Figure 4. The user interacts with a leader browser, which sends all the non-determinism to
the coordinator process. Then, a follower browser receives the same non-determinism from
the coordinator. This way, Sinatra ensures both leader and follower are always synchronized.

Users can inspect the state of the follower browser, but they cannot modify it because
the follower intercepts all the handlers as described in Section 3.3, but does not install any
event handlers with the browser. Instead, the follower registers events just with Sinatra
(i.e., Line 7 in Figure 5 sets onclick to null, Line 7 in Figure 6 and Line 13 in Figure 7 are
omitted). Also, this approach ensures that the follower executes timer handlers in sync with
the leader, running them only when the leader sends the respective events.

4 Implementation

In this section, we describe the implementation details of Sinatra. Sinatra is implemented
in pure JavaScript, totaling 2013 lines of code. The web APIs leveraged by Sinatra to
intercept user and system generated events are compatible with the most recent versions
popular browsers, such as Google Chrome, Mozilla Firefox, Apple Safari, and others. Sinatra
works out of the box for most browsers, without requiring external packages, tools, or plugins.

4.1 Coordinator and Protocol
The coordinator process enables communication between both browsers, which is at the core
of Sinatra’s approach to MVX, and keeps a log of JavaScript events during Phase 1, as
shown in Figure 4. We implemented the coordinator process using node.js [3], so it executes
in its own separate (headless) process without a browser. We use the SocketIO [4] JavaScript
library to enable bi-directional communication between the coordinator and each browser.

The initialization protocol for Sinatra is quite simple. First, the coordinator should be
executing before any browser is launched. On browser launch, Sinatra starts by connecting
to the coordinator using a pre-configured address and port, and sends a message. The
coordinator replies with the role of this browser, which is leader for the first browser and
follower for the second.

Upon learning its role, a leader browser generates the list of random numbers mentioned
in Section 3.4, sends it to the coordinator, and starts sending all events from that point
on. A follower browser, conversely, waits for the coordinator to send the list of random
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numbers, followed by the events that were kept during the leader’s execution. At this point,
the coordinator informs the follower that it is synchronized, and MVX starts. During MVX,
the coordinator sends each event, received from the leader, to the follower as it is received.

Given that communication is bidirectional, the coordinator does not have to establish
new channels when promoting the follower/demoting the leader. Instead, each browser
simply changes roles and execution continues in MVX, but in the opposite direction. The
promotion/demotion event starts from the leader (outdated browser), when the user presses
a button that Sinatra injects at the top of the page. Together with a special promotion/de-
motion message, Sinatra also sends the list of pending timers that were cancelled and their
timeouts, as described in Section 3.5.

4.2 Serializing/Deserializing Events and Bubbling
When the underlying JavaScript program executes an event handler on the leader, Sinatra’s
code is first called with the event. First, Sinatra gets the name of the event, (e.g.,
defined as argument evType in Line 2 of Figure 6). Second, Sinatra gets the ID of
the target element – the element that triggered the change (e.g., defined as argument
element.sinatra_id in Line 3 of Figure 6). As explained in Section 3.5, Sinatra ensures
that all elements have a unique ID. Finally, Sinatra creates a JavaScript object to hold a
copy of the event object, and populates it with all the fields in the event object, which
include the coordinates of mouse events, which key was pressed that triggered the event, and
other relevant data.

At this point, Sinatra can send the JavaScript object to the coordinator. The SocketIO
implementation automatically turns the JavaScript object into its JSON representation [15]
through function JSON.stringify on send, and back into a JavaScript object using function
JSON.parse. The coordinator simply keeps a list of tuples (name, element ID, event) received
from the leader. Sending this list to the follower, when it becomes available, requires another
round of serializing to JSON by the coordinator, and deserializing back into JavaScript
objects by the follower.

An important note is that Sinatra feeds the deserialized event directly into each
handler in the follower, as shown in Line 21 of Figure 8. Sinatra does not create/trigger
a new synthetic browser event, as some record-replay systems for JavaScript do through
DOMnode.fireEvent [39]. This design decision simplifies handling event bubbling, when many
handlers trigger for a single event (e.g., when a child DOM element has a different handler
for the same event as its parent). Instead, Sinatra simply captures the order in which the
leader executes the event handlers, and their respective targets; and then calls the same
handlers by the same order in the follower. The alternative of creating synthetic events
has well-known corner-cases that require special consideration. Furthermore, Sinatra can
handle browser updates that change the bubbling behavior.

4.3 Stateful DOM Elements and Text Selection
DOM elements, such as radio buttons, check boxes, and text boxes, keep internal state. For
instance, when the user selects a check box, the state of that check box changes (it is now
selected). Updating the state does not execute any JavaScript handler, which means that
Sinatra cannot intercept it directly. Fortunately, there are only a limited number of such
elements, and Sinatra handles them as a special case by installing its own event handler
associated with the change event, even when there is no application handler. The event
handler simply captures the updated state of the DOM element, which allows the follower to
remain synchronized with the execution on the leader.
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Another source of state, and non-determinism, is the text selected by the user. JavaScript
can access and manipulate the current text selection, based on a range of characters on a
text element (start and end). To detect when the text selection changes, the leader listens
for left mouse button releases, and SHIFT key releases. At that point, Sinatra can obtain
the current text selection (if any), create a JavaScript object that captures the start and
span of the selection, and send it to the coordinator. On the follower side, Sinatra uses the
information received to select the same text.

5 Practical Considerations and Limitations

The main design goal of Sinatra is to remove all barriers to instantaneous and stateful
browser updates, so that users can enjoy automatic browser updates without even noticing
them. Another important design goal is to be applicable to all browsers by targeting
JavaScript’s execution model. This design choice leaves out of scope state maintained inside
the browser itself, such as Websockets. For instance, the recent WebRTC standard allows
for real-time audio-visual communication, started from JavaScript but implemented inside
the browser [63]. Of course, by its design goals, Sinatra does not support such features
implemented internally by browsers.

We argue that Sinatra is a practical approach in its current form. Sinatra deals
with the browser state that is the most complex and hard to migrate: the JavaScript
engine. State-of-the-art DSU approaches excel at dealing with the remaining state inside the
browser [24, 36], which would require browser modifications. Perhaps browser vendors can
provide an API to migrate open connections and other browser state. Finding such state,
and how to migrate it, is exciting future work that is out-of-scope for Sinatra.

Still, Sinatra can deal with pages that hold internal browser state in three possible ways.
First, simply reload them. In the WebRTC example, this means that the video-conference
connection would drop and reconnect, which is a relatively common event that users tolerate.
Second, wait until all such pages are closed and then update the browser. Third, list the
unsupported pages and ask users if they accept reloading them.

The current prototype of Sinatra requires two external components: the proxy and the
coordinator. We believe that these components can be implemented as plugins to popular
browsers [40, 22], and present them here as separate components to highlight the fact that
Sinatra works on unmodified browsers.

Other limitations. The main design goal of Sinatra is to allow instantaneous and stateful
browser updates. As such, we designed Sinatra under the assumption that only one user
interacts with each JavaScript program, and that each JavaScript program does not execute
for a long time. All these assumptions break for server-side JavaScript applications written
in node.js [3]: many users interact with each JavaScript program, and each program executes
for a long time. Even though Sinatra can be applied to such programs, to update the
node.js virtual machine, this is not feasible, as such applications handler numerous events
within a short time span and result in very large log files. This is outside of the scope of
Sinatra.

The current version of Sinatra does not handle persistent state created through
Window.localStorage [62]. Our evaluation ensures that the persistent state is
empty before each run. Supporting persistent state is straightforward: function
Object.keys(localStorate) can iterate over all the persistent state at the start of ex-
ecution, and Sinatra can send that to the follower to ensure the same initial persistent
state.
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Sinatra does not support the Web Workers (WW) API [61], which introduces multi-
threading. However, each WW thread executes its own event loop (Figure 1 shows one
event loop, each WW has its own event loop), and WWs can only communicate through
sending/receiving messages or through a shared ArrayBuffer object. Supporting WW
requires capturing the total-order of messages sent between different threads, which can be
accomplished through Lamport clocks [33, 27, 43, 58]. We plan to add support for WW in
future versions of Sinatra.

6 Experimental Evaluation

In this section, we evaluate the feasibility of using Sinatra to deploy browser updates in
practice, by measring the overhead it introduces in terms of perceived latency by the user,
and extra memory needed by the user’s computer. We also evaluate Sinatra’s performance
as an MVX tool to enable future research. In that regard, we pose the following research
questions (RQs):

RQ1: Is the latency added by Sinatra noticeable by the user?
RQ2: What is the average size of the log that Sinatra keeps?
RQ3: How does the size of the log that Sinatra keeps grow with user interaction?
RQ4: How long does Sinatra take to perform a browser update?
RQ5: How much resources does Sinatra require to support XHR on realistic pages?
RQ6: What is the latency when Sinatra is used as a JavaScript MVX system?
RQ7: Can Sinatra be realistically used with modern pages that use complex JavaScript?

We used two versions of two popular internet browsers, Mozilla Firefox versions 82.0 and
83.0, and Google Chrome versions 88.0.4323.150 and 89.0.4389.72. Unless when using
updates, both leader and follower used the lowest version of each browser. The experimental
evaluation took place in a modern desktop computer running Ubuntu Linux 20.04 LTS 64bit,
with an Intel(R) Core(TM) i7-9700K CPU 3.60GHz and 32GB of RAM.

6.1 Applications and Workloads
We evaluated Sinatra with the 4 JavaScript applications (describe below). Each application
requires user interaction, using the keyboard and/or mouse. We automated such interaction
using the tool Atbswp [2] to record mouse and keyboard interactions – workloads – for each
application, and then replay them. Atbswp records mouse and keyboard interactions and
writes an executable Python script that replays those events using the library pyautogui [56].
We now describe each program, and the workload we used:

nicEdit [31] uses JavaScript to add a rich-text editing toolbar to an HTML div element.
The toolbar applies styles (e.g., bold, italic, underline, font, color, size) to the text selected
via the document.execCommand JavaScript API [29]. nicEdit creates the toolbar dynamically,
using document.createElement to generate buttons and custom screens (e.g., to input the
URL and text of an hyperlink), and attaches DOM0 event listeners to each generated element
(i.e., buttons on the toolbar). nicEdit also creates a textarea element dynamically, where
the user can input text.

The workload for nicEdit is representative of a user editing text. It starts with a pre-
generated text, selects sections of text, and edits each in a different way: making the text bold,
italic; changing the font size, font family (Arial, Helvetica, etc), and font format (heading
and paragraph). The workload also changes the indentation of a paragraph, increasing it
twice and then returning the paragraph back to its original indentation.
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DOMTRIS [52] is a dynamic-HTML based Tetris game that uses JavaScript to implement
the game mechanics: generate random pieces of different sizes, shapes, and colors; intercept
user input; and schedule the movement of each piece inside the Tetris board. DOMTRIS uses
setTimeout to schedule the downwards movement of the current piece, and Math.random to
pick the next piece from the available set of pieces. The player interacts with DOMTRIS
solely via the directional arrows on the keyboard, intercepted via DOM2 event listeners.
Each piece is created dynamically with document.createElement.

We automated a Tetris game that drops each piece (without rotating it) on the center,
extreme left, and extreme right of the board. As time goes on, the board fills along the center
and edges until there is no space left, at which point the game ends. We understand that this
is not how people play Tetris, but we cannot use Atbswp to automate a valid Tetris game
because DOMTRIS uses a different random seed for every game. Even though Sinatra
could generate a fixed sequence of random values to ensure deterministic replays, doing so
would not show that Sinatra keeps the random values synchronized between browsers.

Painter [49] allows users to draw pictures using the mouse, with various colors and tools
(free-hand brushes, lines, rectangles and circles). The user interacts with Painter using only
the mouse over 3 HTML5 canvas elements [64]: (1) the tool set, (2) the drawing area, and
(3) the color and line-width picker. Painter tracks the mouse position and button click/drag
using DOM2 events, and reacts to different tool and color selections using DOM0 events.
Painter generates a large number of events as it tracks the mouse movements at all times.

Our workload draws a tic-tac-toe board with the brush and line tools, then draws different
shapes of different colors inside the board. This requires selecting different tools, colors, and
brush strokes; effectively interacting with all parts of Painter. Note that Atbswp records the
mouse with coarse precision between mouse clicks, which results in a low fidelity replay. For
instance, when dragging the mouse along a line, Atbswp only captures the mouse position
on the start of the line when the mouse button is pressed, one or two positions along the
line, and the final position when the mouse button is released. We edited the generated
Python script to ensure that the recording replays mouse movements on a pixel-by-pixel
basis, to ensure high fidelity and accurate event counts. Unfortunately, due to pyautogui’s
low performance when replaying a large number of mouse movements, the Painter workload
takes minutes to execute what took us seconds to draw.

Color Game [28] is a game that tests reaction time via the Stroop Effect [54] (delay
in reaction time between congruent and incongruent stimuli). The game shows players
one color name, and requires players to press the button with the same name (out of 4
buttons), but with a different background color (e.g., press the red button with text “Blue”
when the game specifies the color “Blue”). The game keeps track of the score (+5 for
each correct click, −3 otherwise) during a 30 second round. Color Game is a complex
application due to its use of the Angular JS framework [21]. Internally, Angular uses
document.createElement, a combination of DOM0 and DOM2 event handlers, setTimeout,
setInterval, and Math.random.

The workload consists of one run of the game (30 seconds), clicking each of the four color
buttons in arbitrary order after every one second until the game ends.

Google and Twitter are popular pages representative of realistic workloads. The Google
search page uses the JsAction framework [23] and Twitter uses the React framework [38].
The workload simply allows each page to load and then we interact with each manually.
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Table 1 Time required to run event handlers, average of 5 runs with standard deviation.

Program Browser Vanilla Sinatra Overhead
Relative Absolute

nicEdit Firefox 2.600ms ± 0.144 4.496ms ± 0.371 1.729× +1.896ms

Chrome 3.779ms ± 0.265 4.547ms ± 0.208 1.203× +0.768ms

Painter Firefox 0.102ms ± 0.018 1.570ms ± 0.055 15.361× +1.468ms

Chrome 0.114ms ± 0.004 0.982ms ± 0.080 8.639× +0.869ms

DOMTRIS Firefox 0.495ms ± 0.101 1.497ms ± 0.094 3.025× +1.002ms

Chrome 0.250ms ± 0.021 0.757ms ± 0.027 3.025× +0.507ms

Color Game Firefox 1.457ms ± 0.084 1.797ms ± 0.041 1.233× +0.340ms

Chrome 0.663ms ± 0.035 0.761ms ± 0.026 1.148× +0.098ms

6.2 Sinatra Latency

To measure the extra latency added by Sinatra to each event on the leader, we compared
the execution of each program without Sinatra (vanilla) and with Sinatra. The vanilla
version measures the time taken to execute each original event handler during the workload.
The Sinatra version measures the time taken to also execute Sinatra’s logic together with
the original event handler. We measure the runtime of each event handler triggered during
the workload, and report the average time among all the event handler executions observed.
Table 1 shows the results.

This experiment highlights the extra latency that Sinatra adds to each event. Table 1
shows that Sinatra increases the latency by a maximum of +1.896 (nicEdit on Firefox),
from 2.6ms to 4.496ms. The maximum increase in relative terms is for Painter on Firefox, at
15.361×, which translates to a low absolute increase of +1.468ms, from 0.102ms to 1.570ms.
The results answer RQ1: Users cannot notice the extra latency introduced by
Sinatra.

6.3 Log sizes

Sinatra spends the vast majority of the time executing in single-leader mode, as described
in Section 3.2. In this mode, Sinatra stores a log in the coordinator with all the events and
handlers that the (single) leader executed. In this experiment, we executed the workload for
each application in single-leader mode to measure the size of the log on the coordinator, in
number of events and size of the log. Table 2 shows the results.

We can see that the number of events varies widely between different experiments. nicEdit
has the smallest number of events, as styling text results in a low number of button clicks
and text selections. Color Game has twice as many events as DOMTRIS, which involve
user input, timers expiring, and random number generation. Finally, as expected, Painter
generates the largest number of events due to its fine-grained tracking of mouse events. In
terms of absolute log size, we can see that all logs are below 5.4MB. The results of this
experiment allow to answer RQ2: Sinatra requires a modest amount of memory to
store the log, below 5.4MB per page. This result shows the practical applicability of
Sinatra, given that average modern computers measure memory in tens of GB.
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Table 2 Log sizes in single-leader mode, average of 5 runs with standard deviation.

Program Browser # of events Log size (bytes)

nicEdit Firefox 278 ± 0.0 142, 717 ± 0
Chrome 286 ± 0.0 122, 197 ± 4

Painter Firefox 2, 077 ± 2.0 5, 305, 731 ± 5, 056
Chrome 2, 049 ± 1.3 4, 201, 712 ± 2, 708

DOMTRIS Firefox 683 ± 0.4 980, 094 ± 46
Chrome 682 ± 0.0 851, 230 ± 9

Color Game Firefox 1, 030 ± 8.7 1, 533, 970 ± 25, 632
Chrome 744 ± 4.9 949, 111 ± 12, 141

6.4 Sinatra scalability

User interactions with websites may differ in length of time and number of events triggered.
To measure how Sinatra behaves with different lengths of interaction, we designed an
experiment that uses 3 workloads for each application – small, medium, and large – modified
as follows.

nicEdit. Repeat the experiment N times, each time performing the same various text changes
that have been described previously. Small: N = 2. Medium: N = 4. Large: N = 6.

DOMTRIS. Move Tetris pieces to one, two, or three sides of the board. Small: Left side
only. Medium: Left and right sides. Large: Left, right, and center.

Painter. Repeat the drawing N times, pressing the “Clear” button (which clears the canvas)
in between. Small: N = 2. Medium: N = 4. Large: N = 6.

Color Game. Play a game N times, restarting it at the end of each 30 second run by pressing
the “Restart” button. Small: N = 1. Medium: N = 3. Large: N = 5.

We repeated the experiment for each size, in single-leader mode, and we measured the
duration (seconds), the total number of events in the log (thousands), the size of the log
(MB), and the bandwidth needed to send all the events (KB/s). The bandwidth is computed
from the duration and the size of the log, and intended to show how much the log grows as
the user keeps interacting with a page over time. Table 3 shows the results.

For most experiments, the bandwidth remains roughly constant even as the length of
interaction increases, which is to be expected. Color Game is the notable exception, in which
the bandwidth increases with the length (and intensity) of user interaction. We believe
this is due to internal AngularJS behavior that: (1) never cancels timers with the browser,
simply executes a test to return from cancelled timers, which results in more timers expiring
as the game is played again and again; and (2) installs hover handlers for all elements,
which call Math.random and result in more handlers executing as the experiment moves the
mouse to the “Replay” button and back to the playing area. Over time, this results in Color
Game generating the largest log files, which is understandable as Color Game is a game that
requires intense user interaction. Painter generates large log files because it targets all the
mouse movements with a fine level of detail (pixel by pixel, as discussed above). Overall, the
bandwidth stays under 253KB/s, which is acceptable.

We note that the original Painter interaction took about 20sec, the runtimes shown in
Table 3 are artificially inflated by the slow speed of pyautogui. The original bandwidth
would be 1MB/s, which is acceptable for applications that track the mouse with fine detail.
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Table 3 Duration, number of events, log size, and bandwidth needed for growing workloads. S
means small, M means medium, and L means large. FF means Firefox, and Chr means Chrome.
Average of 5 runs.

nicEdit DOMTRIS Painter Color Game
S M L S M L S M L S M L

Duration FF 51 85 119 53 73 91 466 914 1, 364 42 122 202
(sec) Chr 51 85 119 53 73 90 464 921 1, 366 43 122 202

# of evts FF 0.46 0.82 1.18 0.47 0.64 0.63 4.12 8.36 12.14 1.81 9.24 22.53
×1000 Chr 0.48 0.86 1.24 0.47 0.47 0.66 4.09 8.17 12.24 1.76 8.73 21.01

Size FF 0.26 0.48 0.71 0.67 0.94 1.16 10.56 21.46 31.15 3.05 19.51 50.97
(MB) Chr 0.22 0.42 0.61 0.58 0.83 1.00 8.40 16.78 25.16 2.59 16.15 41.25

Bandwidth FF 5.0 5.7 6.0 12.7 12.8 12.8 22.7 23.5 22.8 71.7 159.6 252.3
(KB/s) Chr 4.3 4.9 5.1 11.0 11.4 11.0 18.1 18.2 18.4 60.9 132.0 204.1

The results of this experiment provide an answer to RQ3: Sinatra logs grow at a rate
of 253KB/s as the user interacts with a page. This result is acceptable, as mouse-
based user interactions are short and the bandwidth is not a bottle-neck for inter-process
communication. We note that the result is much smaller for all the other cases.

6.5 Browser updates with Sinatra
Sinatra can be used to deploy a browser update without incurring any loss of (JavaScript)
state on the pages opened by the running browser. Such updates involve: (1) transferring
the JavaScript state to the updated browser, running as follower, by processing the log it
receives from the coordinator; and (2) promoting the follower to be the new leader. This
section describes two experiments, one for each of the steps.

6.5.1 Log processing time
This experiment measures the time that the updated browser, running as follower, takes to
process all the events in the log sent by the coordinator. We executed the workload for each
program (to completion), and then launched the new browser as a follower. On the follower,
we took two measurements: (1) the time taken since the page is loaded until the follower is
up-to-date with the leader, and (2) the time taken just processing the event log sent by the
coordinator. Note that (1) includes all the Sinatra initialization logic plus (2). Columns
“Process log” and “Start executing” of Table 4 show the results for (2) and (1), respectively.

We can see that processing the log of events is an important portion of the overall time
required to start a follower. Most cases take under 338ms, except Color Game. Color Game
takes much longer to process the events in both browsers. We believe this is due to the
underlying Angular.JS initializing a large number of libraries it uses as dependencies. Color
Game takes longer on Firefox than on Chrome, which we believe is due to Chrome’s higher
performance when executing Angular.JS code.

6.5.2 Time taken to promote follower
This experiment measures how long it takes to promote the follower to be the new leader
(and demote the leader to become a follower) once the follower is up-to-date (i.e., after the
follower processes all events sent by the coordinator). The experiment uses two browsers:
B1 as the initial leader, and B2 as the initial follower. We execute half the workload by
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Table 4 Time from launching a follower until its state is up-to-date, time to promote, and
round-trip time (RTT) between the leader triggering an event and receiving an acknowledgement
from the follower for that event. Average of 5 runs with standard deviation.

Program Browser Process log Start executing Promote Round-trip-time
(ms) (ms) (ms) (ms)

nicEdit Firefox 75 ± 6 168 ± 7 8.4 ± 2.3 13.56 ± 0.51
Chrome 138 ± 7 277 ± 43 8.0 ± 2.0 19.77 ± 2.50

Painter Firefox 338 ± 56 658 ± 111 6.7 ± 2.4 4.08 ± 0.05
Chrome 491 ± 23 691 ± 13 4.6 ± 1.6 6.47 ± 1.51

DOMTRIS Firefox 147 ± 19 420 ± 50 6.6 ± 2.2 32.61 ± 9.10
Chrome 248 ± 87 438 ± 43 3.8 ± 0.8 26.71 ± 0.09

Color Game Firefox 1, 067 ± 103 1, 435 ± 129 7.2 ± 2.9 19.03 ± 1.29
Chrome 704 ± 52 1, 180 ± 59 4.0 ± 2.0 17.15 ± 0.49

Table 5 Latency observed by Sinatra when contacting a server via XHR with a fixed latency,
and time require to change roles between variants. Average of 5 runs with standard deviation.

XHR Latency (ms) Browser Observed Latency (ms) Promote (ms)
0 Firefox 7.12 ± 0.34 12.75 ± 1.30

Chrome 6.60 ± 0.34 11.00 ± 3.08
50 Firefox 56.42 ± 0.42 52.50 ± 2.69

Chrome 57.27 ± 0.32 56.75 ± 5.07
100 Firefox 107.42 ± 1.13 102.50 ± 1.66

Chrome 108.84 ± 1.14 111.00 ± 6.78
1000 Firefox 1, 008.25 ± 0.92 1, 006.00 ± 6.20

Chrome 1, 009.74 ± 2.18 1, 012.25 ± 9.44

interacting with B1, then switch their roles, then finish the workload by interacting with B2.
We checked visually that the experiment behaves as expected, and measure the time taken
since switching the roles of each browser. Column “Promote” on Table 4 shows the results.
We can see that all promotions happen under 10ms.

6.5.3 Time to perform an update
Putting together Sections 6.5.1 and 6.5.2 allows us to estimate the minimum time required to
perform an update. Even though it may take a follower browser as long as 1.435 seconds to
synchronize its state with the leader, this process takes place in the background and does not
cause the user to stop interacting with the (leader) browser. Then, once the follower’s state
is up-to-date, the promote/demote process takes less than 10ms, which humans perceive
as instantaneous. These two experiments also allow us to answer RQ4: Sinatra requires
an imperceptible pause (10ms) to update a running browser, and requires less
than 1.5 seconds to prepare that update in the background since launching the
updated browser.

6.6 XML HTTP Request support
We evaluate Sinatra’s support for XML HTTP Request (XHR) with two experiments. First,
we designed an experiment in which a leader and a follower perform 100 XHR requests in
sequence to a local server that waits a certain amount of time (0ms, 50ms, 100ms, and 1s)
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before sending back 100 bytes. On the 50th request, we swap the roles immediately after
performing an XHR request, to force Sinatra to postpone the role swap as described in
Section 3.3. We measure two things: (1) the latency observed by the leader, and (2) the time
required to swap the roles. The results, presented on Table 5, show that Sinatra introduces
little extra latency on top of the maximum XHR latency observed. Note that a latency of
100ms is not noticeable by the user.

In our second experiment, we captured all the XHR traffic during a period of 14h on
a page that receive very frequent updates – the twitter feeds the local traffic and weather
channel1 – on both Chrome and Firefox. Then, we replay those requests using Sinatra
and check the total log size needed. In this experiment, we measured an average number of
requests of 5, 676 for (1), 27, 022 for (2); and an average log size under 6MB for (1), and under
36MB for (2). The overall average latency we observed was 86ms. These experiments allow us
to answer RQ5: Sinatra supports realistic XHR with modest storage requirements
(under 36MB/14h), and introduces an imperceptible pause due to pending XHR
(under 100ms).

6.7 Using Sinatra as an MVX system
At its core, Sinatra is an MVX system targeting JavaScript. In this role, we are interested
in measuring the latency between an event being triggered on the leader, and that same event
being visible on the follower. We designed an experiment that measures the Round-Trip Time
(RTT) of each event by sending an acknowledgement from the follower, for each event received,
back to the leader, through the coordinator. The RTT provides a reasonable estimate of the
leader-follower latency. This experiment runs the workloads for all the applications while
measuring the RTT. Table 4 shows the results.

In all cases, the RTT is under 33ms, which indicates a leader-follower latency of half the
RTT, around 17ms. The results from this experiment answer RQ6: Used as an MVX
system, Sinatra delivers events to the follower in 10ms after the leader.

6.8 Using Sinatra on realistic webpages
To test whether Sinatra can be applied to pages that represent a realistic modern workload,
we applied it to the Google search page and the Twitter home page (after login, showing a
feed of tweets). We downloaded all the resources used by each page in advance, including
XHR requests, to be able to observe the same execution reliably. We then modified the
downloaded pages to add the required Sinatra headers, as explained in Section 3 and on
Figure 2. We used Google Chrome for this experiment, and repeated each experiment 10
times. We measure the time to load each page by adding a closure with timeout(0) that
readds itself, and measuring the time between each execution. Initially, the time between
executions is high as the event-loop is busy loading the page. We measured an idle event-loop
imposing a time between executions below 6ms. When we observe 5 executions below 6ms,
we consider the page loaded.

Loading Google and Twitter, takes 267 ± 61ms and 2891 ± 321ms, respectively. Sinatra
processes a total of a total of 163±2 events in 431±85ms and 4583±37 events in 4234±451ms,
respectively. The overhead is 1.61 for Google, adding about 100ms; and 1.46 for Twitter,
adding about 1sec.

1 https://twitter.com/TotalTrafficCHI

https://twitter.com/TotalTrafficCHI
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Once loaded, the pages are fully functional and allow for user interaction. In MVX
mode, the interaction on the leader is replicated on the follower without any noticeable delay,
confirming that the results in previous experiments generalize to larger pages. Furthermore,
we modified our local HTTP server to allow Google XHR traffic to go through, which enabled
the search autocomplete feature as the user types to work correctly on the leader, being
then replicated on the follower by Sinatra. The results from this experiment answer RQ7:
Sinatra can indeed be used on modern pages with sophisticated JavaScript that
generate thousands of events with no loss of functionality and modest overhead.

Threats to validity. Despite our best efforts, the evaluation in this document still has some
threats to validity: (1) the websites we tested may not be representative of common websites,
(2) the browsers/versions used may not be representative of popular browsers, (3) our results
may be affected by bugs in Sinatra, and (4) using Sinatra on other websites may be
affected by bugs in Sinatra.

7 Related Work

The problem of Dynamic Software Updating (DSU) has been a focus of past research, resulting
in DSU systems for programs written in popular languages such as C [11, 24, 17, 18, 19]
and Java [47, 55, 65, 66, 30, 45]. Sinatra differs from these systems in two important ways.
First, Sinatra updates the execution environment and not the program running on that
environment. For instance, DSU systems for Java do not support updating the underlying
Java Virtual Machine while running the same program, which would be the closest to the
goal of Sinatra. In fact, to the best of our knowledge, Sinatra is the first such DSU system
outside of the Smalltalk community [20, 9] to target the execution environment specifically.
Second, DSU systems typically require modifications to the programs being updated to
support stopping the program in one version and resuming it in the next, and to express how
to transform the state in the old program to an equivalent representation that is compatible
with the updated code. In contrast, Sinatra works on unmodified closed-source commercial
internet browsers. Instead of migrating the state directly, Sinatra launches the new browser
as a separate process and migrates the state for each page individually. The only state kept
outside of Sinatra is persistent HTTP connections, which Sinatra’s proxy keeps open
during updates.

Sinatra uses Multi-Version eXecution (MVX) to synchronize the old and new versions
of the updated browser. MVX has been used mostly in programs written in C/C++ by
intercepting and synchronizing system-calls between processes. The main goal of MVX are:
(1) to increase security [32, 13, 59], detecting divergences in potentially suspect processes;
(2) to increase reliability [27, 8, 34, 37, 51], tolerating faults in one process by using the
other processes; and (3) availability [26, 44, 48], by performing updates on a forked process
and terminating it when updates fail, without any disruption. In fact, Mvedsua [44] is
the most similar MVX system to Sinatra, given that it also combines MVX with DSU
and allows users to build confidence on the validity of the update by executing both old
and new versions for a period of time. However, Mvedsua targets C programs updated via
Kitsune [24], intercepts system calls, requires modifications to the programs being updated
and machine-parseable descriptions of the update-induced divergences. Sinatra requires
much less developer effort, which can be fully automated using an HTTP proxy.

Record-Replay (RR) can be described as “offline Multi-Version eXecution”. It operates
in two phases, typically using two different (automatically generated) programs. First, it
records all non-determinism observed during an execution in a log file. Then, it uses that
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log file to replay the same execution over the same program. By contrast, MVX records
each non-deterministic datum in one process and replays it immediately on another process,
thus keeping the state on both processes perfectly synchronized. MVX also needs to account
for differences in execution speed that may result in a replayer overtaking the recorder and
reaching a program point that requires non-determinism before that data is available. For
this reason, RR approaches require the log to be complete before being able to replay it.
Furthermore, RR approaches do not allow a replayer to become a recorder as they target a
different problem: Accurate replication of bugs observed in production during development.

Techniques for RR target programs written in multiple popular programming languages:
C [42], Java [7], and even web browsers [39, 10, 5, 25, 57]. Most techniques require a modified
web browser. Dolos [10] and Jardis [5] use modified implementations of browser components
(Webkit and ChakraCore) to record bugs in production and replay them in development and
provide developers with time-travel debugging capabilities, respectively. Jardis focuses on
node.js applications [3]. ReJS [57] also provides support for time-travelling debugging, but
for any JavaScript code in general, through a modified version of Microsoft’s ChakraCore
JavaScript engine that performs heap checkpoints via a modified garbage-collector.

Working in pure JavaScript, Mugshot [39] is an RR system that demonstrates the
feasibility of capturing all the needed non-determinism to ensure an accurate replay without
the need for a modified web browser. Mugshot influenced the design of Sinatra by listing all
the sources of non-determinism that need to be handled to capture all interactions between
the environment and a JavaScript program executing in a browser. However, Mugshot
relies on event listeners on the topmost DOM element (i.e., window) to intercept all events,
and replays them through synthetic browser events (i.e., DOMElement.fireEvent). As a
result, Mugshot has to deal with browser-specific behavior that impacts event bubbling
and event ordering. Sinatra’s approach of intercepting each handler individually avoids
such complexity and naturally supports any browser without special handling. Similarly to
Sinatra, X-Check [25] also works in pure JavaScript and works on different browsers (all
other techniques require the same browser and version to replay the recorded logs). X-Check
records logs on one browser and replays them on different browsers, with the goal of detecting
cross-browser differences that developers can then replicate and address.

The closest system to Sinatra is Cocktail [67], an MVX system for web browsers with
the goal of improving the security of internet browsers by feeding input to many different
browsers and voting on the output. Cocktail can thus detect and defeat attacks that target a
particular browser, or a particular browser version. Despite the very different goal, there are
more important differences between Sinatra and Cocktail. First, Cocktail is implemented
as a browser plugin and Sinatra is implemented in pure JavaScript. As such, Sinatra can
be directly applied to any web browser, but Cocktail requires developer effort to write a new
plugin for that browser. Also, Cocktail’s plugin can intercept asynchronous non-determinism,
such as calls to Math.random, and block until all browsers reach the same point. This is not
possible in JavaScript’s execution model, as described in Section 2.3. Second, Cocktail relies
on an UI component to intercept mouse and keyboard events before they reach the browser.
Sinatra captures the events at a finer level of detail, ensuring that all browsers execute the
same JavaScript handlers by the same order, regardless of implementation-specific browser
quirks that may show the same element on different positions in different websites. In fact,
Sinatra can replicate the execution even if the leader and follower have different window
dimensions, which is a limitation of Cocktail.



U. Rumsevicius, S. Venkateshwaran, E. Kidane, and L. Pina 26:25

8 Conclusions and Future Work

This paper presented the design of Sinatra, a system that allows to update internet browsers
without losing any state in the process. Sinatra works fully at the JavaScript level, using
first-class function interception to keep track of all events, and then using MVX to perform
updates on the new version of the browser while the old version keeps providing service. As
a result, Sinatra works on popular, closed-source, commercial internet browsers such as
Google Chrome. Sinatra requires a small amount of JavaScript source changes, performed
to each page opened in the target browser. The changes required are easy to automate with
a sophisticated internet proxy.

This paper also presented an extensive experimental evaluation, where Sinatra is applied
to JavaScript applications with different combinations of features. When not performing an
update, Sinatra imposes low overhead on the execution of event handlers (a max increase of
2.107ms). Also, the state that Sinatra keeps to support future updates grows at a modest
rate of 10.8KB/s (at most) during intense user interaction. If a page remains open performing
XML HTTP Request requests, Sinatra requires a modest 36MB of storage for a 14h run.

Sinatra can perform updates in short order, requiring just 1.5s (at most) to transfer
the state from the old browser to the new browser. While Sinatra transfer the state, the
user keeps interacting with the old browser. Then, to finish the update and allow the user to
interact with the new browser version, Sinatra requires a very short pause in user interaction
of less than 10ms, which is barely noticeable for most users.

Besides its role in browser updates, Sinatra doubles as an MVX tool for JavaScript
applications. The experimental evaluation showed that Sinatra can keep two browsers
synchronized, with an action on one browser taking effect on the other almost instantaneously,
within 19ms.

In the modern internet age, an up-to-date internet browser is the first line of user defense.
Sinatra dramatically lowers the barrier to deploy automatic and fully transparent browser
updates by eliminating any data loss or service interruption associated with such updates.
We strongly believe that Sinatra has the potential to improve the average user’s safety by
making disruptive browser updates a thing of the past.

Future Work. It is possible to use Sinatra to move a page from one browser to another
(e.g., from Mozilla Firefox to Google Chrome). This feature can be valuable to security
conscious users, who can switch browsers as a vulnerability is disclosed. We tested this
feature of Sinatra informally to ensure it works, but did not evaluate it or develop it further.

Sinatra is OS and platform agnostic, and we plan to implement Sinatra on popular
platforms (e.g., Microsoft Windows and Apple OSX) and apply Sinatra to the official
browser in each platform (e.g., Microsoft Edge and Apple Safari).
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