An Efficient Vectorized Hash Table for Batch
Computations

Hesam Shahrokhi &
University of Edinburgh, UK
Amir Shaikhha &

University of Edinburgh, UK

—— Abstract

In recent years, the increasing demand for high-performance analytics on big data has led the
research on batch hash tables. It is shown that this type of hash table can benefit from the
cache locality and multi-threading more than ordinary hash tables. Moreover, the batch design
for hash tables is amenable to using advanced features of modern processors such as prefetching
and SIMD vectorization. While state-of-the-art research and open-source projects on batch hash
tables made efforts to propose improved designs by better usage of mentioned hardware features,
their approaches still do not fully exploit the existing opportunities for performance improvements.
Furthermore, there is a gap for a high-level batch API of such hash tables for wider adoption of these
high-performance data structures. In this paper, we present Vec-HT, a parallel, SIMD-vectorized,
and prefetching-enabled hash table for fast batch processing. To allow developers to fully take
advantage of its performance, we recommend a high-level batch API design. Our experimental
results show the superiority and competitiveness of this approach in comparison with the alternative
implementations and state-of-the-art for the data-intensive workloads of relational join processing,
set operations, and sparse vector processing.

2012 ACM Subject Classification Theory of computation — Data structures design and analysis;
Computer systems organization — Single instruction, multiple data

Keywords and phrases Hash tables, Vectorization, Parallelization, Prefetching

Digital Object Identifier 10.4230/LIPIcs. ECOOP.2023.27

Acknowledgements The authors would like to thank Huawei for their support of the distributed

data management and processing laboratory at the University of Edinburgh.

1 Introduction

Hash tables are one of the most important data structures in programming. They are
widely used in high-performance analytics workloads including database query processing,
sparse linear algebra, graph processing, and computer networks. Besides the great efforts in
algorithmic improvement of hash tables [10, 18, 20], the recent advances in modern processors,
further motivated the research on high-performance hash tables that leverage the hardware
characteristics including parallelization, prefetching, and vectorization.

Previous research [19] has shown that batch operations (e.g., batch lookups) on a hash
table result in higher performance in comparison with ordinary scalar-parameter operations.
This is because of the improved cache locality and the freedom given to the hash table
designer for hand-tuning the code, which is not available when dealing with ordinary scalar-
parameter operations over hash tables. Thus, hash tables with batch operations have gained
more attention; both research [12, 14, 19, 23, 22, 32] and open-source projects [1, 3, 6] have
proposed hash table designs with the support for batch lookups, insertions, and deletions.
© Hesam Shahrokhi and Amir Shaikhha;

37 licensed under Creative Commons License CC-BY 4.0
37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 27; pp. 27:1-27:27

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:hesam.shahrokhi@ed.ac.uk
https://orcid.org/0000-0003-1995-6996
mailto:amir.shaikhha@ed.ac.uk
https://orcid.org/0000-0002-9062-759X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2

An Efficient Vectorized Hash Table for Batch Computations

Table 1 A summary of state-of-the-art batch lookups in hash tables. H: Horizontal Vectorization.

Approach ‘ Parallelization | Prefetching | SIMD Vectorization
Hirola [3], R hashmap [6] O O

DPDK [1] [[] o (H)
Cuckoo++ [23] O o © (H)
Polychroniou et al. [19] [O [

Vec-HT (this paper) ® ® [

The current literature on batch hash tables considers the following hardware features:

Parallelization: The batch of inputs is divided into separate partitions that are processed
in parallel [1, 19].

Prefetching: The memory prefetching feature of processors is used to hide the latency of
frequent memory accesses for a group of elements [1, 2, 9, 23].

Vectorization: The Single Instruction, Multiple Data (SIMD) instructions of the processing
unit are used for faster processing of a vector of inputs [1, 2, 9, 19, 23].

Although the existing approaches made noticeable efforts on improving the performance
of batch hash tables, none of them fully exploits all of the three optimization dimensions
mentioned above (cf. Section 2). The existing approaches for vectorization can be categorized
into two classes (cf. Figure 1): (1) Horizontal Vectorization, where the SIMD instructions
are used for the operations on a single input over multiple hash table entries [1, 9, 23], and
(2) Vertical Vectorization, where the SIMD instructions are used for the operations on an
input batch over single hash table entries [19]. The first approach is not inherently batch
based; it can be applied to ordinary hash tables. By conducting intensive benchmarks,
Polychroniou et al. [19] and Shankar et al. [30] have shown that vertical vectorization
is faster than the horizontal approach. However, prefetching has only been considered
for horizontal vectorization [1, 23], and the only existing implementation of the vertically
vectorized approach [19] does not support prefetching.

This paper makes the following contributions:

We present Vec-HT, the first batch hash table that is fully optimized in all three dimensions;
Vec-HT is a multi-threaded, vertically-vectorized, and prefetching-enabled hash table
that can be used for high-performance data analytics. We explain the architecture and
the high-level batch API of Vec-HT in Section 3.

Previous research has shown that in most high-performance use cases, optimizing the
lookup performance is more important than the other operations (Section 2). Thus, the
focus of this research is on batch lookups. We show the design decisions, the applicable
optimizations, and the way we combine them for efficient batch lookups in Section 4.
We consider several data analytics tasks that can benefit from batch hash tables, such as
hash-join in query processing, set processing, and sparse vector operations (Section 5).
We present the implementation challenges we faced (e.g., memory management and
parallel iteration) and how we addressed them in Section 6.

We experimentally evaluate (Section 7) the performance of our hash table on a set of
micro benchmarks across different use case domains. Our results show that Vec-HT
outperforms the state-of-the-art batch and non-batch hash tables.

H. Shahrokhi and A. Shaikhha

2 Background and Related Work

In this section, we introduce the main concepts and techniques for building high-performance
hash tables while summarizing the previous efforts in this area of research. Table 1 presents
a summary of the state-of-the-art in batch hash tables.! To position the contributions of
this paper, our approach is also appended to the table.

Batch Hash Tables. Batch Hash Tables accept a vector of keys or key/value pairs as their
API arguments and do the operation on the inputs in batch. By taking batch inputs, the
batch hash tables benefit from the cache locality and are also amenable to the use of Single
Instruction, Multiple Data (SIMD), parallelism, and prefetching. The SIMD is a hardware
feature that allows the simultaneous execution of an operation on a vector of values. On
the other hand, prefetching is a hardware feature that allows the program to request future
memory accesses in advance and asynchronous to the other computations. We will cover the
more-detailed definitions of these two concepts later in this section.

Among the open-source projects [1, 3, 6], Hirola [3] presents a fast batch hash table
written in C which is an alternative for dict/set in Python. Similarly, by considering the
fact that most values in the R language are vectors and matrices, R-hashmap|6] presents a
batch hash table for R, which is built over some existing ordinary hash tables in C. These
two libraries are only using the cache-locality of the batch input as a way of performance
improvement. As a more advanced open-source project, DPDK [1] offers a specific-purpose
batch hash table for networking use cases. It is both SIMD-aware and prefetch-enabled.

There is also state-of-the-art research [9, 12, 14, 19, 22, 23, 32] on batch hash tables.
Some of the approaches [12, 14, 32] are only using batch processing to benefit from the
cache locality and prefetching while others [9, 19, 22, 23] use SIMD techniques on a vector of
inputs. Similar to DPDK [1], Horton [9] and Cuckoo++[23] have focused on improving the
performance of batch hash tables by applying SIMD and prefetching techniques to a specific
type of SIMD-aware batch hash table designs called Bucketized Cuckoo Hash Tables (BCHTS).
On the other hand, Polychroniou et al. [19] present a generic design for SIMD-aware batch
hash tables and compare the performance of different design decisions by doing intensive
benchmarks. To answer some of the open questions in vectorized hash tables, [30] conducted
a survey on state-of-the-art and conducted micro-benchmarks to position each work with
respect to the others.

SIMD-Aware Batch Hash Tables. To use SIMD features of a CPU in an operation (logical,
arithmetic, memory, etc.), we first need to construct a vector of operands that fit the CPU
register size. Then, the prepared register could concurrently process the data by using
SIMD instructions. Modern CPUs offer even more advanced SIMD instructions such as
selective load/store and scatter/gathers. Selective load/store makes the parallel optional
load/store from/to a contiguous memory location possible by accepting a mask register.
The gather/scatter operations provide the ability to load/write from/into different parts of
the memory in parallel. At the time of writing this paper, the SIMD scatter is not widely
adopted, and is only provided by specific hardware (e.g., Intel Xeon Phi).

1 Although in the literature the terms batch and vectorized are used interchangeably, for the sake of
consistency, in this paper, we use the term batch to refer to a collection of elements, and vectorized to
refer to SIMD vectors.

27:3

ECOOP 2023

27:4 An Efficient Vectorized Hash Table for Batch Computations

Horizontal Vectorization Vertical Vectorization
Index<Bucketized Entries> Index

0 Lookup Keys Hash of Keys 0 (120 Retrieved Values

1 100 3
Lookup Key Hash of Key 2 55 5 _L
E)—) 3] | 250 | 400 280 6
...................... : iy =
SIMD Co:;arison 5 SIMD s:lecE.oad

v
SIMD Hash Computation

SIMD Operation
Not
Found
Yet

Figure 1 The comparison between horizontal and vertical vectorization.

i

> v
SIMD Gather SIMD Comparison

As mentioned earlier, SIMD techniques can be used to improve the performance of batch
hash tables. In high-level, the usage of SIMD in hash tables could be categorized in two: (1)
Horizontal Vectorization and (2) Vertical Vectorization. A simplified visualization of these
two approaches is depicted in Figure 1.

In horizontal vectorization, each cell of the hash-table entries array is bucketed into N
inner cells. Then, while doing a lookup on the hash table and after computing the hash
value, using the SIMD logical operations, the lookup algorithm can concurrently check the
value of N bucket keys. This is much faster than having only one key per cell. By using
this approach the hash table load factor can be improved without increasing the average
lookup time. Regardless of the mentioned benefits of horizontal vectorization, it is wasteful
if we expect to look up fewer than N buckets on average per probing key [19]. One of the
famous open-addressing collision resolution algorithms in hash tables is Cuckoo Hashing [18].
A BCHT, as defined earlier, is actually the horizontally-vectorized version of cuckoo hashing.
Many of the existing approaches on SIMD-aware batch hash tables [9, 22, 23] are in fact
the improved version of BCHTs. Besides presenting a BCHT approach, Polychroniou et
al. [19] also proposed and compared other horizontally-vectorized hash tables based on double
hashing and linear probing hashing schemes.

Vertical vectorization [19] is a more generalizable but more complex approach to benefit
from SIMD in batch hash tables. It is more generalizable because it does not change the inner
structure of a hash table. However, it is more complex as it needs the collision-resolution
algorithm to be translated into SIMD operations. Contrary to horizontal vectorization, in
this approach, the input of a lookup operation must be a vector of probing keys. In each
vectorized lookup, the vertical approach will pass a vector (of register size) of inputs through
the lookup process and by using mask registers and advanced SIMD features (like SIMD
permutations) probe those keys at the same time. When the status of a key lookup is
determined (found/not-found), its related CPU-register lane will be assigned to the next key

H. Shahrokhi and A. Shaikhha

in the batch of keys that are waiting to be processed. By conducting different experiments,
Polychroniou et al. [19] and Shankar et al. [30] have shown that vertical vectorization yields
higher performance than the horizontal approach. In vertical vectorization, since the hashing
scheme must be translated into SIMD code, we need to use gathers and scatters to read/write
from/to different entries of a hash table. As mentioned earlier, the scatter instruction is only
available in limited types of processors hence the vertically-vectorized insertions can only be
implemented on specific hardware.

The third category for SIMD-aware batch hash table design is a hybrid approach. However,
the experiments in [30] show that the results of mixing the vectorized and horizontal
vectorization approaches will not further improve the performance.

Besides the SIMD-aware vectorization methods discussed above, SIMD operations can
also be used in the development of hash functions in any hash table [2]. Although this
approach can improve the performance of hashing, it is orthogonal to the scope of this paper.

Prefetching-Enabled Hash Tables. Modern CPUs support hardware and software prefetch-
ing. Prefetching improves the performance of a program by amortizing the costs of memory
access over time (in parallel to running computations).

Hardware prefetching is automatically enabled by the compiler and executed by the CPU
when long and contiguous access to memory (e.g. iteration on a large vector) is requested by
the program. The developer does not have much control over the hardware prefetching. On
the other hand, in software prefetching, the developers can issue on-demand asynchronous
prefetching commands to prefetch their future memory accesses.

In hash tables, regardless of the hashing scheme, accessing entries is based on the value
of the computed hash for each provided key. This is an example of random access to a
non-contiguous memory that can be improved by using the software prefetching. To have an
effective prefetching in hash tables we need (1) a batch of operations and (2) a large hash
table. The batch of operations provides enough computational tasks for the CPU while the
prefetching instructions for future memory accesses are being processed. Also, if the hash
table is not large enough, its content can entirely fit into the CPU cache. This cancels the
benefits of prefetching and only puts its overheads on the CPU.

The effects of using software prefetching in hash tables have been studied in [11, 23, 32].
In the networking community, Scouarnec et al. [23] and Zhou et al. [32] have shown the
effects of using prefetching on network-specific batch hash tables. They proposed different
approaches and improvements in applying prefetching on BCHTs. In the database community,
by proposing two generic techniques of using prefetching, Chen et al. [11] have shown their
impact on the performance of relational hash joins. Among the off-the-shelf open-source hash
tables, we found phmap [5] as the one that provides a prefetch_hash API in its interface.
However, it delegates the responsibility of using this API (and designing a good prefetching
strategy) to the developer who is not necessarily a system-level developer. There exist
challenges in combining software prefetching with vectorization in the context of hash tables.
We cover these challenges and their related design decisions in Section 4.3.

Parallel (Concurrent) Hash Tables. There is a long tail of research and open-source projects
on parallel (i.e., multi-threaded) hash tables. The state-of-the-art systems [5, 7, 13, 15] have
tried to enable concurrent insertion, lookup, and deletion on hash tables. These approaches
can generally be divided into two categories: (1) the approaches that resolve the contentions
using lock-based mechanisms, and (2) the lock-free hash tables that use atomic instructions,
such as Compare-and-Swap (CAS) as their synchronization mechanism. Although these

27:5

ECOOP 2023

27:6

An Efficient Vectorized Hash Table for Batch Computations

parallel hash tables offer better performance in comparison with the sequential hash tables,
they are not fully exploiting the advanced features of modern hardware such as SIMD
awareness and prefetching. This is due to the lack of a batch API.

Although most of the batch hash tables offer batch insertions or deletions, previous
research has shown that in most of the high-performance use cases (e.g. join processing
in relational algebra, vector/tensor processing in linear algebra, and packet processing in
computer networks), the amortized cost of insertions is negligible in comparison with the
overall cost of highly frequent (or even endless and continuous) lookups [9]. Thus, in this
paper, we only consider optimizing the lookup performance.

3 Architecture

In this section, we discuss the structure of Vec-HT and its high-level API.

3.1 Hash-Table Structure

The hash table consists of an array of bucket objects each of which contains a key (32 bits)
and its related value (32 bits). As the hashing scheme, we use open addressing with linear
probing (similar to [19]). We also use multiplicative hashing as our hash function.

Generally and without considering any optimization, to look up a key in the hash table,
we first compute the hash of the key and then find its corresponding bucket in the array. If
the key of that bucket is empty (the value of the empty key is defined during hash table
initialization) we return the empty key which means “not found”. Otherwise, we check if the
key in the bucket equals the probing key or not. If it is, we return the value, otherwise, we
continue checking the next buckets to find an equal key or an empty bucket.?

3.2 High-Level API

To make a batch hash table more accessible to developers, we expose an easy-to-understand
API. The Vec-HT namespace consists of three classes. A batch hash table class (1p_map)
that is currently designed by having the open-addressing linear-probing hashing scheme
(Figure 2), a batch-iterator class (iter_batch) that defines the data type containing the
result of batch lookup, which also supports parallel iterations (Figure 3), and the bucket
class (cf. Secion 3.1) that is related to each entry of the hash table.

Batch Hash Table Class. The constructor of 1p_map takes three arguments. The first one
(size) is for setting the maximum number of elements that will be inserted into the hash
table. The second parameter sets the group size for the internal prefetching. And the third
parameter (threads), determines the number of threads (cores when the Hyper-Threading
is disabled) to enable concurrent batch processing.

The methods exposed by the API of 1p_map are categorized into two sets: non-batch
and batch methods. The non-batch methods include insert, find that are similar to
the standard hash table interfaces such as std: :unordered_map. These methods give the
developers the freedom of using Vec-HT without batch processing.

There are five batch-based methods. The method insert_batch inserts an array of keys
and their related values into the hash table. The remaining methods are related to vectorized
lookup which is the main focus of this work (cf. Section 2). The method find_batch accepts

2 Currently, due to the restrictions imposed by SIMD-vectorization, Vec-HT only supports 32-bit integer
keys (similar to [1, 19, 23]).

H. Shahrokhi and A. Shaikhha

namespace vec_ht

{

using K = uint32_t;

using V = uint32_t;

using P = uint32_t;

// ---- Linear-Probing Batch Hash Table Class -----------

class lp_map

{
//

public:
lp_map (size_t size, size_t group_size=64, size_t threads=1);
VY ==== Non=Boteh APIg§ ===s=c====sssc====sss====s====
inline bool insert (const K& key, const V& value);
inline bucket* find (const K& key);
Sy ==== Bateh APIs ==================================
inline size_t insert_batch (uint32_t* keys, uint32_t* values,
size_t size);
inline size_t find_batch (uint32_t* keys, size_t size,
bool complement, iter_batch* res_it);
inline size_t find_batch_apply (uint32_t* keys, size_t size,
bool complement,
std::function<void (K& key, V& value)>const& f);
inline size_t zip (uint32_t* keys, uint32_t* payloads,
size_t size, bool complement, iter_batch* res_it);
inline size_t zip_apply (uint32_t* keys, uint32_t* payloads,
size_t size, bool complement,
std::function<void (K& key, V& value, P& payload)>const& f);

I

}

Figure 2 High-level API of Vec-HT in C++.

three arguments: (1) an array of keys to look up, (2) the size of that array, (3) a boolean
flag called complement that is used to request for the not-found elements instead of the
successfully-found ones, and (4) an object of a Vec-HT-specific class called iter_batch. The
iter_batch class is responsible for keeping the results of a vectorized lookup and making
the (parallel) iterations over them possible. The other method in 1p_map is zip. Although it
is not a usual API for ordinary hash tables, we found it very useful in the case of batch hash
tables. This method, similar to the find_batch, does a lookup for the provided array of
keys. However, it takes one additional argument; payloads assigns one value to each key in
the keys array. When the method zip is called, the result also contains the related payloads
of the found keys. The iter_batch class can also keep the results of a zip API. We show
how zip can be used in practice in Section 5.

The remaining useful APIs are find_batch_apply and zip_apply. These APIs do the
same job as their related discussed APIs. However, a user can pass their customized lambda
function to be applied on the tuples of key-values (or key-value-payloads) whenever a match
is found. As a result, there is no need to pass a iter_batch object to these APIs since it is

27:7

ECOOP 2023

27:8

An Efficient Vectorized Hash Table for Batch Computations

namespace vec_ht

{
// Container and Iterator Class for find_batch/zip Results
class iter_batch
{
/7 .
public:
iter_batch (size_t max_size, size_t threads,
bool for_zip=false)
Kx* get_keys ();
Vxx get_values ();
Pxx get_payloads ();
inline void foreach
(std::function<void (K& key, V& value)> £f);
inline void foreach
(std::function<void (K& key, V& value, P& payload)> f);
inline void foreach_parallel
(std::function<void (K& key, V& value)> f);
inline void foreach_parallel
(std::function<void (K& key, V& value, P& payload)> f);
e
}

Figure 3 High-level API of batched iterator in C++.

the user’s responsibility to handle the output. These two APIs can improve the performance
of pipelined analytical tasks because they eliminate the need for the materialization of
intermediate results (iter_batch). In other words, using these APIs, the user can fuse the
batch lookups with the following operations in the pipeline. This is especially useful in the
context of pipelined analytical query processing [25, 29, 17].

Batch Iterator Class. The iter_batch class can be constructed by passing (1) an upper
bound on the size of the results, (2) the number of threads (it must be the same as the one in
1p_map), and (3) a boolean that shows if we want to pass this object to a zip or a find_batch
API. By receiving these parameters, the memory needed for the storage of parallel-processed
results will be allocated. Then, the class is ready to be sent to the methods find_batch
or zip in a destination-passing style [26, 31]. The destination-passing style improves the
performance of computational workloads by bringing the memory-allocation overheads out of
the performance-critical part of the workload. The iter_batch class has also two overloads of
foreach. After the execution of find_batch or zip, their relevant foreach method can be
used for a sequential iteration over the results. The foreach method takes a lambda function
that will be applied to each of the stored results in the iter_batch. Similar to the foreach
methods, iter_batch also offers foreach_parallel methods that use multiple threads
to apply the provided lambda function on the stored results. In the foreach_parallel

H. Shahrokhi and A. Shaikhha 27:9

Batch
of keys L | | |

1
Partition [/ Partition [\
of keys h | | | ; of keys h | | | !
wen

A R}

Group
of keys

Group
of keys

Group
of keys

Group
of keys

Freféiching Preféiching Pleféiching

Vector
of keys — o

Vector
of keys'— .

Vector
of keys — 2

Vector
of keys -

s> s ~smp™

Thread 1 Thread N

Figure 4 The architecture of batch lookup in Vec-HT.

template<typename FUNC_TYPE>

inline size_t parallel_dispatcher (uint32_t* keys,
uint32_t* payloads,
size_t size,
bool complement,
FUNC_TYPE func,
iter_batch* res_iter)

Figure 5 The signature of parallel_dispatcher, a function used internally for parallelization.

methods, since they are internally implemented based on tbb: :parallel_for_each [7], the
developer can also use parallel containers such as tbb: :enumerable_thread_specific or
any other off-the-shelf parallel container to handle storing/aggregation of lambda outputs.

4 Design

In this section, we discuss the design decisions behind the optimizations in our approach and
show how they relate to each other. Figure 4 shows the architecture of a batch lookup in
Vec-HT. As it is shown in this Figure, the batch input is partitioned into smaller chunks on
different levels and for different optimization purposes. In this section, these levels of input
partitioning and the rationale behind them will be covered.

4.1 Parallel Processing

To make the most out of the multi-core processor, in case of a batch lookup, we partition the in-
put batch of keys and assign each partition to a thread for parallel batch processing. When the
find_batch or zip methods are called, they call the parallel_dispatcher method internally.
This lower-level method is responsible for managing the threads needed for the computation
and passing them the contextual information. The interface of parallel_dispatcher is
shown in Figure 5.

The parallel_dispatcher method takes six arguments:

the keys that we want to look up in the hash table,

the associated payloads (set to NULL if the caller method is £ind_batch),

the size of the keys,

the complement flag (cf. Section 3.2),

the lambda function that is passed when the user calls find_bath_apply or zip_apply,

ok wbh=

the iter_batch which is passed in case of calling find_batch or zip.

ECOOP 2023

27:10

An Efficient Vectorized Hash Table for Batch Computations

4.2 SIMD-Awareness

In this section, we explain the vertical-vectorization approach for batch lookups at a high
level and refer the interested reader to Polychroniou et al. [19] for more details.

Suppose that a number of W keys can be stored in a CPU register. When the batch
lookup starts, W keys of the input vector will be fetched into the keys register. To load
the input keys, we use the selective load SIMD operation. This operation uses a mask to
select which lanes of the target register must be filled with the new values and which of
them must be set to zero. In the beginning, we define a register (invalid) with all lanes
activated and pass it to the selective load as the mask. This means that we plan to read W
new keys from the input. Then using the SIMD operators, the hash value of all the keys in
keys is computed simultaneously and stored in the hash register. In Vec-HT, as we use a
simple multiplicative hash function, the computation of hash values consists of logical and
arithmetic SIMD operations such as vectorized multiplication and shift.

By having the hash values, we use the SIMD gather operation to retrieve the needed
hash table entries. The gather operation reads multiple memory addresses (stored in a
register) at the same time. Since the value of each computed hash shows the possible offset of
each key in the hash table entries, we apply gather on the address of the hash-table entries
array and the hash register. As a result of executing two gather operations, two registers
for the retrieved keys (tab_keys) and values (tab_vals) will be created.

Next, based on the linear probing algorithm, we check the equality of key in keys and
tab_keys. We do this check using SIMD logical operators. This check can have three
different results for each lane: (1) the key is empty which means that the key is not found in
the table (2) the keys are equal which means the key is found (3) the key is not empty or is
not equal to the given input key and thus it needs further probing in the next rounds. For
the not-found keys, we activate their relevant lanes in invalid register. For the found keys,
we define and activate the relevant lanes in a new register called output. Finally, for the
ones that need further probing, we create a new register called offset, initialize it with 0,
and increment its relevant lanes by 1.

In this phase of the algorithm, we first add out to invalid and store the result in
invalid. We do this since we are finished with both found and not-found keys and we want
to fetch the new keys instead of them in the next round of lookups. Then, by using a static
permutation table, we extract the permutation masks needed to align the active lanes of
invalid and output to one side of the register. These permutation masks will be used in the
SIMD permute operation, which changes the order of lanes in the register using a provided
mask. First, we use the permutation mask of out on out itself and on keys. Now, we are
ready to save the found keys to the target memory (reserved memory in iter_batch) using
a selective store SIMD operation that its mask is the permutated out. The total number
of output keys will also be updated at this stage. It is notable that the original vertical
vectorization [19] uses a buffer to store the results temporarily and spills them to the output
whenever the buffer is full.

After the work on the found keys is finished, we count the active lanes in invalid to know
how many new keys are needed to be fetched. Then, we apply the invalid permutation
mask on keys, hash, and offset to make them ready for the next run. By starting the next
round of lookups, again the new keys will be fetched based on the updated invalid register.
It is important to mention that this time all of the hashes are re-computed and the ones
with inactive lanes in invalid will also be incremented by offset to point to the next entry
in the hash table.

H. Shahrokhi and A. Shaikhha

To return the value of found keys in the table and also their related payloads we need
further considerations. For the hash table values, which are stored in tab_val, we can
permute them using the out permutation mask and store them in their related memory in
batch_iter. Similarly, the payloads can be selectively loaded exactly similar to the new key.
Then they will be passed through the algorithm by similar permutations, and finally will be
stored in the relevant output memory.

If the size of input keys is less than W or in the case of processing the last W keys, the
algorithm switches to a normal scalar (non-SIMD) lookup in the hash table and stores the
result into the batch_iter. This is because there are not enough keys to do a safe and
efficient SIMD lookup.

4.3 Prefetching and Its Adaption Challenges

Vec-HT is a prefetching-enabled vectorized approach; we apply the prefetching on top of
the parallel vertical vectorization. There is a large design space for combining prefetching
and SIMD vectorization. We examined this design space through micro-benchmarking (cf.
Section 7). The important design parameters for this combination are as follows:
Standard vs Group Prefetching: putting the prefetching commands at the beginning
of the main loop of the vertical vectorization is the standard solution for adding prefetching.
We compare it with another approach (Group Prefetching) proposed by Chen et al. [11]
in the context of databases.
Group Size for Group Prefetching: Considering the group prefetching approach, the
selection of the different group sizes might affect the performance of the system.
Optimistic vs Pessimistic Linear Probing: Given that we use linear probing, there
are two choices for prefetching for each key. Optimistic: we consider that the probe hits
the correct location on the first try (or finds the location to be empty) and does not need
to probe further; thus we only prefetch the hashed location. Pessimistic: we consider the
case of not having a hit and thus prefetching the next location(s) as well.
Memoization of Computed Hashes: We need the hash values in two places: (1)
prefetching stage, and (2) vertical vectorization stage. We have the option of memoizing
the hash value in the first stage and reusing/recomputing it in the second stage.
Buffering: In vertical vectorization, we can write the output into an output buffer and
if it is not carefully adapted to the prefetching design, it might result in performance
overheads.

Figure 6 depicts a generic and high-level algorithm for combining prefetching with vertical
vectorization (based on the assumption that we take the group-prefetching approach instead
of standard prefetching, which is a take-away message of micro-benchmarks in Section 7).
In this algorithm, by setting the GROUP_SIZE parameter, we can enable the grouping loop
that partitions the input keys into parts of size GROUP_SIZE and then run the algorithm
on these smaller batches. By having a group of keys as input, before starting the vertical
vectorization, we define a loop over the group keys (prefetching loop). In each iteration of
the prefetching loop, we first compute the hash of W elements using the SIMD approach
mentioned before. By setting the HASH_MEMOIZE parameter to true, we can store the hash
values and reuse them inside the vertical vectorization algorithm. After making a decision
on memoization, we raise W software prefetch commands for the address of target entries
in the hash table. Here we can do the prefetching also for the next bucket by setting the
OPTIMISTIC parameter to false. After finishing the prefetching loop, all the related entries
are prefetched. At this stage, the vertical vectorization algorithm will be executed for the
current group and if the OUT_BUFFER parameter is enabled, the output buffering happens.

27:11

ECOOP 2023

An Efficient Vectorized Hash Table for Batch Computations

foreach group in array by GROUP_SIZE {
// prefetching stage
foreach vector in group {
vector_h <- simd_hash(vector)
if (HASH_MEMOIZE)
mem_h += vector_h
foreach h in vector_h {
prefetch(buckets [h])
if (!OPTIMISTIC)
prefetch(buckets [h+1])

¥
// vertical vectorization stage using linear probing
while(vec_elems not probed in group) {
if (HASH_MEMOIZE)
vector_h <- mem_h[vec_elems]
else
vector_h <- simd_hash(vec_elems)
res <- vertical_vectorization(vec_elems, vector_h)
if (OUT_BUFFER) {
buffer += res
if (buffer is full)
flush (buffer)

}

if (OUT_BUFFER) {
flush (buffer)

}

Figure 6 A generic algorithm showing the design space of combining prefetching with vertical
vectorization.

5 Use Cases

In this section, we show the usability of our proposed batch table, by showing several
high-performance data analytics use cases.

5.1 Relational Hash Join

First, the code for a join on two relations (S and R) is shown in Figure 7. We assume that
the relations are stored in columnar format (i.e., struct of arrays) which is a popular design
decision in high-performance query engines [17]. The code is executed using a prefetching
group size of 64 on 4 threads. We keep these settings for all of the use cases covered in
Section 5.

Build Phase. In the beginning, the batch hash table is initialized with the table size, group
size, and the number of threads. The size is set to twice the number of the elements in the
relation on the build side of the hash join (S). We do so to keep the fill ratio of the hash
table less than or equal to 50%. Then, using the insert_batch method, all the key/value
pairs from S are inserted into the hash table in a batch style.

H. Shahrokhi and A. Shaikhha

// build phase

auto ht = vec_ht::1p_map(2*S_size, 64, 4);
ht.insert_batch(S_A, S_B, S_size);

// probe phase

auto res_it = vec_ht::iter_batch(R_Size/3, 4, true);
ht.zip(R_A, R_F, R_size, false, res_it);

// printing the output

res_it.foreach_parallel(

[]1(auto& key, auto& value, auto& payload){

std::cout << "S_A/R_A; no<< key << " "
std::cout << "S_B: " << value << " | ";
std::cout << "R_F: " << payload << std::endl;

DN

Figure 7 Implementation of a hash join operator (on S and R relations) using Vec-HT.

auto ht = vec_ht::1p_map(2*S2_size, 64, 4);

for (int i=0; i<S2_size; i++) ht.insert(S2[i], 1);

auto res_it = vec_ht::iter_batch(S1_Size/5, 4, false);

ht.find_batch(S1, S1_size, true, res_it);

res_it.foreach_parallel ([](auto& key, auto& value){
std::cout << "Item: " << key << std::endl;

P

Figure 8 Implementation of a Set-Difference operation (S1\S2) using Vec-HT.

Probe Phase. Before running the batch lookups on the hash table, we first prepare the
iter_batch for the results. This object is initialized by setting three parameters. The first
one is an upper bound for the join result size. The more precise this estimation is, the less
memory allocation time is spent during the batch lookups. The second parameter is the
number of threads that must be equal to the one already passed to the hash table. The last
parameter is a flag that shows if the iter_batch object will be used in a zip or find_batch
API. Next, by having the res_it object, we can run our zip method to join the relations
based on the R_A and S_A columns and by considering the R_F column as the payload.

After the zip execution is finished, we use the foreach_parallel method of res_it to
iterate over the join results and print them. The desired functionality (printing) is passed to
the foreach_parallel using a user-defined lambda function.

5.2 Set Operations

As our second use case, we show the implementation of a set difference operation (S1\S2)
using our approach in Figure 8. The sets S1 and S2 are stored in two arrays. The code is
almost the same as the one in the relational-join example. Its main difference is in using

find_batch instead of zip. It is because there is no payload to be passed into the zip API.

Furthermore, in this example, we see the usage of complement parameter as we need the
elements of S1 that are not found in S2. To implement the set intersection we need to use
the zip method, which is similar to the vector inner product, that is presented next.

27:13

ECOOP 2023

27:14 An Efficient Vectorized Hash Table for Batch Computations

auto ht = vec_ht::1p_map(2*V1l_size, 64, 4);

ht.insert_batch(V1l_idx, Vi_val, V1i_size);

auto res_it = vec_ht::iter_batch(Vi_size, 4, true);

ht.zip(V2_idx, V2_val, V2_size, false, res_it);

uint32_t sum = O0;

res_it.foreach([] (auto& key, auto& value, auto& payload){
sum += value * payload;

)3

Figure 9 Implementation of an Inner-Product operation (V1-V2) using Vec-HT.

5.3 Sparse Vector Operations

The last use case that we cover in this section is the inner product of two vectors (V1-V2).
The related code is shown in Figure 9. In this implementation, we again use the zip method,
since there are payloads on the V2 side (values of V2 for each index). After the zip execution
is finished, this time we do a non-parallel iteration (foreach API) over res_it to prevent
contentions on the sum shared memory. As mentioned in Section 3.2, a developer can
easily use the concurrent containers (e.g. tbb: :enumerable_thread_specific<uint32_t>
) instead of sum here. However, in this case, we are interested in exhibiting the usage of
non-parallel foreach.

6 Implementation

In this section, we give a more detailed explanation of the implementation behind Vec-HT.

Attributes of 1p_map. The attributes of 1p_map class are shown in Figure 10. All these
attributes are initialized in the class constructor. The size, threads_, and group_size_
attributes are set to the values that are passed by the constructor. The hash_factor_ is
set to a randomly generated number. The empty_key_ attribute is set to the maximum
possible value for uint32_t type. Lastly, we use an array of bucket structs (entries_) as
the entries of our hash table. It has been shown that using an array of structs instead of
a struct of arrays does not affect the performance of hash tables [21]. The memory of this
array is allocated after the calculation of size_ attribute.

Attributes of iter_batch. The attributes of the iter_batch class are shown in Figure 11.
Here max_size_ is passed by the constructor and shows an upper bound on the number of
results for a find_batch or zip method call. The threads_ and for_zip attributes are given
by the constructor. The next three attributes are the storage for results of a find_batch
or zip method call. In the constructor, we allocate arrays of arrays to these pointers; this
will allocate memory of size max_size for each thread. In the case of a find_batch method
call, we do not allocate and use the payloads_ pointer. As the last attribute, we have
threads_res_size_ that will be extended to the size of threads_. Each element of this
vector is used by a thread to store the size of the results for that thread. By using this
attribute, the iterations over the results will be more efficient (cf. Figure 12).

Implementation of foreach_parallel. In Figure 12, the implementation details of
foreach_parallel are presented. In this method, we create a range of integers from
0 to thread_-1 and assign each number in the range to a thread. Then, by execution of a

H. Shahrokhi and A. Shaikhha

namespace vec_ht

{
class 1lp_map
{
private:
size_t size_;
size_t threads_;
uint32_t group_size_;
uint32_t hash_factor_;
uint32_t empty_key_;
bucket* entries_;
template<typename FUNC_TYPE>
inline size_t parallel_dispatcher (uint32_t* keys,
uint32_t* payloads, size_t size, bool complement,
FUNC_TYPE func, iter_batch* res_iter)
template<typename FUNC_TYPE>
inline size_t find_batch_inner (uint32_tx* keys,
uint32_t* payloads, size_t size, bool complement,
FUNC_TYPE func, iter_batch* res_iter, size_t thread_id)
public:
//
s
}

Figure 10 The internal of the 1p_map class.

tbb: :parallel_for_each and passing the prepared range to it, we run a lambda function
on each thread with thread_id as its single argument. In the lambda function, using the
thread_id argument, the max_size_ attribute of batch_iter class, and the vector of result
sizes for each thread (threads_res_size_), we compute the boundaries of the result vectors
that are assigned to the current thread. By having those boundaries, we can finally apply the
developer-provided lambda (func) on each triple of key, value, and payload in the results
assigned to this thread.

Implementation of zip. The implementation of the zip method is presented in Figure 13.

To bypass the overheads of dispatching in the parallel scenario, this method (and other
performance-critical methods such as find_batch), checks the threads_ attribute of the
current vec_ht. If it detects a sequential setting, then calls the internal method that is
responsible for the vertical vectorization and prefetching (find_batch_inner). Otherwise,
the method calls the parallel_dispatcher (cf. Section 4) to partition and dispatch the
work among the pre-determined number of threads. To call either of these two internal
methods, the zip method provides them with the appropriate arguments or null types
where required.

Implementation of find_batch_inner. Figure 14 shows a simplified implementation for
find_batch_inner. This method is the most complex method in Vec-HT. It operates over a
subset of batch input (the partition that is assigned to each thread) and is responsible to do
the following tasks:

27:15

ECOOP 2023

An Efficient Vectorized Hash Table for Batch Computations

namespace vec_ht

{
class iter_batch
{
private:
size_t max_size_;
size_t threads_;
bool for_zip_;
uint32_t**x keys_;
uint32_t** values_;
uint32_t** payloads_;
std::vector<size_t> threads_res_size_;
public:
//
I
}

Figure 11 The internal of the iter_batch class.

inline void foreach_parallel

(std::function<void (K& key, V& value, P& payload)> f)

{
auto range = std::vector<size_t>(threads_);
for (size_t i=0; i<threads_; i++) rangel[i] = i;
tbb::parallel_for_each(range, [&](size_t thread_id)
{
for (size_t j=0; j<threads_res_size_[thread_id];
func (keys_[thread_id]l[j],
values_[thread_idl[j],
payloads_[thread_idl[j1);
});
}

Figure 12 The implementation of foreach_parallel in iter_batch.

To partition the input into group-sized batches.
To compute and memoize the hashes for each group.

To do the group prefetching for each group.

To run the entire vertical vectorization algorithm for each group.

To buffer the found keys and their related values and payloads.

To store the results into the iter_batch or apply func over them.

We present a brief overview of the above-mentioned steps in Figure 14. The sections with
high similarity to the code provided by Polychroniou [19] et al. are removed for the sake of
brevity. We refer the interested reader to see those parts in the referenced work. Note that
in Figure 14, the vector_size is a global constant (8) which is a function of the selected
data-type size (32 bits) and the SIMD vector size (256 bits), computed as vector size divided

by data-type size.

j++)

H. Shahrokhi and A. Shaikhha

inline size_t zip (uint32_t* keys, uint32_t* payloads, size_t size,
bool complement, iter_batch* res_it)

{
if (threads_ == 1)
return find_batch_inner<no_func_type >(keys, payloads, size,
complement , nullptr, res_it);
else
return parallel_dispatcher<no_func_type >(keys, payloads,
size, complement, nullptr, res_it);
}

Figure 13 Implementation of zip in 1p_map.

As the last topic in this section, to implement the complement behaviour in Vec-HT,
we have slightly changed the original vertical-vectorization algorithm. In the case of a
complement, we replace the keys with an invalid status with the keys with an output status.
In other words, the found keys are considered invalid and the not-found keys are the valid
ones that must be stored in the output.

7 Evaluation

In this section, we first present our experimental setup for the evaluation. Then, we show
the performance of our approach in different use case scenarios and compare its performance
with various competitors.

7.1 Experimental Setup

All experiments are done on a single machine equipped with 16GB of DDR4 RAM, and an
Intel Core 15-10210U 1.6GHz with 4 cores and 256KB, 1MB, and 6MB of L1, L2, and L3
cache respectively. Hyper-threading is disabled for the experiments. We have used Ubuntu
20.04.3 as OS. Our C++ code is compiled with G++ 9.4.0 using the -03 flag. To enable
SIMD operations, we use the -march=core-avx2 flag. All of the experiments were executed
with 5 warmup rounds followed by 5 timed iterations. Then, we took the average of the
timed iterations.

Workloads. To run the experiments, we use three different workloads. For the micro-
benchmarks and the join experiments, we use the random data generator from [19]. By
focusing on the notion of inner joins in databases, it generates two random data sets as
inner and outer relations. The elements of the inner data set are inserted into the hash
table creating the build side of the join. The elements of the outer data set shape the probe
side of the join. The data generator accepts arguments for inner_size, outer_size, and
selectivity of the join.

The second workload is used for the set and sparse vector experiments. The set/vector
generator receives size, density, and maximum_value as input parameters. For each set of
size N, it generates Nxdensity unique random numbers from the range of [0, N) as the
value of items in the set. Similar to the sets, for the vectors, it generates unique random
numbers but uses them as vector indexes. Then, using the maximum_value parameter, it
generates random integer numbers in the range of (0, maximum_value] as vector values.

27:17

ECOOP 2023

27:18 An Efficient Vectorized Hash Table for Batch Computations

inline size_t find_batch_inner (uint32_t* keys, uint32_t* payloads,
size_t size, bool complement,
FUNC_TYPE func, iter_batch* res_iter,
size_t tid)

{
// Partitioning the input keys into group-sized batches
size_t inner_batch_size = group_size_;
for(size_t i=0; i<size; i+=group_size_)
{
if (size-i<group_size_)
inner_batch_size = sizelgroup_size;
// Hash memoization and Group prefetching
uint32_t hashs[inner_batch_sizel;
for (size_t j=0; j<inner_batch_size; j+=vector_size)
{
// Hash computation for keys using SIMD operations
V/ARTY
// Hash memoization and Group prefetching
for (size_t k=0; k<vector_size; k++)
{
// Storing the hash in hashs[j+k]
V/ARTY
// Prefetching the computed and stored hash
_mm_prefetch(&entries_[hashs[j+k]], _MM_HINT_TO);
3
}
// Ezecution of wert. wvect. using memoized hash wvalues
// considering the "complement" flag (if enabled)
// Buffering the matched keys, values (and payloads)
// Flushing the buffer into the iter_batch container or
// Applying the lambda function on the buffered tuples
}
}

Figure 14 A simplified representation of the find_batch_task implementation in 1p_map.

As the last workload, we use the well-known TPC-H [8] benchmark with a scaling factor
(SF) of 1 (1 GB of data) for the evaluation of our approach in analytical queries. It is
important to note that in all of the benchmarks, we keep the fill ratio of all alternative hash
tables less than or equal to 50%.

Alternatives and Competitors. In the micro-benchmarks, to evaluate our proposed ap-
proach, we compare it with (1) a scalar implementation of Vec-HT without any optimization
(2) a scalar + prefetching version (3) and the vertical-vectorization approach by Polychroniou
et al. [19]. For all alternatives, we consider sequential and parallel versions. As mentioned in
Section 6, we reuse the code from [19] as the base for our implementations. We do not add
the comparison with the approaches such as DPDK [1], as it is previously shown [19] that
the BCHT approach is slower than vertical vectorization which is the basis for Vec-HT.

H. Shahrokhi and A. Shaikhha

—&—Scalar =~ Scalar+Prefetching SIMD —¢—SIMD+Standard Prefetching SIMD+Group Prefetching

Group vs Standard Prefetching - Selectivity 0.1 Group vs Standard Prefetching - Selectivity 0.5
120

——

20 + - =

B
3

Tuples Per Second (Million)
8 3 8
Tuples Per Second (Million)

0
20 2 22 23 24 25 26 27 28 29 20 2 22 23 2 25 26 27 28 29

Log of Hash Table Size (Bytes) Log of Hash Table Size (Bytes)

Group vs Standard Prefetching - Selectivity 1

100
80
40

20 2 22 23 24 25 26 27 28 29

Tuples Per Second (Million)
2
3

Log of Hash Table Size (Bytes)

Figure 15 Comparing the performance of standard vs group prefetching for combining prefetching
with vertical vectorization. The charts show the number of tuples processed per second (higher
is better) for a simplified relational inner-join operation with a probe size of 1,500,000 over an
increasing build-side size.

We also compare our implementations with state-of-the-art hash tables. TBB [7] is a well-
known parallel computation framework. We use its tbb: :concurrent_unordered_map as
one of our competitors. Libcuckoo [13] is a research project on fast parallel hash tables and we
use its open-source implementation libcuckoo: : cuckoohash_map. As the last competitors,
from the open-source high-performance hash-table project phmap [5], we use its sequential
and parallel data structures phmap: : flat_hash_map and phmap: :parallel_flat_hash_map.
The implementation of Vec-HT that we use in the benchmarks has a group size of 64, taking
an optimistic approach, with enabled memoization and simple buffering inside each group.

7.2 Benchmarks

In this section, we first consider the design space of combining prefetching with vectorization
and show the best implementation. In addition, we evaluate the effectiveness of our imple-
mentation in comparison with scalar, scalar 4+ prefetching, and pure vertical vectorization in
a holistic micro-benchmark for hash join processing. Then, we show its superiority over the
existing hash table packages in different use cases. We consider benchmarks on set and vector
kernels that are largely used in big data analytics frameworks such as query processors (e.g.,
BigTable, SparkSQL) and linear algebra frameworks (e.g., MLLib, SystemDS, distributed
TensorFlow). We finally cover benchmarks on database query processing over a selected
subset of TPC-H queries, the main benchmark for analytical queries.

Standard vs Group Prefetching Micro-Benchmark. The first micro-benchmark related
to the design space (cf. Section 4.3) is shown in Figure 15. In these experiments, our
focus is to show the performance difference between the standard prefetching and group
prefetching approaches. The results show that even though the standard way of prefetching
offers performance improvements compared to non-prefetched approaches, it cannot beat the
performance and scalability of the group prefetching.

27:19

ECOOP 2023

27:20 An Efficient Vectorized Hash Table for Batch Computations

—A—Scalar -~ Scalar+Prefetching SIMD SIMD+P i ptimistic —<— SIMD+P ing+P

Prefetching for Future Probes - Selectivity 0.1 Prefetching for Future Probes - Selectivity 0.5

8

Tuples Per Second (Million)
.
8 3 8 8
Tuples Per Second (Million)
.
8 83 8 8

20 21 2 2 2 2 2% 27 28 2 20 21 2 2 2 2 2 27 28 2
Log of Hash Table Size (Bytes) Log of Hash Table Size (Bytes)

Prefetching for Future Probes - Selectivity 1

Tuples Per Second (Million)

20 2 22 23 24 25 26 27 28 29

Log of Hash Table Size (Bytes)

Figure 16 Comparing the performance of different alternatives by focusing on the optimistic and
pessimistic approaches for prefetching. The workload is similar to Figure 15.

Optimistic vs Pessimistic Prefetching Micro-Benchmark. As mentioned in Section 4.3,
by having a linear probing scheme in the hash table, for a given key, we can prefetch more
than one bucket to improve the chance of a cache hit after an unsuccessful lookup. Although
it seems to be an interesting strategy to take, the limited prefetching capability of CPUs,
the variety in workload characteristics, and the parameters such as the fill ratio of the hash
table can affect the benefits of this strategy. Figure 16 shows the performance results for
prefetching with optimistic and pessimistic approaches. Both optimistic and pessimistic
approaches perform better than the alternatives. However, for the smaller hash tables, the
performance of the pessimistic approach is worse than the optimistic one and sometimes even
worse than pure vertical vectorization. Thus, we decided to take the optimistic approach for
our final implementation of Vec-HT.

Group-Size Micro-Benchmark. Figure 17 depicts the performance of group prefetching
with different group sizes by also altering between the optimistic and pessimistic strategy.
Overall, we see a performance improvement by increasing the group size, however, this
improvement no longer holds after the group size of 64. The results show that selecting a
group size of 64 with the optimistic strategy is a reasonable choice.

Hash Memoization Micro-Benchmark. Our last micro-benchmark investigates the effects
of memoizing the hash values during the prefetching stage. Figure 18 presents the results
of these experiments. In selectivities of 0.1 and 0.5, it is clear that the memorized version
performs better than the non-memoized one. With a selectivity of 1, the non-memoized
version does better (with a narrow improvement compared to memorized version) for larger
hash tables, however, the memoized version is faster for smaller hash tables. Thus, we select
the memoized version for Vec-HT.

Relational Inner Join for State-of-the-Art Hash Tables. In these experiments, using the
first workload described in Section 7.1, we run a simplified relational inner-join operation
using different hash table implementations to measure the performance of each approach.

H. Shahrokhi and A. Shaikhha

—4— Group Size 8 + O p Size 16 + O Group Size 32 + Optimistic Group Size 64 + Optimistic ~ —<— Group Size 128 + Optimistic
—<&Group Size 8 + imisti p Size 16 + imisti Group Size 32 + Pesimistic = —@— Group Size 64 + Pesimistic Group Size 128 + Pesimistic
Group Size Effect on Prefetching - Selectivity 0.1 Group Size Effect on Prefetching - Selectivity 0.5

= =

2 S

] H

1 T

2 H

8 g

@ @

4 4

] F

K 5

F o F oo

20 21 22 23 24 25 2% 27 28 29 20 21 22 23 24 25 2% 27 28 29
Log of Hash Table Size (Bytes) Log of Hash Table Size (Bytes)

Group Size Effect on Prefetching - Selectivity 1

Tuples Per Second (Million)

Log of Hash Table Size (Bytes)

Figure 17 Comparing the performance of different combinations for group size and optimist-

ic/pessimistic approaches for group prefetching. The workload is similar to Figure 15.

—#—Scalar —#—Scalar+Prefetching SIMD —4—SIMD+Prefetching+NoMemo SIMD+Prefetching+Memo
vs N i ing - ivity 0.1 ized vs N i ing - ivity 0.5

E 120 »g 120

= 100 £ 100

: g '\\\

z 80 z 80 <

§ 60 m& . g e .;&\ ~_

4 & 3)i)

5w e e S — 5w -— - T ———

8 2 e 2 20 B

g =

E o P o

20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29
Log of Hash Table Size (Bytes) Log of Hash Table Size (Bytes)
vs N i ing - ivity 1

Tuples Per Second (Million)
2 =
3 8

20 21 2 2 2 2 2% 27 28 2
Log of Hash Table Size (Bytes)

Figure 18 Comparing the performance of different alternatives by focusing on enable/disabled
memoization for group prefetching. The workload is similar to Figure 15.

As it is shown in Figure 19, our approach vec_ht: :1p_map outperforms other approaches
irrespective of the build size, join selectivity or concurrency level. It is on average 5x faster
on both 1- and 4-cores.

Set Operations Use Case. To show the performance of our approach in set operations, we
run experiments on the set intersection and set difference. To run the operations, we iterate
over the first set (S1) and look up the values in the other one (S2). Since the hash tables in our
experiments (except tbb: :concurrent_unordered_map) do not support parallel iterations,
to have a more comprehensive benchmark, we keep S1 in the vector format and only make
a hash table for S2. For the set-difference operation, we use an implementation similar to
Section 5.2. Figure 20 depicts the results of our set experiments. In these experiments, using
a fixed size for S1 and S2 and a fixed density for S1, we observe the changes in the run time
of each competitor while increasing the density of S2.

27:21

ECOOP 2023

An Efficient Vectorized Hash Table for Batch Computations

=p== vec_ht::Ip_map phmap::flat_hash_map === phmap::parallel_flat_hash_map thb::concurrent_unordered_map === |ibcuckoo::cuckoohash_map

Selectivity =0.1 | 1 Thread Selectivity = 0.1 | 4 Threads
100 400

EY
80
70
60
50
0

E
» \
0 E———
0 o
20 2 2 E % 2 % 2 E 2 20 2 2 23 2% 2 % 2 E 2

Tuples Per Second (Million)
Tuples Per Second (Million)

Log Hash Table Size (Byte) Log Hash Table Size (Byte)
Selectivity = 0.5 | 1 Thread Selectivity = 0.5 | 4 Threads
120 400
H g w0
= 100 2
£ £ 300
g ® 2 250
8 g
g 60 & 200
& a & =0
g $ 100
i ——— - g osode—
° v " * * » * = T
20 21 22 2 24 25 2 27 28 29 20 21 22 2 24 2 2 27 28 29
Log Hash Table Size (Byte) Log Hash Table Size (Byte)
Selectivity =1 |1 Thread Selectivity =1 |4 Threads

_ 140 _ 450

S 10 § 400

H Z 350

H B

5 100 T 300

g 8 3 250

8 g

2 60 @ 200

5 5

a o 150

a0

g £ 100

S s

e e S — R — - X —_—

° —_——— e o —
20 21 2 23 21 25 2 27 28 29 20 2 22 2 24 25 2 27 28 29
Log Hash Table Size (Byte) Log Hash Table Size (Byte)

Figure 19 The number of tuples processed per second (higher is better) for a simplified relational
inner-join operation with a probe size of 1,500,000 over an increasing build-side size. Charts on each
side, represent the results for the join selectivities of 0.1, 0.5, and 1 on 1 or 4 threads.

In the set-difference experiments, our approach outperforms the others with an average
of 11x speedup on 1 and 4 cores. Similarly, in set intersections, our approach performs
better than the others excluding phmap: : flat_hash_map. By excluding phmap, the proposed
approach is on average 6x and 5x faster than the others on 1 and 4 cores, respectively. For
the small S2 sizes, when the log of S2 density is less than or equal to -4, the hash table
can still be fitted into the L3 cache, thus the benefit of using our prefetched approach is
not promising and the overall performance is near to what phmap: :flat_hash_map offers.
However, after passing that size limit, phmap: : f1at_hash_map run time goes higher while
our approach keeps its good performance thanks to software prefetching.

Vector Operations Use Case. In Figure 21, the results of running experiments on vector
inner-product (cf. Section 5.3) and pair-wise multiplication are shown. Similar to the set
operations, here we keep V1 in the vector format and embed V2 into a hash table. The
experiment parameters are also set to the values that we had in the set experiments. In
both vector operations, our approach is still faster than the alternatives. However, since the
scenario of these two vector operations is very similar to the set intersection, we see similar
behaviour in the performance of our approach versus phmap: :flat_hash_map. We explained
the reason behind this behaviour in the set experiments. The experiments on set and vector
operations show that our approach is a great choice when we deal with large amounts of
data; while the performance of other approaches degrades with increasing the hash table
size, our approach maintains good performance even for heavier workloads.

H. Shahrokhi and A. Shaikhha

=p==vec_ht::Ip_map phmap::flat_hash_map

Set Difference | Set Size =2 /24 | 1 Thread
180

160
140
120
100

80 ‘/‘_—*——t—t*\‘
60

20

0%

Run Time (ms)

Log of S2 Density

Set Intersection | Set Size =2 A 24| 1 Thread
100
2
70

50

Run Time (ms)

30
20

10 — > ——

Log of S2 Density

=== phmap::parallel_flat_hash_map

Run Time (ms)

Run Time (ms)

27:23

thb::concurrent_unordered_map === |ibcuckoo::cuckoohash_map

Set Difference | Set Size =2 /A 24 | 4 Threads
60

50

2

30
Y e — ")

10
o —>
7 5 5 4 3 2 1

Log of S2 Density

Set Intersection | Set Size =2 /A 24 | 4 Threads
25

2 / ’
s L

10 —
5 ’*»—__’__’r——‘___/’
0
7 - 5 -4 3 2 1

Log of S2 Density

Figure 20 The run time (lower is better) for the set difference and intersection operations by
varying the density of the second set on 1 and 4 threads. For both operands (S1 and S2), the size is

224 For S1, the density is set to 276.

=»—vec_ht:ilp_map phmap::flat_hash_map

Vector Inner Product | Vector Size =2 A 24 | 1 Thread

Run Time (ms)

-7 -6 -5 -4 -3 -2 -1
Log of V2 Density

Vector Pair-wise Multiplication| Vector Size =2 A 24 | 1 Thread
140

120

100

Run Time (ms)

Log of V2 Density

=—¢— phmap::parallel_flat_hash_map

Run Time (ms)

Run Time (ms)

thb::concurrent_unordered_map = libcuckoo::cuckoohash_map

Vector Inner Product | Vector Size =2 A 24 | 4 Threads
25

20

15

Log of V2 Density

Vector Pair-wise Multiplication | Vector Size =2 / 24 | 4 Threads

Log of V2 Density

Figure 21 The run time (lower is better) for the vector inner-product and pair-wise multiplication
operations by increasing the density of the second vector on 1 and 4 threads. For both operands (V1
and V2), the size is 224 For V1, the density is set to 27°.

ECOOP 2023

27:24

An Efficient Vectorized Hash Table for Batch Computations

Table 2 Modified TPC-H queries we used in the experiments.

Query SQL Code
select o_orderpriority, count(*) from orders
Q4 where exists (select * from lineitem

where 1_orderkey=o_orderkey and 1l_commitdate<l_receiptdate)
group by o_orderpriority

select o_year, sum(case when nation = ’BRAZIL’ then volume
else 0 end) / sum(volume)
from (select extract(year from o_orderdate) as o_year,
1_extendedprice * (1 - 1_discount) as volume,
n2.n_name as nation
from part, supplier, lineitem, orders,
customer, nation nl, nation n2, region

Q8 where p_partkey = 1_partkey and s_suppkey = 1l_suppkey
and 1_orderkey = o_orderkey and o_custkey = c_custkey
and c_nationkey = nl.n_nationkey
and nl.n_regionkey = r_regionkey and r_name = ’AMERICA’
and s_nationkey = n2.n_nationkey and o_orderdate between

date ’1995-01-01’ and date ’1996-12-31°
) as all_nations
group by o_year

select 1_shipmode, sum(case when o_orderpriority = ’1-URGENT’
or o_orderpriority = ’2-HIGH’ then 1 else O end)
, sum(case when o_orderpriority <> ’1-URGENT’
Q12 and o_orderpriority <> ’2-HIGH’ then 1 else O end)
from orders, lineitem
where o_orderkey = 1_orderkey

group by 1l_shipmode

Analytical Queries Use Case. As the last set of experiments, we use the TPC-H benchmark
and dataset. The queries we consider satisfy three criteria. (1) The join-build side of the
query must result in a large hash table. (2) The join-probe part of the query must be a
time-consuming part of it. (3) The build-side hash table can only have integers as keys
and values. Based on these criteria we selected a modified version of Q4, Q8, and Q12
(cf. Table 2). Then, we implemented a manually fine-tuned version of them in C++ by
taking the query plans of HyPer [4] and using the code generator of SDQL.py [24]. We used
phmap: :flat_hash_map as the competitor for vec_ht: :1p_map, because it is the hash table
of choice behind existing query processing systems that use open source hash tables [24, 28].
We alternate between these two hash tables only in the most time-consuming join operation
in the query.

Table 3 shows the results of this benchmark. Our approach performs better than its
alternative almost in all these queries. However, in the 4-core setup of Q4, it results in an
11% total performance degradation. In this case, the speedup of probing is still very high
(1.33x) but the lack of parallel insertions in Vec-HT resulted in a faster hash table building
by the competitor, which is a promising direction for the future.

Finally, it is worth mentioning that the speedups of using Vec-HT for the original Q8
(without modification on the build side to make the hash table larger) are 0.9%x and 0.85x
for 1- and 4-core respectively. This means that Vec-HT is a perfect choice whenever we are
facing a large volume of data resulting in the creation of a large hash table.

H. Shahrokhi and A. Shaikhha

Table 3 Performance improvements of using vec_ht: :1p_map instead of phmap: :flat_hash_map
in the probes of the most time-consuming hash-join of TPC-H queries 4, 8, and 14.

TPC-H Query
Q4 Q8 Q12

Total | Probe | Total | Probe | Total | Probe
1-Core Run Time vec_ht (ms) 246 102 354 321 260 236
1-Core Run Time phmap (ms) 487 261 512 465 718 533
1-Core Total Run Time Speedup | 1.98x | 2.56x | 1.44x | 1.45x | 2.76x | 2.25x
4-Core Run Time vec_ht (ms) 151 29 105 83 102 82
4-Core Run Time phmap (ms) 134 38 140 107 395 149
4-Core Total Run Time Speedup | 0.89x | 1.33x | 1.34x | 1.29x | 3.86x | 1.82x

8 Conclusion and Future Work

In this paper, we presented Vec-HT, a vectorized hash table that offers fast batch lookups
backed by multi-threading, prefetching, and usage of SIMD-vectorization methods. We
presented the design decisions for the structure, API, and the optimizations for high-
performance batch hash table implementations. We showed the usefulness of our approach
by implementing a handful of use cases using Vec-HT. Finally, by running a set of micro-
benchmarks on various use case scenarios, we showed that our proposed design performs
faster than the state-of-the-art approaches.

In the future, we aim to improve this approach by providing the support for complex
keys and values and parallel iterations over such batch hash tables. It is also interesting
to apply the current optimizations (especially vertical vectorization) to the other hashing
schemes such as Cuckoo [18] and Robinhood [10] hashing. Another promising direction is to
use the batch APT as a wrapper for traditional hash tables and ordered dictionaries [27] to
allow programmers to benefit from the batch processing offered by this API. Finally, one can
integrate other SIMD query operators (e.g., selection [19, 16]) and use Vec-HT for a wider
range of database analytical queries as well as sparse tensor processing.

—— References

Dpdk. https://dpdk.org/.

Highwayhash. arXiv:1612.06257.

Hirola. https://github.com/bwoodsend/hirola/.

Hyper. https://hyper-db.de/.

The parallel hashmap. https://github.com/greg7mdp/parallel-hashmap.

R hashmap. https://github.com/nathan-russell/hashmap.

Threading building blocks (tbb). https://github.com/jckarter/tbb.

TPC-H Benchmark . https://www.tpc.org/tpch.

Alex D Breslow, Dong Ping Zhang, Joseph L Greathouse, Nuwan Jayasena, and Dean M

Tullsen. Horton tables: Fast hash tables for {In-Memory }{Data-Intensive} computing. In

2016 USENIX Annual Technical Conference (USENIX ATC 16), pages 281-294, 2016.

10 Pedro Celis, Per-Ake Larson, and J Ian Munro. Robin hood hashing. In 26th Annual Symposium
on Foundations of Computer Science (sfcs 1985), pages 281-288. IEEE, 1985.

11 Shimin Chen, Anastassia Ailamaki, Phillip B Gibbons, and Todd C Mowry. Improving hash

join performance through prefetching. ACM Transactions on Database Systems (TODS),

32(3):17-es, 2007.

O O ~NO OGO B~ WN =

27:25

ECOOP 2023

https://dpdk.org/
https://arxiv.org/abs/1612.06257
https://github.com/bwoodsend/hirola/
https://hyper-db.de/
https://github.com/greg7mdp/parallel-hashmap
https://github.com/nathan-russell/hashmap
https://github.com/jckarter/tbb
https://www.tpc.org/tpch

27:26

An Efficient Vectorized Hash Table for Batch Computations

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Bin Fan, David G Andersen, and Michael Kaminsky. {MemC3}: Compact and concurrent
{MemCache} with dumber caching and smarter hashing. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages 371-384, 2013.

Xiaozhou Li, David G Andersen, Michael Kaminsky, and Michael J Freedman. Algorithmic
improvements for fast concurrent cuckoo hashing. In Proceedings of the Ninth Furopean
Conference on Computer Systems, EuroSys’14, pages 1-14, 2014.

Hyeontaek Lim, Bin Fan, David G Andersen, and Michael Kaminsky. Silt: A memory-efficient,
high-performance key-value store. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, pages 1-13, 2011.

Tobias Maier, Peter Sanders, and Roman Dementiev. Concurrent hash tables: Fast and general
(?)! ACM Transactions on Parallel Computing (TOPC), 5(4):1-32, 2019.

Prashanth Menon, Todd C Mowry, and Andrew Pavlo. Relaxed operator fusion for in-
memory databases: Making compilation, vectorization, and prefetching work together at last.
Proceedings of the VLDB Endowment, 11(1):1-13, 2017.

Thomas Neumann. Efficiently compiling efficient query plans for modern hardware. Proceedings
of the VLDB Endowment, 4(9):539-550, 2011.

Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122—
144, 2004.

Orestis Polychroniou, Arun Raghavan, and Kenneth A Ross. Rethinking simd vectorization
for in-memory databases. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 1493-1508, 2015.

Mihai Patragcu and Mikkel Thorup. The power of simple tabulation hashing. Journal of the
ACM (JACM), 59(3):1-50, 2012.

Stefan Richter, Victor Alvarez, and Jens Dittrich. A seven-dimensional analysis of hashing
methods and its implications on query processing. PVLDB, 9(3):96-107, 2015.

Kenneth A Ross. Efficient hash probes on modern processors. In 2007 IEEE 23rd International
Conference on Data Engineering, pages 1297-1301. IEEE, 2007.

Nicolas Le Scouarnec. Cuckoo++ hash tables: High-performance hash tables for networking
applications. In Proceedings of the 2018 Symposium on Architectures for Networking and
Communications Systems, pages 41-54, 2018.

Hesam Shahrokhi and Amir Shaikhha. Building a compiled query engine in python. In
Proceedings of the 32nd ACM SIGPLAN International Conference on Compiler Construction,
CC 2023, pages 180-190, 2023.

Amir Shaikhha, Mohammad Dashti, and Christoph Koch. Push versus pull-based loop fusion
in query engines. Journal of Functional Programming, 28:¢10, 2018.

Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton Jones, and Dimitrios Vytiniotis.
Destination-passing style for efficient memory management. In Proceedings of the 6th ACM
SIGPLAN International Workshop on Functional High-Performance Computing, pages 12—23,
2017.

Amir Shaikhha, Mahdi Ghorbani, and Hesam Shahrokhi. Hinted dictionaries: Efficient func-
tional ordered sets and maps. In 36th European Conference on Object-Oriented Programming
(ECOOP 2022). Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022.

Amir Shaikhha, Mathieu Huot, Jaclyn Smith, and Dan Olteanu. Functional collection
programming with semi-ring dictionaries. Proc. ACM Program. Lang., 6(OOPSLA1):1-33,
2022. doi:10.1145/3527333.

Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad Dashti, and
Christoph Koch. How to architect a query compiler. In Proceedings of the 2016 International
Conference on Management of Data, pages 1907-1922, 2016.

Dipti Shankar, Xiaoyi Lu, and Dhabaleswar K DK Panda. Simdht-bench: characterizing
simd-aware hash table designs on emerging cpu architectures. In 2019 IEEE International
Symposium on Workload Characterization (IISWC), pages 178-188. IEEE, 2019.

https://doi.org/10.1145/3527333

H. Shahrokhi and A. Shaikhha

31

32

Michael Vollmer, Chaitanya Koparkar, Mike Rainey, Laith Sakka, Milind Kulkarni, and
Ryan R Newton. Local: a language for programs operating on serialized data. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 48-62, 2019.

Dong Zhou, Bin Fan, Hyeontaek Lim, Michael Kaminsky, and David G Andersen. Scalable,
high performance ethernet forwarding with cuckooswitch. In Proceedings of the ninth ACM
conference on Emerging networking experiments and technologies, pages 97-108, 2013.

27:27

ECOOP 2023

	1 Introduction
	2 Background and Related Work
	3 Architecture
	3.1 Hash-Table Structure
	3.2 High-Level API

	4 Design
	4.1 Parallel Processing
	4.2 SIMD-Awareness
	4.3 Prefetching and Its Adaption Challenges

	5 Use Cases
	5.1 Relational Hash Join
	5.2 Set Operations
	5.3 Sparse Vector Operations

	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 Benchmarks

	8 Conclusion and Future Work

