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Abstract
This paper presents Squid, a new conjunctive query synthesis algorithm for searching code with
target patterns. Given positive and negative examples along with a natural language description,
Squid analyzes the relations derived from the examples by a Datalog-based program analyzer and
synthesizes a conjunctive query expressing the search intent. The synthesized query can be further
used to search for desired grammatical constructs in the editor. To achieve high efficiency, we prune
the huge search space by removing unnecessary relations and enumerating query candidates via
refinement. We also introduce two quantitative metrics for query prioritization to select the queries
from multiple candidates, yielding desired queries for code search. We have evaluated Squid on over
thirty code search tasks. It is shown that Squid successfully synthesizes the conjunctive queries for
all the tasks, taking only 2.56 seconds on average.
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1 Introduction

Developers often need to search their code for target patterns in various scenarios, such
as API understanding [29], code refactoring [56], and program repair [47]. According to
recent studies [34, 30], existing efforts have to compromise between ease of use and capability.
Most mainstream IDEs [23] only support string match or structural search of restrictive
grammatical constructs although complex user interactions are not required. Besides, static
program analyzers, such as Datalog-based program analyzers [44, 35, 3], provide deep program
facts for users to explore advanced patterns, while users have to customize the analyzers
to meet their needs [12]. For example, if users want to explore code patterns with the
Datalog-based program analyzer CodeQL [3], they have to learn the query language to
access the derived relational representation. However, there always exists a non-trivial gap
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36:2 Synthesizing Conjunctive Queries for Code Search

id idf_id ret_type_id mdf_id
M1 I1 T3 MDF1
M2 I2 T3 MDF1
M3 I3 T2 MDF1

id idf_id type_id method_id
P1 I4 T1 M1
P2 I5 T2 M2
P3 I6 T1 M3

Parameter

id name
T1 Log4jUtils
T2 int
T3 CacheConfig

Type

id name
MDF1 public

Modifier

id name
I1 foo
I2 goo
I3 hoo
I4 a1
I5 a2
I6 a3

Identifier

(a) Synthesis specification

public CacheConfig foo(Log4jUtils a1) {
…
return null;

}

public CacheConfig goo(int a2) {
…
return null;
}

public int hoo(Log4jUtils a3) {
…
return 0;
}

Target(id, idf1, retTypeId, mdf) :-
Method(id, idf1, retTypeId, mdf), Type(retTypeId, name1), equal(name1, “CacheConfig”), 
Parameter(pId, idf2, pTypeId, id), Type(pTypeId, name2), equal(name2, “Log4jUtils”)

(b) Relational representation

(c) Conjunctive query

MethodDescription: Find all the methods receiving 
a parameter with Log4jUtils type and giving 
a return with CacheConfig type.

Figure 1 A motivating example1.

between a user’s search intent and a customized query. A large number of complex relations
make query writing involve strenuous efforts, especially in formalizing search intents and
debugging queries, which hinders the usability of CodeQL for code search.

Our Goal. We aim to propose a query synthesizer to unleash the power of a Datalog-based
program analyzer for code search. To show the search intent, a user can specify a synthesis
specification consisting of positive examples, negative examples, and a natural language
description. Specifically, positive and negative examples indicate desired and non-desired
grammatical constructs, respectively, while the natural language description shows the search
intent by a sentence. Our synthesizer is expected to generate a query separating positive
examples from negative ones, which can support code search in the editor. In this work, we
focus on conjunctive queries, which have been recognized as queries of an important form to
support search tasks [17].

Consider a usage scenario: Find all the methods receiving a parameter with Log4jUtils type
and giving a return with CacheConfig type. The user can provide the synthesis specification
shown in Figure 1(a). With the relational representation in Figure 1(b) derived from the
examples, our synthesizer would synthesize the conjunctive query in Figure 1(c) to express
the search intent. In particular, our synthesis specification is easy to provide. The users can
often copy desired grammatical constructs from an editor as positive examples [34] and then
mutate them to form negative ones. Meanwhile, they can express their need to search code
with a brief sentence as the description. Thus, an effective and efficient synthesizer enables
the users to express the search intent from a high-level perspective, serving as a user-friendly
interface for code search.

1 We show five relations as examples, while a Datalog-based analyzer can derive over a hundred relations.
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Challenges. Nevertheless, it is far from trivial to synthesize a conjunctive query for code
search. First, a Datalog-based program analyzer can generate many relations with multiple
attributes as the relational representation. For example, CodeQL exposes over a hundred
relations to users for query writing [45]. The various choices of selecting relations and
enforcing conditions on attributes induce a dramatically huge search space in the synthesis,
which can involve both the comparisons between attributes and string constraints, posing a
significant challenge to achieving high efficiency. Second, there often exist multiple query
candidates that separate positive examples from negative ones, while several candidates can
suffer from the over-fitting problem, failing to express the search intent with no bias [53].
An ineffective query candidate selection would mislead the synthesizer into returning wrong
queries and further cause the failure of code search.

Existing Effort. There are three major lines of existing effort. The first line of the studies
utilizes input-output examples to synthesize queries in various forms, such as analytic SQL
queries [58, 13] and relational queries [42, 46]. Although the queries often have expressive
syntax, the synthesizers only take a few relations as input, not facing hundreds of relations
as ours. The second line of approaches is the component-based synthesis technique [14, 38],
which leverages type signatures to enumerate well-typed programs. However, a significant
number of comparable attribute pairs still induce an explosively huge search space even if we
adopt the techniques by guiding the search with the schema. The third line of the studies
derives program sketches from natural language descriptions via semantic parsing [28] and
prioritizes feasible solutions with probability models [54, 4]. Unfortunately, the ambiguity of
natural languages and the inadequacy of the training process can make a semantic parser
ineffective and eventually miss optimal solutions [40]. It is also worth noting that existing
techniques do not attempt to select a feasible solution that maximizes or minimizes a
specific metric. Although several inductive logic learning-based techniques adopt heuristic
priority functions to accelerate the synthesis [46], they do not guarantee the optimality of the
synthesized queries, and thus can not resolve the query candidate selection in our problem.

Our Solution. Our key idea comes from three critical observations. First, only a few
relations contribute to separating positive examples from negative ones. For example, the
methods in Figure 1(a) have the same modifier, indicating that the relation Modifier is
unnecessary. Second, adding an attribute comparison expression or a string constraint to the
condition of a conjunctive query yields a stronger restriction on grammatical constructs. If a
query misses a positive example, we cannot obtain a query candidate by strengthening the
query. Third, a desired query tends to constrain grammatical constructs mentioned in the
natural language description sufficiently. For the instance in Figure 1, the query extracting
the methods with the return type CacheConfig is a query candidate but not a desired one, as
it does not pose any restriction on parameters.

Based on the observations, we realize that it is possible to narrow down necessary relations
and avoid their infeasible compositions to prune the search space, and meanwhile, select
query candidates with the guidance of the natural language description. According to the
insight, we present a multi-modal synthesis algorithm Squid with three stages:

To narrow down the relations, we introduce the notion of the dummy relations to depict
the relations unnecessary for the synthesis and propose the representation reduction to
exclude dummy relations, which prunes the search space effectively.
To avoid infeasible compositions of relations, we perform the bounded refinement to
enumerate the queries, skipping the unnecessary search for the queries that exclude a
positive example. Particularly, the string constraints are synthesized by computing the
longest common substrings, which is achieved efficiently in the refinement.

ECOOP 2023
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To select desired queries, we establish the dual quantitative metrics, namely named entity
coverage and structural complexity, and select query candidates by optimizing them as
the objectives, which creates more opportunities for returning desired queries.

We implement Squid and evaluate it on 31 code search tasks. It successfully synthesizes
desired queries for each task in 2.56 seconds on average. Besides, the representation reduction
and the bounded refinement are crucial to its efficiency. Skipping either of them would
increase the average time cost to around 8 seconds, and several tasks cannot be finished
within one minute. Meanwhile, dual quantitative metrics play critical roles in the selection.
Applying only one metric would make 12 or 7 tasks fail due to the synthesized non-desired
queries. We also state and prove the soundness, completeness, and optimality of Squid. If
there exist query candidates for a given synthesis specification, Squid always returns query
candidates optimizing two proposed metrics to express the search intent. To summarize, our
work makes the following key contributions:

We propose a multi-modal conjunctive query synthesis problem. An effective and efficient
solution can serve as a user-friendly interface of a Datalog-based analyzer for code search.
We design an efficient algorithm Squid for an instance of our synthesis problem, which
automates the code search tasks in real-world scenarios.
We implement Squid as a tool and evaluate it upon 31 code search tasks, showing that
Squid synthesizes the desired queries successfully and efficiently.

2 Overview

This section demonstrates a motivating example and briefs the key idea of our approach.

2.1 Motivating Example
Suppose a developer wants to avoid the security issue caused by log4j library [41]. He or
she may examine the methods that receive a Log4jUtils object as a parameter and return
a CacheConfig object. One choice is to leverage the built-in search tools of the IDEs to
search the code lines containing Log4jUtils or CacheConfig, while the string matching-based
search cannot filter grammatical constructs according to their kinds. Although several IDEs
enable the structural search [23], their non-extensible templates only support searching
for grammatical constructs of restrictive kinds. Another alternative is to write a query
depicting the target pattern and evaluate it with a Datalog-based program analyzer, such as
CodeQL [3]. However, it not only involves great laborious efforts in query language learning
but also creates the burden of query writing and debugging.

To improve the usability and capability of code search, we aim to synthesize a query for
a Datalog-based program analyzer. As shown in Figure 1(a), a user can specify the synthesis
specification to indicate the search intent. Specifically, the positive and negative examples
show the desired and undesired grammatical constructs, respectively, while the natural
language description demonstrates the search intent in a sentence. Based on a Datalog-
based program analyzer, we can convert the examples to a set of relations as the relational
representation along with positive and negative tuples, which are shown in Figure 1(b). For
example, the first tuple in the relation Method is the positive tuple indicating the method foo
in Figure 1(a), which is a positive example. If we automatically synthesize the conjunctive
query in Figure 1(c), the user does not need to delve into the relations and, instead specifies
the synthesis specification from a high-level perspective.
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Relations with
Pos/Neg Tuples

Representation
Reduction

Bounded
Refinement

Candidate
Selection

Description

Datalog-based
Analyzer

Example
Program

Desired
Queries

Figure 2 The overview of Squid.

2.2 Synthesizing Conjunctive Queries
The query synthesizer should effectively generate the desired queries that express the search
intent correctly. However, it is stunningly challenging to obtain an effective and efficient
synthesizer. First, we have to tackle a great number of the relations and their attributes when
we choose relevant relations and enforce correct constraints upon them, which can involve
both comparisons over attributes and string constraints. Second, the non-uniqueness of query
candidates creates the obstacle of selecting proper candidates. Any improper selection would
return a non-desired query, leading to code search failure. To address the challenges, we
propose a new multi-modal synthesis algorithm Squid. As shown in Figure 2, Squid consists
of three phases, which come from the following three ideas.

Idea 1: Removing dummy relations. Although there are many relations potentially used
in the synthesis, we can identify a class of relations, named dummy relations, as unnecessary
ones and then discard them safely. Specifically, a relation is dummy if it cannot separate
a positive tuple from a negative one. As an example, the methods in Figure 1(a) have the
same modifier, which is shown by the same values of the foreign keys mdf_id of the relation
Method in Figure 1(b). This indicates that the relation Modifier has no impact on excluding
negative tuples and thus can be discarded to prune the search space. Based on this insight,
we propose the representation reduction to remove the dummy relations, narrowing down
the necessary relations for the synthesis.

Idea 2: Enumerating query candidates via refinement. According to the query syntax,
the constraints, including attribute comparisons and string constraints, pose restrictions on
grammatical constructs. This implies that we cannot obtain a query candidate by refining the
query that excludes a positive tuple. In Figure 1, we may obtain a query that enforces both
the parameter and the return value of a method have the same type. Obviously, the query
excludes the method foo, which is a positive tuple, and thus, we should stop strengthening
the restrictions on grammatical constructs. Based on this insight, we introduce the technique
of the bounded refinement, which adds conditions for the query enumeration and discards
the queries that exclude any positive tuples. Thus, we can avoid enumerating infeasible
compositions of relations, which further prunes the search space effectively.

Idea 3: Dual quantitative metrics for selection. Desired queries not only separate positive
tuples from negative ones but also tend to cover as many program-related named entities
as possible. In Figure 1, we may obtain a query candidate that restricts the return type to
be a CacheConfig object. However, it does not pose any restriction on the parameters and
leaves the named entity “parameter” uncovered, showing that it does not express the intent
sufficiently. Meanwhile, Occam’s razor [5] implies that desired queries should be as simple
as possible. Hence, we introduce the named entity coverage and the structural complexity

ECOOP 2023
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as the dual quantitative metrics, and perform the candidate selection to identify desired
queries by optimizing the metrics. Finally, we blend the selection with the refinement and
terminate the enumeration when unexplored candidates cannot be better than the current
ones, further avoiding the unnecessary enumerative search.

3 Problem Formulation

This section first presents the program relational representation (§ 3.1) and then introduces
the conjunctive queries for code search (§ 3.2). Lastly, we state the multi-modal conjunctive
query synthesis problem and brief the roadmap of technical sections (§ 3.3).

3.1 Program Relational Representation
First of all, we formally define the concept of the relation as the preliminary.

▶ Definition 3.1 (Relation). A relation R(a1, · · · , an) is a set of tuples (t1, · · · , tn), where n

is the arity of R. For each 1 ≤ i ≤ n, ai is the attribute of the relation.

A relation is structured data that stores the details of different aspects of an entity.
Concretely, a Datalog-based program analyzer encodes the program properties with a set
of relations in a specific schema [3, 34, 37]. In what follows, we define the relational
representation of a program.

▶ Definition 3.2 (Relational Representation). Given a program, its relational representation
R is a set of relations over the following schema Γ. Specifically, Γ maps a relation symbol R

to an n-tuple of pairs, where each element in the tuple Γ(R) has one of the following form:
(id, R): The attribute id is the primary key of the relation R.
(a, R′): The foreign key a in the relation R, referencing the primary key of R′ ∈ dom(Γ).
(a, STR): The attribute a has a string value indicating the textual information.

Particularly, we say Γ as the language schema. Without introducing the ambiguity, we use
(a, ·) ∈ Γ(R) to indicate that (a, ·) is an element of the tuple Γ(R).

▶ Example 3.1. Figure 1(b) shows five relations as examples, where the values of the primary
keys are italic and underlined, and the foreign keys are italic. Based on the first tuple in the
relation Method, we can track the identifier, the return type, and the modifier of the method
foo based on the foreign keys. Similarly, we can identify the identifier and the type of each
parameter based on the relation Parameter.

Essentially, the relational representation of a program encodes the program properties
with relations, which depicts the relationship of grammatical constructs in the program.
In reality, various relations can be derived with Datalog-based program analyzers, such as
ReferenceType and VarPointsTo provided by Doop [44], depicting the type information and
points-to facts, respectively. Due to the space limit, we only show five relations in Figure 1(b).

3.2 Conjunctive Queries
To simplify the presentation, we formulate the conjunctive queries as the relational algebra
expressions [1] in the rest of the paper. In what follows, we first brief several relational
algebra operations and then introduce the conjunctive queries for code search.
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▶ Definition 3.3 (Relational Algebra Operations). In a relational algebra, the selection,
projection, Cartesian product, and rename operations are defined as follows:

σΘ(R) := {(t1, . . . , tn) ∈ R | [ai 7→ ti | 1 ≤ i ≤ n] |= Θ} is the selection of a relation R

with the selection condition Θ over its attributes.
Πa′(R) := {(t.a′

1, . . . , t.a′
k) | t ∈ R} is the projection of a relation R upon a tuple of

attributes a′, denoted by Πa′(R). Here a′ = (a′
1, . . . , a′

k). t.a is the value of the attribute
a in the tuple t.
R1 × R2 := {(t1

1, . . . , t1
n1

, t2
1, . . . , t2

n2
) | (t1

1, . . . , t1
n1

) ∈ R1, (t2
1, . . . , t2

n2
) ∈ R2} is the

Cartesian product of two relations R1 and R2.
The rename of a relation R, denoted by ρA(R), yields the same relation named A.

The relational algebra operations enable us to manipulate the relational representation
to search desired grammatical constructs. Specifically, we often need to search specific
grammatical constructs via string match and enforce them to satisfy several constraints
simultaneously. Now we formalize the conjunctive queries to express the code search intent.

▶ Definition 3.4 (Conjunctive Query). Given the relational representation R, a conjunctive
query RQ is a relational algebra expression of the form Π(Ai.∗)(σΘ(ρA1(R1)×. . .×ρAm

(Rm))),
where Ri ∈ R, Θ := ϕ1 ∧ · · · ∧ ϕn, and each ϕi(1 ≤ i ≤ n) occurring in the selection condition
Θ is an atomic condition in the following two forms:

An atomic equality formula Aj .id = Ak.a, where a is the foreign key and (a, Rj) ∈ Γ(Rk).
A string constraint p(Ak.a, ℓ) over the string attribute Ak.a, where ℓ is a string literal,
and p ∈ {equal, suffix, prefix, contain}.

In particular, Π(Ai.∗) indicates the projection upon all the attributes of the relation Ai.

The form of the conjunctive queries in Definition 3.4 depicts the user intent from two
aspects. First, the atomic equality formulas encode the relationship between the grammatical
constructs. Second, the four string predicates support the common scenarios of string
matching-based code search. We do not focus on synthesizing more expressive string
constraints, which is the orthogonal direction of program synthesis [10, 27, 36]. Based on the
conjunctive queries, we can simultaneously perform the string matching-based search and
filter the constructs with various relations in the program relational representation.

▶ Example 3.2. We can formalize the query in Figure 1(c) as the relational algebra expression:

Π(A1.∗)(σΘ(ρA1(Method) × ρA2(Type) × ρA3(Parameter) × ρA4(Type)))

where the selection condition Θ in the selection operation is as follows:

Θ :=(A1.id = A3.method_id) ∧ (A1.ret_type_id = A2.id) ∧ (A3.type_id = A4.id)∧
equal(A2.name, “CacheConfig”) ∧ equal(A4.name, “Log4jUtils”)

The conjunctive queries can be instantiated with various flavors [17, 1, 7]. The select-
from-where queries are the instantiations of the conjunctive queries in SQL. Besides, a
simple Datalog program can also express the conjunctive query with a single Datalog rule.
In our paper, we formulate a conjunctive query as a relational algebra expression. Our
implementation actually synthesize the conjunctive queries as Datalog programs, which are
evaluated by a Datalog solver over the program relational representation for code search.

ECOOP 2023
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3.3 Multi-modal Conjunctive Query Synthesis Problem
To generate the conjunctive query for code search, the users need to specify their intent
as the specification. In our work, we follow the premise of the recent studies on the multi-
modal program synthesis [10, 4] that multiple modalities of information can go arm in arm
with each other, serving as the informative specification for the synthesis. Specifically, the
users provide a natural language sentence to describe the target code pattern and provide
several grammatical constructs as positive and negative examples. Notably, the multi-modal
synthesis specification is easy to provide. When the users want to explore a specific code
pattern, they can describe the pattern briefly in a natural language and provide several
examples from their editors instead of delving into the details of the underlying relations and
their attributes, enabling users to generate a query for code search in a declarative manner.

Based on the multi-modal synthesis specification, the positive and negative examples are
converted to the tuples in a specific relation. For example, Figure 1 shows a set of relations
as the relational representation of the examples. To formalize our problem better, we define
the notion of the relation partition as follows.

▶ Definition 3.5 (Relation Partition). The relation partition of R∗ ∈ R is a pair of two
relations (R∗

p, R∗
n) satisfying R∗ = R∗

p ∪ R∗
n and R∗

p ∩ R∗
n = ∅. The relation partition is

non-trivial if and only if R∗
p ≠ ∅ and R∗

n ̸= ∅. We say the tuples in R∗
p and R∗

n are positive
and negative tuples, respectively.

▶ Example 3.3. As shown in Figure 1, we can construct the relation partition (R∗
p, R∗

n),
where R∗

p = {(M1, I1, T3, MDF1)} and R∗
n = {(M2, I2, T3, MDF1), (M3, I3, T2, MDF1)}.

Obviously, R∗
p and R∗

n are disjoint, and R∗
p ∪ R∗

n is exactly the relation Method.

The positive and negative tuples essentially depict the positive and negative examples,
respectively. Based on the program’s relational representation, the examples specified by
the users can determine the positive and negative tuples, which can be achieved in various
manners. Specifically, users can select a grammatical construct in the IDEs or use a code
sample in a specific coding standard [51] as a positive example and remove several sub-
patterns from a positive example by mutation to construct negative ones. Such positive and
negative examples further constitute a sample code snippet, from which a Datalog-based
analyzer derives a set of relations as the relational representation. In this paper, we omit the
details of positive/negative tuple generation and formulate a multi-modal conjunctive query
synthesis (MMCQS) problem as follows.

Given a relational representation R, a relation partition (R∗
p, R∗

n) of R∗ ∈ R, and a
natural language description s, we aim to synthesize a conjunctive query RQ containing
the positive tuples in R∗

p and excluding the negative tuples in R∗
n.

▶ Example 3.4. Figure 1(a) shows the multi-modal synthesis specification, which consists of
a positive example, two negative examples, and a natural language description s as “Find all
the methods receiving a Log4jUtils-type parameter and giving a CacheConfig-type return”.
Leveraging a Datalog-based analyzer, we obtain the relational representation and the relation
partition of Method, which are shown in Figure 1(b). To automate the code search, we expect
to synthesize the query in Fig 1(c) or Example 3.2 according to the relational representation,
the relation partition, and the natural language sentence.

To promote the code search, we propose an efficient synthesis algorithm Squid for the
MMCQS problem, which is our main technical contribution. As explained in § 1, it is
challenging to solve the MMCQS problem efficiently, which involves mitigating the huge
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search space and selecting queries from multiple candidates. In the following two sections,
we formalize the conjunctive query synthesis from a graph perspective (§ 4), and illustrate
the technical details of our synthesis algorithm Squid (§ 5), which prunes the search space
and selects desired queries effectively.

4 Conjunctive Query Synthesis: A Graph Perspective

This section presents a graph perspective of our conjunctive query synthesis problem. Spe-
cifically, we introduce two graph representations of the language schema and the conjunctive
queries, named the schema graph (§ 4.1) and the query graph (§ 4.2), respectively, which re-
duces the conjunctive query synthesis to the query graph enumeration. Lastly, we summarize
the section and highlight the technical challenges from a graph perspective (§ 4.3).

4.1 Schema Graph
According to Definition 3.2, a relation in the language schema has three kinds of attributes,
namely a unique primary key, foreign keys, and string attributes. Obviously, the selection
condition Θ in RQ should only compare the foreign key of a relation with its referenced
primary key or constrain the string attributes with string predicates. To depict the possible
ways of constraining the attributes, we define the concept of the schema graph as follows.

▶ Definition 4.1 (Schema Graph). The schema graph GΓ of a language schema Γ is (NΓ, EΓ):
The set NΓ contains the relation symbols in the schema or the string type STR as the
nodes of the schema graph, i.e., NΓ := dom(Γ) ∪ {STR}.
The set EΓ contains an edge (n1, n2, a) if and only if either of the conditions holds:

n1, n2 ∈ dom(Γ) and (a, n2) ∈ Γ(n1): The relation n1 has a foreign key named a

referencing the primary key of the relation n2.
n1 ∈ dom(Γ) and (a, STR) ∈ Γ(n1): a is the string attribute of the relation n1.

▶ Example 4.1. Consider the relations in the relational representation shown in Figure 1(b).
We can construct the schema graph in Figure 3(a). The edge from Method to Modifier labeled
with mdf_id shows that the attribute mdf_id of Method is a foreign key referencing the
primary key of Modifier. Similarly, the edge from Type to STR labeled with name shows that
the attribute name in Type is a string attribute.

Noting that there can exist multiple edges with different labels between two nodes in
the schema graph, which indicate that a relation take multiple foreign keys referencing the
same relation or string attributes as the attributes. Essentially, the schema graph encodes
the available relations with its node set and depicts the valid forms of the atomic formulas
appearing in the selection condition with its edge set. Although we can compare the attributes
of any relations flexibly, a solution to our problem must take the valid form of the atomic
formulas as its selection condition, comparing the foreign keys with the referenced primary
keys or examining the string attributes of the relations appearing in a Cartesian product.

4.2 Query Graph
As formulated in Definition 3.4, there are two key components in the conjunctive query,
namely the Cartesian product and the selection condition. Leveraging the schema graph, we
can represent the components with nodes and edges on the graph, which uniquely determines
a conjunctive query. Formally, we introduce the notion of the query graph as follows.

ECOOP 2023



36:10 Synthesizing Conjunctive Queries for Code Search
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Figure 3 The examples of the schema graph and the query graph.

▶ Definition 4.2 (Query Graph). Given a conjunctive query Q, its query graph GQ is
(NQ, EQ, ΦQ):

The set NQ contains (Ri, Ai) or (p, ℓ) as a node in the query graph. Ri ∈ R is a relation
and Ai is the unique relation identifier. p and ℓ are the string predicate and literal,
respectively.
The set EQ contains (n1, n2, a) as an edge, corresponding to the equality atomic formula
Aj .a = Ak.id in the selection condition, where n1 = (Rj , Aj) and n2 = (Rk, Ak).
The mapping ΦQ maps a 3-tuple (Rj , Aj , a) to a node (p, ℓ), indicating the edge from
(Rj , Aj) to (p, ℓ) with the label a, which corresponds to the string constraint p(Aj .a, ℓ).

▶ Example 4.2. Figure 3(b) shows an query graph of RQ in Example 3.2. The white nodes
show the four relations appearing in the Cartesian product, while the gray nodes indicate
the string predicates and literals in the selection condition. The edges depict two kinds
of atomic conditions. For example, the edge from (Parameter, A3) to (Method, A1) labeled
with method_id indicates the equality constraint A3.method_id = A1.id. Meanwhile, the
edge induced by ΦQ(Type, A4, name) = (equal, “Log4jUtils”) indicates the string constraint
equal(A4.name, “Log4jUtils”).

Essentially, a conjunctive query and a query graph are allotropes. That is, there exists a
bijection κ mapping a conjunctive query RQ to a query graph GQ such that GQ = κ(RQ)
and RQ = κ−1(GQ). Thus, we can enumerate the conjunctive queries by enumerating the
query graphs. Besides, the schema graph restricts the form of the selection condition over the
attributes. If an edge with the label a connects (Rj , Aj) and (Rk, Ak) in a query graph, there
should exist an edge labeled with a connecting the relations Rj and Rk in the schema graph.
A similar argument also holds for the edge of the query graph indicated by the mapping ΦQ.
Therefore, we can reduce our conjunctive query synthesis to a search problem, of which the
search space is characterized as the set of query graphs.

4.3 Summary
Leveraging the schema graph, we have reduced the conjunctive query synthesis process to
query graph enumeration. To obtain the desired queries, we only need to select the nodes
and edges from the schema graph and create the node (p, ℓ) with proper string predicates
and literals for constructing a query graph GQ, which should satisfy that the induced query
κ−1(GQ) separates positive tuples from negative ones.

Obtaining the desired queries with high efficiency is a non-trivial problem. The schema
graph can be overwhelming, containing over a hundred nodes and edges, which leads to an
enormous number of choices for relations occurring in the query graph. Even for a given set of



C. Wang, P. Yao, W. Tang, G. Fan, and C. Zhang 36:11

relations, the flexibility of instantiating equality constraints and string constraints over their
attributes can induce a large number of selection choices of edges in a query graph, which
exacerbates the search space explosion problem. Additionally, the existence of multiple query
candidates necessitates the effective selection of candidates, which is crucial for conducting a
code search task. In the next section, we will detail our synthesis algorithm that addresses
these challenges, resulting in high efficiency and effectiveness for code search.

5 Synthesis Algorithm

This section presents our synthesis algorithm Squid to solve the MMCQS problem. Squid
takes as input the relational representation R of an example program, a relation partition
(R∗

p, R∗
n) of R∗ ∈ R, and a natural language description s. It generates the query candidates

separating positive tuples tp ∈ R∗
p from negative ones tn ∈ R∗

n , which can be further selected
and then used for code search. To address the challenges in § 4.3, Squid works with the
following three stages:

To tackle a large number of relations, Squid relies on the notion of dummy relations and
conducts the representation reduction based on the positive and negative tuples, which
effectively narrow down the relations that can appear in the query graph (§ 5.1).
To avoid unnecessary enumeration of edges in query graphs, we propose the bounded
refinement by enumerating the query graphs based on the schema graph, which essentially
appends equality constraints and string constraints inductively (§ 5.2).
To select query candidates, Squid identifies the named entities in the natural language
description s for the prioritization, and blends the selection with the refinement to collect
the desired queries (§ 5.3).

We also formulate the soundness, completeness, and optimality of our algorithm (§ 5.4). For
better illustration, we use the synthesis instance shown in Figure 1 throughout this section.

5.1 Representation Reduction
To tackle the large search space, we first propose the representation reduction to narrow down
the relations possibly used in the query. Specifically, we introduce the notion of the dummy
relations to determine the characteristics of unnecessary relations (§ 5.1.1) and propose the
algorithm of removing dummy relations for the representation reduction (§ 5.1.2).

5.1.1 Dummy Relations
There exists a class of relations, named dummy relations, which cannot involve in distinguish-
ing positive and negative tuples, such as the relation Modifier in Figure 1. Before defining
them, we first introduce the undirected relation path and the activated relation.

▶ Definition 5.1 (Undirected Relation Path). An undirected relation path from R0 to Rk+1 in
the schema graph GΓ = (NΓ, EΓ) is p : R0 ↪→(a0,d0) · · · ↪→(ak,dk) Rk+1, where Ri ∈ dom(Γ).
Here, di = 1 if and only if (Ri, Ri+1, ai) ∈ EΓ, and di = −1 if and only if (Ri+1, Ri, ai) ∈ EΓ.

▶ Definition 5.2 (Activated Relation). Given a tuple t0 ∈ R0 and an undirected relation path
p : R0 ↪→(a0,d0) · · · ↪→(ak,dk) Rk+1, the activated relation of t0 along p is

I(t0, p) = {tk+1 | ti+1 ∈ Ri+1, ite(di = 1, ti.ai = ti+1.id, ti.id = ti+1.ai), 0 ≤ i ≤ k}

▶ Example 5.1. In in Figure 1, the path p1 : Method ↪→(method_id,−1) Parameter ↪→(type_id, 1)
Type, and tp = (M1, I1, T3, MDF1) ∈ R∗

p. We have t1 = (P1, I4, T1, M1) ∈ Parameter,
and t2 = (T1, Log4jUtils) ∈ Type, By inspecting other tuples, we have I(tp, p1) =
{(T1, Log4jUtils)}.
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Intuitively, an undirected relation path can depict the restriction upon the relations in the
Cartesian product of the query. The activated relation actually contains the tuples enforcing
the primary key of t0 to appear in a selected tuple. Therefore, it is possible to narrow down
the relations for the synthesis by inspecting the activated relations of positive and negative
tuples along each undirected relation path. According to the intuition, we formally introduce
and define the notion of the dummy relations as follows.

▶ Definition 5.3 (Dummy Relation). Given a relation partition (R∗
p, R∗

n) of R∗ ∈ R, a relation
R ∈ R is dummy if for every undirected relation path p from R∗ to R, either of the conditions
is satisfied: (1) There exists tp ∈ R∗

p such that I(tp, p) = ∅; (2) I(tp, p) = I(tn, p) for any
tp ∈ R∗

p and tn ∈ R∗
n.

Definition 5.3 formalizes two characteristics of relations unnecessary the synthesis. First,
the empty activated relation of a positive tuple tp indicates the absence of the tuples in
the relation R, making the tuple tp appear. Second, the relation R cannot contribute to
separating positive tuples from negative ones if several tuples in R make all the positive and
negative tuples appear simultaneously. Thus, such relations can be discarded safely.

▶ Example 5.2. Example 5.1 shows that I(tp, p1) ̸= ∅. Similarly, I(tn, p1) = {(T2, int)} ≠
I(tp, p1) when tn = (M2, I2, T4, MDF1) ∈ R∗

n. Hence, Type is not dummy. Besides, any
undirected relation path p2 from Method to Modifier has the form

Method[↪→(mdf_id,+1) Modifier ↪→(mdf_id,−1) Method]∗ ↪→(mdf_id,+1) Modifier

where [·]∗ indicates the repeated subpath. We find that I(tp, p2) = I(tn, p2) =
{MDF1, public} for any tp ∈ R∗

p and tn ∈ R∗
n. Thus, the relation Modifier is a dummy

relation.

5.1.2 Removing Dummy Relations
Based on Definition 5.3, identifying dummy relations involves two technical parts. First, we
should collect all the undirected relation paths from R∗ to each relation. Second, we need
to compute I(tp, p) and I(tn, p) for each undirected relation path p and positive/negative
tuple. However, the schema graph can contain a large and even infinite number of undirected
relation paths from R∗. Any cycle induces the infinity of the path number, making it tricky
to examine the conditions in Definition 5.3. Fortunately, we realize that the number of cycles
in a path does not affect the activated relation, which is stated in the following property.

▶ Property 5.1. Given any t0 ∈ R0, we have I(t0, p) = I(t0, p′) for p and p′ as follows:

p : R0 ↪→(a0,d0) · · · Rl [↪→(a′
l
,d′

l
) · · · Rl+t ↪→(a′

l+t
,d′

l+t
) Rl]+ ↪→(al,dl) · · · Rk ↪→(ak,dk) Rk+1

p′ : R0 ↪→(a0,d0) · · · Rl ↪→(a′
l
,d′

l
) · · · Rl+t ↪→(a′

l+t
,d′

l+t
) Rl ↪→(al,dl) · · · Rk ↪→(ak,dk) Rk+1

Here, [·]+ indicates the cycle occurring at least one time.

Property 5.1 holds trivially according to Definition 5.2. For each undirected relation path
p containing a cycle, the constraints over the tuples in I(t0, p) are the same as the ones over
the tuples in I(t0, p′). Thus, we can just examine the finite number of undirected relation
paths in which a cycle appears at most one time.
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Algorithm 1 Removing dummy relations for representation reduction.

1 Procedure reduce(Γ, R, R∗
p, R∗

n):
2 R′ ← ∅;
3 GΓ ← SchemaGraph(Γ) ;
4 foreach R ∈ R :
5 P ← augmentPathWithCycle(AcyclicPath(R∗, R, GΓ));
6 foreach p ∈ P, tp ∈ R∗

p, tn ∈ R∗
n :

7 if I(tp, p) ̸= I(tn, p) :
8 R′ ←R′ ∪ {R}; break ;
9 foreach p ∈ P, tp ∈ R∗

p :
10 if I(tp, p) = ∅ :
11 R′ ←R′ \ {R}; break ;
12 return R′;

Establish upon the above concepts and property, Algorithm 1 shows the details of the
representation reduction by removing dummy relations. Initially, we construct the schema
graph GΓ according to Definition 4.1 (line 3). Then we compute the undirected relation
paths from R∗ to R in GΓ, where any cycle repeats at most once (lines 4–5). Specifically,
the function AcyclicPath collects all the acyclic undirected relation paths from R∗ to R in
the schema graph GΓ, while the function augmentPathWithCycle augments each acyclic path
by appending each cycle at most one time. For each undirected relation path p, we compute
I(tp, p) and I(tn, p) according to Definition 5.2 for each tp ∈ R∗

p and tn ∈ R∗
n, respectively.

Therefore, we can identify R as a non-dummy relation if both the conditions in Definition 5.3
are violated (lines 6–11). Finally, we obtain the reduced relational representation R′ that
excludes all the dummy relations (line 12).

▶ Example 5.3. Consider the undirected relation paths from Method to Modifier in Figure 3(a).
Algorithm 1 collects the acyclic path p3 : Method ↪→(mdf_id,+1) Modifier and augments it to
form the path p4 : Method ↪→(mdf_id,+1) Modifier ↪→(mdf_id,−1) Method ↪→(mdf_id,+1) Modifier.
Based on the activated relations I(t, p3) and I(t, p4) for each tuple t in Method, we can find
that I(tp, p) = I(tn, p) for every tp ∈ R∗

p and tn ∈ R∗
n. Thus, Modifier is a dummy relation.

Essentially, our representation reduction analyzes the example program upon its relational
representation. The activated relations provide sufficient clues to identifying unnecessary
relations, i.e., the dummy ones. As the first step of the synthesis, the representation reduction
narrows down the relations used in the conjunctive query. Furthermore, in the enumeration of
the edges of a query graph, i.e., the sets EQ and ΦQ, we only need to focus on the attributes
in the non-dummy relations in the reduced relational representation, which prunes the search
space significantly. Lastly, we formulate the soundness of the representation reduction as
follows, which can further ensure the completeness of our synthesis algorithm in § 5.4. We
provide a detailed proof in [49].

▶ Theorem 5.1. (Soundness of Representation Reduction) If an instance of the MMCQS
problem has a solution, there must be a conjunctive query RQ, of which the Cartesian
product only consists of non-dummy relations, such that RQ is also a solution.

5.2 Bounded Refinement
Based on the reduced relational representation R′, we can enumerate query candidates by
selecting proper nodes corresponding to non-dummy relations in R′ and edges connecting
such nodes. However, the search space is potentially unbounded. The relations can occur in
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a query multiple times, i.e., a node in the schema graph can be selected more than one time.
Meanwhile, the literal in a string constraint can be instantiated flexibly, which increases
the difficulty of enumerating a query graph with proper instantiation of ΦQ. To achieve
high efficiency, we propose the bounded refinement to expand query graphs on demand and
strengthen the query with the strongest string constraints. Specifically, we first introduce
the notions of the bounded query and the refinable query (§ 5.2.1), and then present the
details of enumerating the query graphs (§ 5.2.2).

5.2.1 Bounded Query and Refinable Query
As shown in Example 3.2, a relation can appear multiple times in the Cartesian product of a
conjunctive query, inducing an unbounded search space in the synthesis. The unboundedness
of the search space poses the great challenge of enumerating the query candidates efficiently.
However, we realize that the conjunctive query for a code search task often involves only
a few relations, each of which appears quite a few times. Thus, it is feasible to bound the
maximal multiplicity of the relation in the query and conduct the bounded enumeration.
Formally, we introduce the notion of the (m,k)-bounded query as follows.

▶ Definition 5.4 ((m, k)-Bounded Query). An (m, k)-bounded query is a conjunctive query
with m relations such that (1) each relation appears at most k times; (2) there is a relation
appearing exactly k times.

▶ Example 5.4. The conjunctive query Π(A1.∗)(σtrue(ρA1(Method))) is a (1, 1)-bounded
query. Similarly, the conjunctive query in Example 3.2 is a (4, 2)-bounded query.

Intuitively, we can enumerate the (m, k)-bounded queries by selecting non-dummy rela-
tions at most k times, forming a query graph with m nodes. When constructing the sets EQ

and ΦQ for the query graph enumeration, we only need to concentration on the attributes
of the selected relations. However, not all the query graphs are worth enumerating. If RQ

excludes a positive tuple, there is no need to add more nodes and edges to its query graph,
as it would induce a stronger selection condition, making the new query still exclude the
positive tuple. Formally, we formulate the notion of the refinable query as follows.

▶ Definition 5.5 (Refinable Query). A conjunctive query RQ is a refinable query if and only
if for any tp ∈ R∗

p we have tp ∈ RQ, i.e., R∗
p ⊆ RQ.

▶ Example 5.5. Consider RQ := Π(A1.∗)(σΘ(ρA1(Method) × ρA2(Type) × ρA3(Parameter))),
where the selection condition Θ in the selection operation is as follows:

Θ := (A1.id = A3.method_id) ∧ (A1.ret_type_id = A2.id) ∧ equal(A2.name, “CacheConfig”)

It is a refinable query as R∗
p ⊆ RQ = {(M1, I1, T3, MDF1), (M2, I2, T3, MDF1)}.

Essentially, a refinable query is the over-approximation of the positive tuples. When it
excludes all the negative tuples, the query is exactly a query candidate. Thus, we can collect
the query candidates by refining the refinable queries in the bounded enumeration.

5.2.2 Enumerating Query Candidates via Refinement
We denote the sets of (m, k)-bounded refinable queries and query candidates by SR(m, k)
and SC(m, k), respectively, and set a multiplicity bound K to bound the multiplicity of a
relation. To conduct a bounded enumeration, we have to compute the set SC(m, k) for k ≤ K,
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Algorithm 2 Enumerating query candidates via refinement.

1 Procedure refine(SR, SC , R∗
p, R∗

n, m, k, R′):
2 if m = 1 and k = 1 :
3 W ← {(∅, ∅,⊥)} ;
4 if m > 1 :
5 W ← {κ(RQ) | RQ ∈ SR(m− 1, k)};
6 if k > 1 :
7 W ←W ∪ {κ(RQ) | RQ ∈ SR(m− 1, k − 1)};
8

9 SR(m, k)← ∅;
10 while W is not empty do
11 GQ ← pop(W ); V ← ∅;
12 foreach R ∈ R′ :
13 if multiplicity(GQ, R) < k and κ−1(GQ) ∈ SR(m− 1, k) :
14 V ← V ∪ expand(GQ, R);
15 if multiplicity(GQ, R) = (k − 1) and κ−1(GQ) ∈ SR(m− 1, k − 1) :
16 V ← V ∪ expand(GQ, R) ;
17

18 foreach GQ : (NQ, EQ, ΦQ) ∈ V and R∗
p ⊆ κ−1(GQ) :

19 SR(m, k)← SR(m, k) ∪ κ−1(GQ) ;
20 foreach (Ri, Ai) ∈ NQ and (a, STR) ∈ Γ(Ri) :
21 (p, ℓ)← synLCS(GQ, Ri, Ai, a, R∗

p);
22 G′

Q ← (NQ, EQ, ΦQ[(Ri, Ai, a) 7→ (p, ℓ)]) ;
23 SR(m, k)← SR(m, k) ∪ κ−1(G′

Q);
24

25 SC(m, k)← {RQ | RQ ∈ SR(m, k), R∗
p = RQ};

which can be achieved by examining whether the queries in SR(m, k) are query candidates.
Obviously, exhaustive enumeration is impossible as the search space of (m, k)-bounded queries
is exponential to m and k. To avoid unnecessary enumeration, we leverage the structure of
SC(m, k), which is formulated in the following property.

▶ Property 5.2. For every refinable query RQ ∈ SC(m, k) and κ(RQ) := (NQ, EQ, ΦQ),
there exists a query graph G1

Q or G2
Q such that

NQ = N1
Q ∪ {(R, Ai)}, E1

Q ⊆ EQ, and Φ1
Q ⊆ ΦQ, where R appears in G1

Q exactly (k − 1)
times. Here, G1

Q = (N1
Q, E1

Q, Φ1
Q) and κ−1(G1

Q) ∈ SR(m − 1, k − 1).
NQ = N2

Q ∪ {(R, Ai)}, E2
Q ⊆ EQ, and Φ2

Q ⊆ ΦQ, where R appears in G2
Q fewer than k

times. Here, G2
Q = (N2

Q, E2
Q, Φ2

Q) and κ−1(G2
Q) ∈ SR(m − 1, k).

Property 5.2 shows that the sets of the nodes and edges in a query graph of a refinable
query are subsumed by the ones of a refinable query with fewer relations, which permit
us to enumerate the query candidates by computing SR(m, k) and SC(m, k) inductively.
Technically, we achieve the enumerative search via the bounded refinement. Assuming that
we have SR(m′, k′) and SC(m′, k′) for all m′ < m and k′ ≤ k. Algorithm 2 computes the
sets SR(m, k) and SC(m, k). The technical details of the refinement are as follows:

For the base case, where m = 1 and k = 1, we construct an empty query graph (line 3).
For a general case, we merge the sets of the query graphs induced by the refinable queries
in SR(m − 1, k) and SR(m − 1, k − 1) (lines 4–7). Hence, we obtain a set of query graphs
W to maintain all the refinable queries with m relations.
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Figure 4 The example of the bounded refinement.

For each query graph GQ ∈ W , we leverage the function expand wraps a specific relation
R as a new node and add new edges, producing a set of query graphs containing the
relation R (lines 12–16). Such query graphs are maintained in the set V .
For each query graph GQ ∈ V that induces a refinable query, we add the induced
refinable query to the set SR(m, k) (line 19) and attempt to synthesize a string constraint
(lines 20–23). Specifically, the function synLCS examines the values of a string attribute
a in the positive tuples to compute the longest common substring ℓ and the strongest
string predicate p (line 21), where all the values of a in the positive tuples satisfy the
string constraints induced by p and ℓ. By updating ΦQ, we add a new edge to GQ and
produce a new query graph inducing a refinable query (lines 22–23).
Finally, we check whether a (m, k)-bounded refinable query is a query candidate or not,
which yields the set SC(m, k) (line 25). The sets SR(m, k) and SC(m, k) are exactly the
sets of (m, k)-bounded refinable queries and query candidates.

Notably, we construct the string constraints on demands to strengthen the selection
condition of refinable queries, which is achieved by the function synLCS at line 21. The
reduction from string constraint synthesis to the LCS computation enable us to leverage
existing algorithms, such as general suffix automaton [33], to compute the string literal ℓ

and select a string predicate p efficiently, which promote the efficiency of query refinement.

▶ Example 5.6. Figure 4 shows the part of the refinement for the instance in Example 3.4.
G1

Q only contains the relation Method. After adding the nodes and edges, we construct the
query graphs of refinable queries with more relations and atomic constraints, such as G2

Q, G3
Q,

and G4
Q. Particularly, we identify the query candidate κ−1(G4

Q), i.e., RQ in Example 3.2.

5.3 Candidate Selection
Based on the bounded refinement, we collect the query candidates in which each relation
appears no more than K times, where K is the multiplicity bound. However, not all the
query candidates are the desired ones. In this section, we introduce dual quantitative metrics
to prioritize queries (§ 5.3.1) and select query candidates during the refinement (§ 5.3.2).

5.3.1 Dual Quantitative Metrics
Desired queries are expected to express the search intent correctly, covering as many gram-
matical concepts in the natural language as possible. Also, they should be as simple as
possible according to Occam’s razor. Based on the intuitions, we formalize the following two
metrics and then define the total order to prioritize the query candidates.
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▶ Definition 5.6. (Named-Entity Coverage) Given a function h mapping an attribute of a
relation to a set of words in natural language, the named entity coverage of a conjunctive
query RQ with respect to a natural language description s is

αh(RQ, s) = 1
|N(s)| ·

∣∣ ⋃
(Ri,aj)∈A(Θ)

h(Ri, aj) ∩ N(s)
∣∣

Here, A(Θ) contains the relations and their attributes appearing in the selection condition Θ
while N(s) is the set of the named entities in the description s.

▶ Definition 5.7. (Structural Complexity) Let δ(Θ) be the number of the atomic formulas
in the selection condition Θ. The structural complexity of a conjunctive query RQ is

β(Q) = m + δ(Θ)

To compute the named entity coverage, we instantiate the function h manually and
obtain the set N(s) from the natural language description s based on the named entity
recognition techniques [31]. The computation does not introduce much overhead, as the
natural language description exhibits a fairly small length in our scenarios. Meanwhile,
measuring the structural complexity is quite straightforward. The quantities m and δ(Θ)
can be totally determined by the sizes of the sets NQ, EQ and ΦQ in a query graph. Thus,
computing the two quantities does not introduce much overhead during the enumeration.

▶ Example 5.7. Assume that we instantiate the function h as follows:

h(Parameter, id) = {parameter}, h(Method, id) = {method}, h(Method, idf_id) = {identifier}

h(Method, ret_type_id) = {return, type}, h(Method, mdf_id) = {modifier}

Consider the natural language description s in Example 3.4 and the conjunctive query RQ

in Example 3.2, of which the query graph is shown in Figure 3(b). We can obtain a set of
named entities N(s) = {method, type, parameter, return}. Therefore, we have αh(RQ, s) = 1.
According to m = 4 and δ(Θ) = 5, its structural complexity is β(RQ) = 4 + δ(Θ) = 9.

Intuitively, the selection condition of a query is more likely to conform to the user intent
if the query has a higher named entity coverage. Besides, the simpler form query can have
better generalization power among the query candidates covering the same number of named
entities. Based on Occam’s razor, we should choose the simplest query from the candidates
that maximizes the named entity coverage. Thus, we propose the total order of conjunctive
queries as follows.

▶ Definition 5.8 (Total Order). Given the function h in Definition 5.6, we have R2
Q ⪯s R1

Q if
and only if they satisfy one of the following conditions:

αh(R1
Q, s) ≥ αh(R2

Q, s) or

αh(R1
Q, s) = αh(R2

Q, s), β(R1
Q) ≤ β(R2

Q)

▶ Example 5.8. Consider the following query candidates for the instance in Example 3.4.

Rc1
Q := Π(A1.∗)(σA1.name = “foo”(ρA1(Method)))

Rc2
Q := Π(A1.∗)(σΘ2(ρA1(Method) × ρA2(Type) × ρA3(Parameter) × ρA4(Type)))

Here, Θ2 := Θ ∧ (A1.name = “foo”) and Θ is shown in Example 3.2. Given the function h

shown in Example 5.7, we can obtain that αh(Rc1
Q , s) = 1

4 , αh(Rc2
Q , s) = 1, β(Rc1

Q ) = 2, and
β(Rc2

Q ) = 10. According to Example 5.7, we have Rc1
Q ⪯s Rc2

Q ⪯s RQ.
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Algorithm 3 Blending selection with refinement.

1 Procedure synthesize(Γ, R, R∗
p, R∗

n, s, K):
2 R′ ← reduce(Γ,R, R∗

p, R∗
n) ;

3 α̃← 1
|N(s)| |{w ∈ h(R, a) ∩N(s) | ∃R ∈ R′, T ∈ R′ ∪ {STR} : (a, T ) ∈ Γ(R)}|;

4 αmax ← MIN_INT; βmin ← MAX_INT; SQ ← ∅;
5 foreach 1 ≤ m ≤ K · |R′| :
6 if SR(m− 1, k − 1) = ∅ and SR(m− 1, k) = ∅ :
7 continue ;
8 foreach 1 ≤ k ≤ min(K, m) :
9 refine(SR,SC , R∗

p, R∗
n, m, k,R′);

10 foreach RQ ∈ SC(m, k) :
11 (αmax, βmin, SQ) ← update (RQ, αmax, βmin, SQ);
12 β̃ = min({β(RQ) | RQ ∈ SR(m, k) ∪ SR(m, k − 1)});
13 if αmax = α̃ and βmin ≤ β̃ :
14 return SQ;
15 return SQ;

The total order is an adaption of Occam’s razor for our synthesis problem. Without
the named entity coverage, we would select the query candidates with the lowest structural
complexity, such as Rc1

Q in Example 5.8, even if they do not constrain the relationship of
several grammatical constructs as expected. Based on the total order, we can select the
query candidates by solving the dual-objective optimization problem, which finally yields the
desired queries for code search.

5.3.2 Blending Selection with Refinement
Based on Definition 5.8, we propose Algorithm 3 that blends the candidate selection with the
bounded refinement, which is more likely to obtain the desired queries for a code search task.
First, we obtain the schema graph and remove the dummy relations via the representation
reduction (line 2). We then compute the upper bound of the named entity coverage, which is
denoted by α̃ (line 3). After the initialization of αmax, βmin, and SQ (line 4), we conduct the
bounded refinement and select the query candidates in each round (lines 5–14). Obviously,
there are at most K · |R′| relations in a query for a given multiplicity bound K (line 5), and
a relation can only appear at most min(K, m) times in a query with m relations (line 8). In
each round, we fuse the refinement and selection as follows:

Enumerate (m, k)-bounded refinable queries and query candidates with Algorithm 2,
strengthening the selection conditions of the refinable queries in previous rounds (line 9).
Compute αh(RQ, s) and β(RQ) for each (m, k)-bounded query candidate RQ and update
the selected candidate set SQ, αmax, and βmin (lines 10–11). Particularly, αmax and
βmin are updated to identify the largest candidates with respect to the total order.
Terminate the iteration in advance and return the set SQ if αmax reaches the upper
bound of the named entity coverage, i.e., α̃, and the queries to be refined in the next
round do not have lower structural complexities than βmin (lines 13–14).

The refinement strengthens the selection conditions to exclude all the negative tuples.
Specifically, we explore the bounded search space containing the query graphs of refinable
queries, avoiding the unnecessary enumerative search effectively. In real-world code search
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tasks, the selection condition is often involved different kinds of grammatical constructs,
making each relation appear often appear in the conjunction query one or two times. Therefore,
we set the multiplicity bound K to 2 for real-world code search tasks in practice, of which
the effectiveness will be evidenced by our evaluation.

The natural language description benefits our synthesis process from two aspects. First,
the selected queries in SQ are the largest queries under the total order, and thus they are
more likely to conform to the user’s search intent than other query candidates. Second, we
terminate the enumerative search if the named entity coverage cannot increase with a smaller
structural complexity, avoiding unnecessary enumerative search of bounded query candidates
for the efficiency improvement.

▶ Example 5.9. Consider Rc1
Q , Rc2

Q and RQ in Example 5.8. We obtain the query candidate
Rc1

Q when (m, k) = (1, 1), and discover the candidates RQ and Rc2
Q when (m, k) = (4, 2).

Based on Definition 5.8, we select and maintain the query candidate RQ in SQ. Also, we find
αmax = αh(RQ, s) = 1 reaches α̃, indicating that the candidates in the subsequent rounds
cannot yield a larger named entity coverage with lower structural complexity. Algorithm 3
terminates and returns the set SQ = {RQ}.

5.4 Summary
Our synthesis algorithm Squid is an instantiation of a new synthesis paradigm of the multi-
modal synthesis, which reduces the synthesis problem to a multi-target optimization problem.
We now formulate and prove the soundness, completeness, and optimality of Squid with
three theorems as follows, which are proved in [49].

▶ Theorem 5.2 (Soundness). For any RQ ∈ SQ, where SQ is returned by Algorithm 3, RQ

must contain all the positive tuples in R∗
p and exclude the negative tuples in R∗

n.

▶ Theorem 5.3 (Completeness). If an MMCQS problem instance has an (m, k)-bounded
query as its solution and k ≤ K, the set SQ returned by Algorithm 3 is not empty.

▶ Theorem 5.4 (Optimality). Denote I = {(m, k) | 1 ≤ m ≤ K · |R′|, 1 ≤ k ≤ min(K, m)}
and S̃ =

⋃
(m,k)∈I SC(m, k). The returned query set SQ of Algorithm 3 satisfies:

R′
Q ⪯s RQ for every RQ ∈ SQ and R′

Q ∈ S̃.
There do not exist RQ ∈ S̃ \ SQ and R′

Q ∈ S̃ such that R′
Q ⪯s RQ and RQ ⪯̸s R′

Q.

6 Implementation

Established upon the industrial Datalog-based Java program analyzer in Ant Group, Squid
synthesizes conjunctive queries to support code search tasks in Java programs. Noting
that our approach is general enough to support the conjunctive query synthesis for any
Datalog-based analyzer as long as the generated relations can be formulated by Definition 3.2.
In what follows, we provide more implementation details of Squid.

Synthesis Input Configuration. We design a user interface to convenience the users to
specify examples in a code snippet. Specifically, the users can copy a desired grammatical
construct from their workspace as a positive example or write a positive example manually.
By mutating a positive example, the users can create more positive and negative examples,
eventually forming an example program. Then we convert the program to the relational
representation, which consists of 173 relations with 1,093 attributes in total, and partitions a
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relation into two parts to induce positive and negative tuples. To extract the named entities
from the natural language description, we leverage the named entity recognition [31] and
construct the dictionary of entities to filter unnecessary named entities in the post-processing.
Specifically, the dictionary contains 205 words, which are the keywords describing grammatical
constructs in Java programs, such as “method”, “parameter”, and “return”. Furthermore, we
also instantiate the function h in Definition 5.6 to bridge the program relational representation
with natural language words. We publish all the synthesis specifications and dictionary of
entities online [48].

Synthesis Algorithm Design. Based on the language schema of Java, we construct the
schema graph offline and persist it for synthesizing queries for a given synthesis specification.
Instead of invoking the Datalog-based analyzer, we implement a query evaluator for con-
junctive queries upon the relational representation to identify the refinable queries and query
candidates, which can improve the efficiency of the query evaluation during the synthesis. In
the bounded refinement, we set the multiplicity bound K to 2 by default to support code
search tasks. To efficiently synthesize string constraints, we leverage the generalized suffix
automaton [33] to identify the longest common substrings of a set of string values, which
returns the string predicate p and the string literal ℓ with low time overhead. Currently,
Squid utilizes four predicates for string match, while we can further extend it to support
regex match by adopting existing regex synthesis techniques [27, 10] to Algorithm 2.

7 Evaluation

To quantify the effectiveness and efficiency of Squid, we conduct a comprehensive empirical
evaluation and answer the following four research questions:

RQ1: How effective is Squid in the conjunctive query synthesis for code search tasks?
RQ2: How big are the benefits of the representation reduction and the bounded refinement
in terms of efficiency?
RQ3: Is the query candidate selection effective and necessary for the synthesis?
RQ4: How does Squid compare to other approaches that could be used in our problem?

Benchmark. There are no existing studies targeting our multi-modal synthesis problem, so
we construct a new benchmark for evaluation, which consists of 31 code search tasks. As
shown in Table 1, the tasks cover five kinds of grammatical constructs, namely variables,
expressions, statements, methods, and classes. Specifically, 14 tasks are the variants of C++
search tasks in [34] or the query synthesis tasks in [46]. We also consider more advanced
tasks deriving from real demands. For example, Task 2 originates from the coding standard
of a technical unit in Ant Group, while Task 21 is often conducted when the developers check
the usage of the log4j library to improve reliability. For each task, we specify examples in
a program and a sentence as the natural language description. The program is fed to the
commercial Datalog-based analyzer in Ant Group to generate the relational representation
and the relation partition, while the natural language description is processed via the named
entity recognition technique [31]. The columns L and (P, N) in Table 1 indicate the line
numbers of the programs and the numbers of positive/negative tuples, respectively.

Experimental Setup. We conduct all the experiments on a Macbook Pro with a 2.6 GHz
Intel® Core™ i7-9750H CPU and 16 GB physical memory.
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Table 1 Experiment results of synthesizing conjunctive queries for code search tasks.

ID Description L (P, N) |GQ| k |G′
Γ| T0(s)

1 Local variables with double type 10 (2, 2) (2, 1, 1) 1 (10, 19) 2.36
2 Float variables of which the identifier contains “cash” 10 (3, 1) (3, 2, 2) 1 (9, 17) 2.37
3 Public field variables of a class 6 (2, 1) (2, 1, 1) 1 (10, 21) 2.30
4 Public field variables whose names use “cash” as suffixes 8 (3, 2) (2, 2, 2) 1 (10, 23) 2.49

5 Arithmetic expressions using double-type operands 9 (2, 2) (3, 2, 2) 1 (9, 29) 2.62
6 Cast expressions from double-type to float-type [46] 11 (1, 2) (3, 2, 2) 2 (9, 23) 2.31
7 Arithmetic expressions only using literals as operands 19 (2, 3) (3, 2, 1) 2 (9, 29) 2.76
8 Expressions comparing a variable and a boolean literal [34] 16 (2, 1) (2, 1, 1) 1 (8, 29) 2.36
9 New expressions of ArrayList 8 (2, 1) (2, 1, 1) 1 (10, 25) 2.20
10 Logical conjunctions with a boolean literal [34] 11 (3, 1) (2, 1, 2) 1 (9, 29) 2.31
11 Float increment expression [46] 11 (1, 2) (3, 2, 2) 1 (9, 23) 2.55
12 Expressions comparing two strings with “==” [34] 14 (2, 1) (3, 2, 3) 1 (11, 46) 3.01
13 Expressions performing downcasting [46] 25 (2, 1) (3, 2, 0) 1 (11, 39) 2.63

14 The import of LocalTime 7 (1, 1) (1, 0, 2) 1 (9, 23) 2.17
15 The import of the classes in log4j 9 (3, 1) (1, 0, 1) 1 (9, 22) 2.22
16 Labeled statements using “err” as the label [34] 17 (1, 1) (1, 0, 1) 1 (10, 21) 2.18
17 If-statements with a boolean literal as a condition [34] 16 (2, 1) (2, 1, 0) 1 (9, 17) 2.24
18 For-statements with a boolean literal as the condition [34] 15 (2, 1) (2, 1, 0) 1 (10, 25) 2.31
19 Invocation of unsafe time function “localtime” [34] 9 (2, 1) (2, 1, 1) 1 (10, 23) 2.23

20 Public methods with void return type [34] 10 (2, 1) (3, 2, 2) 1 (11, 26) 2.36
21 Methods receiving a parameter with Log4jUtils type 11 (2, 1) (3, 2, 1) 1 (9, 20) 2.45
22 Methods using a boolean parameter as a if-condition [46] 29 (2, 2) (4, 3, 0) 1 (11, 26) 3.23
23 Methods creating a File object 14 (2, 1) (3, 2, 1) 1 (12, 30) 2.38
24 Mutually recursive methods [34, 46] 20 (2, 2) (2, 2, 0) 2 (11, 27) 2.42
25 Overriding methods of classes [46] 25 (2, 4) (5, 5, 0) 2 (8, 22) 5.89

26 User classes with “login” methods 15 (2, 1) (2, 1, 2) 1 (11, 28) 2.53
27 Classes containing a field with Log4jUtils type 20 (2, 1) (3, 2, 1) 1 (12, 35) 2.42
28 Classes having a subclass 25 (3, 3) (2, 1, 0) 2 (13, 33) 2.21
29 Classes implementing Comparable interface 16 (2, 1) (2, 1, 1) 1 (13, 35) 2.58
30 Classes containing a static method 17 (2, 1) (3, 2, 1) 1 (11, 28) 2.46
31 Java classes with main functions 16 (2, 1) (2, 1, 1) 1 (10, 28) 2.35

7.1 Overall Effectiveness
To evaluate the effectiveness of Squid, we run it upon the synthesis specification for each
code search task, examining whether the synthesized queries express the intent correctly, and
meanwhile, measure the time cost of synthesizing queries in each task.

In Table 1, the column |GQ| indicates the numbers of the relations, equality constraints,
and string constraints. The column k shows the maximal multiplicity of a relation in a
synthesized query, while the column |G′

Γ| indicates the numbers of nodes and edges in the
subgraph of the schema graph induced by R′ ∪ {STR}. The time cost of Squid is shown in
the column T0. According to the statistics, we can obtain two main findings. First, Squid
synthesizes the queries for all the tasks successfully. It manipulates more than three relations
in Tasks 22 and 25, which are even non-trivial for a human to achieve. Second, Squid
synthesizes the queries with a quite low time cost. The average time cost is 2.56 seconds,
while most of the tasks are finished in three seconds.

As mentioned in § 6, Squid performs the bounded refinement with the multiplicity bound
K = 2. In our benchmark, five code search tasks demand several relations appear two times.
In practice, the searching condition can hardly relate to more than two grammatical constructs
of the same kind, so our setting of the multiplicity bound K enables Squid to synthesize
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Figure 5 The time cost comparison of Squid, SquidNrr, and SquidNbr.

queries for code search tasks in real-world scenarios. Meanwhile, we quantify the time cost
of the synthesis in the cases of K = 3 and K = 4. Averagely, Squid takes 2.71 seconds and
3.98 seconds under the two settings, respectively. Thus, the overhead increases gracefully
when K increases, demonstrating the great potential of Squid in efficiently synthesizing
more sophisticated queries with a larger multiplicity bound.

7.2 Ablation Study on Efficiency
We evaluate two ablations of Squid, namely SquidNrr and SquidNbr, to quantify the
impact of the representation reduction and the bounded refinement on the efficiency.

SquidNrr: This ablation of Squid does not perform the representation reduction but
still leverages Algorithm 2 to conduct the bounded refinement.
SquidNbr: The ablation performs the representation reduction as Squid does, while it
enumerates all the query graphs and permits each relation to appear at most K times.

We measure the time cost of two ablations to quantify their efficiency. Specifically, we set the
time budget for synthesizing queries for a single task to 30 seconds, as a synthesizer would
have little practical value for the real-world code search if it ran out of the time budget.

Figure 5 shows the comparison of the time cost of Squid and the two ablations. First, the
representation reduction can effectively reduce the time cost. Specifically, the average time
cost of SquidNrr is 8.98 seconds, indicating that the representation reduction introduces a
71.49% reduction over the time cost. Second, the bounded refinement has a critical impact
on the efficiency of Squid. Without the refinement, SquidNbr has to explore the huge
search space induced by the non-dummy relations, making 14 out of 31 tasks cannot be
finished within the time budget, such as Task 4, Task 5, etc. For the failed tasks, we do not
show the time cost of SquidNbr in Figure 5. SquidNbr also takes much more time than
Squid, consuming 7.89 seconds on average, even if it successfully synthesizes the queries.

To investigate how the efficiency is improved, we further measure the size of the subgraph
of the schema graph induced by R′ ∪ {STR}. Initially, the schema graph contains 174 nodes
(including the node depicting STR) and 1,093 edges. As shown in the column |G′

Γ| of Table 1,
the induced subgraph only contains around ten nodes and no more than fifty edges. Although
SquidNrr prunes unnecessary relations by enumerating several bounded queries at the
beginning of the refinement, it has to spend more time on the query enumeration than Squid,
which demonstrates the critical role of the bounded refinement in our synthesis. Besides, the
running time of SquidNbr is similar to Squid on several benchmarks, such as Task 1, Task
2, Task 3, Task 9, etc., while it takes much longer time than Squid in other benchmarks.
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Figure 6 The numbers of synthesized queries prioritized with different metrics.

Although SquidNbr does not discard infeasible queries, it still benefits from representation
reduction. When a desired query is of small size and the reduced program representation
induces a small schema graph G′

Γ, SquidNbr can terminate to find an optimal query by
enumerating a few candidates. However, if GQ and G′

Γ are large, SquidNbr enumerates a
large number of infeasible queries, which introduces significant overhead.

7.3 Impact of Selection
To measure the impact of the query candidate selection, we adapt each metric separately for
candidate prioritization. Specifically, we alter Algorithm 3 and select the queries minimizing
the structural complexity and maximizing the named entity coverage, respectively. We then
count the returned queries and inspect whether they are desired ones or not.

Figure 6(a) shows the numbers of the synthesized queries with the structural complexity as
the metric. As we can see, Squid produces non-desired queries in 12 tasks, while the returned
set of synthesized queries in 10 tasks do not contain any desired query. For Task 3 and
Task 30, it provides the desired queries along with non-desired ones, which makes the users
confused about how to select a proper one. Similar to Rc1

Q in Example 5.8, the non-desired
queries are caused by the over-fitting of positive and negative examples. Although they have
the simplest form of the selection conditions, the relationship of grammatical constructs
mentioned in the natural language description is not constrained, making synthesized queries
not express the users’ intent correctly.

Figure 6(b) shows the numbers of the queries maximizing the named entity coverage.
Squid returns at least one non-desired query for seven tasks. Similar to Rc2

Q in Example 5.8,
non-desired queries come from over-complicated selection conditions. Although the selected
queries have the same named entity coverage, several queries contain more atomic formulas
than the desired ones, posing stronger restrictions upon the code. Besides, the synthesized
queries in several tasks, e.g., Task 11 and Task 26, have complex selection conditions although
they are equivalent under the context of code search. However, such queries exhibit higher
structural complexity, posing more difficulty in understanding them.

7.4 Comparison with Existing Techniques
To the best of our knowledge, no existing technique or implemented tool targets the same
problem as Squid. To compare Squid with existing effort, we adapt the state-of-the-art
Datalog synthesizer EGS [46] as our baseline. Originally, it synthesizes a conjunctive query
to separate a positive tuple from all the negative ones and then group all the conjunctive
queries as the final synthesis result, which can be theoretically a disjunctive query. However,
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Figure 7 The time cost and the numbers of passed tasks of Squid, EGS-Str, and EGS-StrDual.

EGS does not synthesize string constraints and only prioritizes feasible solutions based on
their sizes, i.e., the structural complexity in our work. Thus, we construct two adaptions,
namely EGS-Str and EGS-StrDual, to synthesize the queries under our problem setting.

EGS-Str computes the longest substring of each string attribute in the positive tuple
such that the string values of the attributes in negative ones do not contain it as the
substring. We follow the priority function in EGS, which consists of the number of
undesirable tuples eliminated per atomic constraint and the size of a query, to accelerate
searching a query candidate with a small size. Finally, it obtains a query candidate for
each positive tuple and groups the candidates as a result.
EGS-StrDual further extends EGS-Str by considering the named entity coverage.
Specifically, it prioritizes the refinable queries according to the three metrics, including
the number of undesirable tuples eliminated per atomic constraint, the named entity
coverage, and the size of a query. Other settings are the same as the ones of EGS-Str.

Figure 7 shows the results of the comparison. On average, EGS-Str and EGS-StrDual
spend 2.85 and 3.18 seconds on a synthesis instance, respectively, while the average time cost
of Squid is 2.56 seconds. Although EGS-Str and EGS-StrDual accelerate the searching
process with priority functions as the heuristic metrics, they have to process the positive
tuples in each round, and thus, the number of positive tuples can increase the overhead.

Meanwhile, the two baselines only succeed synthesizing queries for 9 and 14 tasks,
respectively. There are two root causes of their failures in synthesizing desired queries. First,
they synthesize the query candidates for each positive query separately and, thus, are more
prone to over-fitting problems than Squid. Second, the core algorithms of EGS and the two
adaptions, which are the instantiations of inductive logic programming, can not guarantee the
obtained solutions are optimal under the given metrics. As reported in [46], the query may
not be of the minimal size if EGS leverages the number of undesirable tuples eliminated per
atomic constraint to accelerate the searching process of a query candidate. In our problem,
our dual quantitative metrics increase the difficulty of achieving the optimal solutions with
the two adaptions, which causes the failures of the code search tasks.

7.5 Discussion

In what follows, we demonstrate the discussions on the limitations of Squid and several
future works, which can further improve the practicality of our techniques.
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Limitations. Although Squid is demonstrated to be effective for code search, it has two
major limitations. First, Squid cannot synthesize the query where the multiplicity of a
relation is larger than the multiplicity bound K. In other words, Theorem 5.3 actually ensures
partial completeness. Although we may achieve completeness for all realizable instances by
enumerating queries until obtaining a query candidate in Algorithm 3, Squid would fail
to terminate for unrealizable instances. Second, Squid does not support synthesizing the
queries with logical disjunctions. However, when a code search task involves the matching of
multiple patterns, Squid would not discover the correct queries, which are out of the scope
of the conjunctive queries.

Future Works. In the future, we will attempt to propose an efficient decision procedure
to identify unrealizable instances. Equipped with the decision procedure, we can only
enumerate queries for realizable instances and generalize the query refinement by discarding
the multiplicity bound. Besides, it would be promising to generalize Squid for disjunctive
query synthesis. One possible adaption is to divide positive tuples into proper clusters
and synthesize a conjunctive part for each cluster separately, following existing studies
such as EGS [46] and RhoSynth [15]. In addition, we aim to expand Squid to diverse
program domains, such as serverless functions [50] and programs running on networking
devices [57]. These use cases have gained significant attention in recent years, which can
pose new challenges on code search where new approaches may be needed. Lastly, it would
be meaningful to combine Squid with the techniques in the community of human-computer
interaction [8] to unleash its benefit for practice use.

8 Related Work

Multi-modal Program Synthesis. There has been a vast amount of literature on the
multi-modal synthesis [11, 4, 9, 10, 40, 16, 34]. For example, the LTL formula synthesizer
LtlTalk [16] maximizes the objective function that measures the similarity between the
natural language description and the LTL formula, and searches for the optimal solution that
distinguishes the positive and negative examples. Squid bears similarities to LtlTalk in
terms of the prioritization, while we use the named entities to avoid the failure of semantic
parsing of a sentence. Another closely related work is a query synthesizer named Sporq [34].
Based on code examples and user feedback, Sporq iterates its PBE-based synthesis engine
to refine the queries, which demands verbose user interactions and a long time period. In
contrast, Squid automates the code search by solving a new multi-modal synthesis problem,
which only requires the users to specify code examples and a natural language description.
effectively relieving the user’s burden in the searching process.

Component-based Synthesis. Several recent studies aim to compose several components
(e.g., the classes and methods in the libraries) into programs that achieve target functionalit-
ies [25, 18, 24, 38, 20, 21]. Typically, SyPet [14] and APIphany [19] both use the Petri net
to encode the type signature of each function, and collect the reachable paths to enumerate
the well-typed sketches of the programs, which prunes the search space at the start of the
synthesis. In our work, Squid leverages the schema graph to guide the enumerative search,
which share the similarity with existing studies. However, our enumerative search space
does not consist of the reachable paths in the schema graph, and instead, contains different
choices of selecting its nodes and edges. Besides, unlike prior efforts [14, 24, 20, 19], Squid
computes the activated relations and then discards unnecessary components, i.e., dummy
relations, which distinguishes Squid significantly from other component-based synthesizers.
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Datalog Program Synthesis. There have been many existing efforts of synthesizing Datalog
programs [2, 42, 39, 43, 32]. For example, Zaatar [2] encodes the input-output examples
and Datalog programs with SMT formulas, and synthesizes the candidate solution via
constraint solving. Unlike constraint-based approaches, ALPS [42] and GENSYNTH [32]
synthesize target Datalog programs via the enumerative search, which is similar to our
synthesis algorithm. However, existing studies do not tackle a large number of relations in
the synthesis [2, 42, 32] or pursue an optimal solution with respect to a natural language
description. Meanwhile, they do not support the synthesis of string constraints, making
their approaches incapable of string matching-based code search. In contrast, Squid ensures
soundness, completeness, and optimality simultaneously and synthesizes string constraints
for string matching, showing its potential in assisting real-world code search tasks.

Datalog-based Program Analysis. The past few decades have witnessed the increasing
popularity of Datalog-based program analysis [22, 52, 55, 3, 44]. For example, CodeQL
encodes a program with a relational representation and exposes a query language for query
writing [3]. Several analyzers target more advanced semantic reasoning. For example, the
points-to and alias facts are depicted by two kinds of relations in Doop [6], and meanwhile,
pointer analysis algorithms are instantiated as Datalog rules [44]. Other properties, such as
def-use relation and type information, can also be analyzed by existing analyzers [26, 37].
Our effort has shown the opportunity of unleashing the power of Datalog-based program
analyzers seamlessly to support the code search automatically.

9 Conclusion

We propose an efficient synthesis algorithm Squid for a multi-modal conjunctive query
synthesis problem, which enables automatic code search using a Datalog-based program
analyzer. Squid reduces the search space via the representation reduction and the bounded
refinement, and meanwhile, conducts the query candidate selection with dual quantitative
metrics. It efficiently synthesizes the queries for 31 code search tasks with the guarantees of
soundness, completeness, and optimality. Its theoretical and empirical results offer strong
evidence of its practical value in assisting code search in real-world scenarios.
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