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Abstract
Domain-specific languages (DSLs) are prevalent across many application domains. Such languages
let developers easily express computations using high-level abstractions that result in performant
implementations. To leverage DSLs, however, application developers need to master the DSL’s
syntax and manually rewrite existing code. Compilers can aid in this effort, but part of building a
compiler requires transpiling code from the source code to the target DSL. Such transpilation is
typically done via pattern-matching rules on the source code. Sadly, developing such rules is often a
painstaking and error-prone process.

In this paper, we describe our experience in using program synthesis to build code transpilers.
To do so, we developed MetaLift, a new framework for building transpilers that transform general-
purpose code into DSLs using program synthesis. To use MetaLift, transpiler developers first define
the target DSL’s semantics using MetaLift’s specification language, and specify the search space
for each input code fragment to be transpiled using MetaLift’s API. MetaLift then leverages
program synthesizers and theorem provers to automatically find transpilations expressed in the
target DSL that is provably semantic equivalent to the input code. We have used MetaLift to
build three DSL transpilers targeting different programming models and application domains. Our
results show that the MetaLift-based compilers can translate many benchmarks used in prior work
created by specialized implementations, but can be built using orders-of-magnitude fewer lines of
code as compared to prior work.
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1 Introduction

Domain-specific languages (DSLs) are now popular means to develop applications across
many domains. Besides improving programmability, modern DSLs often expose domain-
specific optimizations via their interfaces for applications to leverage specialized hardware
accelerators [16, 32, 6, 21], or domain-specific code transformation [15, 43, 12].
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Yet, to capitalize on the benefits provided by DSLs, developers must learn the interfaces
provided by the target DSL. For existing applications, developers need to painfully reverse-
engineer legacy code, potentially convolved with optimizations, before rewriting it, only
to realize that newly emerging frameworks can turn freshly rewritten code into legacy
applications. Needless to say, each rewrite is another opportunity to introduce bugs into the
application.

The classical mechanism to alleviate this problem is for DSL designers to build pattern-
driven transpilers that translate programs, say written in general-purpose languages, into their
DSLs [4]. While such transpilers are essentially part of all modern optimizing compilers, they
often require developing a complex network of inter-connected translation rules [22, 31, 39],
which is a highly tedious and error-prone task.

Instead of transpilation rules, researchers have leveraged advances in program synthesis [11,
17] for code transpilation, where the idea is to replace the rule-matching machinery with a
code synthesizer that finds programs written in the target language that are semantically
equivalent to the input code fragment [23, 14, 27, 20, 3]. However, using such techniques
involves encoding the semantics of the input program as a synthesis problem. Furthermore,
building such transpilers requires implementing specialized synthesis procedures, which relies
on specialized knowledge of synthesis algorithms that most transpiler designers do not possess.

In this paper, we describe our experience in building code transpilers using program
synthesis. To do so in a systematic manner, we designed a new framework called MetaLift.
Our goal in building MetaLift is to free transpiler developers from designing a myriad of
pattern matching rules for transpilation, while making synthesis technology easily accessible
for code translation. Given input code written in the source language (MetaLift currently
supports LLVM), developers can use MetaLift to implement a code transpiler that uses
program synthesis to search for code in the target language that is provably semantically
equivalent to the input. To use MetaLift, developers first define the semantics of their
target DSL using MTL, i.e., MetaLift’s Specification Language. Then, using MetaLift’s
search space API, developers specifies the search space of DSL programs for each input. The
search space can be constructed programmatically by analyzing each input code to transpile.
Given the DSL definition and search space description, developers then write a transpiler
driver that orchestrates the transpilation process.

MetaLift is designed with developer usability in mind in constructing transpilers. As we
will discuss in detail, MTL is designed as a specification language embedded within Python
for ease of use. As MetaLift focuses on ensuring semantic equivalency between the source
and transpiled code, MTL consists of a small number of constructs, and is designed to be
high-level so that developers can easily use it to express the semantics of each construct
in their target DSL, and yet simple enough for MetaLift to compile down as the input
to different synthesizers and verifiers. Likewise, the MetaLift’s API is also designed to
abstract away the details of synthesis and verification from the developer.

To evaluate MetaLift, we have used the framework to reproduce three different trans-
pilers described in prior work spanning multiple application domains and programming
models. Our evaluation shows that they require order-of-magnitude fewer lines of code to
build as compared to prior work, with the resulting transpiler generating the same (or very
similar) code as the original implementations.

In summary, this paper makes the following contributions:
We design MTL for developers to specify the semantics of different constructs in their
DSLs. The design of MTL is general enough to support many real-world DSLs, yet simple
enough to be translated as the input to various program synthesizers and verification
engines.
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Figure 1 An overview of the MetaLift architecture.

We describe MetaLift, a unified framework for developing transpilers for DSLs. Rather
than designing pattern matching rules, MetaLift enables designers to use program
synthesis to easily translate input code to their DSLs without requiring any program
synthesis expertise. Furthermore, the translations generated by MetaLift are formally
verified for semantic equivalence to the source code, so developers are assured of an
accurate translation.
We show how MetaLift generalizes previous work on building transpilers using program
synthesis by creating two DSL transpilers that translate from general-purpose code
to these DSLs. These three DSLs are aimed at different application domains. Our
evaluations demonstrate how MetaLift dramatically reduces the effort required to build
these compilers.

We organize the rest of the paper as follows. We provide an overview of MetaLift
(Section 2). We describe MetaLift in more detail (Section 3) using a representative example.
We evaluate MetaLift in Section 4 and review the prior approaches for building transpilers
in Section 5. Finally, we conclude (Section 6) with directions for future work.

2 Overview

In this section, we provide an overview of the MetaLift framework. The high-level
architecture of MetaLift is shown in Figure 1. For the majority of the paper, we use the
example in Figure 2 as our running example and describe how to build a transpiler using
MetaLift that translates sequential Java code to the Spark DSL. Spark [43] provides users
with an interface to efficiently process large-scale distributed computations in a parallel and
fault-tolerant manner.

Concretely, the example in Figure 2a takes as input a list of words and counts the
frequency of each word in input list. Figure 2b shows the equivalent implementation using
map reduce operators in the Spark DSL. The map operator returns (word,1) for each word
in the input list, and the reducebykey operator then uses the reducer function (v1 + v2) to
aggregate each unique key in the map operator’s output.

The Mold compiler [31] has implemented a syntax-driven compiler that automatically
translates sequential Java code to Spark. To perform this translation, Mold uses rewrite
rules that pattern match on the input source code. However, these rules can be hard to
implement as
1) they must be expressive in order to capture all of the different coding patterns,
2) they must ensure semantic equivalence to the source code, and
3) they must be maintained as the DSLs change.
For instance, as described in their paper, Mold requires 22 different rules to generate the
corresponding Spark program for the same word count program shown in Figure 2a.

ECOOP 2023
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1 map<string, int> countWords(vector<string> words) {

2 map<string, int> counts;

3 for (int j = 0; j < words.size(); j++) {

4 string word = words[j];

5 int prev = 0;

6 if (counts.find(word) != counts.end())

7 prev = counts[word];

8 counts[word] = prev + 1;

9 }

10 return counts;

11 }

(a) Input Source Code: Sequential C++ Code (Java benchmarks are converted to C++ since the MetaLift
front-end currently supports C++).

1 Map<String, Integer> countWords(List<String> words) {

2 Map<String, Integer> counts = new HashMap<String, Integer>();

3 counts = words.mapToPair(v -> new Tuple2<String,Integer>(v, 1))

4 .reduceByKey((v1,v2) -> v2 + v1).collectAsMap();

5 return counts;

6 }

(b) Output: Apache Spark Code.

Figure 2 Translation from sequential C++ code to Apache Spark DSL.

1 # target DSL definition, see Figure 11
2 # grammar description, see Figure 13
3 # code generation rules, see Figure 18
4

5 def transpiler(source): # driver program
6 liveVars, modVars, VC = analyze(source)
7 verifiedSummaries = synthesize(VC, targetLang(), grammar(liveVars, modVars))
8 transpiledCode = codeGen(verifiedSummaries)
9 return transpiledCode

Figure 3 Example of the MetaLift driver code to transpile the running example shown
in Figure 2.

Instead of designing syntax-driven rules, developers can use MetaLift to build this
transpiler. MetaLift leverages program synthesis to search for transformations that are
semantically equivalent to the source code. Figure 3 shows the driver code developers will
write to implement a compiler using MetaLift, where they provide the following inputs to
MetaLift:

1. Target DSL Definition. First, using MTL and the programming interface provided by
MetaLift, developers define the semantics of the operators in their target DSL . Each
operator represents a program construct in the target language. For instance, for our
Spark compiler, we define the semantics of the map and reduce operators as shown in
Figure 11. In Section 3.3, we discuss how MTL can be used to define the semantics for
each construct in the target language.

2. Search Space Definition. Besides the target language, developers also define the
search space description to guide MetaLift’s synthesis engine (Figure 13). The search
space provides the space of possible programs in which the synthesis engine can look for
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equivalent program transformations. Using the variable information returned during the
analysis phase performed by MetaLift, developers can use MTL to describe the search
space. This will be discussed further in Section 3.6.

3. Code Generation Rules. The final input that developers provide is the syntax-driven
rules to translate the summaries synthesized by MetaLift into executable target DSL
code. Note that translating from summaries is much easier than translating directly
from source code as the summaries are already encoded using the target DSL’s operators.
Section 3.9 provides more details about how these rules can be implemented.

Developers then write a transpiler driver that invokes the inputs mentioned above (as
shown in Figure 3), using MetaLift’s API as follows:
1. Code Analysis. MetaLift’s Analysis API takes as input the source code to be

translated and compiles it into LLVM intermediate representation (IR), as shown in Line
6 in Figure 3. We use LLVM IR because it allows for the compilation of multiple general-
purpose languages (e.g., C, C++, Fortran) using various front ends, giving MetaLift
the flexibility to support multiple languages on the source side. The goal of the analysis
phase is to compute verification conditions from the LLVM IR. Verification conditions
(VCs) are logical statements that assert that the program is correct with respect to the
given pre-condition and post-condition if they hold. The VCs serve as the specification for
the synthesizer. The analysis phase also returns information about the output variables
and the variables being modified in the source code. We describe MetaLift’s analysis
phase in more detail in Section 3.1.

2. Synthesis and Verification. Once the analysis phase returns the VCs, developers
then invoke MetaLift’s synthesis API, as shown in Line 7 in Figure 3. The VCs
generated during the analysis phase form the synthesizer’s specification. MetaLift
then synthesizes program summaries that meet these specifications. To make the search
tractable, MetaLift’s synthesizer uses the search space description provided by the
developers. These summaries are restricted to be expressed using only the operators in the
target DSL defined by the developers. Logically, a program summary is the post-condition
that captures the program’s final states after execution. Finally, MetaLift formally
verifies that the generated program summary is semantically equivalent to the input
source code using an automated theorem prover. Synthesis and verification phases of
MetaLift are discussed in Section 3.7 and Section 3.8, respectively.

3. Code Generator. In the final step as shown in Line 8 in Figure 3, MetaLift invokes
the user-defined code generation rules to convert the verified summaries into executable
DSL code. The compiled code is then returned back to the user.

3 Framework

In this section, we discuss each component of MetaLift in detail by building a transpiler
for our example in Figure 2.

3.1 Analysis
The front-end of MetaLift takes as input the source code written in a general-purpose
languages which the developers want to transpile to their DSLs. As mentioned, our current
prototype supports languages that can be compiled to LLVM IR. Once compiled to the
LLVM IR, the next step in the analysis phase is to augment the generated LLVM IR to
enable computation of verification conditions.

ECOOP 2023
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BB_Start

BB_Loop_Head

BB_Loop_Exit

BB_Loop_Body

(a) LLVM code structure with loops.

BB_Start

BB_Loop_Head 
Havoc(vars)

BB_Loop_Exit

BB_Loop_Body

(b) LLVM code structure modified to re-
move the loops.

Figure 4 Transformations performed on loop constructs during analysis phase.

Prior work [18, 24] has recently introduced frameworks for automated verification of
software systems. These frameworks takes as input the description of the system to be
verified, the specification that the system must satisfy, and internally reduces the problem to
symbolic constraints that are then discharged to a theorem prover for verification. However,
MetaLift cannot reuse any of these front-ends for generating VCs as they rely on the source
code already having annotated with invariants and post-conditions. MetaLift instead
models invariants and post-conditions as predicates that take in all live variables at the point
when they are declared, and leave the body of the predicates to be synthesized later on, to
be explained in Section 3.7.

Verification Conditions. In Floyd-Hoare logic (FHL) [19], the verification problem is
abbreviated using the Hoare Triple {A} S {P}. To establish the validity of a Hoare triple,
we need to prove that for all executions starting from states that satisfy A (pre-condition),
after executing statement S, should satisfy P (post-condition). An example of a valid Hoare
triple is {y ≤ x} z := x ; z := z + 1 {y < z}. This problem can be further simplified as
finding a Boolean predicate which characterizes the set of pre-conditions from which every
execution of S would lead a to state that satisfies P. These Boolean predicates are known
as verification conditions. Formally, we can represent this as proving the following logical
statement as A → VC(S, P).

An additional predicate called loop invariant is required for programs with loop constructs
to prove that the post-condition is valid regardless of the number of iterations of the loop.
Thanks to the efficient theorem provers [42, 7], such inference rules provided by FHL can be
encoded in solvers such that any Hoare triple can be mechanically checked for its validity.

In MetaLift, S corresponds to the program statements in the input code to be transpiled,
while A and P correspond to expressions written using MTL to be discussed in Section 3.3.
Our goal is to synthesize a post-condition for each input code that are expressed using the
target language constructs provided by the user, while ensuring that it forms a valid Hoare
triple together with the input code S and pre-condition A.

Transformations for Loop Constructs. For programs that do not have any loop constructs,
generating VCs is straightforward. However, programs with looping constructs requires more
processing. In Figure 4a, we show a simplified control-flow graph of LLVM basic blocks for
a program with loops. For such programs, we first identify the back edges, i.e, the edge
from the loop body to the loop head, and remove that edge to transform the bitcode into
an acyclic graph. To preserve the semantics of the loop after removing the back edge, we
annotate the start of the loop head block with havoc statement as shown in Figure 4b. The
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havoc statement is introduced for all variables modified in the loop to update their contents
to fresh symbolic variables. Doing so allow us to mimic the effect of executing an arbitrary
iteration of the loop, which will be crucial in generating the correct verification condition.

The acyclic graph now represents any arbitrary iteration of the loop. To prove the validity
of the Hoare triple {A} while G do S {P}, we must identify a loop invariant that holds at
the beginning of the loop, at every iteration of the loop, and at the end of the loop terminates.
As the input code is not annotated with loop variants, to generate VCs which can prove the
validity of the described Hoare triple, we add the following annotations (shown in bold in
Figure 6) to the LLVM code to be transpiled:
1. assert that invariant holds before the entry to the loop (Line 9)
2. havoc the variables being modified inside the loop (Line 13)
3. assume invariant holds before the execution the body (Line 15) and assume loop guard is

true (Line 23)
4. assert invariant holds after the execution of the loop body (Line 35)
5. assert invariant holds after the loop exits (Line 38)
6. assume loop guard is false and assert that the post-condition holds before the program

exits (Line 40)

3.2 Verification Condition Generation

There are several ways to prove functional equivalence of the source and target program.
We adopt VCs as the specification for checking the functional equivalence. VCs enable us
to prove complete functional equivalence between the source and generated target code,
meaning that we can generate a proof of equivalence for all possible inputs. While there
are other potential means to provide specifications, such as using the inputs and outputs
from test cases or relying on the equivalence between a general-purpose program and its
corresponding DSL program, these approaches have serious drawbacks:
1. Using testing as the specification only guarantees correctness for a finite set of inputs

since it’s not feasible to generate all possible test cases. Automating test case generation
is also not always reliable, as it may not cover all paths of the program, and running
these programs might not always be feasible. As a result, the synthesized program will
only be semantically equivalent modulo the inputs and outputs from the test cases that
were used as specification.

2. Checking equivalence between the source and target programs directly would require
encoding the semantics of different constructs appearing in the source, and the most
popular symbolic synthesizers [37, 41] or verifiers [42, 7] do not support semantic reasoning
of loops. These symbolic synthesizers only reason about loops after they have been unrolled
for a finite amount of iterations, effectively converting the loop into straight-line code.
Because of this, it is challenging to check equivalence for programs with loops without
generating VCs and loop invariants, as doing so only provides guarantees up to a certain
bound.

Our VC generation algorithm is inspired from [8]. The LLVM compilation process
generates LLVM bitcode which is represented using the LLVM IR. Figure 6 shows the
abridged LLVM bitcode for the source code in Figure 2a. LLVM bitcode contains multiple
basic blocks, i.e, contiguous sequence of LLVM IR instructions with just one entry and one
exit point. A basic block after the transformation in the analysis phase has the general
structure shown in Figure 5a.

ECOOP 2023
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1 blk: bbid
2 assume ea;
3 %i = ...;
4 %i1 = ...;
5 assert eb
6 br label %bbid′

(a) Basic Block structure after the analysis
phase.

1 blk: bbid
2 assume ea;
3 assume %i = ...;
4 assume %i1 = ...;
5 assert eb
6 br label %bbid′

(b) Basic Block structure after converting
instructions to assumes.

Figure 5 Basic block structure of the LLVM bitcode.

1 blk: bb_start
2 %i = alloca %list* ;i = input variable words
3 %i1 = alloca %dict* ;i1 = output variable counts
4 %i2 = alloca i32 ;i2 = loop counter j
5 store %list* %arg, %list** %i
6 store call %dict* newMap(), %dict** %i1
7 store i32 0, i32* %i2
8 ;invariant is true before the exectution of the loop
9 (assert call inv (load i1) (load i2) arg)

10 br label %bb_head
11

12 blk: bb_head
13 (havoc i1 i2)
14 ;invariant is true at the start of the loop body
15 (assume call inv ((load i1) (load i2) arg))
16 %i7 = load i32, i32* %i2
17 %i8 = load %list*, %list** %i
18 %i9 = call i32 length(%list* %i8)
19 %i10 = icmp slt i32 %i7, %i9 ;j < words.size()
20 br i1 %i10, label %bb_body1, label %bb_exit
21

22 blk: bb_body1
23 (assume i10) ;loop guard is true
24 ;instructions to update the counts in the output map (not shown for brevity)
25 %i11 = ...
26 %i12 = ...
27 br label %bb_body2
28

29 ;instructions to update the counts in the output map
30 blk: bb_body2
31 %i28 = load i32, i32* %i2, align 4
32 %i29 = add nsw i32 %i28, 1
33 store i32 %i29, i32* %i2, align 4
34 ;invariant is true after executing the body of the loop
35 (assert call inv ((load i1) (load i2) arg))
36

37 blk: bb_exit
38 (assume not(i10)) ;loop guard is false
39 %i31 = load %dict*, %dict** %i1
40 (assert call ps (i31 arg)) ;post-condition is true

Figure 6 LLVM bitcode for the source code in Figure 2a. Bitcode is annotated with assumes,
asserts and calls to inv and ps for generating the verification conditions.
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Our VC generation algorithm computes an assertion for each of the basic blocks. For
each basic block BB in our bitcode we introduce a new Boolean variable BBok and the VC
for that block is expressed as:

BBok = VC(S,
∧

B∈Succ(A)

Bok) (1)

where S represents all the instructions of the block and Succ(A) represents the set of successor
basic blocks of block BB.

In addition to the transformations during the analysis phase, we convert all the instructions
in the block to assume statements, as illustrated in Figure 5b.

We then symbolically execute all the instructions in the block to generate the VCs. For
symbolic execution, we maintain two dictionaries to model the memory (m) and registers (r).
m maps memory cells to their values, while r keeps track of the results of the instructions’
execution. The state of the symbolic executor is maintained as a quadruple < m, r , a, b >

that represents the state of the memory, registers, assumptions encountered, and assertions
encountered thus far during symbolic execution, respectively. a then represents the final VC
for the input code fragment after symbolic execution terminates.

store
m′ = m[r [i ] 7→ v ]

Jstore v iK(< m, r , a, b >) ⇒ < m′, r , a, b >

memory allocation
fresh l r ′ = r [i 7→ l ] m′ = m[l 7→ ⊥]

Ji = alloca tK(< m, r , a, b >) ⇒ < m′, r ′, a, b >

load
r ′ = r [i 7→ m[ia]]

Ji = load iaK(< m, r , a, b >) ⇒ < m, r ′, a ∧ (i = m[ia]), b >

havoc
fresh v ′ m′ = m[v 7→ v ′]

Jhavoc vK(< m, r , a, b >) ⇒ < m′, r , a, b >

arithmetic operators (aop)
v = aop(r [ia], r [ib]) r ′ = r [i 7→ v ]

Ji = aop ia ibK(< m, r , a, b >) ⇒ < m, r ′, a, b >

binary comparisons (bop)
v = bop(r [ia], r [ib]) r ′ = r [i 7→ v ]

Jicmp bop ia ibK(< m, r , a, b >) ⇒ < m, r ′, a ∧ (i = v), b >

assume

Jassume eK(< m, r , a, b >) ⇒ < m, r , a ∧ JeK, b >

assert

Jassert eK(< m, r , a, b >) ⇒ < m, r , a, a → b ∧ JeK >

Figure 7 Computing the VC via symbolic execution on LLVM instructions. The symbol ∧ and
→ denotes logical And and Implies operator respectively.

ECOOP 2023
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In Figure 7, we describe how we compute the VC for each type of LLVM opcode, while
Table 1 shows our symbolic executor in action using these rules. To illustrate, the store
rule in Figure 7 states that if the current state of the symbolic executor is < m, r , a, b >,
to symbolically execute a store instruction that stores value v to the cell location stored
at register i , we create a new memory m′ where the cell r [i ] is mapped to the value v ,
with all other cells and their mappings remain unchanged from m. Similarly, the memory
allocation rule states that given the current symbolic executor state < m, r , a, b >, to
symbolically execute an alloca instruction that allocates new memory pointing to a value of
type t at cell l with l to be stored in register i , we create a fresh symbolic cell l representing
the pointer to the newly allocated memory, update the register state r to map register i to l
instead, and update the memory state m where cell l points to uninitialized value ⊥. The
new symbolic state < m′, r ′, a, b > is then returned.

As a concrete example, we show the state of the memory, registers and assumes expression
after the execution of each instruction in the block bb_head in Figure 6. For this block,
asserts = null and Succ(A) = {bb_body1, bb_exit}. The computed VC according to the
Equation (1) and rules in Figure 7 would then be:

BB_headok = (assumes → bb_body1 ∧ bb_exit)
assumes = inv(i1_0, i2_1, arg) ∧ (i7 = i2_1) ∧ (i8 = arg) ∧(i9 = length(arg))

∧ (i10 = i21 < length(arg)) (2)

Table 1 Symbolic Execution for the block BB_head in Figure 6 using the inference rules defined
in Figure 7. Each row depicts an LLVM instruction as well as the resulting memory (m) and registers
(r) state after the instruction is symbolically executed. Due to space constraints, we do not show inv
(and True) in all the execution steps.

havoc i1 i2
m= [i17→ i1_0, i 7→ arg, i27→i2_1 ] r= []

assumes = True
assume inv ((load i1) (load i2) arg))

m= [i17→ i1_0, i27→ i2_1, i 7→ arg] r= []
assumes = True ∧ inv(i1_0, i2_1, arg)
assume %i7 = load i32, i32* %i2

m= [i17→ i1_0, i27→ i2_1, i 7→ arg] r= [i77→ i2_1]
assumes = True ∧ (i7 = i2_1)

assume %i8 = load %list*, %list** %i
m= [i17→ i1_0, i27→ i2_1, i 7→ arg] r= [i77→ i2_1, i87→ arg]

assumes = (i7 = i2_1) ∧ (i8 = arg)
assume %i9 = call i32 length(%list* %i8)

m= [i17→ i1_0, i27→ i2_1, i 7→ arg] r= [i77→ i2_1, i8 7→ arg, i97→ length(arg)]
assumes = (i7 = i2_1) ∧ (i8 = arg) ∧ (i9 = length(arg))

assume %i10 = icmp slt i32 %i7, %i9
m= [i17→ i1_0, i2 7→ i2_1, i 7→ arg]

r= [i77→ i2_1, i87→ arg, i97→ length(arg), i10 7→ (i2_1 < length(arg))]
assumes = (i7 = i2_1) ∧ (i8 = arg) ∧ (i9 = length(arg)) ∧ (i10 = i2_1 < length(arg))

Similarly, the VCs for other basic blocks can be constructed. Once the VCs have been
generated for the all basic blocks, the VC for the entire program can be expressed as
R → BB_startok where R is the conjunction of VCs for each block and BB_startok is the
Boolean variable introduce for the first block in the LLVM bitcode.
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Note that the calls to invariant and post-conditions are just placeholders and they are
synthesized during the synthesis phase of MetaLift. At the end of the analysis phase
MetaLift would generate the following verification conditions:
1. ∀σ. Pre(σ) → Inv(σ)
2. ∀σ, σ′.Inv(σ) ∧ Body(σ, σ′) → Inv(σ′)
3. ∀σ. Inv(σ) → Post(σ)

For simplicity, we do not show the verification conditions using LLVM basic block structure.
The verification conditions logically state that
1) invariant must hold before the loop
2) invariant must be inductive i.e. it should be true at every iteration of the loop and
3) invariant must assert the post-condition upon exiting the loop.

Internally, MetaLift represents the VCs using MTL which we describe in the next
section.

3.3 MTL
We now describe MTL in detail. MetaLift provides developers with an API to use the
constructs in the MTL to define the operators of their target DSL. This is in contrast to the
prior standalone transpilers [3, 35, 20] where the semantics of the target DSL are embedded
within the transpiler and are not reusable. In Section 3.5, we show how developers can use
MTL to describe the semantics of the operators in their target DSL.

e ∈ expr := l | var | e1 bop e2 | if e1 then e2 else e3 | ¬e |
f (e1, e2, ..., en) | fu(e1, e2, ..., en) | elist | emap | etup

elist ∈ listExpr := empty | length(e) | get(e, i) | append(e, i) |
prepend(i , e) | concat(e1, e2) | tail(e, i) | take(e, i)

emap ∈ mapExpr := empty | get(emap, i) | insert(emap, e1, e2)
etup ∈ tupExpr := make(e1, e2, ..., en) | get(etup, i)

l ∈ literal := True | False | Integer Constant
bop ∈ binaryOp := and | or | implies | = | + | − | ∗ | / | > | <

Figure 8 Grammar definition of MTL.

MTL is a strongly-typed functional language that consists of three dialects: one for
MetaLift to represent VCs internally, one for users to define their target language operators,
and another for users to describe the search space. Figure 8 shows the core grammar of
MTL that is shared between the three dialects. Even though MTL is a small language, it is
expressive enough that can be used to specify the semantics of real-world DSLs, as we will
discuss in Section 4.

As shown in Figure 8, the core expressions can be literals, variables passed in as arguments
to the function, conditional expressions, expressions combined using Boolean operators (MTL
supports all arithmetic, logical and relational operators). MTL also supports operations over
list, tuples, and associative maps. It also supports uninterpreted functions (represented as fu
in Figure 8). Uninterpreted functions have no definition; their defining characteristic is simply
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that they are deterministic, i.e., for the same input, they always return the same output.
They are useful in modeling certain operators (for example, complex math functions that are
used in both the source and target languages) for which we only care about determinism.

MTL also provides support for three native data structures: lists, tuples and associative
maps, along with some common operations over these data structures. For lists, in addition
to standard list operations such as length, append, and value retrieval, MTL supports list
comprehension functions, tail(lst, index), which returns all the elements after the first index
elements of the list, and take(lst, index), which returns the first index elements of the list.
For associative maps and tuples, MTL provides functions for inserting and retrieving values.
Developers can also combine these data structures to construct nested data structures such
as a list of tuples, a list of lists and a list of maps.

In summary, the different dialects of MTL are used for the following purposes during
program transpilation:
1. To represent the VCs generated during the analysis phase.
2. To specify the semantics of the target DSL.
3. To describe the search space for valid program transformations.

3.4 Expressing Verification Conditions in MTL

v ∈ vcExpr := assert(e) | assume(e) | havoc(var)

Figure 9 Additional constructs in MTL for verification condition generation.

Verification conditions generated during the analysis phase are encoded using the con-
structs in the MTL. As described in the Section 3.1, VC generation requires some additional
constructs. We show these constructs in Figure 9 as vcExpr . These constructs include
assume, assert, and havoc, which takes core expressions as arguments. Their semantics
are defined earlier in Figure 7. vcExpr includes these constructs in addition to all the core
constructs described in Figure 8. These constructs are useful for annotating the LLVM
bitcode with invariant and post-condition placeholders. These are utilized by MetaLift
internally and are not accessible to the developers via MTL API.

3.5 Expressing Target DSLs in MTL
As discussed in Section 2, MetaLift builds transpilers by leveraging program synthesis.
MetaLift searches for program summaries that are semantically equivalent to the source
code. Program summaries capture all the changes to the outputs of the source code and
are expressed using the operators in the target DSLs. Once the program summaries are
synthesized developers can write simple syntax-driven rules to translate them to the concrete
syntax of the target DSL.

In order to synthesize the program summaries, the synthesizer requires the semantics of
the DSL operators. Developers can implement their domain-specific operators using MTL
as defined in Section 3.3. In Figure 11, we describe how map and reduce functions from the
Spark DSL can be defined using MTL.

In MetaLift, each construct in the target language is defined using a dialect of MTL.
In Figure 10, we show the two constructs, function declaration (fnDecl) and axioms (axiom),
that are added to the core language described in Figure 8 to form this dialect for defining
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f ∈ fnDecl := name(arg1 : t1, arg2 : t2, ..., argn : tn) : tr → e
a ∈ axiom := name(arg1 : t1, arg2 : t2, ..., argn : tn) → e

Figure 10 Additional constructs in MTL for defining the operators in the target language.

the operators in the target language. MTL supports recursive and higher-order functions.
The target language definition is a collection of function declarations and axioms, where the
body of both constructs are defined using expr ’s in the core MTL.

In addition to the definitions of the operators in the target DSL, developers can provide
properties specific to the operators in the DSL. Some of the properties that developers can
define for the map and reduce operations are shown in Figure 11. These properties are
helpful during the verification phase of MetaLift. We give more details about how these
properties are used in Section 3.8.

Modern DSLs contain hundreds of functions and therefore searching for program sum-
maries directly in the DSL APIs is not feasible. To make the synthesis algorithm tractable,
MetaLift searches for summaries only using the operators defined by the developers. The
high-level nature of MTL enables the developers to succinctly define the operators and
abstract out the details of these operators in the DSL API. For example, the map definition
in Figure 11 can represent the different variations of the map functions (map, flatMap,
mapToPair) available in the Spark DSL.

3.6 Describing Search Space for Synthesis
Developers additionally provide the search space description for the synthesizer. Developers
provide this description for program summaries as well as any invariant or functions to be
synthesized (for example, in Spark, users can ask the synthesizer to generate the bodies of
the λm and λr functions). In MetaLift, the search space is encoded using a context-free
grammar (CFG), with the expression that needs to be synthesized at the top level, and the
production rules specifying the possible values that the expression can take.

We use a different dialect of MTL for users to describe the search space. Built on top of
the core language and as shown in Figure 12, MTL provides one non-deterministic construct,
Choose, which the developers can use to describe the search space for the synthesis phase.
The search space description is used to guide the synthesis process. Semantically, Choose lets
the synthesizer return any of expressions in its argument list. It can be recursively nested or
evaluate to one of the core expressions.

The search space description impacts the synthesizer’s performance. If the grammar is
too expressive, the synthesizer may take a long time to synthesize the correct expressions;
conversely, if the grammar is too restrictive, the synthesizer may fail to find the correct
expressions that satisfy the specification. Prior work [20, 2, 3, 14] specialized the grammar
descriptions for the target domains and embedded them in the tools. Unfortunately, developers
had no way of controlling the expressiveness of these grammars. MetaLift instead allows
developers to programmatically control the grammars and even tune grammars for each
benchmark separately.

The Choose function in Figure 12 is the basic construct that developers can use to
describe the search space. Choose(ec , ec) allows the users to specify the set of candidate
values for a particular expression. The candidate values (e in Figure 12) are described using
the constructs in MTL (Figure 8). The synthesizer then selects from this set of possible
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1 def targetLang():
2 fnDecl("map", lst, λm) =
3 if length(lst) == 0 then empty
4 else concat(λm(get(ls, 0)), map(tail(lst, 1)))
5

6 fnDecl("reduce", lst, λr) =
7 if length(lst) == 0 then 0
8 else λr(get(lst, 0), reduce(tail(lst ,1)))
9

10 fnDecl("reduceByKey", lst, λr) =
11 reduceByKeyHelper(lst, getkeys(lst), {}, λr)
12

13 fnDecl("redcueByKeyHelper",lst, keys, outMap, λr) =
14 if length(lst) == 0 then outMap
15 else reduceByKeyHelper(lst, tail(keys, 1),
16 insert(outMap, get(keys, 0), reduce(getVals(outMap, get(keys,0)), λr)), λr)
17

18 fnDecl(getKeys, lst): ...
19

20 fnDecl(getVals, lst): ...
21

22 # operator specific properties
23 axiom("distributiveMapLemma", lst1, lst2) =
24 map(concat(lst1, lst2), λm) = concat(map(lst1, λm), map(lst2, λm))
25

26 axiom("distributiveReduceLemma", lst1, lst2, key) =
27 get(reduceByKey(concat(lst1, lst2), λr), key) =
28 get(reduceByKey(lst1, λr), key) +
29 get(reduceByKey(lst2, λr), key)
30

31 axiom("inductiveMapLemma", lst, index) =
32 implies(and((index ≥ 0), (index < length(lst))),
33 map(tail(lst, index), λm) = concat(λm(get(lst,index)),
34 map(tail(lst, index + 1), λm)))
35

36 axiom("inductiveMapReduceLemma", lst, index) =
37 implies(and((index ≥ 0), (index < length(lst))),
38 reduce(map(take(lst, index + 1), λm), λr) =
39 λr(reduce(map(take(lst, index), λm), λr), λm(get(lst, index))))

Figure 11 Semantics of the operators in Spark DSL defined using constructs in MTL.

ec ∈ chooseExpr := Choose(ec , ec) | e

Figure 12 Additional constructs in MTL for description of the search space.

candidates, an expression that meets the specification. In terms of the CFG, Choose describes
the production rules, i.e., the expansion rules for a non-terminal in the grammar. These
grammars can potentially be recursive in nature. We provide a “bound” parameter in our API
to control the depth of these grammar. This provides additional flexibility to the developers
to programmatically define the depth of unrolling of their search space.

The VCs mentioned in Section 3.1 can be trivially satisfied by setting the invariant and
post-condition to be True. The search space description helps prevents the synthesizer from
generating such trivial solutions. At a high-level, MetaLift requires the post-condition
search space to have the following structure:
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∀vo ∈ outputVars. vo = ec ∈ chooseExpr

where outputVars is the set of all output variables in the source code. e in chooseExpr are
expressions described using the core constructs in MTL using set of all the input arguments
and the variables modified in the program. For the example in Figure 2, outputVars = {count}
and modVars = {j , word}. Logically, it states that the output variables in the program should
be expressed as an expression over the operators in the target DSL. MetaLift uses standard
static analysis techniques to infer these variables during the analysis phase. In addition to
restricting the synthesizer from generating trivial solutions, the search space description
helps in scaling the synthesis problem.

Figure 13 shows one possible grammar description for the post-condition, invariant,
mapper, and the reducer function for the translation problem described in Figure 2. The
grammar for the program summary asserts that the output variable equals some MapReduce
expression over the input data. The grammar for the invariant reasons about the bounds of
the loop counter and how the count variable is modified in each iteration of the loop. The
mapper function can return an empty list or a list of key-value pair and the reducer function
can choose to reduce the input values using one of the arithmetic operators. In this grammar
we have restricted the output to be a map, reduce or map followed by a reduce operation.

As mentioned earlier, developers can programmatically control the grammar structure.
In the Spark transpiler, a few possible search strategies include incrementally increasing
the number of map reduce operations that can be used to express the output variable or
incrementally increasing the number of emit statements that the mapper function can use.
Figure 14 shows how the driver code in Figure 3 can be modified (less than 20 LOC) to
implement the incremental search for number of emit statements. In Figure 14, each iteration
of loop increments the number of emits by 1 until the synthesizer finds the semantically
equivalent program summaries. This programmatic definition of grammar allows developers
to experiment with the synthesis engine without needing to be synthesis experts. Some of
these strategies were encoded in the previous tools [3] to make the search tractable.

MetaLift automatically generates the program summaries once the developers have
provided the semantics of their operators and the search space description.

3.7 Synthesis
We now discuss the synthesis phase of MetaLift. A typical program synthesis problem
is characterized by three parameters: the specification, space of possible programs and the
search techniques used by the synthesizer to search for candidate solutions. In MetaLift,
the specification are the VCs generated from the source code during the analysis phase and
the space of possible programs is represented by the operators and search space specified by
the developer. During the synthesis phase, MetaLift uses this information to synthesize the
program summaries and any necessary invariants. Essentially, program summaries are logical
statements asserting what should be true if the program terminates and it should hold for
all possible executions of the program starting from a state that satisfies the pre-condition.

Formally, the synthesis problem can be stated as

∃ps, inv1, inv2, ..., invn. ∀σ. VC(S, ps, inv1, inv2, ..., invn, σ) (3)

The goal of the synthesizer is to infer the definitions of ps and inv (in case of programs with
loops) such that for all program states σ, the verification conditions (generated during the
analysis phase) for a given input source code S is true.
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1 def grammar(j, counts, words):
2 def psGrammar(counts, words):
3 MR = Choose(map(words, λm), reduce(words, λr), reduceByKey(map(words, λm), λr))
4 ps = Choose(counts = MR)
5 return ps
6

7 def invGrammar(j, counts, words):
8 intConst = Choose(0,1)
9 listChoice = Choose(words, take(words,j), tail(words,j)

10 counterExp1 = Choose((j ≤ intConst), (j ≥ intConst),
11 (j < intConst), (j > intConst))
12 counterExp2 = Choose((j ≤ length(words)), (j ≥ length(words)),
13 (j < length(words)), (j > length(words)))
14 outExp = Choose(counts = MR)
15 MR = Choose(map(listChoice, λm), reduce(listChoice, λr),
16 reduceByKey(map(listChoice, λm), λr))
17 inv = Choose(And(counterExp1, counterExp2, outExp))
18 return inv
19

20 def mapperGrammar(v):
21 litChoice = Choose(0,1,v)
22 Emit = Choose(Tuple(litChoice,litChoice),litChoice)
23 λm = Choose(append(empty, Emit))
24 return λm
25

26 def reducerGrammar(v1, v2):
27 λr = Choose((v1 + v2), (v1 - v2), (v1 * v2), (v1 / v2))
28 return λr

Figure 13 Search space description for the example in Figure 2 using MTL.

1 def searchSpace(liveVars, modVars, numEmits):
2 def generateEmits(numEmits):
3 if numEmits == 1: return append([], Emit)
4 else:
5 return append(Emit, generateEmits(numEmits-1))
6

7 def mapperGrammar(v, numEdits):
8 litChoice = Choose(0,1,v)
9 Emit = Choose(Tuple(litChoice,litChoice),litChoice)

10 λm = Choose(generateEmits(numEmits))
11 return λm
12

13 def transpiler(source): # incremental search driver program
14 liveVars, modVars, VC = analyze(source)
15 numEmits = 1
16 isSynthesized = False
17 while(isSynthesized == False):
18 grammar = searchSpace(liveVars, modVars, numEmits)
19 verifiedSummaries = synthesize(VC, targetLang(), grammar)
20 if verifiedSummaries != None:
21 isSynthesized = True
22 else:
23 numEmits += 1
24 transpiledCode = codeGen(verifiedSummaries)
25 return transpiledCode

Figure 14 Modified driver code to implement incremental grammar search for controlling the
number of emits in the λm function.
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Many search techniques have been proposed to solve the problem stated in Equation (3).
These include enumerative search [5], deductive search [30], constraint solving [38], statist-
ical [34] and neural approaches [26]. Currently, MetaLift relies on Rosette, an off-the shelf
synthesis solver [41] to perform this search; in principle, it could use any synthesis solver
supporting the needed theories. To leverage Rosette as the synthesizer, we need to translate
the MTL descriptions in the Rosette language. Due to the highly-syntactic nature of the
Rosette language, this translation is straightforward. Synthesizer enumerates candidates for
ps (and invs) from the search space described by the developer until it finds one that satisfies
the specification.

Currently available synthesizers have limited support for handling recursive functions
in the search space. Internally, synthesizers use theorem provers to determine whether a
candidate is valid, i.e., whether it meets the specification. However, while MTL supports
list and other data structures, the theory of lists in theorem provers is incomplete and thus
insufficient to verify all possible summaries the synthesizer might generate. As a result, the
synthesizers struggle to solve the synthesis problem described in Equation (3). To make
synthesis tractable, we simplify the problem by first performing bounded synthesis, and
subsequently sending candidate summaries that pass bounded synthesis to a general theorem
prover to validate. In Equation (3), rather than searching for program summaries that
satisfy the VCs for all program states (σ), we search only for a finite set of program states.
For example, we limit all list data structures to lengths of up to size 2, and all integers
to bit-widths of up to 7 bits. These parameters can be changed by the developers using
MetaLift’s API. Note that we bound the program states only during the synthesis phase,
and during verification we check if the synthesis phase output is true for all program states.

The summaries returned by the synthesizer using the target language and search space
defined in Figure 11 and Figure 13, respectively, are shown in Figure 15. The output variable
count is synthesized as a series of map and reduce operations. In the mapper phase, λm maps
each word w in the input list to the key-value pair (w , 1). In the reducer phase, reduceByKey
groups all the unique keys in the map output, reduces each group using the add operator
and returns a map containing the key-value pairs (w , frequency).

After bounded synthesizer generates the summaries, they are parsed and represented
using the constructs in MTL. Note that the generated summaries are not in the concrete
syntax of Spark yet but it is expressed in the operators defined by the developers. Developers
can easily convert these summaries using simple syntax-driven rules which we describe in
Section 3.9. In the next section, we provide details about the verification of the synthesized
summaries and invariants, as well as proving that the inferred invariant is indeed sound.

3.8 Verification

Given candidate summaries that are generated by the bounded synthesizer, MetaLift next
automatically performs the full verification of the synthesized summaries and invariants. As
previously stated, the synthesized summaries and invariants generated during the synthesis
phase satisfy the verification conditions only for a finite set of program inputs. For instance,
in our running example, the synthesis phase returns a solution that is only verified for lists
with lengths up to 2 and, integers with bit-width up to 7. The goal of the verifier is to
prove that the program summaries are valid for all the program states (all integers and
lists sizes). MetaLift uses satisfiability modulo theories (SMT) solvers [10, 42, 7] to solve
this verification problem. Formally, the theorem prover checks for the satisfiability of the
following problem

∀σ . ¬VC(S, ps, inv1, inv2, ..., invn, σ) (4)
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def ps(counts, words):
counts = reduceByKey(map(words, λm)), λr))
return counts

def inv(j, count, words):
return And((j ≥ 0), (j ≤ length(words)),

(count = reduceByKey(map(take(words, j) λm), λr)))

def λm(v):
return append(empty, Tuple(v,1)))

def λr(v1, v2):
return (v1 + v2)

Figure 15 Program summaries and invariants generated by the synthesizer for the source code in
Figure 2a.

where the definitions inferred during the synthesis phase are substituted for the placeholders
for ps and inv ’s in the VCs. Negating the assertion and checking if there exists some program
state that satisfies the assertions is standard practice in program verification: if the theorem
prover discovers a program state that satisfies the negated assertion then the generated
program summaries or the invariants are incorrect. However, if there exists no such state then
the inferred summaries and the invariants prove the validity of the verification conditions
and thus the semantic equivalence of the summaries to the source code.

As mentioned in Section 3.3, MTL supports various data structures. MetaLift models
list and tuples in MTL using the SMT solver’s built-in functionality of algebraic data types.
Algebraic data type definition requires the user to declare the data type and associate a sort
(type) with the declaration. Following that, users declare the accessors and constructors
for data retrieval and creation of new data structures, respectively. Associative maps in
MTL are modeled using the the SMT solvers built-in theory of arrays. MetaLift generates
the verification problem automatically by translating MTL to SMT-Lib format [9]. As the
SMT-Lib format does not support higher order functions, we inline them while converting.

Figure 16 shows the simplified version of the verification condition generated during the
analysis phase for the source code in Figure 2a. We now show that the invariant described
in Figure 15 is necessary and sufficient to prove the verification conditions.

Initial Condition. The initial condition asserts that the loop invariant holds immediately
before the loop. Before the loop executes, j = 0 and counts is an empty map. The invariant
expresses counts as a series of map and reduce operation applied to the first j elements of
the input words list. Since j = 0, the map reduce operation will be applied to an empty list,
returning an empty map according to the definitions in Figure 11. Hence, the invariant holds
in the initial state.

Preservation. The loop preservation VC asserts that if the loop invariant hold at any
arbitrary iteration, j, of the loop then it should also hold in the next iteration, j + 1, of
the loop. The notation counts[w 7→ e] denotes the assignments statement, i.e., the key w
in counts gets assigned the value e. This is proved by induction. We first prove that the
invariant holds at the initial condition, we assume that the invariant holds at iteration j,
i.e., the map reduce operation has already computed the frequency of first j words in the
list. We need to show that the invariant holds after one more execution of the loop. This is
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true since in the j + 1th iteration of the loop, the map reduce operation would compute the
frequency of the first j + 1 words from the input list, thereby incrementing the count of the
j + 1th word in the output map counts by 1.

Termination. Finally, the termination condition states that if the loop terminates, the
invariant should imply the post condition. This is true because at the end of the loop
j = size(words) and the map reduce operation would have computed the frequencies for all
the words in the list which is the same expression as the program summary.

Initial Condition Inv(j = 0, counts = {}, words)

Preservation Inv(j, counts, words) ∧ (j < size(words)) →
Inv((j + 1) , counts[words[j] 7→ words[j] + 1] , words)

Termination Inv(j, counts, words) ∧ ¬ (j < size(words)) → PS(count , words)

Figure 16 Verification conditions for the source code in Figure 2a.

3.8.1 Leveraging Additional Axioms

Verifying loop invariants in general is undecidable, as MTL supports recursion and higher-
order functions. To aid in verification, developer can provide additional axioms to the
theorem prover to prove the validity of loop invariants and program summaries for VCs such
as in Figure 16. Figure 11 shows how developers can use MTL to provide operator specific
axioms to MetaLift. These axioms are translated from MTL to SMT-Lib format and
included in the verification problem by MetaLift. These axioms from our experience are
simple properties like associativity, commutativity, and distributivity of the operators in the
target language. If developers only need to ensure bounded correctness for the translation,
they don’t need to define these axioms.

Figure 17 shows the SMT-Lib translation of the map operator axioms described in
Figure 11, where map_λm is the inlined definition of the map operator. The first axiom
states that the map operators is distributive over two input lists. While the second one
asserts the inductive property of the map operator. Other properties described in Figure 11
can be similarly translated to SMT-Lib format.

1 ;distributive map lemma

2 (assert (forall ((lst1 (List T)) (lst2 (List T)) )

3 (= (map_λm (concat lst1 lst2)) (concat (map_λm lst1) (map_λm lst2)))))

4

5 ;inductive map lemma

6 (assert (forall ( (lst (List T)) (index U) )

7 (=> (and (>= index 0) (< index (length lst)))

8 (= (map_λm (tail lst index)) (concat (λm (get lst index))

9 (map_λm (tail lst (+ index 1))))))))

Figure 17 Translation of the axioms defined using MTL to SMT-Lib format.

ECOOP 2023



38:20 Building Code Transpilers for Domain-Specific Languages Using Program Synthesis

3.9 Code Generation
The program summaries verified by MetaLift are expressed using the high-level operators
defined by the developers. The final step is to implement syntax-driven rules to translate
these summaries to the concrete syntax of the target DSL. This translation is much easier
than the general translation from source language to target DSL API because the developers
1) only need to write rules for the operator they defined in the target language and
2) do not need to worry about semantic equivalence to the source code as MetaLift

automatically verifies the program summaries.
In MetaLift, we conduct synthesis in the high-level MTL rather than searching through the
concrete syntax of the DSL. This approach is used to make the search process more tractable
during synthesis. A DSL may include multiple variations of the same operator, with each
having minor differences while they are functionally equivalent. For instance, the Spark DSL
contains multiple variations of the map operator (map, flatMap, mapToPair). Rather than
searching through these different concrete implementations, we conduct the search using a
single implementation that captures the different operators’ high-level semantics. Once a
solution is synthesized in the MTL, converting it to concrete syntax becomes straightforward.
The developer can decide which variation to use on basis of the return value of the λm function.
For example, if the λm function returns a key-value pair or list with single key-value pair, the
developers can use mapToPair from the DSL. If the λm function returns a list containing
multiple key-value pairs, the developers can then use flatMapToPair. Table 2 shows an excerpt
of the translation rules for the Spark DSL. Applying the translation rules to the summary
generated in Figure 15 would result in words.mapToPair(v -> (v,1)).reduceByKey((v1,v2)

-> v1 + v2). Another advantage is that if the same operator can exists in multiple DSL
(e.g. convolution in tensor processing libraries), we only need to perform the search once and
then code generation rules can translate the summary into concrete syntax of any library. In
Figure 18, we show the implementation for some of these rules for the Spark DSL.

Table 2 Translation rules for converting program summaries in MTL to Spark DSL.

Pattern Translation Rule
Jmap(l , λm → list(Pairs)K l.flatMapToPair(JλmK)

Jmap(l , λm → (Pair or list(Pair))K l.mapToPair(JλmK)
Jmap(l , λm → T )K l.map(JλmK)

Jreduce(l , λr )K l.reduce(Jλr K)
JreduceByKey(l , λr )K l.reduceByKey(Jλr K)

Jλm(v) → e)K (v -> JeK)
Jλr (v1, v2) → e)K ((v1,v2) -> JeK)

Je1 aop e2K Je1K aop Je1K

4 Evaluation

We now describe our experience in building synthesis-driven transpilers using MetaLift. We
have implemented the core of MetaLift in Python. We provide developers with a Python
API for using the constructs in our MTL for defining the semantics of their DSL operators
and search space description. MetaLift uses Rosette [41] as its synthesis back-end engine,
and supports Z3 [42] and CVC5 [7] for verification.

In this section, we show that our MTL is general enough to be used to create compilers
for different DSLs. We demonstrate this by creating compilers using our framework for two
DSLS that target very different applications:
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1 def codeGen(verifiedSummaries):
2 ps = verifiedSummaries['ps']
3 def eval(expr):
4 if expr[0] == "reducebykey":
5 return "%s.reducebykey(%s)"%(eval(expr[1]), eval(expr[2]))
6 elif expr[0] == "map":
7 if len(lm) == 1: map_func = "mapToPair"
8 else: map_func = "flatMaptoPair"
9 return "%s.%s(%s)"%(expr[1],map_func,eval(expr[2]))

10 ...
11 return eval(ps)

Figure 18 Implementation of syntax-driven rules for translating summaries to executable code in
target DSL.

1. Distributed Computing DSL. In this case study, we build a compiler that translates
sequential Java code to Spark DSL [43]. Spark provides users with APIs to perform
large-scale data processing efficiently by distributing the computations across multiple
clusters.

2. Hardware DSL. In this case study, we build a compiler that translates Domino [35],
which allows users to implement data-plane algorithms (such as congestion control and
load balancing) for network switches to Banzai atoms, which represent atomic operations
typically available in network switches. By combining these atoms, users can implement
various programmable network switches with Banzai.

3. Vector Operation DSL. In this case study, we build a compiler that translates sequential
C++ code to vector operations. For loops are generally slower compared to their vectorized
operations on large datasets and libraries such as Scipy, Pytorch and Tensorflow provide
efficient implementations of these vectorized operators.

These case studies differ in the program structure of the source code, in addition to
targeting different domains. The Spark and vector case study contains programs with loops,
whereas Domino contains only straight line programs with no looping constructs. Prior work
[3, 35] implemented these case studies as two separate specialized compilers. We demonstrate
that MetaLift can be used to create all these compilers, and that MetaLift simplifies the
process of building DSL compilers that leverage program synthesis.

4.1 Case Study: Spark
MapReduce [15] is a popular programming paradigm which enables users to write compute
intensive-applications capable of processing massive datasets by distributing the computations
across multiple clusters. Mapreduce programming model decomposes the processing into
two primitives map and reduce. MapReduce first breaks down the dataset into multiple
independent chunks and then uses the following three stages to process the data:
1. map phase: each node in the cluster receives a small chunk of the data. Each node

then locally processes the data by applying the mapper function and produces a set of
key-value pairs.

2. shuffle phase: all the key-value pairs from different mapper functions are then sorted,
grouped together by key and then redistributed to different nodes such that each node
receives values belonging to the same key.

3. reduce phase: each node then aggregates the values using the reducer function.
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Spark [43] is an open-source analytics framework. Spark provides users with highly-efficient
implementations of map and reduce operations via its APIs in high-level languages such as
Python and Java.

To leverage the optimizations provided by the MapReduce paradigm, Casper [3] and
Mold [31] are two compilers that automatically translate legacy code written in Java to
sequence of map and reduce operations. Casper used program synthesis to perform the
transformations, whereas Mold used a syntax-driven rule based approach. We demonstrate
that using MetaLift developers can build the core capabilities of the Casper toolchain by
easily defining the semantics of the map and reduce using our MTL.

MetaLift’s implementation of Casper. We manually rewrote the Casper benchmarks from
Java to C++, as MetaLift’s frontend currently do not support Java. We then define the
semantics of the map and reduce operations using our MTL, as illustrated in Figure 11. We
also provide additional axioms to assist the verifier in proving validity of the synthesized
program summaries and loop invariants (Lines 23-39 in Figure 11). As shown in Figure 13,
using MTL we provide the description of the search space for the program summaries,
invariant, mapper and reducer functions. Casper implemented incremental grammar search
to make the search tractable, and a cost-based evaluation model to select from different
semantically equivalent program summaries. In our MetaLift implementation, we use
incremental search and in Figure 14 we describe how developers can easily modify the driver
code to implement such search strategies.

Results. We evaluate our implementation on the benchmarks [1] that were successfully
translated by Casper. Our implementation translates 44 benchmarks of the 49 benchmarks
that Casper translated. Synthesizer times out on the five benchmarks which our implementa-
tion failed to translate. We believe the reason for these failures is that MetaLift uses LLVM
to generate verification conditions, whereas Casper implemented a specialized verification
condition generator for Java source code directly, resulting in considerably more optimized
VCs that synthesizers can easily solve. We use a timeout (synthesis + verification) of 60
minutes for all the benchmarks. The average running time for our implementation of the
Casper benchmarks was ≈ 3mins. We observed that MetaLift-generated code had the
same structure to the ones which Casper synthesized (i.e., same number of map reduce stages
and same implementation of the mapper and reducer functions), so we expect the output
code to have similar performance as that generated by Casper. In contrast to Casper, which
required 25578 lines of code, our implementation requires less than 1000 lines.

4.2 Case Study: Domino
Domino [35] is a domain-specific language for data-plane algorithms that run on programmable
line-rate switches. The Domino DSL provides a C-like interface to define a “packet transaction”
on a stream of network packets. While the syntax of Domino is a subset of C, there are a
number of restrictions on memory allocation, loops, and control flow structure to prevent
writing Domino programs which cannot be executed at “line-rate” (the speed with which
packets arrive on a programmable switch). A particularly relevant restriction is that Domino
is loopless, obviating the need to synthesize loop invariants as required in Spark. Figure 21
contains an example of a packet transaction written in Domino which implements a simple
Rate-Control Protocol (RCP) [40] by accumulating the sum of packet round-trip-times
(RTTs) for which the RTT is under the maximum allowable value.
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1 StateResult atom_template(int state_1, int state_2, int pkt_1, int pkt_2) {

2 if (rel_op(Opt(state_1), Mux3(pkt_1, pkt_2, C()))) {

3 state_1 = Opt(state_1) + Mux3(pkt_1, pkt_2, C());

4 }

5 StateResult ret = new StateResult();

6 ret.result_state_1 = state_1;

7 ret.result_state_2 = state_2;

8 return ret;

9 }

Figure 19 An example of a Banzai atom used in the Domino compiler [36].

Domino compiles to Banzai, a machine model for programmable line-rate switches. The
Banzai target encodes hardware constraints fundamental to these switches, the most important
of which is atomicity, thereby guaranteeing that packet operations occur transactionally.
Banzai provides an abstraction over programmable switch architectures with the notion of
an atom, a stateful processing unit that contains atomic operations which can be used to
implement data-plane algorithms. An example of a Banzai atom is given in Figure 19.

Compilation to Banzai. The Domino compiler [35] has a three-stage pipeline to compile a
feasible Domino program to Banzai. In the first stage, the compiler preprocesses the code by
1) recursively transforming branches into conditional assignments
2) rewriting operations on state variables to occur on temporary packet fields instead
3) converting to static single-assignment (SSA) form and
4) flattening to a three-address code representation.

In the second stage, the Domino compiler decomposes the input code into a sequence of
“codelets”, a smaller block containing three-address code. To do so, the compiler executes
dependency analysis on the input code to form a dependency graph. The compiler splits the
input code into strongly-connected component blocks (“codelets”), and forms a meta-directed
acyclic graph of these codelets, thereby capturing block-scale dependencies. The compiler
then schedules the codelets in topological order to ensure that all dependencies are satisfied.

Finally, the Domino compiler performs code generation by
1) distributing work throughout codelets to ensure that no block takes too long (the “pipeline

width” constraint) and
2) using the SKETCH [37] program synthesizer to map each codelet to one of a set of Banzai

atoms which are feasible in hardware.

MetaLift implementation of Domino. We demonstrate how MetaLift can be used to
significantly simplify the synthesis of Domino benchmarks to Banzai atoms. First, we
encode the Banzai target language and grammar as a set of stateless operations, specified in
Figure 20. By ensuring our target language and grammar contains only stateless operations,
we guarantee atomicity. We then decompose the Domino benchmarks into codelets – which
we represent as C++ functions – as in the second stage of Domino compiler. However, we
make two key assumptions:
1) we assume that array reads and writes happen in between codelets to ensure our target

language and grammar does not need stateful operations
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1 def targetLang():
2 ## Variable and Constant Getters
3 def const(): return Choose(*CONSTANTS) # CONSTANTS is a list of allowed constants
4 def var(): return Choose(*VARS) # VARS contains the input to the codelet
5 def var_or_const(): return Choose(var(), const())
6 def opt(n): return Choose(n, 0)
7

8 ## Banzai Atoms
9 def arith_op(a, b): return Choose(a + b, a - b, a * b)

10 def rel_op(a, b): return Choose(a == b, a != b, a <= b, a < b, a > b, a >= b)
11 def raw(): return opt(var()) + var_or_const()
12 def rw(): return var_or_const()
13 def mul_acc(): return opt(var()) * var_or_const() + var() + var()
14

15 def pred_raw():
16 if rel_op(opt(var()), var_or_const()): return opt(var()) + var_or_const()
17 else: return var()
18

19 def if_else_raw():
20 if rel_op(opt(var()), var_or_const()): return opt(var()) + var_or_const()
21 else: return opt(var()) + var_or_const()
22

23 def sub(): ...
24

25 def nested_ifs(): ...

Figure 20 The semantics of the target Banzai atoms defined using MTL.

Figure 21 End-to-end synthesis of Domino DSL to Banzai via MetaLift.

2) and we assume that each codelet has up to three outputs, all stored in temporary packet
fields, and that each later codelet in a “pipeline” receives the set of all relevant outputs
from prior codelets.

Finally, we compile the decomposed Domino benchmark to LLVM IR using Clang, and then
programmatically synthesize each codelet to the target language and grammar.

We show an end-to-end example of synthesizing a Domino benchmark in Figure 21. The
MetaLift synthesized summary contains three atoms, two of which are pred_raw (see
Figure 20 for atom definitions) and one is a stateless arithmetic operation. AddStateRet3 is
not an atom, but rather the language primitive to output three return values (the new state
and packet variables) due to how it is represented the C++ Domino benchmark.
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Table 3 Comparison of maximum atoms per stage used in the synthesized output of the Domino
compiler and MetaLift. The maximum atoms per stage for each benchmark are taken from the
Domino paper [35].

Benchmark name MetaLift atoms/stage Domino atoms/stage
Bloom filter 3 3
Heavy Hitters 3 9
Flowlets 2 2
RCP 2 3
Sampled NetFlow 2 2
HULL 3 1
Adaptive Virtual Queue 3 3
Queueing priority computa-
tion 2 2

DNS TTL change tracking 2 3
CONGA 2 2

Results. We successfully synthesized all ten Domino benchmarks with our solution described
above, which took a total of 1052 un-minified lines of code. For domino, the evaluation
metric stated in the prior work [35] was not performance but rather feasibility, i.e., if we
could transpile a program to a banzai atom then these are feasible to run on a programmable
switch device. The average compilation time for these 10 benchmarks was ≈ 6secs. The
Domino compiler, measuring all C++ source files and headers, totals 4036 lines of code,
so our solution leveraging MetaLift requires 74% fewer lines of code. Table 3 shows
that the synthesized output maximum atom count per stage from MetaLift is under the
maximum number of atoms per stage that the Domino compiler used for all but one of the ten
benchmarks. Differences can be partially attributed to different benchmark decompositions
(and therefore, different numbers of stages): for example, in the “HULL” benchmark, the
Domino compiler output had 7 stages with maximum 1 atom/stage while MetaLift had
5 stages with maximum 3 atoms/stage. The other primary source of variance is that the
Domino compiler optimized for surface area and speed at the hardware level, while MetaLift
only optimized for the number of atoms. As a result, certain benchmarks like “Heavy Hitters”
were synthesized in far fewer atoms by MetaLift, but those atoms were slower at a hardware
level. Nonetheless, the success of this case study further demonstrates the capability of
MetaLift to decrease the complexity of verified lifting solutions while simultaneously raising
the level of abstraction.

4.3 Case Study: Vector Operations

In machine learning worflows, one crucial step is to pre-process datasets, but writing processing
pipelines using loops can be computationally expensive due to the large size of the datasets.
To improve efficiency, libraries like Pytorch, Tensorflow, and Scipy offer highly optimized
vector or matrix operations for performing these operations faster. To take advantage of
the optimizations, we build a transpiler with MetaLift to translate loopy array processing
programs to vectorized operations. For example, consider the program in Figure 23 that
computes the sum of consecutive elements in an array. This sequential program can be
implemented using a convolution operation with a kernel of [1, 1] and a stride of 1. For this
transpiler, we encode the semantics of the operators such as 1D convolution, element-wise
vector (matrix) multiplication and dot-product using MTL. In Figure 23, we show the
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definition of the 1D convolution operation in our MTL. Note that if we were to search for an
equivalent convolution program using the concrete syntax of tensor libraries we will have to
search and verify for each individual library. Instead, by lifting the semantics to our MTL,
we need to perform this search only once and then using simple syntax-driven rules we can
translate this to any of the tensor libraries such as Tensorflow or Pytorch.

Results. We evaluate our implementation on 5 array processing benchmarks which can
represented using the vector operations described above. These benchmarks are a combination
of the stencil kernels introduced in prior work [20] and C++ kernels scraped from the web.
We use the same 60 minutes timeout as the previous case studies. Since all these are
loopy programs, MetaLift synthesizes any additional invariants also required to prove the
functional equivalence. We can translate all the benchmarks with an average running time
of ≈ 2mins. Once we have the summaries synthesized in our MTL, we write code generation
rules to translate them to PyTorch, Tensorflow and Scipy. Our implementation requires less
than 500 lines of code.

1 vector<int> program(vector<int> data){

2 vector<int> result;

3 for (int i = 0; i < data.size() - 1; i++)

4 result.push_back(data[i] + data[i + 1]);

5 return result;

6 }

Figure 22 Sequential C++ array processing program.

1 def conv(data, kernel, stride):
2 if length(lst) == 0 then empty
3 return prepend(dot_product(data, kernel), conv(tail(data,stride), kernel, stride))

Figure 23 Semantics of the convolution operator using MTL.

5 Related Work

Program Synthesis-Based Compilers. Many tools have been developed previously which
leverage program synthesis to translate code written in general-purpose programming lan-
guages to DSLs while preserving semantics. Examples of such compilers include STNG [20],
which converts Fortran stencil computations to the Halide [32] DSL; QBS [14], which trans-
lates sequential Java database processing queries to SQL; Casper [3], which converts sequential
Java code to map-reduce operations; and Domino [35], a compiler that translates network
packet processing algorithms for programmable switches. All of these compilers are fully
automated, but they are tailored to a specific DSL and cannot be reused to build a compiler
for a new DSL. Implementing these tools required extensive knowledge of program synthesis
and verification, making it difficult for developers to leverage the underlying approach of
synthesis-based transformation for their own DSLs. MetaLift, on the other hand, uses MTL
to provide a very high-level abstraction for developers to specify the semantics of their DSLs
and automatically build compilers that can perform semantic preserving transformations.
Other prior work [34] leverages program synthesis to perform superoptimization for the x86
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instruction set and [23] employs a data-driven approach for verifying peephole optimization
in LLVM. These tools perform transformations for low-level languages while MetaLift
builds compilers for DSLs.

Syntax-Driven Transpilation. The traditional solution to the translation problem is to
create a syntax-driven compiler. These rule-based systems rely on users to create rules that
pattern match in order to perform the required translation. An example of one such compiler
is [31], which translates sequential Java code to into MapReduce operations. As such, these
rule-based systems tend to be difficult to design and are vulnerable to translation errors.
Perhaps even more problematic is that such approach is brittle to changes in DSL semantics.

Neural Approaches for Transpiling. Recently, there has been lot of interest in using neural
machine translation to perform source-to-source translations. A number of approaches,
including supervised [25, 13] and unsupervised [33] learning based techniques have been
proposed for translating between general-purpose programming languages. These models do
not require any input from developers, but require massive amounts of data for training. For
instance, [33] required over 100 million functions from C++, Python and Java to train their
model. MetaLift targets DSLs for which such huge amounts of data may not be available
always. Furthermore, the transformations performed by these neural models are not verified,
which may provide an opportunity to introduce bugs in the code.

6 Conclusion and Future Work

In this paper we described MetaLift, a unified platform for building DSL compilers.
MetaLift allows developers to build compilers for their own DSLs by utilizing the synthesis-
based program transformation approach that has been the underlying technique for many
previous DSL compilers [2, 20, 35]. MetaLift achieves this with its design of a specification
language called MTL. Using MTL developers can express the semantics of their target DSL
and search space description to guide the synthesis engine. This programmatic approach
to describing DSLs allows MetaLift to build compilers for various DSLs. We described
our experience in building synthesis-driven transpilers by using MetaLift to build three
transpilers targeting very different application domains. We demonstrate that MetaLift
significantly reduces the effort required to create specialized implementations of these three
compilers. With a unified framework, MetaLift opens up new research directions for
automated transpilation, such as leveraging dynamic execution traces to automatically
infer loop invariants, and improving synthesis with neuro-symbolic methods, which can
learn effectively search strategies from similar programs, as well as oracle-guided synthesis
methods [28, 29], which integrate verification with synthesis and extend the expressive
power of synthesis queries beyond SMT. MetaLift is modular to easily add any of these
optimizations. As a framework, MetaLift has the potential of dramatically lowering the
barrier for both research into synthesis driven transpilation and adoption of new specialized
high performance hardware and DSLs.
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